research communications
and Hirshfeld surface analysis of 1,2-bis(2′,6′-diisopropoxy-[2,3′-bipyridin]-6-yl)benzene
aResearch Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea, bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and cDivisionof Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr
The title molecule, C38H42N4O4, displays a helical structure induced by the combination of the C—C—C—C torsion angle [−10.8 (2)°] between two 2,3′-bipyridyl units attached to the 1,2-positions of the central benzene ring and consecutive connections between five aromatic rings through the meta- and ortho-positions. Intramolecular C—H⋯π interactions between an H atom of a pyridine ring and the centroid of a another pyridine ring contributes to the stabilization of the helical structure. In the crystal, weak C—H⋯π interactions link the title molecules into a two-dimensional supramolecular network extending parallel to the ac plane, in which the molecules with right- and left-handed helical structures are alternately arranged. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the molecular packing is dominated by van der Waals interactions between neighbouring H atoms, as well as by C—H⋯π interactions. One isopropoxyl group is disordered over two sets of sites [occupancy ratio 0.715 (5):0.285 (5)].
Keywords: crystal structure; dipyridyl derivative; isopropoxy substituent; helical structure; Hirshfeld surface analysis.
CCDC reference: 1867774
1. Chemical context
Phosphorescent transition metal complexes based on platinum metal cations have attracted enormous current interest owing to their applications as electroluminescent devices, e.g. as phosphorescent organic light-emitting diodes (PhOLEDs) or light-emitting electrochemical cells (LEECs) (Cebrián & Mauro, 2018). In particular, platinum complexes bearing tetradentate ligands are of great interest as blue phosphorescent materials because of their pure blue emission and high efficiency (Fleetham et al., 2014). It is well known that the origin of emission in platinum complexes results mainly from an intra-ligand charge transfer (ILCT) mixed with a metal-to-ligand charge-transfer transition (MLCT) (Yersin et al., 2011). In order to achieve blue phosphorescent materials, the design of ligands with a large triplet energy needs to be taken into account as the first step.
Our interest has been focused on the development of a suitable tetradentate ligand based on 2,3′-bipyridine with a large triplet energy (Lee et al., 2017). Moreover, the crystal structures of 2,3′-bipyridine-based tetradentate ligands have aroused our curiosity, because the knowledge of the coordination mode(s) to a metal ion are of paramount importance in understanding its chemical and physical properties. Herein, we describe the molecular and crystal structures of the title compound that can act as a tetradentate ligand to various transition metal ions. In addition, the molecular packing of the title compound was examined with the aid of a Hirshfeld surface analysis.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. One isopropoxyl group is disordered over two sets of sites [C31–C30(–O2)–C32 and C31′–C30′(–O2′)–C32′, respectively]. Within the molecule, intramolecular C—H⋯N/O hydrogen bonds (Table 1, shown as black dashed lines in Fig. 1) are observed. With respect to the two 2,3′-bipyridyl units, the N1-containing pyridine ring is tilted by 31.78 (6)° relative to the attached N2-containing one, while the N3-containing pyridine ring is only slightly tilted by 11.89 (8)° to the attached N4-containing one. The central benzene ring linking to the two 2,3′-bipyridyl units is tilted by 39.84 (5) and 48.07 (5)° relative to N2- and N3-containing pyridine rings, respectively.
The two 2,3′-bipyridyl units are attached at the 1,2-positions of the central benzene in an up- and down-fashion with the C10—C11—C16—C17 torsion angle being −10.8 (2)°, which is believed to reduce the ortho-positions relative to the N atoms (N2 and N3) of the two inner pyridine rings, while the outer pyridine rings containing N1 and N4 are substituted relative to the inner pyridine rings at the meta-positions. An intramolecular C—H⋯π interaction between aromatic H3 and the centroid of the N3/C17–C21 ring as well as C—H⋯N/O hydrogen bonds (Table 1, shown as yellow and black dashed lines in Fig. 1, respectively) assists in the stabilization of the helical structure.
between the two 2,3′-bipyridyl units. In combination with this torsion angle, the consecutive connections of five aromatic rings in the title molecule lead to a helical structure. The central benzene unit occupies3. Supramolecular features
In the π interactions (Table 1, yellow dashed lines in Fig. 2) between (methyl)H32A⋯Cg1i and between (methyl)H37C⋯Cg2ii [Cg1 and Cg2 are the centroids of the N3/C17–C21 and C11–C16 rings, respectively; symmetry codes refer to Table 1], forming a two-dimensional supramolecular network parallel to the ac plane, in which molecules with right- and left-handed helical structures are alternately arranged. These layers are stacked in an ABAB fashion along the b-axis direction whereby no significant intermolecular interactions between the layers are observed.
the title molecules are interlinked by further C—H⋯4. Hirshfeld surface analysis
In order to quantify the various intermolecular interactions in the molecular packing of the title compound, a Hirshfeld surface analysis was carried out using CrystalExplorer (Turner et al., 2017). In Fig. 3, which shows the Hirshfeld surface mapped over the normalized contact distance (dnorm), the light-red spot on the surface indicates contact points with atoms participating in intermolecular C—H⋯π interactions, corresponding to the H32A and pyridine-C20 atoms (Table 2). Except for this light-red spot, the overall surface mapped over dnorm is covered by white and blue colours, indicating that the distances between the contact atoms in intermolecular contacts are nearly the same as the sum of their van der Waals radii or longer. Therefore, there are no effective intermolecular interactions apart from the C—H⋯π interactions in the molecular packing. These features are confirmed in the two-dimensional fingerprint plots, Fig. 4a–e, delineated into overall, H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts, respectively. Their relative contributions of interatomic contacts to the Hirshfeld surface are summarized in Table 3.
|
|
As shown in Fig. 4b and Table 3, the most widely scattered points in the fingerprint plot are related to H⋯H contacts, which make a 65.2% contribution to the Hirshfeld surface. The sharp peak at de = di = 1.0 Å in the fingerprint plot delineated into H⋯H contacts (Fig. 4b) corresponds to the shortest interatomic H⋯H contact between symmetry-related isopropoxy-H34C atoms (Table 2), whereas two pairs of the flanking broad peaks, symmetrically disposed with respect to the diagonal, at de + di ∼ 2.1 and 2.2 Å, result from interatomic H⋯H contacts between the isopropoxy-H34B and -H31F atoms and between the benzene-H18 and isopropoxy-H31E atoms, respectively (Table 2). The central green strip in Fig. 4b, centered at de + di = 2.8 Å along the diagonal, indicates the presence of a large number of loose H⋯H contacts in the molecular packing. The second largest contribution (22.7%) to the Hirshfeld surface of the title compound is due to interatomic H⋯C/C⋯H contacts (Fig. 4c and Table 3), drawn on the fingerprint plot as a pair with a symmetrical wing-like shape on the left and right side with respect to the diagonal. The peaks at de + di ∼ 2.7 Å in the fingerprint plot delineated into H⋯C/C⋯H contacts (Fig. 4c) reflect the presence of short C—H⋯π interactions between the isopropoxy-H32A and pyridine-C20 atoms (Table 2).
In the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 4d), the 6.5% contribution to the Hirshfeld surface (Table 3) originates from C—H⋯O hydrogen bonding. A pair of broad peaks at de + di ∼ 2.6 Å in Fig. 4d corresponds to hydrogen bonding between the pyridine-H25 and O4 atoms (Table 2). Although N⋯H/H⋯N contacts with a contribution of 4.3% to the Hirshfeld surface (Fig. 4e and Table 3) were observed, their interatomic distances are longer than the sum of their van der Waals radii and therefore they do not specifically contribute to the molecular packing. Finally, the small contributions from the remaining interatomic contacts (Table 3), i.e. C⋯C (0.9%), N⋯C/C⋯N (0.4%) and O⋯C/C⋯O (0.1%), have a negligible effect on the molecular packing.
In summary, the Hirshfeld surface analysis and two-dimensional fingerprint plot reveal that the molecular packing in the title compound is dominated by intermolecular van der Waals interactions between neighbouring H atoms as well as by C—H⋯π interactions.
5. Database survey
Although a search of the Cambridge Structural Database (CSD, Version 5.39, last update May 2018; Groom et al., 2016) for 2′,6′-disubstituted 2,3′-bipyridine gave a number of hits, that for 2′,6′-dialkoxy-2,3′-bipyridine gave only four hits. Three [FINJAP (Polander et al., 2013), SITFIM (Frey et al., 2014) and XIXNID (Oh et al., 2013)] are RuII or IrII complexes with the ligand 2′,6′-dimethoxy-2,3′-bipyridine, and the remaining one (XIXNEZ; Oh et al., 2013) is an IrII complex with the ligand 2′,6′-di(2-methoxyethoxy-2,3′-bipyridine. Recently, our group has also reported the of 2,3′-bipyridine-2′,6′-dicarbonitrile (Jung et al., 2018) and the phosphorescent properties for the IrII complex with ligand 2′,6′-diisopropoxy-2,3′-bipyridine (Kim et al., 2018).
6. Synthesis and crystallization
All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were commercially purchased and used without further purification. The 1H NMR spectrum was recorded on a Bruker Advance 400 MHz spectrometer. The two starting materials, 6-bromo-2′,6′-diifluoro-2,3′-bipyridine and 1,2-bis(2′,6′-difluoro-2,3′-bipyridine)benzene were synthesized according to a slight modification of the previous synthetic methodology reported by our group (Kim et al., 2018; Oh et al., 2013). Details regarding the synthetic procedures and reagents are presented in Fig. 5.
The title compound was synthesized as follows: NaH (0.063 g, 2.64 mmol) was dissolved in DMF (10 ml) at 273 K. Isopropyl alcohol (1.27 ml, 3.52 mmol) was added slowly at the same temperature. Then the reaction mixture was stirred for 30 min. 1,2-Bis(2′,6′-difluorobipyridine)benzene (0.2 g, 0.44 mmol) in DMF (10 ml) was subsequently added into the reaction mixture, which was stirred at 273 K for a further 10 h. All volatiles were removed under vacuum and the remaining solid extracted with EtOAc. The pure title compound was obtained by silica v/v). Colourless crystals with X-ray quality were obtained by slow evaporation of a dichloromethane solution of title compound. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.0 Hz, 2H), 7.75 (dd, J = 4.2 Hz, 2H), 7.64 (t, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.53 (dd, J = 4.0 Hz, 2H), 7.22 (d, J = 7.7 Hz, 2H), 6.17 (d, J = 7.6 Hz, 2H), 5.38 (sep, J = 3.7 Hz, 2H), 5.23 (sep, J = 3.7 Hz, 2H) 1.40 (d, J = 6.5 Hz, 12H), 1.36 (d, J = 6.4 Hz, 12H).
(EtOAc/hexane = 1/107. Refinement
Crystal data, data collection and . All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for Csp2—H, 1.00 Å for methine C—H, 0.98 Å for methyl C–H with Uiso(H) = 1.2–1.5Ueq(C). The isopropyl group [C31–C30(–O2)–C32] was found to be disordered over two sets of sites [occupancy ratio 0.715 (5):0.285 (5)].
details are summarized in Table 4
|
Supporting information
CCDC reference: 1867774
https://doi.org/10.1107/S2056989018013002/wm5462sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018013002/wm5462Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C38H42N4O4 | F(000) = 1320 |
Mr = 618.75 | Dx = 1.190 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4897 (2) Å | Cell parameters from 9922 reflections |
b = 17.2533 (4) Å | θ = 2.3–26.8° |
c = 21.0921 (5) Å | µ = 0.08 mm−1 |
β = 90.4825 (13)° | T = 173 K |
V = 3453.26 (14) Å3 | Needle, colourless |
Z = 4 | 0.42 × 0.17 × 0.14 mm |
Bruker APEXII CCD diffractometer | 5400 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.042 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 26.0°, θmin = 1.5° |
Tmin = 0.705, Tmax = 0.746 | h = −11→11 |
55030 measured reflections | k = −21→21 |
6786 independent reflections | l = −26→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0499P)2 + 1.521P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
6786 reflections | Δρmax = 0.18 e Å−3 |
452 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 1.19196 (15) | 0.58808 (7) | 0.31447 (7) | 0.0521 (4) | |
O3 | 1.01870 (15) | 0.65522 (7) | 0.01321 (6) | 0.0507 (3) | |
O4 | 1.15126 (12) | 0.90921 (7) | −0.01613 (6) | 0.0411 (3) | |
N1 | 1.09841 (15) | 0.70868 (9) | 0.33625 (7) | 0.0428 (4) | |
N2 | 0.66435 (14) | 0.78701 (8) | 0.23833 (6) | 0.0336 (3) | |
N3 | 0.64904 (15) | 0.73193 (8) | 0.10559 (6) | 0.0359 (3) | |
N4 | 1.08181 (15) | 0.78198 (8) | −0.00226 (7) | 0.0376 (3) | |
C1 | 1.09115 (19) | 0.64246 (10) | 0.30500 (8) | 0.0392 (4) | |
C2 | 0.9834 (2) | 0.62424 (10) | 0.26277 (9) | 0.0427 (4) | |
H2 | 0.9794 | 0.5752 | 0.2423 | 0.051* | |
C3 | 0.88276 (18) | 0.67992 (10) | 0.25170 (8) | 0.0369 (4) | |
H3 | 0.8066 | 0.6687 | 0.2237 | 0.044* | |
C4 | 0.88968 (17) | 0.75228 (10) | 0.28048 (8) | 0.0343 (4) | |
C5 | 1.00019 (19) | 0.76141 (11) | 0.32417 (9) | 0.0436 (4) | |
C6 | 0.78887 (16) | 0.81328 (10) | 0.26010 (7) | 0.0334 (4) | |
C7 | 0.82307 (19) | 0.89191 (10) | 0.25820 (9) | 0.0416 (4) | |
H7 | 0.9107 | 0.9098 | 0.2747 | 0.050* | |
C8 | 0.72757 (19) | 0.94328 (11) | 0.23194 (9) | 0.0439 (4) | |
H8 | 0.7490 | 0.9970 | 0.2300 | 0.053* | |
C9 | 0.60074 (18) | 0.91603 (10) | 0.20854 (8) | 0.0400 (4) | |
H9 | 0.5341 | 0.9505 | 0.1900 | 0.048* | |
C10 | 0.57258 (17) | 0.83754 (10) | 0.21263 (7) | 0.0351 (4) | |
C11 | 0.43609 (17) | 0.80458 (11) | 0.18974 (8) | 0.0407 (4) | |
C12 | 0.31225 (19) | 0.84493 (14) | 0.20206 (10) | 0.0553 (5) | |
H12 | 0.3168 | 0.8943 | 0.2218 | 0.066* | |
C13 | 0.1815 (2) | 0.81347 (18) | 0.18565 (12) | 0.0697 (7) | |
H13 | 0.0979 | 0.8421 | 0.1934 | 0.084* | |
C14 | 0.1732 (2) | 0.74192 (18) | 0.15866 (11) | 0.0691 (8) | |
H14 | 0.0837 | 0.7198 | 0.1492 | 0.083* | |
C15 | 0.2946 (2) | 0.70166 (14) | 0.14506 (9) | 0.0589 (6) | |
H15 | 0.2878 | 0.6520 | 0.1258 | 0.071* | |
C16 | 0.42795 (18) | 0.73237 (11) | 0.15907 (8) | 0.0427 (4) | |
C17 | 0.55456 (19) | 0.68978 (11) | 0.13724 (8) | 0.0408 (4) | |
C18 | 0.5718 (2) | 0.61052 (11) | 0.14788 (9) | 0.0495 (5) | |
H18 | 0.5020 | 0.5814 | 0.1694 | 0.059* | |
C19 | 0.6925 (3) | 0.57578 (11) | 0.12631 (8) | 0.0523 (5) | |
H19 | 0.7071 | 0.5219 | 0.1331 | 0.063* | |
C20 | 0.7932 (2) | 0.61910 (10) | 0.09469 (8) | 0.0447 (4) | |
H20 | 0.8776 | 0.5956 | 0.0802 | 0.054* | |
C21 | 0.76775 (19) | 0.69822 (9) | 0.08465 (7) | 0.0362 (4) | |
C22 | 0.86729 (18) | 0.75218 (9) | 0.05339 (8) | 0.0342 (4) | |
C23 | 0.98940 (19) | 0.73182 (9) | 0.02104 (8) | 0.0369 (4) | |
C24 | 1.05673 (18) | 0.85710 (9) | 0.00537 (8) | 0.0345 (4) | |
C25 | 0.93616 (18) | 0.88538 (10) | 0.03383 (9) | 0.0396 (4) | |
H25 | 0.9183 | 0.9394 | 0.0366 | 0.048* | |
C26 | 0.84346 (18) | 0.83202 (10) | 0.05790 (8) | 0.0376 (4) | |
H26 | 0.7606 | 0.8499 | 0.0782 | 0.045* | |
C27 | 1.3110 (2) | 0.60571 (11) | 0.35629 (9) | 0.0455 (4) | |
H27 | 1.2762 | 0.6316 | 0.3956 | 0.055* | |
C28 | 1.3729 (3) | 0.52827 (13) | 0.37302 (13) | 0.0761 (8) | |
H28A | 1.4543 | 0.5356 | 0.4013 | 0.114* | |
H28B | 1.3018 | 0.4967 | 0.3944 | 0.114* | |
H28C | 1.4032 | 0.5019 | 0.3343 | 0.114* | |
C29 | 1.4147 (2) | 0.65754 (14) | 0.32372 (12) | 0.0654 (6) | |
H29A | 1.4937 | 0.6686 | 0.3526 | 0.098* | |
H29B | 1.4500 | 0.6317 | 0.2857 | 0.098* | |
H29C | 1.3683 | 0.7061 | 0.3117 | 0.098* | |
O2 | 0.9987 (3) | 0.82476 (17) | 0.36266 (13) | 0.0418 (6) | 0.715 (5) |
C30 | 1.1067 (3) | 0.8352 (2) | 0.41069 (19) | 0.0411 (8) | 0.715 (5) |
H30 | 1.1288 | 0.7840 | 0.4307 | 0.049* | 0.715 (5) |
C31 | 1.2377 (4) | 0.8682 (2) | 0.3827 (2) | 0.0655 (11) | 0.715 (5) |
H31A | 1.3092 | 0.8747 | 0.4161 | 0.098* | 0.715 (5) |
H31B | 1.2734 | 0.8330 | 0.3502 | 0.098* | 0.715 (5) |
H31C | 1.2165 | 0.9187 | 0.3636 | 0.098* | 0.715 (5) |
C32 | 1.0413 (3) | 0.88800 (17) | 0.45934 (13) | 0.0502 (9) | 0.715 (5) |
H32A | 1.1093 | 0.8977 | 0.4937 | 0.075* | 0.715 (5) |
H32B | 1.0153 | 0.9372 | 0.4393 | 0.075* | 0.715 (5) |
H32C | 0.9569 | 0.8634 | 0.4767 | 0.075* | 0.715 (5) |
O2' | 1.0329 (8) | 0.8426 (4) | 0.3350 (4) | 0.054 (2) | 0.285 (5) |
C30' | 1.1671 (13) | 0.8612 (6) | 0.3676 (5) | 0.065 (3) | 0.285 (5) |
H30' | 1.2446 | 0.8290 | 0.3495 | 0.078* | 0.285 (5) |
C31' | 1.1936 (11) | 0.9439 (5) | 0.3539 (6) | 0.093 (4) | 0.285 (5) |
H31D | 1.2051 | 0.9510 | 0.3081 | 0.140* | 0.285 (5) |
H31E | 1.1137 | 0.9750 | 0.3685 | 0.140* | 0.285 (5) |
H31F | 1.2796 | 0.9606 | 0.3760 | 0.140* | 0.285 (5) |
C32' | 1.1476 (19) | 0.8413 (8) | 0.4344 (6) | 0.095 (5) | 0.285 (5) |
H32D | 1.1308 | 0.7855 | 0.4383 | 0.142* | 0.285 (5) |
H32E | 1.2324 | 0.8554 | 0.4586 | 0.142* | 0.285 (5) |
H32F | 1.0665 | 0.8697 | 0.4510 | 0.142* | 0.285 (5) |
C33 | 1.1516 (2) | 0.63360 (11) | −0.01576 (10) | 0.0533 (5) | |
H33 | 1.2264 | 0.6712 | −0.0024 | 0.064* | |
C34 | 1.1862 (3) | 0.55423 (12) | 0.01062 (12) | 0.0717 (7) | |
H34A | 1.2754 | 0.5361 | −0.0072 | 0.108* | |
H34B | 1.1948 | 0.5573 | 0.0569 | 0.108* | |
H34C | 1.1108 | 0.5179 | −0.0008 | 0.108* | |
C35 | 1.1371 (3) | 0.63478 (15) | −0.08668 (11) | 0.0717 (7) | |
H35A | 1.2270 | 0.6202 | −0.1058 | 0.108* | |
H35B | 1.0639 | 0.5979 | −0.0999 | 0.108* | |
H35C | 1.1108 | 0.6870 | −0.1007 | 0.108* | |
C36 | 1.2860 (2) | 0.88172 (12) | −0.03986 (9) | 0.0479 (5) | |
H36 | 1.2707 | 0.8365 | −0.0688 | 0.058* | |
C37 | 1.3805 (2) | 0.85865 (15) | 0.01425 (13) | 0.0716 (7) | |
H37A | 1.4707 | 0.8403 | −0.0023 | 0.107* | |
H37B | 1.3968 | 0.9035 | 0.0419 | 0.107* | |
H37C | 1.3358 | 0.8171 | 0.0385 | 0.107* | |
C38 | 1.3438 (3) | 0.94945 (15) | −0.07685 (12) | 0.0718 (7) | |
H38A | 1.4354 | 0.9354 | −0.0946 | 0.108* | |
H38B | 1.2783 | 0.9627 | −0.1114 | 0.108* | |
H38C | 1.3550 | 0.9942 | −0.0486 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0617 (9) | 0.0355 (7) | 0.0586 (8) | 0.0067 (6) | −0.0258 (7) | −0.0017 (6) |
O3 | 0.0690 (9) | 0.0287 (6) | 0.0546 (8) | 0.0051 (6) | 0.0061 (7) | −0.0080 (6) |
O4 | 0.0397 (7) | 0.0347 (6) | 0.0492 (7) | 0.0022 (5) | 0.0089 (5) | 0.0048 (5) |
N1 | 0.0384 (8) | 0.0418 (9) | 0.0482 (9) | 0.0004 (6) | −0.0119 (7) | −0.0066 (7) |
N2 | 0.0298 (7) | 0.0424 (8) | 0.0287 (7) | −0.0036 (6) | −0.0013 (5) | 0.0013 (6) |
N3 | 0.0406 (8) | 0.0359 (8) | 0.0311 (7) | −0.0090 (6) | −0.0090 (6) | 0.0041 (6) |
N4 | 0.0452 (8) | 0.0330 (8) | 0.0345 (7) | 0.0049 (6) | −0.0007 (6) | −0.0019 (6) |
C1 | 0.0455 (10) | 0.0318 (9) | 0.0401 (9) | −0.0018 (7) | −0.0077 (8) | 0.0054 (7) |
C2 | 0.0560 (11) | 0.0272 (9) | 0.0445 (10) | −0.0077 (8) | −0.0147 (8) | 0.0024 (7) |
C3 | 0.0431 (10) | 0.0336 (9) | 0.0339 (8) | −0.0100 (7) | −0.0094 (7) | 0.0046 (7) |
C4 | 0.0329 (8) | 0.0372 (9) | 0.0327 (8) | −0.0048 (7) | −0.0026 (7) | −0.0023 (7) |
C5 | 0.0390 (10) | 0.0399 (10) | 0.0517 (11) | 0.0008 (8) | −0.0117 (8) | −0.0128 (8) |
C6 | 0.0318 (8) | 0.0393 (9) | 0.0292 (8) | −0.0023 (7) | −0.0008 (6) | −0.0056 (7) |
C7 | 0.0373 (9) | 0.0412 (10) | 0.0463 (10) | −0.0036 (8) | −0.0054 (8) | −0.0100 (8) |
C8 | 0.0483 (11) | 0.0340 (9) | 0.0493 (10) | −0.0012 (8) | 0.0002 (8) | −0.0071 (8) |
C9 | 0.0400 (10) | 0.0420 (10) | 0.0382 (9) | 0.0052 (8) | 0.0008 (7) | 0.0005 (7) |
C10 | 0.0319 (8) | 0.0447 (10) | 0.0286 (8) | −0.0008 (7) | 0.0025 (6) | 0.0022 (7) |
C11 | 0.0308 (9) | 0.0571 (11) | 0.0343 (9) | −0.0055 (8) | −0.0022 (7) | 0.0155 (8) |
C12 | 0.0359 (10) | 0.0785 (15) | 0.0517 (12) | 0.0033 (10) | 0.0042 (8) | 0.0211 (10) |
C13 | 0.0307 (11) | 0.112 (2) | 0.0663 (15) | −0.0015 (12) | 0.0019 (10) | 0.0392 (15) |
C14 | 0.0353 (11) | 0.117 (2) | 0.0549 (13) | −0.0264 (13) | −0.0136 (9) | 0.0381 (14) |
C15 | 0.0515 (12) | 0.0828 (16) | 0.0422 (11) | −0.0313 (11) | −0.0160 (9) | 0.0246 (10) |
C16 | 0.0399 (10) | 0.0559 (11) | 0.0322 (9) | −0.0160 (8) | −0.0094 (7) | 0.0166 (8) |
C17 | 0.0493 (10) | 0.0432 (10) | 0.0297 (8) | −0.0177 (8) | −0.0124 (7) | 0.0046 (7) |
C18 | 0.0732 (14) | 0.0402 (10) | 0.0349 (9) | −0.0224 (10) | −0.0064 (9) | 0.0041 (8) |
C19 | 0.0938 (16) | 0.0299 (9) | 0.0332 (9) | −0.0129 (10) | −0.0073 (10) | 0.0008 (7) |
C20 | 0.0714 (13) | 0.0302 (9) | 0.0322 (9) | −0.0039 (8) | −0.0069 (8) | −0.0031 (7) |
C21 | 0.0502 (10) | 0.0314 (9) | 0.0268 (8) | −0.0066 (7) | −0.0113 (7) | −0.0004 (6) |
C22 | 0.0423 (9) | 0.0285 (8) | 0.0315 (8) | −0.0022 (7) | −0.0075 (7) | 0.0003 (6) |
C23 | 0.0506 (10) | 0.0266 (8) | 0.0334 (9) | 0.0026 (7) | −0.0070 (7) | −0.0029 (7) |
C24 | 0.0389 (9) | 0.0315 (9) | 0.0331 (8) | 0.0007 (7) | −0.0026 (7) | 0.0012 (7) |
C25 | 0.0400 (9) | 0.0268 (8) | 0.0522 (11) | 0.0022 (7) | 0.0028 (8) | −0.0006 (7) |
C26 | 0.0362 (9) | 0.0317 (9) | 0.0449 (10) | 0.0006 (7) | 0.0004 (7) | −0.0004 (7) |
C27 | 0.0530 (11) | 0.0430 (10) | 0.0402 (10) | 0.0040 (8) | −0.0147 (8) | 0.0031 (8) |
C28 | 0.0897 (18) | 0.0510 (13) | 0.0869 (18) | 0.0104 (12) | −0.0427 (15) | 0.0095 (12) |
C29 | 0.0568 (13) | 0.0744 (16) | 0.0651 (14) | 0.0037 (11) | −0.0008 (11) | 0.0119 (12) |
O2 | 0.0425 (13) | 0.0432 (14) | 0.0393 (14) | 0.0052 (10) | −0.0186 (11) | −0.0134 (11) |
C30 | 0.0413 (17) | 0.0456 (16) | 0.036 (2) | 0.0002 (13) | −0.0191 (15) | −0.0097 (16) |
C31 | 0.047 (2) | 0.080 (3) | 0.070 (3) | −0.011 (2) | −0.0051 (18) | −0.019 (2) |
C32 | 0.0513 (17) | 0.0576 (18) | 0.0413 (15) | 0.0041 (13) | −0.0177 (12) | −0.0161 (13) |
O2' | 0.055 (4) | 0.049 (4) | 0.058 (5) | 0.015 (3) | −0.030 (4) | −0.019 (3) |
C30' | 0.066 (7) | 0.053 (5) | 0.076 (7) | 0.022 (5) | −0.035 (6) | −0.016 (5) |
C31' | 0.091 (7) | 0.060 (6) | 0.128 (9) | 0.005 (5) | −0.049 (6) | −0.026 (6) |
C32' | 0.139 (14) | 0.090 (8) | 0.055 (8) | 0.016 (8) | −0.034 (7) | −0.008 (6) |
C33 | 0.0663 (13) | 0.0396 (10) | 0.0538 (12) | 0.0129 (9) | −0.0023 (10) | −0.0108 (9) |
C34 | 0.1011 (19) | 0.0387 (12) | 0.0753 (16) | 0.0180 (12) | −0.0054 (14) | −0.0117 (11) |
C35 | 0.0918 (18) | 0.0706 (16) | 0.0530 (13) | 0.0188 (13) | 0.0038 (12) | −0.0097 (11) |
C36 | 0.0468 (11) | 0.0470 (11) | 0.0502 (11) | 0.0078 (8) | 0.0165 (9) | 0.0063 (9) |
C37 | 0.0435 (12) | 0.0834 (17) | 0.0880 (18) | 0.0039 (11) | 0.0008 (11) | 0.0283 (14) |
C38 | 0.0688 (15) | 0.0722 (16) | 0.0751 (16) | 0.0081 (12) | 0.0332 (13) | 0.0229 (13) |
O1—C1 | 1.354 (2) | C24—C25 | 1.385 (2) |
O1—C27 | 1.459 (2) | C25—C26 | 1.374 (2) |
O3—C23 | 1.361 (2) | C25—H25 | 0.9500 |
O3—C33 | 1.455 (2) | C26—H26 | 0.9500 |
O4—C24 | 1.351 (2) | C27—C28 | 1.501 (3) |
O4—C36 | 1.457 (2) | C27—C29 | 1.501 (3) |
N1—C1 | 1.321 (2) | C27—H27 | 1.0000 |
N1—C5 | 1.326 (2) | C28—H28A | 0.9800 |
N2—C6 | 1.343 (2) | C28—H28B | 0.9800 |
N2—C10 | 1.343 (2) | C28—H28C | 0.9800 |
N3—C17 | 1.337 (2) | C29—H29A | 0.9800 |
N3—C21 | 1.346 (2) | C29—H29B | 0.9800 |
N4—C24 | 1.328 (2) | C29—H29C | 0.9800 |
N4—C23 | 1.329 (2) | O2—C30 | 1.446 (4) |
C1—C2 | 1.386 (2) | C30—C31 | 1.494 (6) |
C2—C3 | 1.373 (2) | C30—C32 | 1.510 (5) |
C2—H2 | 0.9500 | C30—H30 | 1.0000 |
C3—C4 | 1.390 (2) | C31—H31A | 0.9800 |
C3—H3 | 0.9500 | C31—H31B | 0.9800 |
C4—C5 | 1.399 (2) | C31—H31C | 0.9800 |
C4—C6 | 1.484 (2) | C32—H32A | 0.9800 |
C5—O2 | 1.362 (3) | C32—H32B | 0.9800 |
C5—O2' | 1.453 (8) | C32—H32C | 0.9800 |
C6—C7 | 1.396 (2) | O2'—C30' | 1.478 (14) |
C7—C8 | 1.380 (3) | C30'—C32' | 1.464 (17) |
C7—H7 | 0.9500 | C30'—C31' | 1.478 (15) |
C8—C9 | 1.380 (2) | C30'—H30' | 1.0000 |
C8—H8 | 0.9500 | C31'—H31D | 0.9800 |
C9—C10 | 1.383 (2) | C31'—H31E | 0.9800 |
C9—H9 | 0.9500 | C31'—H31F | 0.9800 |
C10—C11 | 1.491 (2) | C32'—H32D | 0.9800 |
C11—C12 | 1.392 (3) | C32'—H32E | 0.9800 |
C11—C16 | 1.406 (3) | C32'—H32F | 0.9800 |
C12—C13 | 1.395 (3) | C33—C35 | 1.501 (3) |
C12—H12 | 0.9500 | C33—C34 | 1.513 (3) |
C13—C14 | 1.362 (4) | C33—H33 | 1.0000 |
C13—H13 | 0.9500 | C34—H34A | 0.9800 |
C14—C15 | 1.378 (4) | C34—H34B | 0.9800 |
C14—H14 | 0.9500 | C34—H34C | 0.9800 |
C15—C16 | 1.401 (2) | C35—H35A | 0.9800 |
C15—H15 | 0.9500 | C35—H35B | 0.9800 |
C16—C17 | 1.485 (3) | C35—H35C | 0.9800 |
C17—C18 | 1.395 (3) | C36—C37 | 1.499 (3) |
C18—C19 | 1.374 (3) | C36—C38 | 1.510 (3) |
C18—H18 | 0.9500 | C36—H36 | 1.0000 |
C19—C20 | 1.389 (3) | C37—H37A | 0.9800 |
C19—H19 | 0.9500 | C37—H37B | 0.9800 |
C20—C21 | 1.402 (2) | C37—H37C | 0.9800 |
C20—H20 | 0.9500 | C38—H38A | 0.9800 |
C21—C22 | 1.485 (2) | C38—H38B | 0.9800 |
C22—C23 | 1.395 (2) | C38—H38C | 0.9800 |
C22—C26 | 1.399 (2) | ||
C1—O1—C27 | 119.15 (14) | O1—C27—H27 | 109.6 |
C23—O3—C33 | 118.60 (15) | C28—C27—H27 | 109.6 |
C24—O4—C36 | 119.07 (13) | C29—C27—H27 | 109.6 |
C1—N1—C5 | 117.66 (15) | C27—C28—H28A | 109.5 |
C6—N2—C10 | 118.98 (15) | C27—C28—H28B | 109.5 |
C17—N3—C21 | 119.70 (15) | H28A—C28—H28B | 109.5 |
C24—N4—C23 | 118.12 (15) | C27—C28—H28C | 109.5 |
N1—C1—O1 | 119.49 (15) | H28A—C28—H28C | 109.5 |
N1—C1—C2 | 123.50 (16) | H28B—C28—H28C | 109.5 |
O1—C1—C2 | 117.00 (16) | C27—C29—H29A | 109.5 |
C3—C2—C1 | 117.30 (16) | C27—C29—H29B | 109.5 |
C3—C2—H2 | 121.3 | H29A—C29—H29B | 109.5 |
C1—C2—H2 | 121.3 | C27—C29—H29C | 109.5 |
C2—C3—C4 | 121.60 (15) | H29A—C29—H29C | 109.5 |
C2—C3—H3 | 119.2 | H29B—C29—H29C | 109.5 |
C4—C3—H3 | 119.2 | C5—O2—C30 | 120.4 (3) |
C3—C4—C5 | 114.92 (15) | O2—C30—C31 | 111.0 (4) |
C3—C4—C6 | 118.87 (14) | O2—C30—C32 | 105.0 (2) |
C5—C4—C6 | 126.08 (15) | C31—C30—C32 | 112.7 (3) |
N1—C5—O2 | 116.54 (18) | O2—C30—H30 | 109.4 |
N1—C5—C4 | 124.84 (16) | C31—C30—H30 | 109.4 |
O2—C5—C4 | 118.15 (18) | C32—C30—H30 | 109.4 |
N1—C5—O2' | 118.9 (3) | C30—C31—H31A | 109.5 |
C4—C5—O2' | 111.7 (3) | C30—C31—H31B | 109.5 |
N2—C6—C7 | 121.50 (15) | H31A—C31—H31B | 109.5 |
N2—C6—C4 | 115.02 (14) | C30—C31—H31C | 109.5 |
C7—C6—C4 | 123.26 (15) | H31A—C31—H31C | 109.5 |
C8—C7—C6 | 118.93 (16) | H31B—C31—H31C | 109.5 |
C8—C7—H7 | 120.5 | C30—C32—H32A | 109.5 |
C6—C7—H7 | 120.5 | C30—C32—H32B | 109.5 |
C9—C8—C7 | 119.52 (17) | H32A—C32—H32B | 109.5 |
C9—C8—H8 | 120.2 | C30—C32—H32C | 109.5 |
C7—C8—H8 | 120.2 | H32A—C32—H32C | 109.5 |
C8—C9—C10 | 118.67 (16) | H32B—C32—H32C | 109.5 |
C8—C9—H9 | 120.7 | C5—O2'—C30' | 117.6 (6) |
C10—C9—H9 | 120.7 | C32'—C30'—C31' | 115.9 (10) |
N2—C10—C9 | 122.39 (15) | C32'—C30'—O2' | 106.4 (14) |
N2—C10—C11 | 116.20 (15) | C31'—C30'—O2' | 105.4 (7) |
C9—C10—C11 | 121.39 (16) | C32'—C30'—H30' | 109.6 |
C12—C11—C16 | 119.07 (17) | C31'—C30'—H30' | 109.6 |
C12—C11—C10 | 118.77 (18) | O2'—C30'—H30' | 109.6 |
C16—C11—C10 | 122.08 (16) | C30'—C31'—H31D | 109.5 |
C11—C12—C13 | 120.6 (2) | C30'—C31'—H31E | 109.5 |
C11—C12—H12 | 119.7 | H31D—C31'—H31E | 109.5 |
C13—C12—H12 | 119.7 | C30'—C31'—H31F | 109.5 |
C14—C13—C12 | 120.3 (2) | H31D—C31'—H31F | 109.5 |
C14—C13—H13 | 119.8 | H31E—C31'—H31F | 109.5 |
C12—C13—H13 | 119.8 | C30'—C32'—H32D | 109.5 |
C13—C14—C15 | 119.9 (2) | C30'—C32'—H32E | 109.5 |
C13—C14—H14 | 120.1 | H32D—C32'—H32E | 109.5 |
C15—C14—H14 | 120.1 | C30'—C32'—H32F | 109.5 |
C14—C15—C16 | 121.4 (2) | H32D—C32'—H32F | 109.5 |
C14—C15—H15 | 119.3 | H32E—C32'—H32F | 109.5 |
C16—C15—H15 | 119.3 | O3—C33—C35 | 110.02 (18) |
C15—C16—C11 | 118.57 (19) | O3—C33—C34 | 105.29 (18) |
C15—C16—C17 | 118.63 (19) | C35—C33—C34 | 113.36 (18) |
C11—C16—C17 | 122.67 (15) | O3—C33—H33 | 109.3 |
N3—C17—C18 | 122.36 (19) | C35—C33—H33 | 109.3 |
N3—C17—C16 | 115.68 (16) | C34—C33—H33 | 109.3 |
C18—C17—C16 | 121.94 (17) | C33—C34—H34A | 109.5 |
C19—C18—C17 | 118.11 (18) | C33—C34—H34B | 109.5 |
C19—C18—H18 | 120.9 | H34A—C34—H34B | 109.5 |
C17—C18—H18 | 120.9 | C33—C34—H34C | 109.5 |
C18—C19—C20 | 120.24 (18) | H34A—C34—H34C | 109.5 |
C18—C19—H19 | 119.9 | H34B—C34—H34C | 109.5 |
C20—C19—H19 | 119.9 | C33—C35—H35A | 109.5 |
C19—C20—C21 | 118.55 (19) | C33—C35—H35B | 109.5 |
C19—C20—H20 | 120.7 | H35A—C35—H35B | 109.5 |
C21—C20—H20 | 120.7 | C33—C35—H35C | 109.5 |
N3—C21—C20 | 121.01 (16) | H35A—C35—H35C | 109.5 |
N3—C21—C22 | 114.35 (14) | H35B—C35—H35C | 109.5 |
C20—C21—C22 | 124.60 (17) | O4—C36—C37 | 110.25 (17) |
C23—C22—C26 | 114.63 (15) | O4—C36—C38 | 104.41 (15) |
C23—C22—C21 | 126.42 (15) | C37—C36—C38 | 112.41 (19) |
C26—C22—C21 | 118.89 (16) | O4—C36—H36 | 109.9 |
N4—C23—O3 | 116.84 (16) | C37—C36—H36 | 109.9 |
N4—C23—C22 | 124.77 (15) | C38—C36—H36 | 109.9 |
O3—C23—C22 | 118.39 (15) | C36—C37—H37A | 109.5 |
N4—C24—O4 | 119.25 (15) | C36—C37—H37B | 109.5 |
N4—C24—C25 | 123.08 (16) | H37A—C37—H37B | 109.5 |
O4—C24—C25 | 117.66 (15) | C36—C37—H37C | 109.5 |
C26—C25—C24 | 117.26 (16) | H37A—C37—H37C | 109.5 |
C26—C25—H25 | 121.4 | H37B—C37—H37C | 109.5 |
C24—C25—H25 | 121.4 | C36—C38—H38A | 109.5 |
C25—C26—C22 | 122.02 (16) | C36—C38—H38B | 109.5 |
C25—C26—H26 | 119.0 | H38A—C38—H38B | 109.5 |
C22—C26—H26 | 119.0 | C36—C38—H38C | 109.5 |
O1—C27—C28 | 104.85 (16) | H38A—C38—H38C | 109.5 |
O1—C27—C29 | 110.78 (16) | H38B—C38—H38C | 109.5 |
C28—C27—C29 | 112.4 (2) | ||
C5—N1—C1—O1 | 177.89 (17) | C21—N3—C17—C16 | 179.28 (14) |
C5—N1—C1—C2 | −3.0 (3) | C15—C16—C17—N3 | 129.29 (17) |
C27—O1—C1—N1 | −3.5 (3) | C11—C16—C17—N3 | −46.7 (2) |
C27—O1—C1—C2 | 177.30 (16) | C15—C16—C17—C18 | −49.3 (2) |
N1—C1—C2—C3 | 2.5 (3) | C11—C16—C17—C18 | 134.79 (18) |
O1—C1—C2—C3 | −178.35 (16) | N3—C17—C18—C19 | 1.8 (3) |
C1—C2—C3—C4 | 1.3 (3) | C16—C17—C18—C19 | −179.71 (16) |
C2—C3—C4—C5 | −4.2 (3) | C17—C18—C19—C20 | −0.3 (3) |
C2—C3—C4—C6 | 171.91 (16) | C18—C19—C20—C21 | −0.9 (3) |
C1—N1—C5—O2 | 171.6 (2) | C17—N3—C21—C20 | 0.9 (2) |
C1—N1—C5—C4 | −0.4 (3) | C17—N3—C21—C22 | −176.82 (14) |
C1—N1—C5—O2' | −154.3 (5) | C19—C20—C21—N3 | 0.6 (2) |
C3—C4—C5—N1 | 3.8 (3) | C19—C20—C21—C22 | 178.09 (15) |
C6—C4—C5—N1 | −171.94 (17) | N3—C21—C22—C23 | −172.01 (15) |
C3—C4—C5—O2 | −168.0 (2) | C20—C21—C22—C23 | 10.3 (3) |
C6—C4—C5—O2 | 16.2 (3) | N3—C21—C22—C26 | 10.9 (2) |
C3—C4—C5—O2' | 159.4 (4) | C20—C21—C22—C26 | −166.77 (16) |
C6—C4—C5—O2' | −16.4 (5) | C24—N4—C23—O3 | −179.21 (15) |
C10—N2—C6—C7 | 1.8 (2) | C24—N4—C23—C22 | −0.3 (2) |
C10—N2—C6—C4 | −172.99 (14) | C33—O3—C23—N4 | 4.1 (2) |
C3—C4—C6—N2 | 28.8 (2) | C33—O3—C23—C22 | −174.92 (15) |
C5—C4—C6—N2 | −155.54 (17) | C26—C22—C23—N4 | 2.6 (2) |
C3—C4—C6—C7 | −145.87 (17) | C21—C22—C23—N4 | −174.62 (15) |
C5—C4—C6—C7 | 29.7 (3) | C26—C22—C23—O3 | −178.47 (15) |
N2—C6—C7—C8 | −1.5 (3) | C21—C22—C23—O3 | 4.3 (3) |
C4—C6—C7—C8 | 172.86 (16) | C23—N4—C24—O4 | 177.95 (14) |
C6—C7—C8—C9 | 0.3 (3) | C23—N4—C24—C25 | −3.0 (3) |
C7—C8—C9—C10 | 0.5 (3) | C36—O4—C24—N4 | −7.6 (2) |
C6—N2—C10—C9 | −0.9 (2) | C36—O4—C24—C25 | 173.24 (16) |
C6—N2—C10—C11 | −179.67 (14) | N4—C24—C25—C26 | 3.6 (3) |
C8—C9—C10—N2 | −0.2 (3) | O4—C24—C25—C26 | −177.36 (15) |
C8—C9—C10—C11 | 178.43 (16) | C24—C25—C26—C22 | −1.0 (3) |
N2—C10—C11—C12 | 137.74 (17) | C23—C22—C26—C25 | −1.9 (2) |
C9—C10—C11—C12 | −41.0 (2) | C21—C22—C26—C25 | 175.57 (16) |
N2—C10—C11—C16 | −39.0 (2) | C1—O1—C27—C28 | 161.82 (19) |
C9—C10—C11—C16 | 142.30 (17) | C1—O1—C27—C29 | −76.7 (2) |
C16—C11—C12—C13 | 1.5 (3) | N1—C5—O2—C30 | 4.5 (4) |
C10—C11—C12—C13 | −175.26 (17) | C4—C5—O2—C30 | 177.1 (3) |
C11—C12—C13—C14 | 1.6 (3) | C5—O2—C30—C31 | 81.2 (4) |
C12—C13—C14—C15 | −2.7 (3) | C5—O2—C30—C32 | −156.7 (3) |
C13—C14—C15—C16 | 0.7 (3) | N1—C5—O2'—C30' | −8.6 (10) |
C14—C15—C16—C11 | 2.3 (3) | C4—C5—O2'—C30' | −165.8 (8) |
C14—C15—C16—C17 | −173.77 (17) | C5—O2'—C30'—C32' | −74.0 (11) |
C12—C11—C16—C15 | −3.4 (2) | C5—O2'—C30'—C31' | 162.4 (8) |
C10—C11—C16—C15 | 173.27 (15) | C23—O3—C33—C35 | −84.9 (2) |
C12—C11—C16—C17 | 172.54 (16) | C23—O3—C33—C34 | 152.61 (17) |
C10—C11—C16—C17 | −10.8 (2) | C24—O4—C36—C37 | −75.5 (2) |
C21—N3—C17—C18 | −2.2 (2) | C24—O4—C36—C38 | 163.58 (17) |
Cg1 and Cg2 are the centroids of the N3/C17–C21 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N2 | 0.95 | 2.47 | 2.789 (2) | 100 |
C7—H7···O2 | 0.95 | 2.50 | 2.985 (3) | 111 |
C7—H7···O2′ | 0.95 | 2.07 | 2.694 (8) | 122 |
C20—H20···O3 | 0.95 | 2.21 | 2.825 (2) | 122 |
C26—H26···N3 | 0.95 | 2.37 | 2.726 (2) | 102 |
C3—H3···Cg1 | 0.95 | 2.61 | 3.5078 (18) | 158 |
C32—H32A···Cg1i | 0.98 | 2.79 | 3.594 (3) | 140 |
C37—H37C···Cg2ii | 0.98 | 2.96 | 3.742 (3) | 137 |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1, y, z. |
Contact | Distance | Symmetry operation |
H34C···H34C | 2.01 | -x + 2, -y +1, -z |
H34B···H31F | 2.08 | -x + 5/2, y - 1/2, -z + 1/2 |
H18···H31E | 2.14 | -x + 3/2, y - 1/2, -z + 1/2 |
H32A···C20 | 2.66 | x + 1/2, -y + 3/2, z + 1/2 |
H25···O4 | 2.60 | -x + 2, -y + 2, -z |
Contact | Percentage contribution |
H···H | 65.2 |
H···C/C···H | 22.7 |
H···O/O···H | 6.5 |
H···N/N···H | 4.3 |
C···C | 0.9 |
N···C/C···N | 0.4 |
O···C/C···O | 0.1 |
Funding information
Funding for this research was provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01012630 and 2018R1D1A3A03000716). This study was also supported by a 2017 Research Grant from Kangwon National University (No. 520170286).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cebrián, C. & Mauro, M. (2018). Beilstein J. Org. Chem. 14, 1459–1481. Google Scholar
Fleetham, T., Li, G., Wen, L. & Li, J. (2014). Adv. Mater. 26, 7116–7121. CrossRef Google Scholar
Frey, J., Curchod, B. F. E., Scopelliti, R., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. K. & Baranoff, E. (2014). Dalton Trans. 43, 5667–5679. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jung, S., Park, K.-M., Kim, J. & Kang, Y. (2018). Acta Cryst. E74, 1272–1275. CrossRef IUCr Journals Google Scholar
Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703–706. Web of Science CrossRef Google Scholar
Lee, C., Kim, J., Choi, J. M., Lee, J.-Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383. Web of Science CrossRef CAS Google Scholar
Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436. Web of Science CSD CrossRef CAS Google Scholar
Polander, L. E., Yella, A., Curchod, B. F. E., Ashari Astani, N., Teuscher, J., Scopelliti, R., Gao, P., Mathew, S., Moser, J.-E., Tavernelli, I., Rothlisberger, U., Grätzel, M., Nazeeruddin, Md. K. & Frey, J. (2013). Angew. Chem. Int. Ed. 52, 8731–8735. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T. & Fischer, T. (2011). Coord. Chem. Rev. 255, 2622–2652. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.