research communications
Crystal structures of the solvent-free and ethanol disolvate forms of 4,4′-(diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid) exemplifying self-stabilized azobenzene cis-configurations
aDepartment of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada, bDepartment of Chemistry, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada, and cFaculty of Pharmacy, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
*Correspondence e-mail: igor.elkin@mail.mcgill.ca
cis-4,4′-(Diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid), C14H2F8N2O4, and its ethanol disolvate, C14H2F8N2O4·2C2H5OH, represent new examples of self-stabilized cis-configured azobenzenes obtained by a common crystallization procedure at room temperature under normal laboratory lighting conditions. The target structure constitutes of two 2,3,5,6-tetrafluorobenzoic acid residues linked to each other by a cis-configured azo group and was confirmed for two isolated specimens extracted from the same sample, corresponding to a solvent-free form and an ethanol disolvate. In the solvent-free form, the molecule is characterized by rotational symmetry around a twofold rotation axis bisecting its central N=N bond while this symmetry is not present in the solvated form. The values of the inclination angles of the terminal carboxyl groups towards the corresponding benzene rings vary from 5.2 (4) to 45.7 (2)°, depending on the crystal composition. In the unsolvated form, the molecules are linked through identical hydrogen bonds with a classical R22(8) graph-set ring motif of carboxylic acids, by generating supramolecular chains running approximately parallel to [101]. The presence of ethanol in the solvated form also leads to changes in the short-contact pattern to produce both the R44(12) ring and open-chain motifs with alternating alcohol and dicarboxylic acid molecules.
1. Chemical context
The parent structure of azobenzene and its numerous differently substituted derivatives is comprised of two aromatic benzene rings separated by an azo group. One of the most intriguing properties of these artificial molecules is their capability to shape reversibly the configuration of the azo group from the linear trans form, usually more stable, to the bent cis form, in the presence of an appropriate light irradiation, e.g. lasers or LEDs. Such controlled trans-cis interconversions at the molecular scale, typically performed on the microsecond time interval or faster, have been amplified successfully to a macroscopic material photomechanical response, suggesting a highly promising route toward creating and applying diverse photoresponsive systems (Mahimwalla et al., 2012; Bushuyev et al., 2018). In this context, azobenzenes, capable of adopting long-term stabilized cis-forms, represent an important tool for studying the trans–cis isomerization mechanisms, as well as for tuning the photomechanical properties. Particular attention has therefore been paid to polyfluorinated azobenzene derivatives employed as components of various photoresponsive homo- and heteromolecular crystals (Bushuyev et al., 2013, 2014, 2016a,b).
In the present study, we report the crystal structures of 4,4′-(diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid) with (I) and without residual ethanol (II), both adopting the cis configuration during a common crystallization procedure from the same solution in ethanol at room temperature under normal laboratory lighting conditions.
2. Structural commentary
The molecular structure of the title compound with (I) and without residual ethanol solvent molecules (II), Figs. 1 and 2, respectively, is constituted of two 2,3,5,6-tetrafluorobenzoic acid residues linked to each other by a cis-configured azo group. In the solvent-free form (II), the molecule is characterized by rotational symmetry around a twofold rotation axis bisecting its central N=N bond while this symmetry is not present in the solvated form (I).
In both types of crystal, the molecular configurations are characterized by similar bond lengths and angles, which are in the expected ranges and are consistent with known data for cis-configured 2,3,5,6,2′,3′,5′,6′-octafluoroazobenzene moieties (Bushuyev et al., 2013, 2014, 2016c). Depending on the type of crystal, the two carboxyl groups are inclined differently to the planes of the corresponding benzene rings to which they are attached. In the ethanol disolvate form (I), the angles of inclination for groups O4—C14—O3 and O1—C7—O2 are 5.2 (4) and 45.7 (3)°, respectively, while in the solvent-free form (II), the value for O1—C7—O2 is 40.4 (3)°. The torsion angles between the central N=N bond and the two attached benzene C atoms are nearly the same in the two molecules, viz. −9.8 (9)° for C1—N1=N2—C8 in (I), and −9.4 (4)° for C1—N1=N1i—C1i [i) −x + 1, y, −z + ] in (II).
3. Supramolecular features
The inclusion of ethanol molecules in the crystal composition renders different the patterns of interactions through hydrogen bonds for the forms (I) and (II) (Tables 1 and 2, respectively). For the solvated structure (I), the hydrogen bonds between the alternating hydroxy groups of residual ethanol and the carboxyl groups of the title molecule are arranged in two different ways, by forming either 12-membered rings involving four molecules (two molecules of each component), according to graph-set descriptor R44(12) (Etter et al., 1990), or an open-chain pattern extending parallel to [100] (Fig. 3). As a result of such a configuration of short contacts, the whole supramolecular scaffold is stabilized by molecules belonging to adjacent parallel (011) layers stacked along [100]. For the unsolvated structure (II), the molecules are organized in (10) layers composed of identical corrugated chains running along [101]. In this case, the supramolecular integrity is maintained primarily by the classical R22(8) ring motif of hydrogen bonds between the closest carboxyl groups (Fig. 4). A very similar motif was also observed in a solvent-free crystal of another 4,4′-dicarboxyl-substituted azobenzene, i.e. trans-4,4′-(diazenediyl)dibenzoic acid (Yu & Liu, 2009).
4. Database Survey
A search in the Cambridge Structural Database (Version 5.39 with one update; Groom et al., 2016) returned 32 entries for different 4,4′-(diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid) derivatives and their co-crystals with other compounds. This includes the crystal characterization of pure trans-2,3,5,6,2′,3′,5′,6′-octafluoroazinodibenzene (Saccone et al., 2014), cis- (Bushuyev et al., 2016c) and trans-2,3,4,5,6,2′,3′,4′,5′,6′-decafluoroazobenzene (Chinnakali et al., 1993; Bushuyev et al., 2016c), as well as of co-crystals of the latter with trans-stilbene (Bruce et al., 1987) and trans-azomesitylene (Bruce & Tiekink, 1989). The structures of other entries found by the search are also limited to the 4,4′-dihalide derivatives, i.e. to 4,4′-dibromo- and 4,4′-diiodo- ones, in their cis and trans configurations (Bushuyev et al., 2013), as well as to their co-crystals with cis- and trans-1,2- bis(4-pyridyl)ethylene and trans-4,4′-azopyridine (Bushuyev et al., 2014), with 4,4′-bipyridine, 4-methoxyl-4′-stilbazole and dimethylsulfoxide (Saccone et al., 2014), with 1,4-diazabicyclo[2.2.2]octane, dithiane, 4-vinylpyridine (Bushuyev et al., 2016c) and with trans-4,4′-dicyanoazobenzene, trans-4,4′-dinitroazobenzene, trans-4,4′-azopyridine, 4-cyano-4′-pentylbiphenyl and 1,10-phenanthroline (Bushuyev et al., 2016b).
5. Synthesis and crystallization
The title compound was synthesized according to a modified general protocol for obtaining symmetrically substituted azobenzenes from the corresponding initial anilines (Clarke, 1971). Briefly, 3 g (0.014 mol) of 4-amino-2,3,5,6-tetrafluorobenzoic acid was neutralized in 60 ml of water by NaOH solution and adjusted to pH ≃ 8.5–9.0, and added dropwise to 100 ml of the commercial bleach solution CloroxTM (The Clorox Company of Canada Ltd., ON, Canada), preliminary cooled to 273–278 K in an ice bath. The mixture was allowed to reach room temperature with overnight stirring. The resulting red-coloured solution was first treated with 80 ml of acetone and stirred for 1 h, to neutralize the excess of NaOCl, and then with aqueous HCl to pH 1.0 to give a pink sediment. After filtering and drying overnight at room temperature, the solid crude product was purified by extraction with ethanol followed by filtering. The final removal of solvent under reduced pressure gave 1.2 g of the target product with the yield of 40.4%. The structure and purity of the desired product were confirmed by LC–MS analysis performed on an Agilent Technologies 1260 Infinity LC–MS spectrometer (Santa Clara, CA, US) in ESI positive and negative modes. Separation was performed with an Agilent Poroshell 120 EC–C18 2.7 mm column, using as the 0–100% gradient of solvent mixtures A and B [where A: water–acetonitrile (95%vol–5%vol) and acetic acid (0.1%vol); B: acetonitrile (99.9%vol) and acetic acid (0.1%vol)] under the following conditions: a capillary voltage of ESI source of 3000 V; a vaporizer temperature of 442 K, a nebulization pressure of 55 psig, a dry gas temperature of 571 K and a gas flow of 5 l min−1. Crystals of the title compound were obtained by vapor diffusion at room temperature using an ethanol solution in a small open vial placed in a sealed larger vessel filled with hexane. The ethanol solvate crystals were in the form of small yellow platelets while the unsolvated form crystallized as large orange plates.
6. Refinement
Crystal data, data collection and structure . The H atoms of the hydroxy and carboxyl groups in (I) were first positioned from Fourier synthesis and refined leveraging a riding model with Uiso(H) set to 1.5 times Ueq(O). All other H atoms of (I) were treated by using appropriate constraints. For (II), all the H atoms, including those belonging to the carboxyl group, were positioned from the difference synthesis and fully refined. For (I), non-merohedral was found using the TwinRotMat Routine in PLATON (Spek, 2009). The matrix was found to be (1 0 0, −0.621 − 1 0, −0.951 0 − 1). Processing the data as a two-component specimen with SAINT (Bruker, 2013) and TWINABS (Bruker, 2013) did not lead to an improvement in the Therefore, the initial data set was kept with the performed using the HKLF5 file as generated with PLATON. The final BASF parameter indication the ratio of the two crystal domains was 0.646 (10).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018012781/wm5460sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018012781/wm5460Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018012781/wm5460IIsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C14H2F8N2O4·2C2H6O | Z = 2 |
Mr = 506.31 | F(000) = 512 |
Triclinic, P1 | Dx = 1.658 Mg m−3 |
a = 5.8188 (9) Å | Ga Kα radiation, λ = 1.34139 Å |
b = 10.4579 (16) Å | Cell parameters from 9922 reflections |
c = 17.468 (3) Å | θ = 2.3–55.1° |
α = 99.186 (8)° | µ = 0.98 mm−1 |
β = 99.112 (8)° | T = 150 K |
γ = 99.950 (8)° | Platelet, clear light yellow |
V = 1014.5 (3) Å3 | 0.25 × 0.08 × 0.03 mm |
Bruker Venture Metaljet diffractometer | 18534 measured reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 18534 independent reflections |
Helios MX Mirror Optics monochromator | 13265 reflections with I > 2σ(I) |
Detector resolution: 10.24 pixels mm-1 | θmax = 55.4°, θmin = 2.3° |
ω and φ scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.549, Tmax = 0.751 | l = −21→21 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.093 | w = 1/[σ2(Fo2) + (0.1107P)2 + 2.0727P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.288 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.49 e Å−3 |
18534 reflections | Δρmin = −0.41 e Å−3 |
312 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.012 (3) |
Primary atom site location: dual |
Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9889 (11) | 0.7393 (6) | 0.2014 (3) | 0.0597 (15) | |
N1 | 1.1558 (10) | 0.6593 (6) | 0.2222 (3) | 0.0672 (14) | |
O1 | 0.3501 (7) | 0.9771 (4) | 0.1079 (2) | 0.0653 (11) | |
H1 | 0.280864 | 1.028028 | 0.084501 | 0.098* | |
O2 | 0.6726 (7) | 1.0908 (4) | 0.0774 (2) | 0.0618 (11) | |
F2 | 1.2702 (6) | 0.9263 (4) | 0.2709 (2) | 0.0770 (11) | |
C2 | 1.0604 (10) | 0.8764 (6) | 0.2215 (3) | 0.0584 (15) | |
N2 | 1.1060 (10) | 0.5642 (6) | 0.2555 (3) | 0.0687 (14) | |
C3 | 0.9249 (11) | 0.9584 (6) | 0.1927 (3) | 0.0595 (15) | |
F3 | 1.0065 (7) | 1.0886 (3) | 0.2150 (2) | 0.0708 (10) | |
O3 | 0.2387 (10) | 0.5170 (5) | 0.4479 (3) | 0.0861 (14) | |
O4 | 0.2042 (10) | 0.3099 (5) | 0.3888 (3) | 0.0897 (15) | |
H4 | 0.083481 | 0.299282 | 0.409650 | 0.135* | |
C4 | 0.7100 (10) | 0.9097 (6) | 0.1410 (3) | 0.0546 (14) | |
F5 | 0.4289 (6) | 0.7189 (3) | 0.0718 (2) | 0.0708 (10) | |
C5 | 0.6371 (10) | 0.7738 (6) | 0.1226 (3) | 0.0563 (14) | |
F6 | 0.6944 (7) | 0.5586 (3) | 0.1279 (2) | 0.0705 (10) | |
C6 | 0.7702 (11) | 0.6899 (6) | 0.1508 (3) | 0.0589 (15) | |
C7 | 0.5754 (11) | 1.0025 (6) | 0.1050 (3) | 0.0565 (14) | |
C8 | 0.8909 (11) | 0.5411 (6) | 0.2860 (3) | 0.0605 (15) | |
F9 | 0.9583 (7) | 0.7550 (3) | 0.3629 (2) | 0.0771 (11) | |
C9 | 0.8279 (12) | 0.6306 (6) | 0.3424 (3) | 0.0617 (15) | |
C10 | 0.6437 (12) | 0.5963 (6) | 0.3793 (3) | 0.0618 (15) | |
F10 | 0.5974 (8) | 0.6915 (4) | 0.4324 (2) | 0.0811 (11) | |
C11 | 0.5087 (11) | 0.4687 (6) | 0.3642 (3) | 0.0590 (15) | |
F12 | 0.4592 (7) | 0.2513 (4) | 0.2879 (2) | 0.0802 (11) | |
C12 | 0.5750 (12) | 0.3767 (6) | 0.3080 (3) | 0.0636 (16) | |
C13 | 0.7577 (12) | 0.4126 (6) | 0.2712 (3) | 0.0626 (16) | |
F13 | 0.8152 (8) | 0.3206 (4) | 0.2172 (2) | 0.0811 (11) | |
C14 | 0.3069 (12) | 0.4362 (7) | 0.4047 (4) | 0.0656 (17) | |
O6 | −0.1599 (10) | 0.2670 (5) | 0.4551 (3) | 0.0852 (14) | |
H6 | −0.212334 | 0.326189 | 0.481383 | 0.128* | |
C17 | −0.3034 (15) | 0.1409 (7) | 0.4531 (4) | 0.084 (2) | |
H17A | −0.472205 | 0.141429 | 0.433163 | 0.100* | |
H17B | −0.289254 | 0.121575 | 0.507162 | 0.100* | |
C18 | −0.2239 (17) | 0.0366 (8) | 0.4004 (6) | 0.104 (3) | |
H18A | −0.222599 | 0.060904 | 0.348511 | 0.156* | |
H18B | −0.333646 | −0.048393 | 0.394220 | 0.156* | |
H18C | −0.063561 | 0.028925 | 0.423832 | 0.156* | |
O5 | 0.1322 (7) | 1.1419 (4) | 0.0494 (2) | 0.0656 (11) | |
H5 | −0.008659 | 1.122255 | 0.055918 | 0.098* | |
C15 | 0.2311 (12) | 1.2757 (6) | 0.0863 (4) | 0.0688 (17) | |
H15A | 0.398341 | 1.297679 | 0.079716 | 0.083* | |
H15B | 0.230495 | 1.286243 | 0.143629 | 0.083* | |
C16 | 0.0966 (13) | 1.3697 (7) | 0.0526 (4) | 0.0741 (18) | |
H16A | 0.096171 | 1.359388 | −0.004153 | 0.111* | |
H16B | 0.172803 | 1.460624 | 0.078785 | 0.111* | |
H16C | −0.067309 | 1.350866 | 0.061155 | 0.111* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.063 (4) | 0.066 (4) | 0.050 (3) | 0.020 (3) | 0.007 (3) | 0.009 (3) |
N1 | 0.071 (3) | 0.072 (4) | 0.063 (3) | 0.028 (3) | 0.008 (3) | 0.013 (3) |
O1 | 0.058 (3) | 0.069 (3) | 0.073 (3) | 0.017 (2) | 0.013 (2) | 0.018 (2) |
O2 | 0.066 (3) | 0.058 (3) | 0.058 (2) | 0.015 (2) | 0.0071 (19) | 0.0044 (19) |
F2 | 0.066 (2) | 0.079 (2) | 0.075 (2) | 0.0081 (18) | −0.0105 (18) | 0.0125 (19) |
C2 | 0.053 (3) | 0.064 (4) | 0.053 (3) | 0.006 (3) | 0.002 (3) | 0.009 (3) |
N2 | 0.078 (4) | 0.070 (3) | 0.061 (3) | 0.027 (3) | 0.010 (3) | 0.010 (3) |
C3 | 0.072 (4) | 0.049 (3) | 0.051 (3) | 0.009 (3) | 0.006 (3) | 0.002 (3) |
F3 | 0.079 (2) | 0.057 (2) | 0.066 (2) | 0.0060 (17) | −0.0002 (17) | 0.0014 (16) |
O3 | 0.095 (4) | 0.078 (3) | 0.078 (3) | 0.014 (3) | 0.025 (3) | −0.011 (3) |
O4 | 0.106 (4) | 0.064 (3) | 0.096 (3) | 0.008 (3) | 0.033 (3) | 0.004 (3) |
C4 | 0.057 (3) | 0.060 (4) | 0.044 (3) | 0.012 (3) | 0.009 (2) | 0.006 (3) |
F5 | 0.069 (2) | 0.063 (2) | 0.068 (2) | 0.0076 (16) | −0.0095 (17) | 0.0061 (17) |
C5 | 0.056 (3) | 0.062 (4) | 0.043 (3) | 0.008 (3) | 0.002 (2) | −0.001 (3) |
F6 | 0.087 (3) | 0.055 (2) | 0.062 (2) | 0.0166 (17) | 0.0014 (18) | 0.0017 (16) |
C6 | 0.072 (4) | 0.051 (3) | 0.049 (3) | 0.012 (3) | 0.004 (3) | 0.002 (3) |
C7 | 0.064 (4) | 0.055 (4) | 0.048 (3) | 0.015 (3) | 0.010 (3) | 0.000 (3) |
C8 | 0.072 (4) | 0.064 (4) | 0.048 (3) | 0.026 (3) | 0.008 (3) | 0.010 (3) |
F9 | 0.100 (3) | 0.059 (2) | 0.063 (2) | 0.0061 (19) | 0.0128 (19) | 0.0005 (17) |
C9 | 0.077 (4) | 0.052 (4) | 0.051 (3) | 0.013 (3) | 0.002 (3) | 0.004 (3) |
C10 | 0.076 (4) | 0.059 (4) | 0.047 (3) | 0.022 (3) | 0.003 (3) | 0.001 (3) |
F10 | 0.106 (3) | 0.062 (2) | 0.073 (2) | 0.018 (2) | 0.023 (2) | −0.0041 (18) |
C11 | 0.069 (4) | 0.060 (4) | 0.045 (3) | 0.019 (3) | 0.000 (3) | 0.004 (3) |
F12 | 0.100 (3) | 0.062 (2) | 0.067 (2) | 0.007 (2) | 0.012 (2) | −0.0072 (17) |
C12 | 0.079 (4) | 0.052 (4) | 0.050 (3) | 0.015 (3) | −0.005 (3) | −0.001 (3) |
C13 | 0.080 (4) | 0.060 (4) | 0.045 (3) | 0.025 (3) | 0.001 (3) | −0.001 (3) |
F13 | 0.104 (3) | 0.066 (2) | 0.071 (2) | 0.023 (2) | 0.022 (2) | −0.0042 (18) |
C14 | 0.074 (4) | 0.068 (4) | 0.049 (3) | 0.016 (3) | −0.005 (3) | 0.009 (3) |
O6 | 0.098 (4) | 0.061 (3) | 0.095 (4) | 0.017 (3) | 0.022 (3) | 0.007 (3) |
C17 | 0.100 (6) | 0.071 (5) | 0.075 (4) | 0.022 (4) | 0.011 (4) | 0.004 (4) |
C18 | 0.111 (7) | 0.074 (5) | 0.119 (7) | 0.022 (5) | 0.023 (5) | −0.008 (5) |
O5 | 0.063 (3) | 0.061 (3) | 0.070 (3) | 0.0148 (19) | 0.007 (2) | 0.005 (2) |
C15 | 0.065 (4) | 0.068 (4) | 0.068 (4) | 0.009 (3) | 0.004 (3) | 0.007 (3) |
C16 | 0.086 (5) | 0.069 (4) | 0.069 (4) | 0.019 (4) | 0.015 (4) | 0.015 (3) |
C1—N1 | 1.429 (8) | C10—F10 | 1.341 (7) |
C1—C2 | 1.393 (8) | C10—C11 | 1.388 (9) |
C1—C6 | 1.392 (8) | C11—C12 | 1.409 (9) |
N1—N2 | 1.244 (7) | C11—C14 | 1.482 (9) |
O1—H1 | 0.8400 | F12—C12 | 1.331 (7) |
O1—C7 | 1.303 (7) | C12—C13 | 1.356 (9) |
O2—C7 | 1.206 (7) | C13—F13 | 1.359 (7) |
F2—C2 | 1.345 (6) | O6—H6 | 0.8400 |
C2—C3 | 1.363 (8) | O6—C17 | 1.425 (9) |
N2—C8 | 1.434 (8) | C17—H17A | 0.9900 |
C3—F3 | 1.334 (6) | C17—H17B | 0.9900 |
C3—C4 | 1.383 (8) | C17—C18 | 1.498 (11) |
O3—C14 | 1.203 (8) | C18—H18A | 0.9800 |
O4—H4 | 0.8400 | C18—H18B | 0.9800 |
O4—C14 | 1.318 (8) | C18—H18C | 0.9800 |
C4—C5 | 1.380 (8) | O5—H5 | 0.8400 |
C4—C7 | 1.500 (8) | O5—C15 | 1.422 (7) |
F5—C5 | 1.356 (6) | C15—H15A | 0.9900 |
C5—C6 | 1.366 (8) | C15—H15B | 0.9900 |
F6—C6 | 1.342 (7) | C15—C16 | 1.493 (9) |
C8—C9 | 1.386 (8) | C16—H16A | 0.9800 |
C8—C13 | 1.393 (9) | C16—H16B | 0.9800 |
F9—C9 | 1.349 (7) | C16—H16C | 0.9800 |
C9—C10 | 1.361 (9) | ||
C2—C1—N1 | 118.9 (5) | C12—C11—C14 | 123.9 (6) |
C6—C1—N1 | 123.7 (6) | F12—C12—C11 | 121.5 (6) |
C6—C1—C2 | 116.6 (5) | F12—C12—C13 | 117.1 (6) |
N2—N1—C1 | 122.3 (5) | C13—C12—C11 | 121.5 (6) |
C7—O1—H1 | 109.5 | C12—C13—C8 | 122.8 (6) |
F2—C2—C1 | 117.6 (5) | C12—C13—F13 | 119.5 (6) |
F2—C2—C3 | 120.5 (5) | F13—C13—C8 | 117.8 (6) |
C3—C2—C1 | 121.9 (5) | O3—C14—O4 | 122.1 (7) |
N1—N2—C8 | 121.5 (5) | O3—C14—C11 | 123.8 (6) |
C2—C3—C4 | 121.7 (5) | O4—C14—C11 | 114.2 (6) |
F3—C3—C2 | 118.0 (5) | C17—O6—H6 | 109.5 |
F3—C3—C4 | 120.3 (5) | O6—C17—H17A | 109.8 |
C14—O4—H4 | 109.5 | O6—C17—H17B | 109.8 |
C3—C4—C7 | 120.2 (5) | O6—C17—C18 | 109.5 (7) |
C5—C4—C3 | 116.3 (5) | H17A—C17—H17B | 108.2 |
C5—C4—C7 | 123.4 (5) | C18—C17—H17A | 109.8 |
F5—C5—C4 | 119.5 (5) | C18—C17—H17B | 109.8 |
F5—C5—C6 | 117.5 (5) | C17—C18—H18A | 109.5 |
C6—C5—C4 | 122.9 (5) | C17—C18—H18B | 109.5 |
C5—C6—C1 | 120.6 (5) | C17—C18—H18C | 109.5 |
F6—C6—C1 | 119.3 (5) | H18A—C18—H18B | 109.5 |
F6—C6—C5 | 120.1 (5) | H18A—C18—H18C | 109.5 |
O1—C7—C4 | 113.0 (5) | H18B—C18—H18C | 109.5 |
O2—C7—O1 | 125.3 (5) | C15—O5—H5 | 109.5 |
O2—C7—C4 | 121.7 (6) | O5—C15—H15A | 109.2 |
C9—C8—N2 | 124.6 (6) | O5—C15—H15B | 109.2 |
C9—C8—C13 | 115.6 (6) | O5—C15—C16 | 112.2 (5) |
C13—C8—N2 | 118.5 (6) | H15A—C15—H15B | 107.9 |
F9—C9—C8 | 118.7 (6) | C16—C15—H15A | 109.2 |
F9—C9—C10 | 119.0 (6) | C16—C15—H15B | 109.2 |
C10—C9—C8 | 122.3 (6) | C15—C16—H16A | 109.5 |
C9—C10—C11 | 122.4 (6) | C15—C16—H16B | 109.5 |
F10—C10—C9 | 117.1 (6) | C15—C16—H16C | 109.5 |
F10—C10—C11 | 120.5 (6) | H16A—C16—H16B | 109.5 |
C10—C11—C12 | 115.5 (6) | H16A—C16—H16C | 109.5 |
C10—C11—C14 | 120.6 (6) | H16B—C16—H16C | 109.5 |
C1—N1—N2—C8 | −9.8 (9) | C5—C4—C7—O2 | −130.9 (6) |
C1—C2—C3—F3 | 180.0 (5) | C6—C1—N1—N2 | −59.3 (8) |
C1—C2—C3—C4 | −0.9 (9) | C6—C1—C2—F2 | 179.4 (5) |
N1—C1—C2—F2 | −10.8 (8) | C6—C1—C2—C3 | −0.7 (9) |
N1—C1—C2—C3 | 169.2 (5) | C7—C4—C5—F5 | −2.6 (8) |
N1—C1—C6—C5 | −168.7 (5) | C7—C4—C5—C6 | 174.7 (5) |
N1—C1—C6—F6 | 9.2 (9) | C8—C9—C10—F10 | −179.3 (5) |
N1—N2—C8—C9 | −58.6 (8) | C8—C9—C10—C11 | 1.3 (9) |
N1—N2—C8—C13 | 135.3 (6) | F9—C9—C10—F10 | 2.5 (8) |
F2—C2—C3—F3 | −0.1 (8) | F9—C9—C10—C11 | −176.8 (5) |
F2—C2—C3—C4 | 179.1 (5) | C9—C8—C13—C12 | 1.3 (8) |
C2—C1—N1—N2 | 131.6 (6) | C9—C8—C13—F13 | −178.9 (5) |
C2—C1—C6—C5 | 0.7 (9) | C9—C10—C11—C12 | 0.0 (8) |
C2—C1—C6—F6 | 178.5 (5) | C9—C10—C11—C14 | −178.9 (5) |
C2—C3—C4—C5 | 2.3 (8) | C10—C11—C12—F12 | −179.6 (5) |
C2—C3—C4—C7 | −174.8 (5) | C10—C11—C12—C13 | −0.5 (8) |
N2—C8—C9—F9 | 9.7 (8) | C10—C11—C14—O3 | 5.0 (9) |
N2—C8—C9—C10 | −168.4 (5) | C10—C11—C14—O4 | −175.8 (5) |
N2—C8—C13—C12 | 168.7 (5) | F10—C10—C11—C12 | −179.4 (5) |
N2—C8—C13—F13 | −11.5 (8) | F10—C10—C11—C14 | 1.7 (8) |
C3—C4—C5—F5 | −179.6 (5) | C11—C12—C13—C8 | −0.1 (9) |
C3—C4—C5—C6 | −2.3 (8) | C11—C12—C13—F13 | −179.9 (5) |
C3—C4—C7—O1 | −133.7 (6) | F12—C12—C13—C8 | 179.0 (5) |
C3—C4—C7—O2 | 45.9 (8) | F12—C12—C13—F13 | −0.8 (8) |
F3—C3—C4—C5 | −178.6 (5) | C12—C11—C14—O3 | −173.8 (6) |
F3—C3—C4—C7 | 4.4 (8) | C12—C11—C14—O4 | 5.4 (8) |
C4—C5—C6—C1 | 0.8 (9) | C13—C8—C9—F9 | 176.3 (5) |
C4—C5—C6—F6 | −177.0 (5) | C13—C8—C9—C10 | −1.9 (8) |
F5—C5—C6—C1 | 178.2 (5) | C14—C11—C12—F12 | −0.8 (8) |
F5—C5—C6—F6 | 0.4 (8) | C14—C11—C12—C13 | 178.3 (5) |
C5—C4—C7—O1 | 49.5 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O5 | 0.84 | 1.72 | 2.556 (5) | 171.9 |
O4—H4···O6 | 0.84 | 1.74 | 2.579 (7) | 175.7 |
O6—H6···O3i | 0.84 | 1.93 | 2.751 (7) | 164 |
O5—H5···O2ii | 0.84 | 1.93 | 2.771 (6) | 175.2 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z. |
C14H2F8N2O4 | F(000) = 816 |
Mr = 414.18 | Dx = 1.911 Mg m−3 |
Monoclinic, C2/c | Ga Kα radiation, λ = 1.34139 Å |
a = 21.7297 (16) Å | Cell parameters from 6326 reflections |
b = 6.5797 (5) Å | θ = 3.6–60.6° |
c = 10.2247 (8) Å | µ = 1.21 mm−1 |
β = 100.058 (4)° | T = 150 K |
V = 1439.41 (19) Å3 | Plate, clear light orange |
Z = 4 | 0.15 × 0.08 × 0.04 mm |
Bruker Venture Metaljet diffractometer | 1656 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 1339 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.052 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.7°, θmin = 3.6° |
ω and φ scans | h = −28→27 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.547, Tmax = 0.752 | l = −13→13 |
9647 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.057 | w = 1/[σ2(Fo2) + (0.0917P)2 + 1.5671P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.171 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.25 e Å−3 |
1656 reflections | Δρmin = −0.31 e Å−3 |
132 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0040 (7) |
Primary atom site location: dual |
Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.52881 (9) | 1.1272 (3) | 0.2701 (2) | 0.0493 (5) | |
C1 | 0.56365 (10) | 0.9427 (4) | 0.3044 (2) | 0.0451 (5) | |
O1 | 0.74933 (8) | 0.5029 (3) | 0.46997 (18) | 0.0550 (5) | |
C2 | 0.62039 (10) | 0.9234 (4) | 0.2592 (2) | 0.0466 (6) | |
F2 | 0.63497 (7) | 1.0570 (3) | 0.17121 (15) | 0.0598 (5) | |
O2 | 0.66949 (9) | 0.2838 (3) | 0.4540 (2) | 0.0601 (5) | |
H2 | 0.699 (2) | 0.185 (8) | 0.473 (5) | 0.142 (19)* | |
F3 | 0.71428 (7) | 0.7543 (2) | 0.25407 (15) | 0.0604 (5) | |
C3 | 0.66112 (10) | 0.7681 (4) | 0.3031 (2) | 0.0486 (6) | |
C4 | 0.64750 (10) | 0.6250 (4) | 0.3932 (2) | 0.0460 (6) | |
C5 | 0.59134 (11) | 0.6440 (4) | 0.4392 (2) | 0.0464 (5) | |
F5 | 0.57659 (7) | 0.5188 (2) | 0.53098 (15) | 0.0570 (5) | |
C6 | 0.54993 (10) | 0.8009 (4) | 0.3945 (2) | 0.0457 (5) | |
F6 | 0.49705 (6) | 0.8153 (2) | 0.44498 (14) | 0.0529 (4) | |
C7 | 0.69243 (11) | 0.4589 (4) | 0.4432 (2) | 0.0470 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0456 (10) | 0.0508 (11) | 0.0466 (10) | 0.0015 (8) | −0.0054 (7) | 0.0028 (8) |
C1 | 0.0405 (11) | 0.0486 (12) | 0.0413 (11) | −0.0022 (9) | −0.0065 (8) | 0.0003 (9) |
O1 | 0.0393 (9) | 0.0583 (11) | 0.0618 (10) | 0.0015 (7) | −0.0067 (7) | −0.0017 (8) |
C2 | 0.0407 (11) | 0.0533 (13) | 0.0420 (11) | −0.0028 (9) | −0.0037 (8) | 0.0051 (9) |
F2 | 0.0521 (9) | 0.0680 (10) | 0.0569 (8) | 0.0016 (7) | 0.0033 (6) | 0.0198 (7) |
O2 | 0.0508 (10) | 0.0501 (10) | 0.0702 (12) | 0.0000 (8) | −0.0153 (8) | 0.0050 (8) |
F3 | 0.0455 (8) | 0.0788 (11) | 0.0558 (9) | 0.0081 (7) | 0.0056 (6) | 0.0135 (7) |
C3 | 0.0393 (11) | 0.0591 (14) | 0.0437 (11) | −0.0006 (10) | −0.0033 (9) | 0.0015 (10) |
C4 | 0.0385 (11) | 0.0486 (12) | 0.0451 (12) | −0.0008 (9) | −0.0083 (8) | 0.0011 (9) |
C5 | 0.0454 (12) | 0.0490 (13) | 0.0408 (11) | −0.0039 (9) | −0.0039 (8) | 0.0024 (9) |
F5 | 0.0520 (8) | 0.0581 (9) | 0.0588 (9) | −0.0001 (6) | 0.0035 (6) | 0.0141 (7) |
C6 | 0.0371 (11) | 0.0526 (12) | 0.0440 (11) | −0.0033 (9) | −0.0026 (8) | −0.0010 (9) |
F6 | 0.0449 (8) | 0.0576 (9) | 0.0545 (8) | 0.0010 (6) | 0.0044 (6) | 0.0041 (6) |
C7 | 0.0429 (12) | 0.0527 (13) | 0.0412 (11) | 0.0026 (9) | −0.0048 (8) | −0.0014 (9) |
N1—N1i | 1.248 (4) | O2—C7 | 1.268 (3) |
N1—C1 | 1.441 (3) | F3—C3 | 1.340 (3) |
C1—C2 | 1.396 (3) | C3—C4 | 1.385 (3) |
C1—C6 | 1.380 (3) | C4—C5 | 1.388 (3) |
O1—C7 | 1.253 (3) | C4—C7 | 1.495 (3) |
C2—F2 | 1.335 (3) | C5—F5 | 1.329 (3) |
C2—C3 | 1.374 (3) | C5—C6 | 1.393 (3) |
O2—H2 | 0.90 (5) | C6—F6 | 1.343 (3) |
N1i—N1—C1 | 122.30 (12) | C3—C4—C7 | 121.4 (2) |
C2—C1—N1 | 117.0 (2) | C5—C4—C7 | 120.7 (2) |
C6—C1—N1 | 124.5 (2) | C4—C5—C6 | 120.8 (2) |
C6—C1—C2 | 117.7 (2) | F5—C5—C4 | 121.2 (2) |
F2—C2—C1 | 119.3 (2) | F5—C5—C6 | 118.0 (2) |
F2—C2—C3 | 119.6 (2) | C1—C6—C5 | 121.2 (2) |
C3—C2—C1 | 121.0 (2) | F6—C6—C1 | 120.5 (2) |
C7—O2—H2 | 114 (3) | F6—C6—C5 | 118.2 (2) |
C2—C3—C4 | 121.5 (2) | O1—C7—O2 | 125.4 (2) |
F3—C3—C2 | 118.4 (2) | O1—C7—C4 | 117.8 (2) |
F3—C3—C4 | 120.1 (2) | O2—C7—C4 | 116.8 (2) |
C3—C4—C5 | 117.8 (2) | ||
N1i—N1—C1—C2 | 136.0 (3) | F3—C3—C4—C7 | 3.1 (3) |
N1i—N1—C1—C6 | −54.6 (4) | C3—C4—C5—F5 | −176.40 (19) |
N1—C1—C2—F2 | −10.4 (3) | C3—C4—C5—C6 | 0.8 (3) |
N1—C1—C2—C3 | 170.2 (2) | C3—C4—C7—O1 | 40.6 (3) |
N1—C1—C6—C5 | −169.2 (2) | C3—C4—C7—O2 | −138.9 (2) |
N1—C1—C6—F6 | 8.4 (3) | C4—C5—C6—C1 | −0.6 (3) |
C1—C2—C3—F3 | 178.5 (2) | C4—C5—C6—F6 | −178.21 (19) |
C1—C2—C3—C4 | 0.2 (4) | C5—C4—C7—O1 | −137.4 (2) |
C2—C1—C6—C5 | 0.1 (3) | C5—C4—C7—O2 | 43.1 (3) |
C2—C1—C6—F6 | 177.73 (19) | F5—C5—C6—C1 | 176.7 (2) |
C2—C3—C4—C5 | −0.6 (3) | F5—C5—C6—F6 | −1.0 (3) |
C2—C3—C4—C7 | −178.6 (2) | C6—C1—C2—F2 | 179.49 (19) |
F2—C2—C3—F3 | −1.0 (3) | C6—C1—C2—C3 | 0.1 (3) |
F2—C2—C3—C4 | −179.3 (2) | C7—C4—C5—F5 | 1.7 (3) |
F3—C3—C4—C5 | −178.8 (2) | C7—C4—C5—C6 | 178.8 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1ii | 0.90 (5) | 1.71 (5) | 2.607 (2) | 173 (5) |
Symmetry code: (ii) −x+3/2, −y+1/2, −z+1. |
Funding information
Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Fonds de Recherche du Québec – Nature et Technologies.
References
Bruce, M. I., Snow, M. R. & Tiekink, E. R. T. (1987). Acta Cryst. C43, 1640–1641. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruce, M. I. & Tiekink, E. R. T. (1989). Aust. J. Chem. 42, 741–745. CrossRef Google Scholar
Bruker (2013). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bushuyev, O. S., Aizawa, M., Shishido, A. & Barrett, C. J. (2018). Macromol. Rapid Commun. 39, 1700253. Web of Science CrossRef Google Scholar
Bushuyev, O. S., Corkery, T. C., Barrett, C. J. & Friščić, T. (2014). Chem. Sci. 5, 3158–3164. Web of Science CrossRef CAS Google Scholar
Bushuyev, O. S., Friščić, T. & Barrett, C. J. (2016a). CrystEngComm, 18, 7204–7211. CrossRef Google Scholar
Bushuyev, O. S., Friščić, T. & Barrett, C. J. (2016b). Cryst. Growth Des. 16, 541–545. CrossRef Google Scholar
Bushuyev, O. S., Tomberg, A., Friščić, T. & Barrett, C. J. (2013). J. Am. Chem. Soc. 135, 12556–12559. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bushuyev, O. S., Tomberg, A., Vinden, J. R., Moitessier, N., Barrett, C. J. & Friščić, T. (2016c). Chem. Commun. 52, 2103–2106. CrossRef Google Scholar
Chinnakali, K., Fun, H.-K., Shawkataly, O. B. & Teoh, S.-G. (1993). Acta Cryst. C49, 615–616. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Clarke, H. T. (1971). J. Org. Chem. 36, 3816–3819. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mahimwalla, Z., Yager, K. G., Mamiya, J. I., Shishido, A., Priimagi, A. & Barrett, C. J. (2012). Polym. Bull. 69, 967–1006. CrossRef Google Scholar
Saccone, M., Terraneo, G., Pilati, T., Cavallo, G., Priimagi, A., Metrangolo, P. & Resnati, G. (2014). Acta Cryst. B70, 149–156. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.