research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, spectroscopic characterization and DFT study of two new linear fused-ring chalcones

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 29 August 2018; accepted 6 September 2018; online 14 September 2018)

The structures of two new anthracenyl chalcones, namely (E)-1-(anthracen-9-yl)-3-(4-nitro­phen­yl)prop-2-en-1-one, C23H15NO3, and (E)-1-(anthracen-9-yl)-3-(4-iodo­phen­yl)prop-2-en-1-one, C23H15IO are reported. A structural comparative study between the two chalcones was performed and some effects on the geometrical parameters, such as planarity and dihedral angles, are described. The mol­ecular geometry was determined by single-crystal X-ray diffraction, and density functional theory (DFT) at B3LYP with the 6–311++G(d,p) basis set was applied to optimize the ground-state geometry. In addition, inter­molecular inter­actions responsible for the crystal packing were analysed. The electronic properties, such as excitation energies and HOMO–LUMO energies were calculated by time-dependent density functional theory (TD–DFT) and the results complement the experimental findings. The mol­ecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and qu­antify the possible reactive sites.

1. Chemical context

The synthesis of new organic mol­ecules and the characterization of their mol­ecular properties are the necessary prerequisites for further research in modern technologies. Conjugated organic chalcone mol­ecules are recognized to be promising materials in the field of opto-electronic applications (Aggarwal et al., 2001[Aggarwal, M. D., Wang, W. S., Bhat, K., Penn, B. G., Frazeir, D. O. & Nalwa, H. S. (2001). Handbook of Advanced Electronic and Photonic Materials and Devices. Academic Press, USA.]). The materials are characterized by an extremely excited π-conjugated chain with strong electron acceptor–donor pairs at the end (DπA) of the terminal rings (Manjunath et al., 2011[Manjunath, H. R., Rajesh Kumar, P. C., Naveen, S., Ravindrachary, V., Sridhar, M. A., Shashidhara Prasad, J. & Karegoudar, P. (2011). J. Cryst. Growth, 327, 161-166.]). Chalcone derivatives are an inter­esting type of organic NLO materials that can be tuned to match particular requirements. In these systems, two aromatic rings have to be substituted with suitable electron-donor or acceptor groups to increase the asymmetric charge distribution in either or both the ground state and excited states, giving rise to an enhanced optical non-linearity (Rajesh Kumar et al., 2012[Rajesh Kumar, P. C., Ravindrachary, V., Janardhana, K. & Poojary, B. (2012). J. Cryst. Growth, 354, 182-187.]). Meanwhile, the enone moiety acts as the π-conjugated bridge that is responsible for inter­molecular charge transfer between the donor and acceptor substituent groups. The title compounds contain an anthracene fused-ring system (strong electron donor) containing a nitro group or an iodine atom (strong electron acceptor) substituted at the para terminal position. Their investigation included characterization using UV–vis spectroscopy and computed studies of HOMO–LUMO energy gaps and mol­ecular electrostatic potential (MEP).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the compounds (I)[link] and (II)[link] are shown in Fig. 1[link]a. All geometrical parameters are within normal ranges and comparable with those in the previously reported structure of anthracenyl chalcones (Zainuri et al., 2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.]). The optimization of the mol­ecular geometries (Fig. 1[link]b) leading to energy minima was achieved using DFT [with Becke's non-local three parameter exchange and the Lee–Yang–Parr correlation function (B3LYP)] with the 6-311++G (d,p) basis set as implemented in Gaussian09 program package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A. 1 Gaussian, Inc., Wallingford CT, 2009.]).

[Figure 1]
Figure 1
(a) The mol­ecular structures of compounds (I)[link] and (II)[link] and (b) the optimized structures of (I)[link] and (II)[link] at the DFT/B3LYP 6–311++G(d,p) level.

The compounds exist in an s-trans configuration with respect to the C15=O1 [experimental = 1.2246 (17) and DFT = 1.22 Å in (I)[link]; exp = 1.226 (3) and DFT=1.22 Å in (II)] and C16=C17 [exp = 1.335 (2) and DFT = 1.34 Å in (I)[link]; exp = 1.336 (4) and DFT= 1.35 Å in (II)] bond lengths within the enone moiety. The mol­ecular structures of both compounds are twisted at the C14—C15 bond with C1—C14—C15—C16 torsion angles of −94.21 (16) and 97.3 (3)° in (I)[link] and (II)[link], respectively. The corresponding DFT values are −91.63° (I)[link] and −85.63° (II)[link]. The large twist angles are a result of the bulkiness of the strong-electron-donor anthracene ring system (Zainuri et al., 2018b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.]). The enone moieties are found to be essentially planar with respect to the C17=C18 double bond with the C16—C17=C18—C19 torsion angle being 8.2 (2)° (DFT = 0.21°) in (I)[link] and −5.7 (4)° (DFT = −1.06°) in (II)[link]. The small deviations between the experimental and DFT values are due to the inter­molecular inter­actions observed in the solid-state environment but absent during the optimization process.

The enone moiety in (I)[link] [O1/C15–C17, maximum deviation of 0.0133 (12) Å at O1] forms dihedral angles of 87.63 (14) and 7.70 (15)°, respectively, with the anthracene ring system [C1–C14, maximum deviation of 0.044 (14) Å at C14] and the nitro­benzene moiety [C18–C23, maximum deviation of 0.007 (14) Å at C18]. Meanwhile in (II)[link], the enone moiety [O1/C15–C17, maximum deviation of 0.033 (3) Å at O1] forms dihedral angles of 82.5 (3) and 6.8 (3)°, respectively, with the anthracene ring system [C1–C14, maximum deviation of 0.031 (5) Å at C4] and the iodo­benzene ring [C18–C23, maximum deviation of 0.002 (3) Å at C18]. The anthracene ring system forms dihedral angles of 87.50 (6)° with the nitro­benzene ring in (I)[link] and of 80.45 (11)° with the iodo­benzene ring in (II)[link]. These large dihedral angles may indicate the diminishing electronic effect between the anthracene groups through the enone bridge (Jung et al., 2008[Jung, Y., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861-867.]).

3. Supra­molecular features

In the crystal of (I)[link], C17—H17A⋯O1, C20—H20A⋯O3 and C23—H23B⋯O1 hydrogen bonds link the mol­ecules into dimers, generating R21(6) and R44(28) ring motifs (Fig. 2[link] and Table 1[link]). C—H⋯π and ππ inter­actions [Cg2⋯Cg2(1 − x, −y, 1 − z) = 3.6900 (9) Å and Cg3⋯Cg4(1 − x, −y, 1 − z) = 3.7214 (10) Å; Cg1, Cg2, Cg3, Cg4 are the centroids of the C18–C23, C1/C6–C8/C13/C14, C8–C13 and C1–C6 rings, respectively] further stabilize the crystal structure, forming a three-dimensional network. In the crystal of (II)[link], C—H⋯O hydrogen bonds (Table 2[link]) link the mol­ecules into infinite chains along the c-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.95 2.35 3.2279 (18) 154
C20—H20A⋯O3ii 0.95 2.45 3.336 (2) 156
C23—H23B⋯O1i 0.95 2.53 3.3763 (18) 148
C3—H3ACg1iii 0.95 2.78 3.6179 (19) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.93 2.49 3.369 (3) 158
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram showing weak C—H⋯O, C—H⋯π and ππ inter­actions in (I)[link].
[Figure 3]
Figure 3
The crystal packing of compound (II)[link] showing weak C—H⋯O inter­actions.

4. UV–Vis absorption analysis and frontier mol­ecular orbital (FMO) energies

TD–DFT calculations at the B3LYP/6-311G++(d,p) level were performed to simulate the absorption characteristics and obtain information about the excited states. The experimental spectrum (Fig. 4[link]) shows peaks at wavelengths of 318, 366 and 386 nm in (I)[link] and 321, 367 and 387 nm in (II)[link] with the wavelength of maximum absorbance being observed at 386 nm in (I)[link] and 387 nm in (II)[link]. The absorption maxima are assigned to the ππ* transitions, i.e. the transition of an electron from a bonding (π) to an anti-bonding (π*) mol­ecular orbital, which are attributed to the C=O groups and aromatic ring excitations. The experimentally measured spectra of both compounds match those of the simulated chalcones, which have maxima at 395 nm for (I)[link] and 394 nm for (II)[link].

[Figure 4]
Figure 4
UV–Vis absorption spectra for compounds (I)[link] and (II)[link].

The difference in energy of the HOMO and LUMO is an important index that provides information about the chemical stability of mol­ecules since these energies are directly related to the ability to donate and accept electrons. In the ground state (HOMO), the charge densities are mainly delocalized over the anthracene ring systems and the enone moiety, while in the LUMO state, the charge densities are accumulated on the nitro­benzene ring and the enone moiety in (I)[link], and the iodo­benzene ring in (II)[link]. A small HOMO–LUMO gap automatically means small excitation energies to the manifold excited states and a large HOMO–LUMO gap implies high stability with respect to chemical reactions (Custodio et al., 2017[Custodio, J. M. F., Faria, E. C. M., Sallum, L. O., Duarte, V. S., Vaz, W. F., de Aquino, G. L. B., Carvalho, P. S. Jr & Napolitano, H. B. (2017). J. Braz. Chem. Soc. 28, 2180-2191.]). The HOMO–LUMO energy gaps (Fig. 5[link]) are computed to be 2.93 eV and 2.81 eV, respectively, for (I)[link] and (II)[link]. In the experimental results, the value of energy gap was estimated from the absorption curve by extrapolating the linear portion of the curve to zero absorption, giving values of 3.14 eV for (I)[link] and 3.07 eV for (II)[link]. These values for the band gaps suggest that the materials are dielectric in nature (Suguna et al., 2015[Suguna, S., Jovita, J. V., Jeyaraman, D., Nagaraja, K. S. & Jeyaraj, B. (2015). Int. J. ChemTech Res. 8, 249-259.]), dielectric materials having wide transparency in the UV region. Such materials with wide transparency are required for the fabrication of optical electronic devices.

[Figure 5]
Figure 5
The electron distribution of the HOMO and LUMO energy levels in compounds (I)[link] and (II)[link].

5. Mol­ecular electrostatic potential (MEP)

The importance of the MEP lies in the fact that it simultaneously displays mol­ecular size and shape as well as positive, negative and neutral electrostatic potential regions in terms of colour grading and is useful in investigating relationships between mol­ecular structure and physicochemical properties (Murray & Sen, 1996[Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier.]; Scrocco & Tomasi, 1978[Scrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.]). The MEP maps for the mol­ecules of (I)[link] and (II)[link] were calculated theoretically at the B3LYP/6-311G++(d,p) level of theory and the obtained plots are shown in Fig. 6[link]. The negative red regions are concentrated at the oxygen atoms, showing the electrophilic sites. Hence, the oxygen atoms are the most reactive sites for nucleophilic attack, as well as the more proper sites to attack the positive regions of the receptor mol­ecule. The negative potential values of compounds (I)[link] and (II)[link] are −0.049 a.u and −0.649 a.u., respectively. The blue regions indicate areas of positive charge concentration, which are concentrated over the hydrogen atoms and iodine substituent atom, indicating the nucleophilic sites. Green regions represent areas with zero potential.

[Figure 6]
Figure 6
Three-dimensional maps of the total electron density surface of (a) compound (I)[link] and (b) compound (II)[link] with electrostatic potential calculated at B3LYP/6–311 G++ (d,p) level.

6. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed fused-ring substituted chalcones similar to the title compounds. There are four compounds that have an anthrancene-ketone substituent on the chalcone, viz. 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) (Harlow et al., 1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one (Girisha et al., 2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]), and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one (Abdullah et al., 2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Zainuri et al. (2018c[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780-785.]) reported the structure of (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Others related compounds include 1-(anthracen-9-yl)-2-meth­ylprop-2-en-1-one (Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]) and 9-anthroylacetone (Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]).

7. Synthesis and crystallization

9-Acetyl­anthrancene (0.5 mmol) was dissolved in methanol (20 ml) for about 10–15 mins. Then 4-nitro­benzaldehyde (0.5 mmol) [for (I)] or 4-iodo­benzaldehye (0.5 mmol) [for (II)] was added and the solution was stirred for another 10–15 min. Then, NaOH was added and after stirring for 5 h, the reaction mixture was poured into cold water (50 ml) and stirred for 5–10 min. The precipitated solid was filtered, dried and recrystallized from acetone solution to obtain the corresponding chalcones.

8. Refinement

Crystal data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically [C—H = 0.95 Å in (I)[link] and 0.93 Å in (II)] and refined using a riding model with Uiso(H) = 1.2Ueq(C). In the final refinement of compound (II)[link], three outliers (316, 232, 114) were omitted.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C23H15NO3 C23H15IO
Mr 353.36 434.25
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 294
a, b, c (Å) 12.9197 (14), 12.7282 (13), 10.9016 (12) 14.8004 (12), 11.3095 (9), 11.5139 (9)
β (°) 105.212 (2) 111.3608 (13)
V3) 1729.9 (3) 1794.9 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 1.79
Crystal size (mm) 0.51 × 0.23 × 0.12 0.24 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area detector Bruker SMART APEXII DUO CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 36707, 4862, 3416 20023, 5265, 3933
Rint 0.076 0.027
(sin θ/λ)max−1) 0.695 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 1.03 0.034, 0.097, 1.02
No. of reflections 4862 5265
No. of parameters 244 226
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.22 1.24, −1.01
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I); SHELXL2013 (Sheldrick, 2015) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-1-(Anthracen-9-yl)-3-(4-nitrophenyl)prop-2-en-1-one (I) top
Crystal data top
C23H15NO3F(000) = 736
Mr = 353.36Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9197 (14) ÅCell parameters from 4370 reflections
b = 12.7282 (13) Åθ = 2.3–29.2°
c = 10.9016 (12) ŵ = 0.09 mm1
β = 105.212 (2)°T = 100 K
V = 1729.9 (3) Å3Block, bronze
Z = 40.51 × 0.23 × 0.12 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
φ and ω scansθmax = 29.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
k = 1717
36707 measured reflectionsl = 1515
4862 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.7203P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4862 reflectionsΔρmax = 0.32 e Å3
244 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.00262 (10)0.72156 (11)0.47682 (13)0.0289 (3)
O10.34795 (9)0.19601 (9)0.21866 (10)0.0300 (3)
O20.04488 (12)0.76881 (11)0.38140 (13)0.0508 (4)
O30.00316 (10)0.74898 (9)0.58507 (12)0.0361 (3)
C10.48427 (11)0.19570 (11)0.50953 (13)0.0199 (3)
C20.54467 (12)0.27977 (12)0.47617 (14)0.0245 (3)
H2A0.51350.32200.40410.029*
C30.64652 (13)0.30025 (13)0.54624 (15)0.0288 (3)
H3A0.68520.35690.52290.035*
C40.69550 (13)0.23788 (13)0.65380 (15)0.0288 (3)
H4A0.76680.25270.70150.035*
C50.64081 (12)0.15728 (13)0.68864 (14)0.0254 (3)
H5A0.67440.11600.76070.030*
C60.53356 (11)0.13328 (11)0.61891 (13)0.0210 (3)
C70.47693 (12)0.04993 (11)0.65304 (13)0.0230 (3)
H7A0.51070.00740.72380.028*
C80.37195 (12)0.02766 (11)0.58571 (13)0.0221 (3)
C90.31336 (13)0.05676 (12)0.62076 (15)0.0274 (3)
H9A0.34680.09990.69110.033*
C100.21033 (14)0.07675 (13)0.55522 (16)0.0316 (4)
H10A0.17280.13380.57970.038*
C110.15852 (13)0.01261 (13)0.45023 (15)0.0298 (4)
H11A0.08600.02610.40620.036*
C120.21207 (12)0.06794 (12)0.41231 (14)0.0248 (3)
H12A0.17660.10970.34150.030*
C130.32097 (11)0.09053 (11)0.47751 (13)0.0211 (3)
C140.37944 (11)0.17191 (11)0.44012 (12)0.0190 (3)
C150.33164 (11)0.22957 (11)0.31720 (13)0.0213 (3)
C160.26653 (11)0.32348 (11)0.31726 (13)0.0218 (3)
H16A0.23920.36040.23980.026*
C170.24430 (11)0.35893 (11)0.42279 (13)0.0216 (3)
H17A0.27350.32060.49880.026*
C180.17937 (11)0.45104 (11)0.43267 (13)0.0206 (3)
C190.12077 (12)0.50663 (12)0.32612 (14)0.0231 (3)
H19A0.12050.48300.24340.028*
C200.06347 (11)0.59521 (12)0.33999 (14)0.0227 (3)
H20A0.02460.63330.26760.027*
C210.06365 (11)0.62771 (11)0.46145 (14)0.0224 (3)
C220.11872 (11)0.57411 (12)0.56955 (14)0.0231 (3)
H22A0.11690.59710.65190.028*
C230.17660 (11)0.48568 (11)0.55348 (13)0.0219 (3)
H23B0.21520.44780.62620.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0239 (6)0.0261 (7)0.0346 (7)0.0008 (5)0.0039 (5)0.0038 (6)
O10.0371 (6)0.0323 (6)0.0197 (5)0.0029 (5)0.0058 (5)0.0037 (4)
O20.0567 (9)0.0465 (8)0.0415 (8)0.0285 (7)0.0007 (6)0.0012 (6)
O30.0371 (7)0.0314 (6)0.0393 (7)0.0031 (5)0.0091 (5)0.0098 (5)
C10.0212 (7)0.0207 (7)0.0181 (6)0.0018 (5)0.0057 (5)0.0020 (5)
C20.0256 (7)0.0262 (7)0.0215 (7)0.0016 (6)0.0058 (6)0.0005 (6)
C30.0261 (8)0.0314 (8)0.0290 (8)0.0067 (6)0.0076 (6)0.0013 (6)
C40.0219 (7)0.0364 (9)0.0262 (8)0.0004 (6)0.0030 (6)0.0051 (6)
C50.0230 (7)0.0318 (8)0.0195 (7)0.0049 (6)0.0020 (6)0.0003 (6)
C60.0224 (7)0.0214 (7)0.0193 (6)0.0036 (6)0.0054 (5)0.0023 (5)
C70.0280 (8)0.0219 (7)0.0188 (6)0.0050 (6)0.0056 (6)0.0014 (5)
C80.0273 (7)0.0195 (7)0.0204 (7)0.0025 (6)0.0082 (6)0.0028 (5)
C90.0381 (9)0.0223 (7)0.0238 (7)0.0002 (6)0.0116 (6)0.0004 (6)
C100.0408 (9)0.0252 (8)0.0328 (8)0.0094 (7)0.0165 (7)0.0029 (7)
C110.0281 (8)0.0312 (8)0.0310 (8)0.0069 (7)0.0090 (6)0.0065 (7)
C120.0252 (7)0.0257 (7)0.0230 (7)0.0003 (6)0.0053 (6)0.0021 (6)
C130.0231 (7)0.0209 (7)0.0202 (7)0.0002 (6)0.0074 (5)0.0028 (5)
C140.0225 (7)0.0177 (6)0.0168 (6)0.0028 (5)0.0051 (5)0.0023 (5)
C150.0203 (7)0.0228 (7)0.0195 (7)0.0038 (6)0.0029 (5)0.0004 (5)
C160.0232 (7)0.0217 (7)0.0188 (6)0.0006 (6)0.0025 (5)0.0023 (5)
C170.0217 (7)0.0214 (7)0.0196 (6)0.0011 (5)0.0017 (5)0.0019 (5)
C180.0202 (7)0.0200 (7)0.0215 (7)0.0021 (5)0.0051 (5)0.0010 (5)
C190.0230 (7)0.0254 (7)0.0205 (7)0.0022 (6)0.0049 (6)0.0007 (6)
C200.0204 (7)0.0235 (7)0.0224 (7)0.0001 (6)0.0025 (5)0.0039 (6)
C210.0184 (7)0.0191 (7)0.0292 (7)0.0022 (5)0.0053 (6)0.0012 (6)
C220.0215 (7)0.0241 (7)0.0233 (7)0.0054 (6)0.0050 (6)0.0027 (6)
C230.0220 (7)0.0217 (7)0.0201 (7)0.0021 (6)0.0022 (5)0.0019 (5)
Geometric parameters (Å, º) top
N1—O21.2187 (18)C10—H10A0.9500
N1—O31.2289 (17)C11—C121.361 (2)
N1—C211.4650 (19)C11—H11A0.9500
O1—C151.2246 (17)C12—C131.429 (2)
C1—C141.4002 (19)C12—H12A0.9500
C1—C21.427 (2)C13—C141.404 (2)
C1—C61.4354 (19)C14—C151.5104 (19)
C2—C31.362 (2)C15—C161.462 (2)
C2—H2A0.9500C16—C171.335 (2)
C3—C41.420 (2)C16—H16A0.9500
C3—H3A0.9500C17—C181.462 (2)
C4—C51.355 (2)C17—H17A0.9500
C4—H4A0.9500C18—C231.398 (2)
C5—C61.428 (2)C18—C191.4006 (19)
C5—H5A0.9500C19—C201.379 (2)
C6—C71.394 (2)C19—H19A0.9500
C7—C81.392 (2)C20—C211.387 (2)
C7—H7A0.9500C20—H20A0.9500
C8—C91.423 (2)C21—C221.386 (2)
C8—C131.435 (2)C22—C231.388 (2)
C9—C101.359 (2)C22—H22A0.9500
C9—H9A0.9500C23—H23B0.9500
C10—C111.422 (2)
O2—N1—O3123.65 (14)C11—C12—C13120.88 (14)
O2—N1—C21118.06 (13)C11—C12—H12A119.6
O3—N1—C21118.28 (13)C13—C12—H12A119.6
C14—C1—C2122.73 (13)C14—C13—C12122.58 (13)
C14—C1—C6118.98 (13)C14—C13—C8118.97 (13)
C2—C1—C6118.28 (13)C12—C13—C8118.45 (13)
C3—C2—C1120.88 (14)C1—C14—C13121.37 (13)
C3—C2—H2A119.6C1—C14—C15119.12 (12)
C1—C2—H2A119.6C13—C14—C15119.35 (12)
C2—C3—C4120.78 (15)O1—C15—C16121.13 (13)
C2—C3—H3A119.6O1—C15—C14118.98 (13)
C4—C3—H3A119.6C16—C15—C14119.89 (12)
C5—C4—C3120.16 (14)C17—C16—C15122.05 (13)
C5—C4—H4A119.9C17—C16—H16A119.0
C3—C4—H4A119.9C15—C16—H16A119.0
C4—C5—C6121.15 (14)C16—C17—C18126.28 (13)
C4—C5—H5A119.4C16—C17—H17A116.9
C6—C5—H5A119.4C18—C17—H17A116.9
C7—C6—C5121.66 (13)C23—C18—C19118.68 (13)
C7—C6—C1119.58 (13)C23—C18—C17118.64 (13)
C5—C6—C1118.75 (13)C19—C18—C17122.67 (13)
C8—C7—C6121.44 (13)C20—C19—C18120.74 (14)
C8—C7—H7A119.3C20—C19—H19A119.6
C6—C7—H7A119.3C18—C19—H19A119.6
C7—C8—C9121.72 (14)C19—C20—C21118.83 (13)
C7—C8—C13119.59 (13)C19—C20—H20A120.6
C9—C8—C13118.70 (14)C21—C20—H20A120.6
C10—C9—C8121.11 (15)C22—C21—C20122.48 (14)
C10—C9—H9A119.4C22—C21—N1118.42 (13)
C8—C9—H9A119.4C20—C21—N1119.10 (13)
C9—C10—C11120.31 (15)C21—C22—C23117.73 (13)
C9—C10—H10A119.8C21—C22—H22A121.1
C11—C10—H10A119.8C23—C22—H22A121.1
C12—C11—C10120.51 (15)C22—C23—C18121.51 (13)
C12—C11—H11A119.7C22—C23—H23B119.2
C10—C11—H11A119.7C18—C23—H23B119.2
C14—C1—C2—C3179.96 (14)C6—C1—C14—C15173.44 (12)
C6—C1—C2—C30.0 (2)C12—C13—C14—C1176.75 (13)
C1—C2—C3—C40.5 (2)C8—C13—C14—C12.9 (2)
C2—C3—C4—C50.5 (2)C12—C13—C14—C158.0 (2)
C3—C4—C5—C60.1 (2)C8—C13—C14—C15172.35 (12)
C4—C5—C6—C7179.32 (14)C1—C14—C15—O186.18 (17)
C4—C5—C6—C10.6 (2)C13—C14—C15—O189.21 (17)
C14—C1—C6—C70.7 (2)C1—C14—C15—C1694.21 (16)
C2—C1—C6—C7179.32 (13)C13—C14—C15—C1690.40 (16)
C14—C1—C6—C5179.43 (13)O1—C15—C16—C17177.30 (14)
C2—C1—C6—C50.6 (2)C14—C15—C16—C172.3 (2)
C5—C6—C7—C8179.20 (14)C15—C16—C17—C18179.35 (13)
C1—C6—C7—C82.1 (2)C16—C17—C18—C23171.08 (14)
C6—C7—C8—C9179.44 (14)C16—C17—C18—C198.2 (2)
C6—C7—C8—C131.0 (2)C23—C18—C19—C201.5 (2)
C7—C8—C9—C10179.07 (15)C17—C18—C19—C20177.79 (13)
C13—C8—C9—C101.3 (2)C18—C19—C20—C210.8 (2)
C8—C9—C10—C110.5 (2)C19—C20—C21—C220.4 (2)
C9—C10—C11—C121.5 (2)C19—C20—C21—N1179.78 (13)
C10—C11—C12—C130.6 (2)O2—N1—C21—C22179.39 (15)
C11—C12—C13—C14179.01 (14)O3—N1—C21—C220.2 (2)
C11—C12—C13—C81.3 (2)O2—N1—C21—C201.2 (2)
C7—C8—C13—C141.5 (2)O3—N1—C21—C20179.62 (14)
C9—C8—C13—C14178.08 (13)C20—C21—C22—C231.0 (2)
C7—C8—C13—C12178.19 (13)N1—C21—C22—C23179.68 (13)
C9—C8—C13—C122.2 (2)C21—C22—C23—C180.3 (2)
C2—C1—C14—C13178.15 (13)C19—C18—C23—C221.0 (2)
C6—C1—C14—C131.9 (2)C17—C18—C23—C22178.37 (13)
C2—C1—C14—C156.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.952.353.2279 (18)154
C20—H20A···O3ii0.952.453.336 (2)156
C23—H23B···O1i0.952.533.3763 (18)148
C3—H3A···Cg1iii0.952.783.6179 (19)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1.
(E)-1-(Anthracen-9-yl)-3-(4-iodophenyl)prop-2-en-1-one (II) top
Crystal data top
C23H15IOF(000) = 856
Mr = 434.25Dx = 1.607 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.8004 (12) ÅCell parameters from 6699 reflections
b = 11.3095 (9) Åθ = 2.3–27.3°
c = 11.5139 (9) ŵ = 1.79 mm1
β = 111.3608 (13)°T = 294 K
V = 1794.9 (2) Å3Block, colourless
Z = 40.24 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3933 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
φ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
k = 1514
20023 measured reflectionsl = 1614
5265 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0437P)2 + 1.0689P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5265 reflectionsΔρmax = 1.24 e Å3
226 parametersΔρmin = 1.00 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.03943 (2)0.28858 (2)0.01034 (2)0.05842 (9)
O10.68177 (19)0.2750 (2)0.2834 (2)0.0690 (6)
C10.53340 (19)0.2882 (2)0.0026 (2)0.0475 (6)
C20.4848 (3)0.1961 (3)0.0395 (4)0.0655 (8)
H2A0.51920.14890.10730.079*
C30.3886 (3)0.1757 (4)0.0231 (4)0.0838 (12)
H3A0.35760.11510.00240.101*
C40.3360 (3)0.2463 (5)0.1264 (4)0.0885 (13)
H4A0.27030.23190.16820.106*
C50.3790 (2)0.3341 (4)0.1658 (3)0.0730 (10)
H5A0.34260.37970.23410.088*
C60.4803 (2)0.3584 (3)0.1039 (2)0.0533 (7)
C70.5266 (2)0.4483 (3)0.1403 (3)0.0582 (7)
H7A0.49120.49420.20890.070*
C80.6245 (2)0.4731 (2)0.0782 (3)0.0505 (6)
C90.6722 (3)0.5656 (3)0.1165 (3)0.0675 (9)
H9A0.63770.61040.18630.081*
C100.7668 (3)0.5895 (3)0.0534 (4)0.0730 (10)
H10A0.79680.64990.08060.088*
C110.8204 (2)0.5236 (3)0.0532 (3)0.0653 (8)
H11A0.88540.54150.09640.078*
C120.7780 (2)0.4344 (3)0.0935 (3)0.0526 (6)
H12A0.81430.39190.16430.063*
C130.67851 (19)0.4049 (2)0.0287 (2)0.0439 (5)
C140.63246 (19)0.3133 (2)0.0679 (2)0.0424 (5)
C150.6865 (2)0.2445 (3)0.1837 (2)0.0473 (6)
C160.7450 (2)0.1432 (3)0.1768 (2)0.0502 (6)
H16A0.77280.09750.24810.060*
C170.76109 (19)0.1121 (2)0.0741 (2)0.0457 (5)
H17A0.72850.15540.00230.055*
C180.82431 (18)0.0175 (2)0.0624 (2)0.0444 (5)
C190.8844 (2)0.0486 (3)0.1638 (2)0.0561 (7)
H19A0.88410.03340.24300.067*
C200.9439 (2)0.1355 (3)0.1484 (2)0.0569 (7)
H20A0.98310.17890.21680.068*
C210.94538 (19)0.1584 (2)0.0315 (2)0.0465 (5)
C220.8867 (2)0.0951 (3)0.0709 (2)0.0513 (6)
H22A0.88750.11090.14980.062*
C230.82706 (19)0.0083 (2)0.0546 (2)0.0489 (6)
H23A0.78760.03420.12360.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05287 (12)0.06107 (14)0.06002 (13)0.00369 (8)0.01901 (9)0.00257 (8)
O10.0894 (17)0.0801 (16)0.0428 (10)0.0057 (12)0.0304 (11)0.0093 (10)
C10.0471 (14)0.0522 (15)0.0459 (13)0.0077 (11)0.0204 (11)0.0153 (11)
C20.0603 (18)0.074 (2)0.0660 (19)0.0226 (16)0.0275 (15)0.0128 (16)
C30.068 (2)0.101 (3)0.090 (3)0.037 (2)0.037 (2)0.030 (2)
C40.0470 (18)0.127 (3)0.088 (3)0.018 (2)0.0204 (19)0.051 (3)
C50.0531 (17)0.096 (3)0.0617 (18)0.0072 (18)0.0110 (15)0.0286 (19)
C60.0494 (14)0.0646 (18)0.0452 (13)0.0073 (13)0.0163 (11)0.0152 (12)
C70.0687 (18)0.0591 (17)0.0446 (13)0.0168 (14)0.0182 (13)0.0025 (12)
C80.0674 (17)0.0415 (13)0.0496 (14)0.0041 (12)0.0295 (13)0.0039 (11)
C90.100 (3)0.0487 (16)0.0649 (18)0.0057 (17)0.0440 (19)0.0050 (14)
C100.100 (3)0.0501 (18)0.089 (2)0.0145 (18)0.058 (2)0.0020 (17)
C110.0657 (18)0.0601 (19)0.083 (2)0.0164 (15)0.0424 (17)0.0122 (16)
C120.0502 (14)0.0524 (16)0.0600 (15)0.0081 (12)0.0256 (13)0.0083 (12)
C130.0506 (13)0.0412 (13)0.0454 (12)0.0021 (10)0.0240 (11)0.0072 (10)
C140.0457 (13)0.0436 (13)0.0407 (12)0.0047 (10)0.0191 (10)0.0079 (9)
C150.0531 (15)0.0517 (14)0.0396 (12)0.0132 (12)0.0200 (11)0.0062 (11)
C160.0557 (15)0.0527 (15)0.0376 (12)0.0062 (12)0.0114 (11)0.0043 (11)
C170.0471 (13)0.0446 (14)0.0406 (12)0.0066 (11)0.0104 (10)0.0033 (10)
C180.0463 (13)0.0460 (13)0.0374 (11)0.0068 (11)0.0111 (10)0.0013 (10)
C190.0637 (17)0.0644 (18)0.0376 (12)0.0065 (14)0.0152 (12)0.0054 (12)
C200.0579 (16)0.0666 (18)0.0395 (12)0.0079 (14)0.0099 (11)0.0105 (12)
C210.0433 (13)0.0457 (14)0.0470 (13)0.0048 (10)0.0121 (10)0.0011 (11)
C220.0599 (16)0.0530 (15)0.0380 (12)0.0036 (12)0.0141 (11)0.0001 (11)
C230.0549 (14)0.0501 (15)0.0373 (11)0.0014 (12)0.0115 (10)0.0061 (10)
Geometric parameters (Å, º) top
I1—C212.100 (3)C11—C121.356 (4)
O1—C151.226 (3)C11—H11A0.9300
C1—C141.411 (3)C12—C131.427 (4)
C1—C21.416 (4)C12—H12A0.9300
C1—C61.431 (4)C13—C141.402 (4)
C2—C31.361 (5)C14—C151.499 (4)
C2—H2A0.9300C15—C161.455 (4)
C3—C41.409 (7)C16—C171.336 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.344 (7)C17—C181.460 (4)
C4—H4A0.9300C17—H17A0.9300
C5—C61.432 (4)C18—C231.393 (4)
C5—H5A0.9300C18—C191.398 (4)
C6—C71.374 (5)C19—C201.373 (4)
C7—C81.391 (4)C19—H19A0.9300
C7—H7A0.9300C20—C211.379 (4)
C8—C91.419 (4)C20—H20A0.9300
C8—C131.426 (4)C21—C221.383 (4)
C9—C101.349 (5)C22—C231.379 (4)
C9—H9A0.9300C22—H22A0.9300
C10—C111.407 (5)C23—H23A0.9300
C10—H10A0.9300
C14—C1—C2122.0 (3)C13—C12—H12A119.6
C14—C1—C6119.0 (2)C14—C13—C8119.5 (2)
C2—C1—C6119.0 (3)C14—C13—C12122.3 (3)
C3—C2—C1120.9 (4)C8—C13—C12118.2 (2)
C3—C2—H2A119.5C13—C14—C1120.6 (2)
C1—C2—H2A119.5C13—C14—C15120.3 (2)
C2—C3—C4120.0 (4)C1—C14—C15119.0 (2)
C2—C3—H3A120.0O1—C15—C16120.7 (3)
C4—C3—H3A120.0O1—C15—C14119.5 (3)
C5—C4—C3121.4 (3)C16—C15—C14119.7 (2)
C5—C4—H4A119.3C17—C16—C15123.8 (2)
C3—C4—H4A119.3C17—C16—H16A118.1
C4—C5—C6120.8 (4)C15—C16—H16A118.1
C4—C5—H5A119.6C16—C17—C18127.0 (2)
C6—C5—H5A119.6C16—C17—H17A116.5
C7—C6—C1119.5 (3)C18—C17—H17A116.5
C7—C6—C5122.5 (3)C23—C18—C19117.5 (3)
C1—C6—C5117.9 (3)C23—C18—C17119.2 (2)
C6—C7—C8122.3 (3)C19—C18—C17123.3 (2)
C6—C7—H7A118.8C20—C19—C18121.2 (3)
C8—C7—H7A118.8C20—C19—H19A119.4
C7—C8—C9122.2 (3)C18—C19—H19A119.4
C7—C8—C13119.1 (3)C19—C20—C21119.9 (3)
C9—C8—C13118.8 (3)C19—C20—H20A120.0
C10—C9—C8121.1 (3)C21—C20—H20A120.0
C10—C9—H9A119.4C20—C21—C22120.5 (3)
C8—C9—H9A119.4C20—C21—I1119.5 (2)
C9—C10—C11120.6 (3)C22—C21—I1120.1 (2)
C9—C10—H10A119.7C23—C22—C21119.1 (2)
C11—C10—H10A119.7C23—C22—H22A120.4
C12—C11—C10120.5 (3)C21—C22—H22A120.4
C12—C11—H11A119.7C22—C23—C18121.8 (2)
C10—C11—H11A119.7C22—C23—H23A119.1
C11—C12—C13120.9 (3)C18—C23—H23A119.1
C11—C12—H12A119.6
C14—C1—C2—C3178.3 (3)C12—C13—C14—C1178.8 (2)
C6—C1—C2—C31.5 (4)C8—C13—C14—C15176.9 (2)
C1—C2—C3—C40.3 (6)C12—C13—C14—C151.9 (4)
C2—C3—C4—C50.4 (6)C2—C1—C14—C13179.8 (3)
C3—C4—C5—C60.3 (6)C6—C1—C14—C130.4 (4)
C14—C1—C6—C70.0 (4)C2—C1—C14—C153.3 (4)
C2—C1—C6—C7179.8 (3)C6—C1—C14—C15176.5 (2)
C14—C1—C6—C5177.7 (2)C13—C14—C15—O193.4 (3)
C2—C1—C6—C52.1 (4)C1—C14—C15—O183.5 (3)
C4—C5—C6—C7179.1 (3)C13—C14—C15—C1685.8 (3)
C4—C5—C6—C11.5 (5)C1—C14—C15—C1697.3 (3)
C1—C6—C7—C81.0 (4)O1—C15—C16—C17173.2 (3)
C5—C6—C7—C8178.6 (3)C14—C15—C16—C176.0 (4)
C6—C7—C8—C9179.6 (3)C15—C16—C17—C18175.2 (2)
C6—C7—C8—C131.4 (4)C16—C17—C18—C23175.4 (3)
C7—C8—C9—C10178.7 (3)C16—C17—C18—C195.7 (4)
C13—C8—C9—C100.2 (4)C23—C18—C19—C200.0 (4)
C8—C9—C10—C110.6 (5)C17—C18—C19—C20178.9 (3)
C9—C10—C11—C120.6 (5)C18—C19—C20—C210.4 (5)
C10—C11—C12—C130.3 (5)C19—C20—C21—C220.6 (4)
C7—C8—C13—C141.0 (4)C19—C20—C21—I1178.4 (2)
C9—C8—C13—C14180.0 (2)C20—C21—C22—C230.4 (4)
C7—C8—C13—C12177.9 (2)I1—C21—C22—C23178.6 (2)
C9—C8—C13—C121.1 (4)C21—C22—C23—C180.1 (4)
C11—C12—C13—C14180.0 (3)C19—C18—C23—C220.2 (4)
C11—C12—C13—C81.1 (4)C17—C18—C23—C22178.7 (2)
C8—C13—C14—C10.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.932.493.369 (3)158
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the research facilities.

Funding information

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for funding under the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/ 6711606 and the Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for a My Brain15 scholarship.

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAggarwal, M. D., Wang, W. S., Bhat, K., Penn, B. G., Frazeir, D. O. & Nalwa, H. S. (2001). Handbook of Advanced Electronic and Photonic Materials and Devices. Academic Press, USA.  Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  Web of Science CSD CrossRef CAS Google Scholar
First citationCustodio, J. M. F., Faria, E. C. M., Sallum, L. O., Duarte, V. S., Vaz, W. F., de Aquino, G. L. B., Carvalho, P. S. Jr & Napolitano, H. B. (2017). J. Braz. Chem. Soc. 28, 2180–2191.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A. 1 Gaussian, Inc., Wallingford CT, 2009.  Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJung, Y., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.  Web of Science CrossRef Google Scholar
First citationManjunath, H. R., Rajesh Kumar, P. C., Naveen, S., Ravindrachary, V., Sridhar, M. A., Shashidhara Prasad, J. & Karegoudar, P. (2011). J. Cryst. Growth, 327, 161–166.  Web of Science CrossRef Google Scholar
First citationMurray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier.  Google Scholar
First citationRajesh Kumar, P. C., Ravindrachary, V., Janardhana, K. & Poojary, B. (2012). J. Cryst. Growth, 354, 182–187.  Web of Science CrossRef Google Scholar
First citationScrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuguna, S., Jovita, J. V., Jeyaraman, D., Nagaraja, K. S. & Jeyaraj, B. (2015). Int. J. ChemTech Res. 8, 249–259.  Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds