research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure and Hirshfeld surface analysis of (E)-N-[(2-eth­­oxy­naphthalen-1-yl)methyl­­idene]-5,6,7,8-tetra­hydro­naphthalen-1-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey, and cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: tsapyuk@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 4 September 2018; accepted 16 September 2018; online 28 September 2018)

In the title Schiff base compound, C23H23NO, the two ring systems are twisted by 51.40 (11)° relative to each other. In the crystal, the mol­ecules are connected by weak C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (67.2%), C⋯H/H⋯C (26.7%) and C⋯C (2.5%) inter­actions.

1. Chemical context

Schiff bases have found wide use as a ligands in coordination chemistry (Calligaris et al., 1972[Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. Rev. 7, 385-403.]; Hökelek et al., 2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]) and are also important in various areas of chemistry and biochemistry because of their biological activity (El-masry et al., 2000[El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429-1438.]). Many Schiff bases have some anti­bacterial, anti­cancer and anti­oxidant properties and have therefore been used as starting materials in the synthesis of important medicinal substances. In the present study, we designed a new type of Schiff base obtained by the reaction of 2-eth­oxy-1-naphthaldehyde and 5,6,7,8-tetra­hydro-1-naphtyl­amine to give (E)-N-[(2-eth­oxy­naphthalen-1-yl)methyl­ene]-5,6,7,8-tetra­hydro­naphthalen-1-amine. We report herein the synthesis, crystal structure and Hirshfeld structural analysis of the title compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, (I), contains one independent mol­ecule (Fig. 1[link]). the two ring systems are twisted by 51.40 (11)° relative to each other. The O1—C2 and O1—C11 bond lengths are 1.359 (4) and 1.423 (4) Å, respectively, while the C13=N1 and C14—N1 bond lengths are 1.262 (3) and 1.415 (5) Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are connected by C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C10 and C14–C23 rings.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg1i 0.97 2.91 3.799 153
C16—H16⋯Cg2i 0.93 2.96 3.728 141
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing. Dashed lines denote C—H⋯π inter­actions. Symmetry codes: (i) x, −y + [3\over2], z − [1\over2]; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, −[1\over2] + y; [3\over2] − z.

4. Database survey

There are no direct precedents for the structure of (I)[link] in the crystallographic literature (CSD version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, there are several precedents for (E)-N-benzyl­idene-5,6,7,8-tetra­hydro­naph­thalen-1-amine and (E)-N-[(2-eth­oxy­naphthalen-1-yl)methyl­ene]aniline including 2-(4-iso­propyl­phen­yl)-1,3-diphenyl-2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazine (Borah et al., 2014[Borah, R., Dutta, A. K., Sarma, P., Dutta, C. & Sarma, B. (2014). RSC Adv. 4, 10912-10917.]), 2-(2-nitro­phen­yl)-3-(5,6,7,8-tetra­hydro­naphthalen-1-yl)-1,3-thia­zolidin-4-one (Drawanz et al., 2017[Drawanz, B. B., Zimmer, G. C., Rodrigues, L. V., Nörnberg, A. B., Hörner, M., Frizzo, C. P. & Cunico, W. (2017). Synthesis, 49, 5167-5175.]), N-(3,5-di­meth­oxy­phen­yl)-1,2-di­hydro-3′H-spiro­(benzo[f]chromene-3,1′-[2]ben­zo­furan)-1-amine (Wu et al., 2013[Wu, H., He, Y.-P. & Gong, L.-Z. (2013). Org. Lett. 15, 460-463.]) and methyl (5aR,6aR,9R,10aR)-4-benzoyl-7-methyl4,5,5a,6,6a,7,8,9,10,10adeca­hydro­indolo[4,3-fg]quinoline-9-carboxyl­ate dihydrate (Lee et al., 2015[Lee, K., Poudel, Y. B., Glinkerman, C. M. & Boger, D. L. (2015). Tetrahedron, 71, 5897-5905.]).

5. Hirshfeld surface analysis

Hirshfield surface analysis was performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.]). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions. The Hirshfeld surface mapped over dnorm is illustrated in Fig. 3[link] [colour scale of −0.067 (red) to 1.262 (blue) Å]. Red spots on this surface indicate the inter­molecular contacts involved in strong hydrogen bonds and inter­atomic contacts (Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]; Kansiz et al., 2018[Kansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217-220.]; Sen et al., 2018[Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994-997.]).

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm.

Fig. 4[link] shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 5[link]a (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (67.2%). The graph shown in Fig. 5[link]b (C⋯H/H⋯C) shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface and vice versa. The plot shows two symmetrical wings on the left and right sides (26.7%). Further, there are C⋯C (2.5%), C⋯O/O⋯C (2%), N⋯H/H⋯N (1.4%) and O⋯H/H⋯O (0.2%) contacts.

[Figure 4]
Figure 4
A fingerprint plot for the title compound.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for (a) H⋯H (67.2%), (b) C⋯H/H⋯C (26.7%), (c) C⋯C (2.5%), (d) C⋯O/O⋯C (2%), (e) N⋯H/H⋯N (1.4%) and (f) O⋯H/H⋯O (0.2%) contacts.

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.048 to 0.033 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 6[link]; the donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 6]
Figure 6
A view of the three-dimensional Hirshfeld surface plotted over electrostatic potential energy.

6. Synthesis and crystallization

The title compound was prepared (Fig. 7[link]) by refluxing a mixture of a solution containing 2-eth­oxy-1-naphthaldehyde (20.0 mg, 0.1 mmol) in ethanol (20 mL) and a solution containing 5,6,7,8-tetra­hydro-1-naphtyl­amine (14.72 mg, 0.1 mmol) in ethanol (20 mL). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield: 60%; m.p. 416–418 K) .

[Figure 7]
Figure 7
The synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C23H23NO
Mr 329.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.6628 (4), 20.3304 (9), 7.3838 (3)
β (°) 104.895 (3)
V3) 1837.01 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.61 × 0.47 × 0.25
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration
Tmin, Tmax 0.963, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 22781, 3419, 2128
Rint 0.106
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.255, 1.04
No. of reflections 3419
No. of parameters 226
No. of restraints 19
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.50
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-N-[(2-Ethoxynaphthalen-1-yl)methylidene]-5,6,7,8-tetrahydronaphthalen-1-amine top
Crystal data top
C23H23NOF(000) = 704
Mr = 329.42Dx = 1.191 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6628 (4) ÅCell parameters from 16587 reflections
b = 20.3304 (9) Åθ = 1.7–27.9°
c = 7.3838 (3) ŵ = 0.07 mm1
β = 104.895 (3)°T = 296 K
V = 1837.01 (13) Å3Prism, colourless
Z = 40.61 × 0.47 × 0.25 mm
Data collection top
Stoe IPDS 2
diffractometer
3419 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2128 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.106
rotation method scansθmax = 25.5°, θmin = 1.7°
Absorption correction: integrationh = 1515
Tmin = 0.963, Tmax = 0.982k = 2424
22781 measured reflectionsl = 88
Refinement top
Refinement on F219 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.255 w = 1/[σ2(Fo2) + (0.1536P)2 + 0.1088P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3419 reflectionsΔρmax = 0.44 e Å3
226 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3883 (2)0.69673 (14)0.5168 (4)0.0625 (7)
C20.3335 (2)0.75663 (16)0.4960 (4)0.0705 (8)
C30.2195 (3)0.7603 (2)0.4580 (5)0.0854 (10)
H30.1847110.8009980.4411770.102*
C40.1603 (3)0.7044 (2)0.4460 (5)0.0881 (11)
H40.0845430.7072380.4186480.106*
C50.2102 (3)0.64177 (19)0.4739 (4)0.0768 (9)
C60.1485 (3)0.5844 (2)0.4686 (5)0.0945 (11)
H60.0730380.5879380.4470960.113*
C70.1946 (4)0.5244 (2)0.4937 (5)0.1018 (12)
H70.1516490.4871320.4906830.122*
C80.3094 (3)0.51870 (19)0.5248 (5)0.0917 (10)
H80.3420520.4773950.5404400.110*
C90.3719 (3)0.57345 (16)0.5317 (4)0.0758 (8)
H90.4471210.5687900.5529830.091*
C100.3259 (2)0.63747 (15)0.5075 (4)0.0666 (8)
C110.3496 (3)0.87489 (16)0.5162 (5)0.0818 (10)
H11A0.3075630.8767440.6088180.098*
H11B0.3015970.8849360.3942310.098*
C120.4418 (4)0.92253 (19)0.5636 (7)0.1034 (12)
H12A0.4135750.9662420.5661690.155*
H12B0.4886850.9119720.6844400.155*
H12C0.4827480.9201230.4709300.155*
C130.5070 (2)0.69926 (14)0.5483 (4)0.0637 (7)
H130.5375910.7404570.5412430.076*
C140.6849 (2)0.66195 (13)0.6046 (4)0.0620 (7)
C150.7241 (3)0.69702 (15)0.4745 (5)0.0827 (10)
H150.6756370.7163730.3721290.099*
C160.8353 (3)0.70314 (18)0.4975 (6)0.0942 (12)
H160.8616690.7265960.4102560.113*
C170.9070 (3)0.67484 (17)0.6482 (6)0.0859 (10)
H170.9817420.6797590.6630760.103*
C180.8696 (2)0.63895 (14)0.7789 (5)0.0725 (8)
C190.9511 (3)0.6076 (2)0.9406 (7)0.1064 (12)
H19A0.9980280.5788830.8908800.128*
H19B0.9966830.6419121.0118120.128*
C200.9048 (4)0.5702 (3)1.0659 (9)0.1519 (18)
H20A0.9443970.5288701.0870310.182*
H20B0.9229700.5934311.1845680.182*
C210.7955 (4)0.5545 (4)1.0294 (9)0.169 (2)
H21A0.7759390.5550051.1480890.203*
H21B0.7874360.5094380.9845300.203*
C220.7136 (3)0.5943 (2)0.8964 (5)0.0927 (11)
H22A0.6808420.6248720.9669600.111*
H22B0.6561270.5653560.8280320.111*
C230.7575 (2)0.63267 (13)0.7572 (4)0.0628 (7)
N10.5720 (2)0.65120 (12)0.5839 (4)0.0702 (7)
O10.39688 (19)0.81145 (11)0.5147 (4)0.0871 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0606 (16)0.0751 (19)0.0516 (14)0.0063 (14)0.0141 (12)0.0002 (12)
C20.0663 (18)0.083 (2)0.0631 (16)0.0111 (15)0.0186 (13)0.0067 (14)
C30.075 (2)0.099 (3)0.087 (2)0.0223 (19)0.0294 (17)0.0176 (18)
C40.0625 (19)0.124 (3)0.079 (2)0.012 (2)0.0196 (15)0.0103 (19)
C50.0659 (18)0.109 (3)0.0561 (16)0.0054 (18)0.0159 (13)0.0011 (15)
C60.074 (2)0.125 (3)0.083 (2)0.018 (2)0.0178 (17)0.009 (2)
C70.103 (3)0.110 (3)0.093 (3)0.039 (3)0.027 (2)0.014 (2)
C80.098 (3)0.090 (2)0.087 (2)0.013 (2)0.0226 (18)0.0086 (18)
C90.0753 (19)0.079 (2)0.0730 (18)0.0078 (16)0.0182 (14)0.0048 (15)
C100.0665 (18)0.083 (2)0.0504 (14)0.0030 (14)0.0149 (12)0.0019 (13)
C110.102 (2)0.080 (2)0.0724 (18)0.0309 (19)0.0378 (17)0.0109 (16)
C120.117 (3)0.075 (2)0.129 (3)0.010 (2)0.050 (3)0.003 (2)
C130.0644 (16)0.0644 (17)0.0626 (16)0.0029 (14)0.0169 (13)0.0032 (12)
C140.0608 (16)0.0511 (14)0.0773 (17)0.0031 (12)0.0236 (13)0.0022 (13)
C150.093 (2)0.072 (2)0.091 (2)0.0124 (17)0.0383 (18)0.0218 (16)
C160.100 (3)0.082 (2)0.123 (3)0.000 (2)0.068 (2)0.014 (2)
C170.0700 (19)0.075 (2)0.124 (3)0.0022 (17)0.046 (2)0.005 (2)
C180.0618 (17)0.0638 (17)0.093 (2)0.0009 (14)0.0229 (15)0.0081 (15)
C190.066 (2)0.119 (3)0.123 (3)0.006 (2)0.0051 (19)0.007 (2)
C200.104 (3)0.190 (4)0.142 (4)0.011 (3)0.003 (3)0.065 (3)
C210.121 (3)0.221 (4)0.144 (3)0.013 (3)0.002 (3)0.097 (3)
C220.074 (2)0.115 (3)0.090 (2)0.0050 (19)0.0225 (17)0.031 (2)
C230.0603 (16)0.0541 (15)0.0766 (18)0.0005 (12)0.0225 (13)0.0002 (13)
N10.0605 (14)0.0681 (15)0.0816 (16)0.0047 (12)0.0173 (11)0.0063 (12)
O10.0777 (14)0.0726 (14)0.1156 (19)0.0173 (11)0.0335 (13)0.0041 (12)
Geometric parameters (Å, º) top
C1—C21.390 (4)C13—N11.262 (3)
C1—C101.432 (4)C13—H130.9300
C1—C131.462 (4)C14—C151.387 (4)
C2—O11.359 (4)C14—C231.392 (4)
C2—C31.400 (4)C14—N11.415 (4)
C3—C41.352 (5)C15—C161.380 (5)
C3—H30.9300C15—H150.9300
C4—C51.413 (5)C16—C171.368 (5)
C4—H40.9300C16—H160.9300
C5—C61.398 (5)C17—C181.387 (5)
C5—C101.425 (4)C17—H170.9300
C6—C71.345 (6)C18—C231.393 (4)
C6—H60.9300C18—C191.504 (5)
C7—C81.417 (6)C19—C201.434 (7)
C7—H70.9300C19—H19A0.9700
C8—C91.359 (5)C19—H19B0.9700
C8—H80.9300C20—C211.378 (6)
C9—C101.418 (4)C20—H20A0.9700
C9—H90.9300C20—H20B0.9700
C11—O11.423 (4)C21—C221.474 (6)
C11—C121.488 (5)C21—H21A0.9700
C11—H11A0.9700C21—H21B0.9700
C11—H11B0.9700C22—C231.506 (4)
C12—H12A0.9600C22—H22A0.9700
C12—H12B0.9600C22—H22B0.9700
C12—H12C0.9600
C2—C1—C10118.6 (3)C15—C14—C23120.1 (3)
C2—C1—C13116.7 (3)C15—C14—N1122.4 (3)
C10—C1—C13124.7 (2)C23—C14—N1117.4 (2)
O1—C2—C1116.2 (3)C16—C15—C14119.8 (3)
O1—C2—C3121.8 (3)C16—C15—H15120.1
C1—C2—C3121.9 (3)C14—C15—H15120.1
C4—C3—C2119.6 (3)C17—C16—C15120.3 (3)
C4—C3—H3120.2C17—C16—H16119.8
C2—C3—H3120.2C15—C16—H16119.8
C3—C4—C5121.9 (3)C16—C17—C18120.9 (3)
C3—C4—H4119.0C16—C17—H17119.6
C5—C4—H4119.0C18—C17—H17119.6
C6—C5—C4121.4 (3)C17—C18—C23119.2 (3)
C6—C5—C10119.8 (3)C17—C18—C19119.2 (3)
C4—C5—C10118.8 (3)C23—C18—C19121.5 (3)
C7—C6—C5122.2 (4)C20—C19—C18115.2 (3)
C7—C6—H6118.9C20—C19—H19A108.5
C5—C6—H6118.9C18—C19—H19A108.5
C6—C7—C8119.2 (4)C20—C19—H19B108.5
C6—C7—H7120.4C18—C19—H19B108.5
C8—C7—H7120.4H19A—C19—H19B107.5
C9—C8—C7120.1 (4)C21—C20—C19123.6 (4)
C9—C8—H8119.9C21—C20—H20A106.4
C7—C8—H8119.9C19—C20—H20A106.4
C8—C9—C10122.1 (3)C21—C20—H20B106.4
C8—C9—H9119.0C19—C20—H20B106.4
C10—C9—H9119.0H20A—C20—H20B106.5
C9—C10—C5116.6 (3)C20—C21—C22120.2 (5)
C9—C10—C1124.3 (3)C20—C21—H21A107.3
C5—C10—C1119.1 (3)C22—C21—H21A107.3
O1—C11—C12106.6 (3)C20—C21—H21B107.3
O1—C11—H11A110.4C22—C21—H21B107.3
C12—C11—H11A110.4H21A—C21—H21B106.9
O1—C11—H11B110.4C21—C22—C23114.8 (3)
C12—C11—H11B110.4C21—C22—H22A108.6
H11A—C11—H11B108.6C23—C22—H22A108.6
C11—C12—H12A109.5C21—C22—H22B108.6
C11—C12—H12B109.5C23—C22—H22B108.6
H12A—C12—H12B109.5H22A—C22—H22B107.6
C11—C12—H12C109.5C14—C23—C18119.7 (3)
H12A—C12—H12C109.5C14—C23—C22119.4 (3)
H12B—C12—H12C109.5C18—C23—C22120.9 (3)
N1—C13—C1126.6 (3)C13—N1—C14119.4 (2)
N1—C13—H13116.7C2—O1—C11120.4 (3)
C1—C13—H13116.7
C10—C1—C2—O1177.0 (2)N1—C14—C15—C16176.8 (3)
C13—C1—C2—O12.6 (4)C14—C15—C16—C170.1 (5)
C10—C1—C2—C32.9 (4)C15—C16—C17—C180.8 (6)
C13—C1—C2—C3177.5 (3)C16—C17—C18—C231.0 (5)
O1—C2—C3—C4178.1 (3)C16—C17—C18—C19178.9 (3)
C1—C2—C3—C41.8 (5)C17—C18—C19—C20178.6 (5)
C2—C3—C4—C51.1 (5)C23—C18—C19—C201.3 (6)
C3—C4—C5—C6177.4 (3)C18—C19—C20—C219.9 (10)
C3—C4—C5—C102.8 (5)C19—C20—C21—C2222.6 (12)
C4—C5—C6—C7179.6 (3)C20—C21—C22—C2322.4 (9)
C10—C5—C6—C70.3 (5)C15—C14—C23—C180.2 (4)
C5—C6—C7—C80.6 (6)N1—C14—C23—C18176.8 (3)
C6—C7—C8—C90.9 (6)C15—C14—C23—C22179.5 (3)
C7—C8—C9—C100.4 (5)N1—C14—C23—C222.9 (4)
C8—C9—C10—C50.5 (4)C17—C18—C23—C140.5 (4)
C8—C9—C10—C1178.9 (3)C19—C18—C23—C14179.4 (3)
C6—C5—C10—C90.8 (4)C17—C18—C23—C22179.8 (3)
C4—C5—C10—C9179.0 (3)C19—C18—C23—C220.3 (5)
C6—C5—C10—C1178.6 (3)C21—C22—C23—C14168.1 (4)
C4—C5—C10—C11.6 (4)C21—C22—C23—C1811.6 (6)
C2—C1—C10—C9178.2 (3)C1—C13—N1—C14177.9 (3)
C13—C1—C10—C91.4 (4)C15—C14—N1—C1349.8 (4)
C2—C1—C10—C51.2 (4)C23—C14—N1—C13133.7 (3)
C13—C1—C10—C5179.3 (3)C1—C2—O1—C11173.1 (3)
C2—C1—C13—N1174.5 (3)C3—C2—O1—C116.8 (4)
C10—C1—C13—N15.1 (5)C12—C11—O1—C2172.7 (3)
C23—C14—C15—C160.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C14–C23 rings.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg1i0.972.913.799153
C16—H16···Cg2i0.932.963.728141
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBorah, R., Dutta, A. K., Sarma, P., Dutta, C. & Sarma, B. (2014). RSC Adv. 4, 10912–10917.  CrossRef Google Scholar
First citationCalligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationDrawanz, B. B., Zimmer, G. C., Rodrigues, L. V., Nörnberg, A. B., Hörner, M., Frizzo, C. P. & Cunico, W. (2017). Synthesis, 49, 5167–5175.  Google Scholar
First citationEl-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, K., Poudel, Y. B., Glinkerman, C. M. & Boger, D. L. (2015). Tetrahedron, 71, 5897–5905.  CrossRef PubMed Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWu, H., He, Y.-P. & Gong, L.-Z. (2013). Org. Lett. 15, 460–463.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds