research communications
spectroscopic characterization and DFT study of two new linear fused-ring chalcones
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my
The structures of two new anthracenyl E)-1-(anthracen-9-yl)-3-(4-nitrophenyl)prop-2-en-1-one, C23H15NO3, and (E)-1-(anthracen-9-yl)-3-(4-iodophenyl)prop-2-en-1-one, C23H15IO are reported. A structural comparative study between the two was performed and some effects on the geometrical parameters, such as planarity and dihedral angles, are described. The molecular geometry was determined by single-crystal X-ray diffraction, and density functional theory (DFT) at B3LYP with the 6–311++G(d,p) basis set was applied to optimize the ground-state geometry. In addition, intermolecular interactions responsible for the crystal packing were analysed. The electronic properties, such as excitation energies and HOMO–LUMO energies were calculated by time-dependent density functional theory (TD–DFT) and the results complement the experimental findings. The molecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and quantify the possible reactive sites.
namely (Keywords: chalcone; crystal structure; DFT; molecular electrostatic potential.
1. Chemical context
The synthesis of new organic molecules and the characterization of their molecular properties are the necessary prerequisites for further research in modern technologies. Conjugated organic chalcone molecules are recognized to be promising materials in the field of opto-electronic applications (Aggarwal et al., 2001). The materials are characterized by an extremely excited π-conjugated chain with strong electron acceptor–donor pairs at the end (D–π–A) of the terminal rings (Manjunath et al., 2011). Chalcone derivatives are an interesting type of organic NLO materials that can be tuned to match particular requirements. In these systems, two aromatic rings have to be substituted with suitable electron-donor or acceptor groups to increase the asymmetric charge distribution in either or both the ground state and excited states, giving rise to an enhanced optical non-linearity (Rajesh Kumar et al., 2012). Meanwhile, the enone moiety acts as the π-conjugated bridge that is responsible for intermolecular charge transfer between the donor and acceptor substituent groups. The title compounds contain an anthracene fused-ring system (strong electron donor) containing a nitro group or an iodine atom (strong electron acceptor) substituted at the para terminal position. Their investigation included characterization using UV–vis spectroscopy and computed studies of HOMO–LUMO energy gaps and molecular electrostatic potential (MEP).
2. Structural commentary
The molecular structures of the compounds (I) and (II) are shown in Fig. 1a. All geometrical parameters are within normal ranges and comparable with those in the previously reported structure of anthracenyl (Zainuri et al., 2018a). The optimization of the molecular geometries (Fig. 1b) leading to energy minima was achieved using DFT [with Becke's non-local three parameter exchange and the Lee–Yang–Parr correlation function (B3LYP)] with the 6-311++G (d,p) basis set as implemented in Gaussian09 program package (Frisch et al., 2009).
The compounds exist in an s-trans configuration with respect to the C15=O1 [experimental = 1.2246 (17) and DFT = 1.22 Å in (I); exp = 1.226 (3) and DFT=1.22 Å in (II)] and C16=C17 [exp = 1.335 (2) and DFT = 1.34 Å in (I); exp = 1.336 (4) and DFT= 1.35 Å in (II)] bond lengths within the enone moiety. The molecular structures of both compounds are twisted at the C14—C15 bond with C1—C14—C15—C16 torsion angles of −94.21 (16) and 97.3 (3)° in (I) and (II), respectively. The corresponding DFT values are −91.63° (I) and −85.63° (II). The large twist angles are a result of the bulkiness of the strong-electron-donor anthracene ring system (Zainuri et al., 2018b). The enone moieties are found to be essentially planar with respect to the C17=C18 double bond with the C16—C17=C18—C19 torsion angle being 8.2 (2)° (DFT = 0.21°) in (I) and −5.7 (4)° (DFT = −1.06°) in (II). The small deviations between the experimental and DFT values are due to the intermolecular interactions observed in the solid-state environment but absent during the optimization process.
The enone moiety in (I) [O1/C15–C17, maximum deviation of 0.0133 (12) Å at O1] forms dihedral angles of 87.63 (14) and 7.70 (15)°, respectively, with the anthracene ring system [C1–C14, maximum deviation of 0.044 (14) Å at C14] and the nitrobenzene moiety [C18–C23, maximum deviation of 0.007 (14) Å at C18]. Meanwhile in (II), the enone moiety [O1/C15–C17, maximum deviation of 0.033 (3) Å at O1] forms dihedral angles of 82.5 (3) and 6.8 (3)°, respectively, with the anthracene ring system [C1–C14, maximum deviation of 0.031 (5) Å at C4] and the iodobenzene ring [C18–C23, maximum deviation of 0.002 (3) Å at C18]. The anthracene ring system forms dihedral angles of 87.50 (6)° with the nitrobenzene ring in (I) and of 80.45 (11)° with the iodobenzene ring in (II). These large dihedral angles may indicate the diminishing electronic effect between the anthracene groups through the enone bridge (Jung et al., 2008).
3. Supramolecular features
In the crystal of (I), C17—H17A⋯O1, C20—H20A⋯O3 and C23—H23B⋯O1 hydrogen bonds link the molecules into dimers, generating R21(6) and R44(28) ring motifs (Fig. 2 and Table 1). C—H⋯π and π–π interactions [Cg2⋯Cg2(1 − x, −y, 1 − z) = 3.6900 (9) Å and Cg3⋯Cg4(1 − x, −y, 1 − z) = 3.7214 (10) Å; Cg1, Cg2, Cg3, Cg4 are the centroids of the C18–C23, C1/C6–C8/C13/C14, C8–C13 and C1–C6 rings, respectively] further stabilize the forming a three-dimensional network. In the crystal of (II), C—H⋯O hydrogen bonds (Table 2) link the molecules into infinite chains along the c-axis direction (Fig. 3).
4. UV–Vis absorption analysis and frontier molecular orbital (FMO) energies
TD–DFT calculations at the B3LYP/6-311G++(d,p) level were performed to simulate the absorption characteristics and obtain information about the excited states. The experimental spectrum (Fig. 4) shows peaks at wavelengths of 318, 366 and 386 nm in (I) and 321, 367 and 387 nm in (II) with the wavelength of maximum absorbance being observed at 386 nm in (I) and 387 nm in (II). The absorption maxima are assigned to the π–π* transitions, i.e. the transition of an electron from a bonding (π) to an anti-bonding (π*) molecular orbital, which are attributed to the C=O groups and aromatic ring excitations. The experimentally measured spectra of both compounds match those of the simulated which have maxima at 395 nm for (I) and 394 nm for (II).
The difference in energy of the HOMO and LUMO is an important index that provides information about the chemical stability of molecules since these energies are directly related to the ability to donate and accept electrons. In the ground state (HOMO), the charge densities are mainly delocalized over the anthracene ring systems and the enone moiety, while in the LUMO state, the charge densities are accumulated on the nitrobenzene ring and the enone moiety in (I), and the iodobenzene ring in (II). A small HOMO–LUMO gap automatically means small excitation energies to the manifold excited states and a large HOMO–LUMO gap implies high stability with respect to chemical reactions (Custodio et al., 2017). The HOMO–LUMO energy gaps (Fig. 5) are computed to be 2.93 eV and 2.81 eV, respectively, for (I) and (II). In the experimental results, the value of energy gap was estimated from the absorption curve by extrapolating the linear portion of the curve to zero absorption, giving values of 3.14 eV for (I) and 3.07 eV for (II). These values for the band gaps suggest that the materials are dielectric in nature (Suguna et al., 2015), dielectric materials having wide transparency in the UV region. Such materials with wide transparency are required for the fabrication of optical electronic devices.
5. Molecular electrostatic potential (MEP)
The importance of the MEP lies in the fact that it simultaneously displays molecular size and shape as well as positive, negative and neutral electrostatic potential regions in terms of colour grading and is useful in investigating relationships between molecular structure and physicochemical properties (Murray & Sen, 1996; Scrocco & Tomasi, 1978). The MEP maps for the molecules of (I) and (II) were calculated theoretically at the B3LYP/6-311G++(d,p) level of theory and the obtained plots are shown in Fig. 6. The negative red regions are concentrated at the oxygen atoms, showing the electrophilic sites. Hence, the oxygen atoms are the most reactive sites for nucleophilic attack, as well as the more proper sites to attack the positive regions of the receptor molecule. The negative potential values of compounds (I) and (II) are −0.049 a.u and −0.649 a.u., respectively. The blue regions indicate areas of positive charge concentration, which are concentrated over the hydrogen atoms and iodine substituent atom, indicating the nucleophilic sites. Green regions represent areas with zero potential.
6. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) revealed fused-ring substituted similar to the title compounds. There are four compounds that have an anthrancene-ketone substituent on the chalcone, viz. 9-anthryl styryl ketone and 9,10-anthryl bis(styryl ketone) (Harlow et al., 1975), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one (Girisha et al., 2016), and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one (Abdullah et al., 2016). Zainuri et al. (2018c) reported the structure of (E)-1,3-bis(anthracen-9-yl)prop-2-en-1-one. Others related compounds include 1-(anthracen-9-yl)-2-methylprop-2-en-1-one (Agrahari et al., 2015) and 9-anthroylacetone (Cicogna et al., 2004).
7. Synthesis and crystallization
9-Acetylanthrancene (0.5 mmol) was dissolved in methanol (20 ml) for about 10–15 mins. Then 4-nitrobenzaldehyde (0.5 mmol) [for (I)] or 4-iodobenzaldehye (0.5 mmol) [for (II)] was added and the solution was stirred for another 10–15 min. Then, NaOH was added and after stirring for 5 h, the reaction mixture was poured into cold water (50 ml) and stirred for 5–10 min. The precipitated solid was filtered, dried and recrystallized from acetone solution to obtain the corresponding chalcones.
8. Refinement
Crystal data collection and structure . All H atoms were positioned geometrically [C—H = 0.95 Å in (I) and 0.93 Å in (II)] and refined using a riding model with Uiso(H) = 1.2Ueq(C). In the final of compound (II), three outliers (316, 232, 114) were omitted.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018012641/xu5939sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018012641/xu5939Isup5.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018012641/xu5939IIsup6.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018012641/xu5939Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018012641/xu5939IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I); SHELXL2013 (Sheldrick, 2015) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C23H15NO3 | F(000) = 736 |
Mr = 353.36 | Dx = 1.357 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.9197 (14) Å | Cell parameters from 4370 reflections |
b = 12.7282 (13) Å | θ = 2.3–29.2° |
c = 10.9016 (12) Å | µ = 0.09 mm−1 |
β = 105.212 (2)° | T = 100 K |
V = 1729.9 (3) Å3 | Block, bronze |
Z = 4 | 0.51 × 0.23 × 0.12 mm |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3416 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.076 |
φ and ω scans | θmax = 29.6°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→17 |
k = −17→17 | |
36707 measured reflections | l = −15→15 |
4862 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0515P)2 + 0.7203P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4862 reflections | Δρmax = 0.32 e Å−3 |
244 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.00262 (10) | 0.72156 (11) | 0.47682 (13) | 0.0289 (3) | |
O1 | 0.34795 (9) | 0.19601 (9) | 0.21866 (10) | 0.0300 (3) | |
O2 | −0.04488 (12) | 0.76881 (11) | 0.38140 (13) | 0.0508 (4) | |
O3 | 0.00316 (10) | 0.74898 (9) | 0.58507 (12) | 0.0361 (3) | |
C1 | 0.48427 (11) | 0.19570 (11) | 0.50953 (13) | 0.0199 (3) | |
C2 | 0.54467 (12) | 0.27977 (12) | 0.47617 (14) | 0.0245 (3) | |
H2A | 0.5135 | 0.3220 | 0.4041 | 0.029* | |
C3 | 0.64652 (13) | 0.30025 (13) | 0.54624 (15) | 0.0288 (3) | |
H3A | 0.6852 | 0.3569 | 0.5229 | 0.035* | |
C4 | 0.69550 (13) | 0.23788 (13) | 0.65380 (15) | 0.0288 (3) | |
H4A | 0.7668 | 0.2527 | 0.7015 | 0.035* | |
C5 | 0.64081 (12) | 0.15728 (13) | 0.68864 (14) | 0.0254 (3) | |
H5A | 0.6744 | 0.1160 | 0.7607 | 0.030* | |
C6 | 0.53356 (11) | 0.13328 (11) | 0.61891 (13) | 0.0210 (3) | |
C7 | 0.47693 (12) | 0.04993 (11) | 0.65304 (13) | 0.0230 (3) | |
H7A | 0.5107 | 0.0074 | 0.7238 | 0.028* | |
C8 | 0.37195 (12) | 0.02766 (11) | 0.58571 (13) | 0.0221 (3) | |
C9 | 0.31336 (13) | −0.05676 (12) | 0.62076 (15) | 0.0274 (3) | |
H9A | 0.3468 | −0.0999 | 0.6911 | 0.033* | |
C10 | 0.21033 (14) | −0.07675 (13) | 0.55522 (16) | 0.0316 (4) | |
H10A | 0.1728 | −0.1338 | 0.5797 | 0.038* | |
C11 | 0.15852 (13) | −0.01261 (13) | 0.45023 (15) | 0.0298 (4) | |
H11A | 0.0860 | −0.0261 | 0.4062 | 0.036* | |
C12 | 0.21207 (12) | 0.06794 (12) | 0.41231 (14) | 0.0248 (3) | |
H12A | 0.1766 | 0.1097 | 0.3415 | 0.030* | |
C13 | 0.32097 (11) | 0.09053 (11) | 0.47751 (13) | 0.0211 (3) | |
C14 | 0.37944 (11) | 0.17191 (11) | 0.44012 (12) | 0.0190 (3) | |
C15 | 0.33164 (11) | 0.22957 (11) | 0.31720 (13) | 0.0213 (3) | |
C16 | 0.26653 (11) | 0.32348 (11) | 0.31726 (13) | 0.0218 (3) | |
H16A | 0.2392 | 0.3604 | 0.2398 | 0.026* | |
C17 | 0.24430 (11) | 0.35893 (11) | 0.42279 (13) | 0.0216 (3) | |
H17A | 0.2735 | 0.3206 | 0.4988 | 0.026* | |
C18 | 0.17937 (11) | 0.45104 (11) | 0.43267 (13) | 0.0206 (3) | |
C19 | 0.12077 (12) | 0.50663 (12) | 0.32612 (14) | 0.0231 (3) | |
H19A | 0.1205 | 0.4830 | 0.2434 | 0.028* | |
C20 | 0.06347 (11) | 0.59521 (12) | 0.33999 (14) | 0.0227 (3) | |
H20A | 0.0246 | 0.6333 | 0.2676 | 0.027* | |
C21 | 0.06365 (11) | 0.62771 (11) | 0.46145 (14) | 0.0224 (3) | |
C22 | 0.11872 (11) | 0.57411 (12) | 0.56955 (14) | 0.0231 (3) | |
H22A | 0.1169 | 0.5971 | 0.6519 | 0.028* | |
C23 | 0.17660 (11) | 0.48568 (11) | 0.55348 (13) | 0.0219 (3) | |
H23B | 0.2152 | 0.4478 | 0.6262 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0239 (6) | 0.0261 (7) | 0.0346 (7) | 0.0008 (5) | 0.0039 (5) | −0.0038 (6) |
O1 | 0.0371 (6) | 0.0323 (6) | 0.0197 (5) | 0.0029 (5) | 0.0058 (5) | −0.0037 (4) |
O2 | 0.0567 (9) | 0.0465 (8) | 0.0415 (8) | 0.0285 (7) | −0.0007 (6) | 0.0012 (6) |
O3 | 0.0371 (7) | 0.0314 (6) | 0.0393 (7) | 0.0031 (5) | 0.0091 (5) | −0.0098 (5) |
C1 | 0.0212 (7) | 0.0207 (7) | 0.0181 (6) | 0.0018 (5) | 0.0057 (5) | −0.0020 (5) |
C2 | 0.0256 (7) | 0.0262 (7) | 0.0215 (7) | −0.0016 (6) | 0.0058 (6) | 0.0005 (6) |
C3 | 0.0261 (8) | 0.0314 (8) | 0.0290 (8) | −0.0067 (6) | 0.0076 (6) | −0.0013 (6) |
C4 | 0.0219 (7) | 0.0364 (9) | 0.0262 (8) | −0.0004 (6) | 0.0030 (6) | −0.0051 (6) |
C5 | 0.0230 (7) | 0.0318 (8) | 0.0195 (7) | 0.0049 (6) | 0.0020 (6) | −0.0003 (6) |
C6 | 0.0224 (7) | 0.0214 (7) | 0.0193 (6) | 0.0036 (6) | 0.0054 (5) | −0.0023 (5) |
C7 | 0.0280 (8) | 0.0219 (7) | 0.0188 (6) | 0.0050 (6) | 0.0056 (6) | 0.0014 (5) |
C8 | 0.0273 (7) | 0.0195 (7) | 0.0204 (7) | 0.0025 (6) | 0.0082 (6) | −0.0028 (5) |
C9 | 0.0381 (9) | 0.0223 (7) | 0.0238 (7) | −0.0002 (6) | 0.0116 (6) | 0.0004 (6) |
C10 | 0.0408 (9) | 0.0252 (8) | 0.0328 (8) | −0.0094 (7) | 0.0165 (7) | −0.0029 (7) |
C11 | 0.0281 (8) | 0.0312 (8) | 0.0310 (8) | −0.0069 (7) | 0.0090 (6) | −0.0065 (7) |
C12 | 0.0252 (7) | 0.0257 (7) | 0.0230 (7) | 0.0003 (6) | 0.0053 (6) | −0.0021 (6) |
C13 | 0.0231 (7) | 0.0209 (7) | 0.0202 (7) | 0.0002 (6) | 0.0074 (5) | −0.0028 (5) |
C14 | 0.0225 (7) | 0.0177 (6) | 0.0168 (6) | 0.0028 (5) | 0.0051 (5) | −0.0023 (5) |
C15 | 0.0203 (7) | 0.0228 (7) | 0.0195 (7) | −0.0038 (6) | 0.0029 (5) | −0.0004 (5) |
C16 | 0.0232 (7) | 0.0217 (7) | 0.0188 (6) | −0.0006 (6) | 0.0025 (5) | 0.0023 (5) |
C17 | 0.0217 (7) | 0.0214 (7) | 0.0196 (6) | −0.0011 (5) | 0.0017 (5) | 0.0019 (5) |
C18 | 0.0202 (7) | 0.0200 (7) | 0.0215 (7) | −0.0021 (5) | 0.0051 (5) | 0.0010 (5) |
C19 | 0.0230 (7) | 0.0254 (7) | 0.0205 (7) | −0.0022 (6) | 0.0049 (6) | 0.0007 (6) |
C20 | 0.0204 (7) | 0.0235 (7) | 0.0224 (7) | −0.0001 (6) | 0.0025 (5) | 0.0039 (6) |
C21 | 0.0184 (7) | 0.0191 (7) | 0.0292 (7) | −0.0022 (5) | 0.0053 (6) | −0.0012 (6) |
C22 | 0.0215 (7) | 0.0241 (7) | 0.0233 (7) | −0.0054 (6) | 0.0050 (6) | −0.0027 (6) |
C23 | 0.0220 (7) | 0.0217 (7) | 0.0201 (7) | −0.0021 (6) | 0.0022 (5) | 0.0019 (5) |
N1—O2 | 1.2187 (18) | C10—H10A | 0.9500 |
N1—O3 | 1.2289 (17) | C11—C12 | 1.361 (2) |
N1—C21 | 1.4650 (19) | C11—H11A | 0.9500 |
O1—C15 | 1.2246 (17) | C12—C13 | 1.429 (2) |
C1—C14 | 1.4002 (19) | C12—H12A | 0.9500 |
C1—C2 | 1.427 (2) | C13—C14 | 1.404 (2) |
C1—C6 | 1.4354 (19) | C14—C15 | 1.5104 (19) |
C2—C3 | 1.362 (2) | C15—C16 | 1.462 (2) |
C2—H2A | 0.9500 | C16—C17 | 1.335 (2) |
C3—C4 | 1.420 (2) | C16—H16A | 0.9500 |
C3—H3A | 0.9500 | C17—C18 | 1.462 (2) |
C4—C5 | 1.355 (2) | C17—H17A | 0.9500 |
C4—H4A | 0.9500 | C18—C23 | 1.398 (2) |
C5—C6 | 1.428 (2) | C18—C19 | 1.4006 (19) |
C5—H5A | 0.9500 | C19—C20 | 1.379 (2) |
C6—C7 | 1.394 (2) | C19—H19A | 0.9500 |
C7—C8 | 1.392 (2) | C20—C21 | 1.387 (2) |
C7—H7A | 0.9500 | C20—H20A | 0.9500 |
C8—C9 | 1.423 (2) | C21—C22 | 1.386 (2) |
C8—C13 | 1.435 (2) | C22—C23 | 1.388 (2) |
C9—C10 | 1.359 (2) | C22—H22A | 0.9500 |
C9—H9A | 0.9500 | C23—H23B | 0.9500 |
C10—C11 | 1.422 (2) | ||
O2—N1—O3 | 123.65 (14) | C11—C12—C13 | 120.88 (14) |
O2—N1—C21 | 118.06 (13) | C11—C12—H12A | 119.6 |
O3—N1—C21 | 118.28 (13) | C13—C12—H12A | 119.6 |
C14—C1—C2 | 122.73 (13) | C14—C13—C12 | 122.58 (13) |
C14—C1—C6 | 118.98 (13) | C14—C13—C8 | 118.97 (13) |
C2—C1—C6 | 118.28 (13) | C12—C13—C8 | 118.45 (13) |
C3—C2—C1 | 120.88 (14) | C1—C14—C13 | 121.37 (13) |
C3—C2—H2A | 119.6 | C1—C14—C15 | 119.12 (12) |
C1—C2—H2A | 119.6 | C13—C14—C15 | 119.35 (12) |
C2—C3—C4 | 120.78 (15) | O1—C15—C16 | 121.13 (13) |
C2—C3—H3A | 119.6 | O1—C15—C14 | 118.98 (13) |
C4—C3—H3A | 119.6 | C16—C15—C14 | 119.89 (12) |
C5—C4—C3 | 120.16 (14) | C17—C16—C15 | 122.05 (13) |
C5—C4—H4A | 119.9 | C17—C16—H16A | 119.0 |
C3—C4—H4A | 119.9 | C15—C16—H16A | 119.0 |
C4—C5—C6 | 121.15 (14) | C16—C17—C18 | 126.28 (13) |
C4—C5—H5A | 119.4 | C16—C17—H17A | 116.9 |
C6—C5—H5A | 119.4 | C18—C17—H17A | 116.9 |
C7—C6—C5 | 121.66 (13) | C23—C18—C19 | 118.68 (13) |
C7—C6—C1 | 119.58 (13) | C23—C18—C17 | 118.64 (13) |
C5—C6—C1 | 118.75 (13) | C19—C18—C17 | 122.67 (13) |
C8—C7—C6 | 121.44 (13) | C20—C19—C18 | 120.74 (14) |
C8—C7—H7A | 119.3 | C20—C19—H19A | 119.6 |
C6—C7—H7A | 119.3 | C18—C19—H19A | 119.6 |
C7—C8—C9 | 121.72 (14) | C19—C20—C21 | 118.83 (13) |
C7—C8—C13 | 119.59 (13) | C19—C20—H20A | 120.6 |
C9—C8—C13 | 118.70 (14) | C21—C20—H20A | 120.6 |
C10—C9—C8 | 121.11 (15) | C22—C21—C20 | 122.48 (14) |
C10—C9—H9A | 119.4 | C22—C21—N1 | 118.42 (13) |
C8—C9—H9A | 119.4 | C20—C21—N1 | 119.10 (13) |
C9—C10—C11 | 120.31 (15) | C21—C22—C23 | 117.73 (13) |
C9—C10—H10A | 119.8 | C21—C22—H22A | 121.1 |
C11—C10—H10A | 119.8 | C23—C22—H22A | 121.1 |
C12—C11—C10 | 120.51 (15) | C22—C23—C18 | 121.51 (13) |
C12—C11—H11A | 119.7 | C22—C23—H23B | 119.2 |
C10—C11—H11A | 119.7 | C18—C23—H23B | 119.2 |
C14—C1—C2—C3 | −179.96 (14) | C6—C1—C14—C15 | −173.44 (12) |
C6—C1—C2—C3 | 0.0 (2) | C12—C13—C14—C1 | 176.75 (13) |
C1—C2—C3—C4 | 0.5 (2) | C8—C13—C14—C1 | −2.9 (2) |
C2—C3—C4—C5 | −0.5 (2) | C12—C13—C14—C15 | −8.0 (2) |
C3—C4—C5—C6 | −0.1 (2) | C8—C13—C14—C15 | 172.35 (12) |
C4—C5—C6—C7 | 179.32 (14) | C1—C14—C15—O1 | 86.18 (17) |
C4—C5—C6—C1 | 0.6 (2) | C13—C14—C15—O1 | −89.21 (17) |
C14—C1—C6—C7 | 0.7 (2) | C1—C14—C15—C16 | −94.21 (16) |
C2—C1—C6—C7 | −179.32 (13) | C13—C14—C15—C16 | 90.40 (16) |
C14—C1—C6—C5 | 179.43 (13) | O1—C15—C16—C17 | 177.30 (14) |
C2—C1—C6—C5 | −0.6 (2) | C14—C15—C16—C17 | −2.3 (2) |
C5—C6—C7—C8 | 179.20 (14) | C15—C16—C17—C18 | −179.35 (13) |
C1—C6—C7—C8 | −2.1 (2) | C16—C17—C18—C23 | −171.08 (14) |
C6—C7—C8—C9 | −179.44 (14) | C16—C17—C18—C19 | 8.2 (2) |
C6—C7—C8—C13 | 1.0 (2) | C23—C18—C19—C20 | 1.5 (2) |
C7—C8—C9—C10 | 179.07 (15) | C17—C18—C19—C20 | −177.79 (13) |
C13—C8—C9—C10 | −1.3 (2) | C18—C19—C20—C21 | −0.8 (2) |
C8—C9—C10—C11 | −0.5 (2) | C19—C20—C21—C22 | −0.4 (2) |
C9—C10—C11—C12 | 1.5 (2) | C19—C20—C21—N1 | −179.78 (13) |
C10—C11—C12—C13 | −0.6 (2) | O2—N1—C21—C22 | 179.39 (15) |
C11—C12—C13—C14 | 179.01 (14) | O3—N1—C21—C22 | 0.2 (2) |
C11—C12—C13—C8 | −1.3 (2) | O2—N1—C21—C20 | −1.2 (2) |
C7—C8—C13—C14 | 1.5 (2) | O3—N1—C21—C20 | 179.62 (14) |
C9—C8—C13—C14 | −178.08 (13) | C20—C21—C22—C23 | 1.0 (2) |
C7—C8—C13—C12 | −178.19 (13) | N1—C21—C22—C23 | −179.68 (13) |
C9—C8—C13—C12 | 2.2 (2) | C21—C22—C23—C18 | −0.3 (2) |
C2—C1—C14—C13 | −178.15 (13) | C19—C18—C23—C22 | −1.0 (2) |
C6—C1—C14—C13 | 1.9 (2) | C17—C18—C23—C22 | 178.37 (13) |
C2—C1—C14—C15 | 6.6 (2) |
Cg1 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O1i | 0.95 | 2.35 | 3.2279 (18) | 154 |
C20—H20A···O3ii | 0.95 | 2.45 | 3.336 (2) | 156 |
C23—H23B···O1i | 0.95 | 2.53 | 3.3763 (18) | 148 |
C3—H3A···Cg1iii | 0.95 | 2.78 | 3.6179 (19) | 148 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1. |
C23H15IO | F(000) = 856 |
Mr = 434.25 | Dx = 1.607 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.8004 (12) Å | Cell parameters from 6699 reflections |
b = 11.3095 (9) Å | θ = 2.3–27.3° |
c = 11.5139 (9) Å | µ = 1.79 mm−1 |
β = 111.3608 (13)° | T = 294 K |
V = 1794.9 (2) Å3 | Block, colourless |
Z = 4 | 0.24 × 0.20 × 0.20 mm |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3933 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
φ and ω scans | θmax = 30.1°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −20→20 |
k = −15→14 | |
20023 measured reflections | l = −16→14 |
5265 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0437P)2 + 1.0689P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5265 reflections | Δρmax = 1.24 e Å−3 |
226 parameters | Δρmin = −1.00 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 1.03943 (2) | −0.28858 (2) | 0.01034 (2) | 0.05842 (9) | |
O1 | 0.68177 (19) | 0.2750 (2) | 0.2834 (2) | 0.0690 (6) | |
C1 | 0.53340 (19) | 0.2882 (2) | 0.0026 (2) | 0.0475 (6) | |
C2 | 0.4848 (3) | 0.1961 (3) | 0.0395 (4) | 0.0655 (8) | |
H2A | 0.5192 | 0.1489 | 0.1073 | 0.079* | |
C3 | 0.3886 (3) | 0.1757 (4) | −0.0231 (4) | 0.0838 (12) | |
H3A | 0.3576 | 0.1151 | 0.0024 | 0.101* | |
C4 | 0.3360 (3) | 0.2463 (5) | −0.1264 (4) | 0.0885 (13) | |
H4A | 0.2703 | 0.2319 | −0.1682 | 0.106* | |
C5 | 0.3790 (2) | 0.3341 (4) | −0.1658 (3) | 0.0730 (10) | |
H5A | 0.3426 | 0.3797 | −0.2341 | 0.088* | |
C6 | 0.4803 (2) | 0.3584 (3) | −0.1039 (2) | 0.0533 (7) | |
C7 | 0.5266 (2) | 0.4483 (3) | −0.1403 (3) | 0.0582 (7) | |
H7A | 0.4912 | 0.4942 | −0.2089 | 0.070* | |
C8 | 0.6245 (2) | 0.4731 (2) | −0.0782 (3) | 0.0505 (6) | |
C9 | 0.6722 (3) | 0.5656 (3) | −0.1165 (3) | 0.0675 (9) | |
H9A | 0.6377 | 0.6104 | −0.1863 | 0.081* | |
C10 | 0.7668 (3) | 0.5895 (3) | −0.0534 (4) | 0.0730 (10) | |
H10A | 0.7968 | 0.6499 | −0.0806 | 0.088* | |
C11 | 0.8204 (2) | 0.5236 (3) | 0.0532 (3) | 0.0653 (8) | |
H11A | 0.8854 | 0.5415 | 0.0964 | 0.078* | |
C12 | 0.7780 (2) | 0.4344 (3) | 0.0935 (3) | 0.0526 (6) | |
H12A | 0.8143 | 0.3919 | 0.1643 | 0.063* | |
C13 | 0.67851 (19) | 0.4049 (2) | 0.0287 (2) | 0.0439 (5) | |
C14 | 0.63246 (19) | 0.3133 (2) | 0.0679 (2) | 0.0424 (5) | |
C15 | 0.6865 (2) | 0.2445 (3) | 0.1837 (2) | 0.0473 (6) | |
C16 | 0.7450 (2) | 0.1432 (3) | 0.1768 (2) | 0.0502 (6) | |
H16A | 0.7728 | 0.0975 | 0.2481 | 0.060* | |
C17 | 0.76109 (19) | 0.1121 (2) | 0.0741 (2) | 0.0457 (5) | |
H17A | 0.7285 | 0.1554 | 0.0023 | 0.055* | |
C18 | 0.82431 (18) | 0.0175 (2) | 0.0624 (2) | 0.0444 (5) | |
C19 | 0.8844 (2) | −0.0486 (3) | 0.1638 (2) | 0.0561 (7) | |
H19A | 0.8841 | −0.0334 | 0.2430 | 0.067* | |
C20 | 0.9439 (2) | −0.1355 (3) | 0.1484 (2) | 0.0569 (7) | |
H20A | 0.9831 | −0.1789 | 0.2168 | 0.068* | |
C21 | 0.94538 (19) | −0.1584 (2) | 0.0315 (2) | 0.0465 (5) | |
C22 | 0.8867 (2) | −0.0951 (3) | −0.0709 (2) | 0.0513 (6) | |
H22A | 0.8875 | −0.1109 | −0.1498 | 0.062* | |
C23 | 0.82706 (19) | −0.0083 (2) | −0.0546 (2) | 0.0489 (6) | |
H23A | 0.7876 | 0.0342 | −0.1236 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.05287 (12) | 0.06107 (14) | 0.06002 (13) | 0.00369 (8) | 0.01901 (9) | 0.00257 (8) |
O1 | 0.0894 (17) | 0.0801 (16) | 0.0428 (10) | −0.0057 (12) | 0.0304 (11) | −0.0093 (10) |
C1 | 0.0471 (14) | 0.0522 (15) | 0.0459 (13) | −0.0077 (11) | 0.0204 (11) | −0.0153 (11) |
C2 | 0.0603 (18) | 0.074 (2) | 0.0660 (19) | −0.0226 (16) | 0.0275 (15) | −0.0128 (16) |
C3 | 0.068 (2) | 0.101 (3) | 0.090 (3) | −0.037 (2) | 0.037 (2) | −0.030 (2) |
C4 | 0.0470 (18) | 0.127 (3) | 0.088 (3) | −0.018 (2) | 0.0204 (19) | −0.051 (3) |
C5 | 0.0531 (17) | 0.096 (3) | 0.0617 (18) | 0.0072 (18) | 0.0110 (15) | −0.0286 (19) |
C6 | 0.0494 (14) | 0.0646 (18) | 0.0452 (13) | 0.0073 (13) | 0.0163 (11) | −0.0152 (12) |
C7 | 0.0687 (18) | 0.0591 (17) | 0.0446 (13) | 0.0168 (14) | 0.0182 (13) | −0.0025 (12) |
C8 | 0.0674 (17) | 0.0415 (13) | 0.0496 (14) | 0.0041 (12) | 0.0295 (13) | −0.0039 (11) |
C9 | 0.100 (3) | 0.0487 (16) | 0.0649 (18) | 0.0057 (17) | 0.0440 (19) | 0.0050 (14) |
C10 | 0.100 (3) | 0.0501 (18) | 0.089 (2) | −0.0145 (18) | 0.058 (2) | −0.0020 (17) |
C11 | 0.0657 (18) | 0.0601 (19) | 0.083 (2) | −0.0164 (15) | 0.0424 (17) | −0.0122 (16) |
C12 | 0.0502 (14) | 0.0524 (16) | 0.0600 (15) | −0.0081 (12) | 0.0256 (13) | −0.0083 (12) |
C13 | 0.0506 (13) | 0.0412 (13) | 0.0454 (12) | −0.0021 (10) | 0.0240 (11) | −0.0072 (10) |
C14 | 0.0457 (13) | 0.0436 (13) | 0.0407 (12) | −0.0047 (10) | 0.0191 (10) | −0.0079 (9) |
C15 | 0.0531 (15) | 0.0517 (14) | 0.0396 (12) | −0.0132 (12) | 0.0200 (11) | −0.0062 (11) |
C16 | 0.0557 (15) | 0.0527 (15) | 0.0376 (12) | −0.0062 (12) | 0.0114 (11) | 0.0043 (11) |
C17 | 0.0471 (13) | 0.0446 (14) | 0.0406 (12) | −0.0066 (11) | 0.0104 (10) | 0.0033 (10) |
C18 | 0.0463 (13) | 0.0460 (13) | 0.0374 (11) | −0.0068 (11) | 0.0111 (10) | 0.0013 (10) |
C19 | 0.0637 (17) | 0.0644 (18) | 0.0376 (12) | 0.0065 (14) | 0.0152 (12) | 0.0054 (12) |
C20 | 0.0579 (16) | 0.0666 (18) | 0.0395 (12) | 0.0079 (14) | 0.0099 (11) | 0.0105 (12) |
C21 | 0.0433 (13) | 0.0457 (14) | 0.0470 (13) | −0.0048 (10) | 0.0121 (10) | 0.0011 (11) |
C22 | 0.0599 (16) | 0.0530 (15) | 0.0380 (12) | −0.0036 (12) | 0.0141 (11) | −0.0001 (11) |
C23 | 0.0549 (14) | 0.0501 (15) | 0.0373 (11) | −0.0014 (12) | 0.0115 (10) | 0.0061 (10) |
I1—C21 | 2.100 (3) | C11—C12 | 1.356 (4) |
O1—C15 | 1.226 (3) | C11—H11A | 0.9300 |
C1—C14 | 1.411 (3) | C12—C13 | 1.427 (4) |
C1—C2 | 1.416 (4) | C12—H12A | 0.9300 |
C1—C6 | 1.431 (4) | C13—C14 | 1.402 (4) |
C2—C3 | 1.361 (5) | C14—C15 | 1.499 (4) |
C2—H2A | 0.9300 | C15—C16 | 1.455 (4) |
C3—C4 | 1.409 (7) | C16—C17 | 1.336 (4) |
C3—H3A | 0.9300 | C16—H16A | 0.9300 |
C4—C5 | 1.344 (7) | C17—C18 | 1.460 (4) |
C4—H4A | 0.9300 | C17—H17A | 0.9300 |
C5—C6 | 1.432 (4) | C18—C23 | 1.393 (4) |
C5—H5A | 0.9300 | C18—C19 | 1.398 (4) |
C6—C7 | 1.374 (5) | C19—C20 | 1.373 (4) |
C7—C8 | 1.391 (4) | C19—H19A | 0.9300 |
C7—H7A | 0.9300 | C20—C21 | 1.379 (4) |
C8—C9 | 1.419 (4) | C20—H20A | 0.9300 |
C8—C13 | 1.426 (4) | C21—C22 | 1.383 (4) |
C9—C10 | 1.349 (5) | C22—C23 | 1.379 (4) |
C9—H9A | 0.9300 | C22—H22A | 0.9300 |
C10—C11 | 1.407 (5) | C23—H23A | 0.9300 |
C10—H10A | 0.9300 | ||
C14—C1—C2 | 122.0 (3) | C13—C12—H12A | 119.6 |
C14—C1—C6 | 119.0 (2) | C14—C13—C8 | 119.5 (2) |
C2—C1—C6 | 119.0 (3) | C14—C13—C12 | 122.3 (3) |
C3—C2—C1 | 120.9 (4) | C8—C13—C12 | 118.2 (2) |
C3—C2—H2A | 119.5 | C13—C14—C1 | 120.6 (2) |
C1—C2—H2A | 119.5 | C13—C14—C15 | 120.3 (2) |
C2—C3—C4 | 120.0 (4) | C1—C14—C15 | 119.0 (2) |
C2—C3—H3A | 120.0 | O1—C15—C16 | 120.7 (3) |
C4—C3—H3A | 120.0 | O1—C15—C14 | 119.5 (3) |
C5—C4—C3 | 121.4 (3) | C16—C15—C14 | 119.7 (2) |
C5—C4—H4A | 119.3 | C17—C16—C15 | 123.8 (2) |
C3—C4—H4A | 119.3 | C17—C16—H16A | 118.1 |
C4—C5—C6 | 120.8 (4) | C15—C16—H16A | 118.1 |
C4—C5—H5A | 119.6 | C16—C17—C18 | 127.0 (2) |
C6—C5—H5A | 119.6 | C16—C17—H17A | 116.5 |
C7—C6—C1 | 119.5 (3) | C18—C17—H17A | 116.5 |
C7—C6—C5 | 122.5 (3) | C23—C18—C19 | 117.5 (3) |
C1—C6—C5 | 117.9 (3) | C23—C18—C17 | 119.2 (2) |
C6—C7—C8 | 122.3 (3) | C19—C18—C17 | 123.3 (2) |
C6—C7—H7A | 118.8 | C20—C19—C18 | 121.2 (3) |
C8—C7—H7A | 118.8 | C20—C19—H19A | 119.4 |
C7—C8—C9 | 122.2 (3) | C18—C19—H19A | 119.4 |
C7—C8—C13 | 119.1 (3) | C19—C20—C21 | 119.9 (3) |
C9—C8—C13 | 118.8 (3) | C19—C20—H20A | 120.0 |
C10—C9—C8 | 121.1 (3) | C21—C20—H20A | 120.0 |
C10—C9—H9A | 119.4 | C20—C21—C22 | 120.5 (3) |
C8—C9—H9A | 119.4 | C20—C21—I1 | 119.5 (2) |
C9—C10—C11 | 120.6 (3) | C22—C21—I1 | 120.1 (2) |
C9—C10—H10A | 119.7 | C23—C22—C21 | 119.1 (2) |
C11—C10—H10A | 119.7 | C23—C22—H22A | 120.4 |
C12—C11—C10 | 120.5 (3) | C21—C22—H22A | 120.4 |
C12—C11—H11A | 119.7 | C22—C23—C18 | 121.8 (2) |
C10—C11—H11A | 119.7 | C22—C23—H23A | 119.1 |
C11—C12—C13 | 120.9 (3) | C18—C23—H23A | 119.1 |
C11—C12—H12A | 119.6 | ||
C14—C1—C2—C3 | 178.3 (3) | C12—C13—C14—C1 | 178.8 (2) |
C6—C1—C2—C3 | −1.5 (4) | C8—C13—C14—C15 | −176.9 (2) |
C1—C2—C3—C4 | 0.3 (6) | C12—C13—C14—C15 | 1.9 (4) |
C2—C3—C4—C5 | 0.4 (6) | C2—C1—C14—C13 | 179.8 (3) |
C3—C4—C5—C6 | 0.3 (6) | C6—C1—C14—C13 | −0.4 (4) |
C14—C1—C6—C7 | 0.0 (4) | C2—C1—C14—C15 | −3.3 (4) |
C2—C1—C6—C7 | 179.8 (3) | C6—C1—C14—C15 | 176.5 (2) |
C14—C1—C6—C5 | −177.7 (2) | C13—C14—C15—O1 | 93.4 (3) |
C2—C1—C6—C5 | 2.1 (4) | C1—C14—C15—O1 | −83.5 (3) |
C4—C5—C6—C7 | −179.1 (3) | C13—C14—C15—C16 | −85.8 (3) |
C4—C5—C6—C1 | −1.5 (5) | C1—C14—C15—C16 | 97.3 (3) |
C1—C6—C7—C8 | 1.0 (4) | O1—C15—C16—C17 | −173.2 (3) |
C5—C6—C7—C8 | 178.6 (3) | C14—C15—C16—C17 | 6.0 (4) |
C6—C7—C8—C9 | 179.6 (3) | C15—C16—C17—C18 | 175.2 (2) |
C6—C7—C8—C13 | −1.4 (4) | C16—C17—C18—C23 | 175.4 (3) |
C7—C8—C9—C10 | 178.7 (3) | C16—C17—C18—C19 | −5.7 (4) |
C13—C8—C9—C10 | −0.2 (4) | C23—C18—C19—C20 | 0.0 (4) |
C8—C9—C10—C11 | −0.6 (5) | C17—C18—C19—C20 | −178.9 (3) |
C9—C10—C11—C12 | 0.6 (5) | C18—C19—C20—C21 | 0.4 (5) |
C10—C11—C12—C13 | 0.3 (5) | C19—C20—C21—C22 | −0.6 (4) |
C7—C8—C13—C14 | 1.0 (4) | C19—C20—C21—I1 | 178.4 (2) |
C9—C8—C13—C14 | 180.0 (2) | C20—C21—C22—C23 | 0.4 (4) |
C7—C8—C13—C12 | −177.9 (2) | I1—C21—C22—C23 | −178.6 (2) |
C9—C8—C13—C12 | 1.1 (4) | C21—C22—C23—C18 | 0.1 (4) |
C11—C12—C13—C14 | −180.0 (3) | C19—C18—C23—C22 | −0.2 (4) |
C11—C12—C13—C8 | −1.1 (4) | C17—C18—C23—C22 | 178.7 (2) |
C8—C13—C14—C1 | 0.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O1i | 0.93 | 2.49 | 3.369 (3) | 158 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the research facilities.
Funding information
The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for funding under the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/ 6711606 and the Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for a My Brain15 scholarship.
References
Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aggarwal, M. D., Wang, W. S., Bhat, K., Penn, B. G., Frazeir, D. O. & Nalwa, H. S. (2001). Handbook of Advanced Electronic and Photonic Materials and Devices. Academic Press, USA. Google Scholar
Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968. Web of Science CSD CrossRef CAS Google Scholar
Custodio, J. M. F., Faria, E. C. M., Sallum, L. O., Duarte, V. S., Vaz, W. F., de Aquino, G. L. B., Carvalho, P. S. Jr & Napolitano, H. B. (2017). J. Braz. Chem. Soc. 28, 2180–2191. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A. 1 Gaussian, Inc., Wallingford CT, 2009. Google Scholar
Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Jung, Y., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867. Web of Science CrossRef Google Scholar
Manjunath, H. R., Rajesh Kumar, P. C., Naveen, S., Ravindrachary, V., Sridhar, M. A., Shashidhara Prasad, J. & Karegoudar, P. (2011). J. Cryst. Growth, 327, 161–166. Web of Science CrossRef Google Scholar
Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier. Google Scholar
Rajesh Kumar, P. C., Ravindrachary, V., Janardhana, K. & Poojary, B. (2012). J. Cryst. Growth, 354, 182–187. Web of Science CrossRef Google Scholar
Scrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suguna, S., Jovita, J. V., Jeyaraman, D., Nagaraja, K. S. & Jeyaraj, B. (2015). Int. J. ChemTech Res. 8, 249–259. Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496. Web of Science CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655. Web of Science CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.