research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure and Hirshfeld surface analysis and of 2-ammoniumylmeth­yl-1H-benzimidazol-3-ium chloride monohydrate

CROSSMARK_Color_square_no_text.svg

aUskudar University, Faculty of Engineering and Natural Sciences, Department of Forensic Science, 34662, Istanbul, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, cSakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187 Sakarya, Turkey, and dDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: tsapyuk@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 September 2018; accepted 19 September 2018; online 28 September 2018)

The asymmetric unit of the title compound, C8H11N32+·2Cl·H2O, contains three organic cations, six chloride anions and three water mol­ecules of crystallization, which are connected by extensive hydrogen-bonding inter­actions into a three-dimensional supra­molecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (37.4%), Cl⋯H/H⋯Cl (35.5%), C⋯H/H⋯C (9.5%) and C⋯C (6.9%) inter­actions.

1. Chemical context

Heterocyclic compounds containing nitro­gen such as benzimidazoles and their derivatives have attracted attention because of their medicinal applications as anti­ulcer, anti­cancer, anti­fungal, anti­mycobacterial and anti-inflammatory agents (El-masry et al., 2000[El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429-1438.]). Besides being important pharma­cophores, in particular amine-substituted benzimidazoles are good inter­mediates for the synthesis of different organic compounds (Maurya et al., 2007[Maurya, M. R., Chandrakar, A. K. & Chand, S. (2007). J. Mol. Catal. A Chem. 263, 227-237.]). General methods for the preparation of benzimidazoles involve the reaction of o-phenyl­enedi­amine and carb­oxy­lic acid or its derivatives under harsh dehydrating conditions or with aldehydes followed by oxidation (Peng et al., 2014[Peng, P., Xiong, J., Mo, G., Zheng, J., Chen, R., Chen, X. & Wang, Z. (2014). Amino Acids, 46, 2427-2433.]).

[Scheme 1]

We report herein the compound 2-amino­methyl­benzimidazole di­hydro­chloride (ambmz·2HCl) prepared as described previously (Wu et al., 2008[Wu, H.-Y., Li, H., Zhu, B.-L., Wang, S.-R., Zhang, S.-M., Wu, S.-H. & Huang, W.-P. (2008). Transition Met. Chem. 33, 9-15.])

2. Structural commentary

The asymmetric unit of the title compound contains three organic cations, six chloride anions and three water mol­ecules of crystallization, which are connected by O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds (Fig. 1[link]). The r.m.s. deviations of the benzimidazolium ring systems are 0.0085 Å for N1/N2/C1–C7, 0.0076 Å for N4/N5/C9–C15, 0.0063 Å for N7/N8/C17–C23 with maximum deviations from planarity of 0.0169 (13) Å for atom C7, 0.0149 (13) Å for atom C15 and 0.0132 (13) Å for atom C23, respectively. The observed bond lengths are in good agreement with previously reported values (Cui, 2011[Cui, Y. (2011). Acta Cryst. E67, o625-o626.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

3. Supra­molecular features

The crystal packing of the title compound features extensive hydrogen bonding (Table 1[link] and Fig. and 2) involving all three O atoms and all nine N atoms. N5—H5A⋯Cl5, N8—H8⋯Cl4, N2—H2⋯Cl1ii, N9—H9C⋯Cl5vi and N6—H6B⋯Cl1v hydrogen bonds link the ions into chains along the c-axis direction. These chains are linked by O–H⋯Cl and N—H⋯O hydrogen bonds, generating a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl4i 0.82 (2) 2.63 (2) 3.4431 (15) 168 (3)
O1—H2B⋯Cl2 0.81 (2) 2.36 (2) 3.1598 (18) 169 (3)
O2—H2C⋯Cl3 0.82 (2) 2.33 (2) 3.1244 (17) 165 (2)
O2—H2D⋯Cl1 0.81 (1) 2.64 (1) 3.4492 (15) 171 (3)
O3—H3D⋯Cl5ii 0.80 (2) 2.69 (2) 3.4586 (15) 164 (3)
O3—H3E⋯Cl6ii 0.82 (2) 2.32 (2) 3.1364 (18) 173 (3)
N1—H1⋯O1 0.83 (2) 1.92 (2) 2.746 (2) 174 (2)
N2—H2⋯Cl1iii 0.71 (2) 2.44 (2) 3.1519 (17) 175 (2)
N3—H3⋯Cl3 0.88 (3) 2.30 (3) 3.105 (2) 153 (2)
N3—H3A⋯Cl1 0.86 (4) 2.26 (3) 3.119 (2) 173 (3)
N3—H3B⋯Cl4iv 0.99 (3) 2.33 (2) 3.267 (2) 156.8 (19)
N4—H4A⋯O2 0.85 (2) 1.91 (2) 2.754 (2) 171 (2)
N5—H5A⋯Cl5 0.83 (2) 2.31 (2) 3.1205 (17) 165 (2)
N6—H6A⋯Cl2 0.87 (3) 2.33 (3) 3.107 (2) 150 (2)
N6—H6B⋯Cl1v 0.98 (3) 2.36 (2) 3.287 (2) 158.2 (18)
N6—H6C⋯Cl4i 0.79 (3) 2.35 (4) 3.1347 (19) 176 (3)
N7—H7⋯O3 0.85 (3) 1.89 (3) 2.742 (2) 175 (3)
N8—H8⋯Cl4 0.81 (2) 2.31 (2) 3.1049 (17) 172 (2)
N9—H9A⋯Cl6 0.83 (3) 2.35 (3) 3.100 (2) 151 (2)
N9—H9B⋯Cl5 0.80 (3) 2.32 (2) 3.120 (2) 176 (2)
N9—H9C⋯Cl5vi 0.99 (3) 2.34 (3) 3.270 (2) 157 (2)
C4—H4⋯Cl1i 0.92 (2) 2.81 (2) 3.535 (2) 136.7 (16)
C8—H8B⋯Cl3vii 0.93 (3) 2.65 (3) 3.544 (2) 162 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x+3, -y, -z+2; (iv) x+1, y-1, z; (v) x-1, y, z; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y, -z+2.
[Figure 2]
Figure 2
The view of the crystal packing of the title compound. Dashed lines denote the hydrogen bonds.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed using Crystal Explorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.]). The Hirshfeld surfaces, illus­trated in Fig. 3[link], and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the synthesized complex. Red spots on the Hirshfeld surfaces indicate the inter­molecular contacts involved in strong hydrogen bonds and inter­atomic contacts (Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]; Kansız et al., 2018[Kansız, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217-220.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]). The red spots in Fig. 4[link] correspond to the H⋯Cl contacts resulting from the N—H⋯Cl and O—H⋯Cl hydrogen bonds. The Hirshfeld surfaces were mapped using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.518 (red) to 1.174 (blue) a.u..

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm to visualize the inter­molecular inter­actions of the title compound.

Fig. 5[link] shows the two-dimensional fingerprint plot of all the contacts contributing to the Hirshfeld surface represented in normal mode. Fig. 6[link] shows the two-dimensional fingerprint plots of the (di, de) points associated with various atoms. H⋯H contacts contribute 37.4% to the Hirshfeld surface. The graph for Cl⋯H/H⋯Cl shows the contacts between the chlorine atoms inside the Hirshfeld surface and the hydrogen atoms outside the surface and vice versa, and has two symmetrical wings on the left and right sides (35.5%). Further, there are C⋯H/H⋯C (9.5%), C⋯C (6.9%), O⋯H/H⋯O (4.1%) and N⋯H/H⋯N (3.4%) contacts.

[Figure 5]
Figure 5
Fingerprint plot of all the contacts.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the H⋯H (37.4%), Cl⋯H/H⋯Cl (35.5%), C⋯H/H⋯C (9.5%) and C⋯C (6.9%) contacts in the title compound.

5. Synthesis and crystallization

o-Phenyl­enedi­amine (10.8 g, 99.87 mmol) and glycine (10.00 g, 133.2 mmol) were dissolved in 5.5 M HCl (150 mL) . The reaction mixture was purged by argon at room temperature and heated up to reflux temperature for 12 h. The reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated to 50 mL and kept at 269 K for 2 d. The crystals were filtered off and washed twice with acetone and dried to give the desired product (Fig. 7[link]).

[Figure 7]
Figure 7
The synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å. and refined as riding, with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in difference-Fourier maps and refined isotropically. The coordinates of the water H atoms were determined from a difference-Fourier map and refined isotropically subject to a restraint of O—H = 0.82 (4) Å.

Table 2
Experimental details

Crystal data
Chemical formula C8H11N3+·2Cl·H2
Mr 238.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.9340 (4), 12.1198 (7), 19.2128 (11)
α, β, γ (°) 99.859 (5), 90.647 (5), 90.247 (5)
V3) 1590.64 (16)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.58
Crystal size (mm) 0.57 × 0.50 × 0.46
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.788, 0.828
No. of measured, independent and observed [I > 2σ(I)] reflections 16045, 6254, 5000
Rint 0.064
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 0.96
No. of reflections 6254
No. of parameters 536
No. of restraints 9
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.34, −0.28
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

2-Ammoniumylmethyl-1H-benzimidazol-3-ium chloride monohydrate top
Crystal data top
C8H11N3+·2Cl·H2Z = 6
Mr = 238.11F(000) = 744
Triclinic, P1Dx = 1.491 Mg m3
a = 6.9340 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1198 (7) ÅCell parameters from 18110 reflections
c = 19.2128 (11) Åθ = 1.7–27.4°
α = 99.859 (5)°µ = 0.58 mm1
β = 90.647 (5)°T = 296 K
γ = 90.247 (5)°Prism, brown
V = 1590.64 (16) Å30.57 × 0.50 × 0.46 mm
Data collection top
Stoe IPDS 2
diffractometer
6254 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5000 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.064
rotation method scansθmax = 26.0°, θmin = 1.7°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.788, Tmax = 0.828k = 1414
16045 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.001
S = 0.96Δρmax = 0.34 e Å3
6254 reflectionsΔρmin = 0.28 e Å3
536 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
9 restraintsExtinction coefficient: 0.0327 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.44783 (7)0.25544 (4)0.93231 (2)0.04012 (12)
Cl40.55220 (7)0.93572 (4)0.73215 (2)0.03912 (12)
Cl50.44034 (7)0.39635 (4)0.59956 (2)0.04089 (13)
Cl30.85067 (7)0.04098 (4)0.91238 (3)0.04840 (14)
Cl60.13546 (8)0.60301 (5)0.58937 (3)0.05432 (15)
Cl21.13465 (8)0.15568 (5)0.74387 (3)0.05337 (15)
O20.9557 (2)0.29533 (13)0.93050 (9)0.0492 (3)
O11.0439 (2)0.10288 (14)0.73035 (9)0.0517 (4)
N40.7622 (2)0.41261 (12)0.84094 (8)0.0332 (3)
O30.0525 (2)0.64579 (14)0.39493 (9)0.0553 (4)
N70.2335 (2)0.81071 (13)0.48888 (8)0.0333 (3)
N50.6592 (2)0.46067 (13)0.74372 (9)0.0347 (3)
N11.2273 (2)0.21584 (13)0.82407 (8)0.0334 (3)
N21.3362 (2)0.25722 (14)0.92226 (9)0.0376 (4)
N80.3400 (2)0.90994 (13)0.58704 (9)0.0358 (3)
N60.7067 (3)0.17781 (15)0.79023 (10)0.0427 (4)
N90.2868 (3)0.60170 (15)0.53791 (10)0.0447 (4)
N31.2803 (3)0.02017 (15)0.86850 (10)0.0421 (4)
C140.7037 (2)0.55975 (14)0.78881 (9)0.0314 (4)
C220.2942 (2)0.98527 (15)0.54300 (9)0.0323 (4)
C90.7708 (2)0.52904 (14)0.85148 (9)0.0315 (4)
C150.6935 (2)0.37525 (15)0.77671 (9)0.0335 (4)
C11.2214 (2)0.33227 (14)0.81587 (9)0.0324 (4)
C170.2255 (2)0.92225 (14)0.48021 (9)0.0319 (4)
C100.8268 (3)0.60738 (16)0.90934 (10)0.0369 (4)
C180.1652 (2)0.97150 (16)0.42385 (10)0.0355 (4)
C71.2981 (2)0.17423 (15)0.88773 (9)0.0339 (4)
C21.1642 (3)0.41361 (16)0.75996 (10)0.0377 (4)
C61.2930 (2)0.35839 (15)0.87927 (10)0.0349 (4)
C130.6926 (3)0.67112 (16)0.78093 (11)0.0385 (4)
C230.3047 (2)0.80652 (15)0.55283 (9)0.0342 (4)
C200.2469 (3)1.15029 (16)0.49646 (11)0.0392 (4)
C210.3055 (3)1.10154 (16)0.55279 (11)0.0382 (4)
C120.7490 (3)0.74911 (16)0.83844 (11)0.0394 (4)
C51.3092 (3)0.46915 (17)0.88878 (11)0.0421 (4)
C190.1785 (3)1.08684 (16)0.43313 (10)0.0389 (4)
C41.2532 (3)0.54982 (17)0.83351 (12)0.0443 (5)
C110.8145 (3)0.71817 (16)0.90146 (11)0.0401 (4)
C81.3424 (3)0.05475 (17)0.91637 (11)0.0414 (4)
C160.6469 (3)0.25681 (17)0.74466 (11)0.0428 (4)
C31.1819 (3)0.52313 (17)0.77020 (12)0.0423 (4)
C240.3525 (3)0.70519 (18)0.58323 (12)0.0458 (5)
H21.384 (3)0.2526 (17)0.9558 (11)0.028 (5)*
H180.111 (3)0.9325 (18)0.3840 (12)0.044 (6)*
H100.873 (3)0.5879 (16)0.9522 (11)0.033 (5)*
H2A1.108 (3)0.3947 (17)0.7161 (11)0.039 (5)*
H110.854 (3)0.7742 (19)0.9433 (11)0.046 (6)*
H190.136 (3)1.1218 (17)0.3927 (11)0.039 (5)*
H200.255 (3)1.223 (2)0.5012 (12)0.048 (6)*
H130.649 (3)0.6891 (17)0.7361 (11)0.039 (5)*
H120.740 (3)0.816 (2)0.8342 (12)0.050 (6)*
H210.350 (3)1.1439 (19)0.5987 (12)0.047 (6)*
H51.355 (3)0.4842 (19)0.9333 (12)0.050 (6)*
H41.264 (3)0.6238 (19)0.8385 (11)0.040 (5)*
H5A0.608 (3)0.4556 (18)0.7041 (12)0.041 (6)*
H11.179 (3)0.179 (2)0.7956 (13)0.055 (7)*
H4A0.811 (3)0.372 (2)0.8683 (12)0.052 (6)*
H80.393 (3)0.9236 (17)0.6251 (12)0.036 (5)*
H24A0.291 (3)0.710 (2)0.6289 (13)0.058 (7)*
H24B0.491 (5)0.697 (3)0.5884 (17)0.101 (10)*
H70.183 (4)0.757 (2)0.4601 (14)0.063 (7)*
H9A0.167 (4)0.600 (2)0.5354 (13)0.058 (7)*
H16A0.518 (4)0.253 (2)0.7334 (15)0.076 (8)*
H9B0.325 (4)0.551 (2)0.5559 (13)0.055 (7)*
H9C0.336 (4)0.593 (2)0.4891 (16)0.080 (9)*
H16B0.709 (3)0.2385 (19)0.7019 (13)0.052 (6)*
H3C1.143 (3)0.581 (2)0.7340 (12)0.050 (6)*
H8A1.472 (4)0.045 (2)0.9269 (13)0.061 (7)*
H8B1.282 (4)0.035 (2)0.9596 (14)0.066 (7)*
H6A0.831 (4)0.176 (2)0.7947 (13)0.061 (8)*
H6B0.660 (3)0.194 (2)0.8388 (14)0.059 (7)*
H6C0.667 (4)0.118 (3)0.7738 (15)0.065 (8)*
H2C0.920 (3)0.2322 (16)0.9337 (14)0.063 (8)*
H2D1.072 (2)0.289 (2)0.9267 (17)0.098 (12)*
H3A1.316 (4)0.087 (3)0.8871 (16)0.086 (10)*
H3B1.330 (3)0.000 (2)0.8197 (14)0.060 (7)*
H31.154 (4)0.022 (2)0.8652 (12)0.056 (7)*
H3D0.062 (3)0.649 (3)0.3941 (19)0.106 (12)*
H3E0.082 (4)0.5804 (16)0.3962 (15)0.071 (9)*
H1A0.926 (3)0.102 (3)0.7339 (18)0.100 (12)*
H2B1.076 (4)0.0391 (16)0.7286 (15)0.069 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0439 (2)0.0399 (2)0.0360 (2)0.00037 (18)0.00373 (18)0.00530 (18)
Cl40.0430 (2)0.0388 (2)0.0348 (2)0.00156 (18)0.00346 (18)0.00436 (18)
Cl50.0447 (3)0.0395 (2)0.0378 (2)0.00330 (18)0.00542 (18)0.00547 (18)
Cl30.0486 (3)0.0458 (3)0.0518 (3)0.0026 (2)0.0038 (2)0.0112 (2)
Cl60.0503 (3)0.0508 (3)0.0615 (3)0.0005 (2)0.0013 (2)0.0085 (2)
Cl20.0491 (3)0.0519 (3)0.0600 (3)0.0049 (2)0.0007 (2)0.0126 (2)
O20.0490 (9)0.0458 (9)0.0538 (9)0.0016 (7)0.0076 (7)0.0121 (7)
O10.0475 (9)0.0546 (9)0.0566 (9)0.0045 (7)0.0098 (7)0.0209 (8)
N40.0346 (7)0.0320 (7)0.0337 (8)0.0003 (6)0.0023 (6)0.0071 (6)
O30.0496 (9)0.0456 (9)0.0652 (10)0.0011 (7)0.0110 (8)0.0056 (7)
N70.0323 (7)0.0331 (8)0.0331 (8)0.0025 (6)0.0008 (6)0.0017 (6)
N50.0336 (8)0.0387 (8)0.0314 (8)0.0013 (6)0.0032 (6)0.0047 (6)
N10.0317 (7)0.0359 (8)0.0341 (8)0.0008 (6)0.0022 (6)0.0106 (6)
N20.0333 (8)0.0494 (10)0.0314 (9)0.0017 (7)0.0053 (7)0.0107 (7)
N80.0342 (8)0.0420 (9)0.0298 (8)0.0059 (6)0.0038 (6)0.0028 (6)
N60.0505 (11)0.0310 (9)0.0451 (10)0.0057 (8)0.0012 (8)0.0025 (7)
N90.0501 (11)0.0375 (9)0.0485 (11)0.0051 (8)0.0010 (8)0.0128 (8)
N30.0469 (10)0.0358 (9)0.0426 (10)0.0042 (7)0.0018 (8)0.0034 (7)
C140.0264 (8)0.0346 (9)0.0331 (9)0.0007 (6)0.0018 (7)0.0052 (7)
C220.0265 (8)0.0378 (9)0.0315 (9)0.0035 (7)0.0011 (7)0.0027 (7)
C90.0275 (8)0.0312 (8)0.0357 (9)0.0003 (6)0.0023 (7)0.0054 (7)
C150.0295 (8)0.0347 (9)0.0353 (9)0.0001 (7)0.0003 (7)0.0029 (7)
C10.0266 (8)0.0355 (9)0.0361 (9)0.0010 (7)0.0026 (7)0.0093 (7)
C170.0274 (8)0.0337 (9)0.0334 (9)0.0023 (6)0.0034 (7)0.0019 (7)
C100.0349 (9)0.0406 (10)0.0343 (9)0.0015 (7)0.0003 (7)0.0042 (8)
C180.0306 (8)0.0423 (10)0.0320 (9)0.0003 (7)0.0002 (7)0.0016 (8)
C70.0287 (8)0.0391 (9)0.0343 (9)0.0018 (7)0.0006 (7)0.0073 (7)
C20.0319 (9)0.0440 (10)0.0371 (10)0.0025 (7)0.0017 (7)0.0066 (8)
C60.0269 (8)0.0417 (10)0.0378 (9)0.0014 (7)0.0008 (7)0.0112 (8)
C130.0334 (9)0.0399 (10)0.0442 (11)0.0032 (7)0.0036 (8)0.0130 (8)
C230.0291 (8)0.0384 (9)0.0353 (9)0.0026 (7)0.0008 (7)0.0066 (7)
C200.0344 (9)0.0343 (10)0.0485 (11)0.0028 (8)0.0075 (8)0.0051 (8)
C210.0318 (9)0.0384 (10)0.0408 (10)0.0061 (7)0.0020 (8)0.0030 (8)
C120.0359 (9)0.0307 (9)0.0519 (12)0.0024 (7)0.0068 (8)0.0076 (8)
C50.0339 (9)0.0470 (11)0.0498 (12)0.0041 (8)0.0033 (8)0.0202 (9)
C190.0349 (9)0.0419 (10)0.0412 (10)0.0012 (7)0.0053 (8)0.0100 (8)
C40.0354 (10)0.0389 (10)0.0608 (13)0.0044 (8)0.0106 (9)0.0146 (10)
C110.0351 (9)0.0367 (10)0.0457 (11)0.0036 (7)0.0058 (8)0.0013 (8)
C80.0423 (11)0.0437 (11)0.0362 (10)0.0059 (8)0.0033 (9)0.0017 (8)
C160.0494 (12)0.0369 (10)0.0398 (11)0.0013 (8)0.0073 (9)0.0001 (8)
C30.0349 (9)0.0401 (10)0.0509 (12)0.0025 (8)0.0069 (8)0.0044 (9)
C240.0478 (11)0.0460 (11)0.0456 (12)0.0031 (9)0.0062 (9)0.0141 (9)
Geometric parameters (Å, º) top
O2—H2C0.817 (16)C22—C171.391 (2)
O2—H2D0.812 (17)C22—C211.391 (3)
O1—H1A0.819 (17)C9—C101.383 (3)
O1—H2B0.810 (16)C15—C161.494 (3)
N1—C71.328 (2)C1—C21.381 (3)
N1—C11.393 (2)C1—C61.396 (2)
N1—H10.83 (2)C17—C181.384 (2)
N2—C71.322 (2)C10—C111.380 (3)
N2—C61.386 (3)C10—H100.95 (2)
N2—H20.71 (2)C18—C191.381 (3)
N3—C81.461 (3)C18—H180.91 (2)
N3—H3A0.87 (4)C7—C81.488 (3)
N3—H3B0.99 (3)C2—C31.381 (3)
N3—H30.88 (3)C2—H2A0.99 (2)
N4—C151.322 (2)C6—C51.390 (3)
N4—C91.392 (2)C13—C121.377 (3)
N4—H4A0.85 (2)C13—H130.97 (2)
N5—C151.324 (2)C23—C241.484 (3)
N5—C141.386 (2)C20—C211.377 (3)
N5—H5A0.83 (2)C20—C191.400 (3)
N6—C161.462 (3)C20—H200.87 (2)
N6—H6A0.86 (3)C21—H210.99 (2)
N6—H6B0.98 (3)C12—C111.399 (3)
N6—H6C0.79 (3)C12—H120.83 (2)
O3—H3D0.796 (17)C5—C41.366 (3)
O3—H3E0.822 (16)C5—H50.96 (2)
N7—C231.328 (2)C19—H190.99 (2)
N7—C171.391 (2)C4—C31.397 (3)
N7—H70.85 (3)C4—H40.92 (2)
N8—C231.332 (2)C11—H110.99 (2)
N8—C221.383 (2)C8—H8A0.92 (3)
N8—H80.80 (2)C8—H8B0.93 (3)
N9—C241.467 (3)C16—H16A0.92 (3)
N9—H9A0.83 (3)C16—H16B0.93 (2)
N9—H9B0.80 (3)C3—H3C0.93 (2)
N9—H9C0.99 (3)C24—H24A0.97 (2)
C14—C131.386 (2)C24—H24B0.97 (3)
C14—C91.395 (2)
H2C—O2—H2D104 (2)C19—C18—C17116.33 (18)
H1A—O1—H2B106 (2)C19—C18—H18120.3 (14)
C15—N4—C9108.99 (15)C17—C18—H18123.2 (14)
C15—N4—H4A124.8 (16)N2—C7—N1109.33 (16)
C9—N4—H4A125.4 (16)N2—C7—C8123.45 (17)
H3D—O3—H3E107 (2)N1—C7—C8127.11 (16)
C23—N7—C17108.55 (16)C3—C2—C1116.08 (18)
C23—N7—H7126.6 (17)C3—C2—H2A121.8 (12)
C17—N7—H7124.0 (17)C1—C2—H2A122.0 (12)
C15—N5—C14109.14 (15)N2—C6—C5132.85 (18)
C15—N5—H5A124.9 (15)N2—C6—C1106.35 (15)
C14—N5—H5A125.6 (15)C5—C6—C1120.80 (18)
C7—N1—C1109.27 (15)C12—C13—C14116.35 (17)
C7—N1—H1125.7 (17)C12—C13—H13124.6 (12)
C1—N1—H1124.5 (17)C14—C13—H13119.1 (12)
C7—N2—C6109.38 (16)N7—C23—N8109.72 (16)
C7—N2—H2126.4 (17)N7—C23—C24127.55 (18)
C6—N2—H2123.7 (17)N8—C23—C24122.63 (17)
C23—N8—C22108.85 (15)C21—C20—C19122.08 (18)
C23—N8—H8123.7 (15)C21—C20—H20117.6 (16)
C22—N8—H8127.0 (15)C19—C20—H20120.3 (15)
C16—N6—H6A111.4 (17)C20—C21—C22116.12 (18)
C16—N6—H6B115.5 (14)C20—C21—H21124.1 (13)
H6A—N6—H6B104 (2)C22—C21—H21119.7 (13)
C16—N6—H6C109 (2)C13—C12—C11122.09 (18)
H6A—N6—H6C110 (3)C13—C12—H12116.6 (16)
H6B—N6—H6C107 (2)C11—C12—H12121.3 (16)
C24—N9—H9A110.4 (18)C4—C5—C6116.97 (18)
C24—N9—H9B106.7 (18)C4—C5—H5124.2 (14)
H9A—N9—H9B109 (2)C6—C5—H5118.8 (14)
C24—N9—H9C113.6 (17)C18—C19—C20121.68 (18)
H9A—N9—H9C108 (2)C18—C19—H19116.2 (12)
H9B—N9—H9C109 (2)C20—C19—H19122.1 (12)
C8—N3—H3A108 (2)C5—C4—C3121.94 (19)
C8—N3—H3B114.2 (14)C5—C4—H4118.4 (13)
H3A—N3—H3B111 (2)C3—C4—H4119.6 (13)
C8—N3—H3111.0 (16)C10—C11—C12121.71 (19)
H3A—N3—H3106 (3)C10—C11—H11115.9 (12)
H3B—N3—H3107 (2)C12—C11—H11122.3 (12)
C13—C14—N5132.44 (17)N3—C8—C7112.34 (16)
C13—C14—C9121.46 (17)N3—C8—H8A110.4 (16)
N5—C14—C9106.11 (15)C7—C8—H8A110.8 (16)
N8—C22—C17106.45 (15)N3—C8—H8B109.5 (16)
N8—C22—C21131.74 (17)C7—C8—H8B109.3 (16)
C17—C22—C21121.81 (17)H8A—C8—H8B104 (2)
C10—C9—N4131.77 (16)N6—C16—C15112.13 (17)
C10—C9—C14122.19 (16)N6—C16—H16A113.4 (18)
N4—C9—C14106.02 (15)C15—C16—H16A108.1 (18)
N4—C15—N5109.73 (16)N6—C16—H16B108.5 (14)
N4—C15—C16127.44 (16)C15—C16—H16B109.5 (15)
N5—C15—C16122.72 (16)H16A—C16—H16B105 (2)
C2—C1—N1131.96 (16)C2—C3—C4121.8 (2)
C2—C1—C6122.37 (17)C2—C3—H3C118.8 (14)
N1—C1—C6105.66 (16)C4—C3—H3C119.4 (14)
C18—C17—C22121.97 (16)N9—C24—C23112.39 (17)
C18—C17—N7131.61 (17)N9—C24—H24A108.5 (15)
C22—C17—N7106.41 (15)C23—C24—H24A109.0 (14)
C11—C10—C9116.19 (17)N9—C24—H24B105 (2)
C11—C10—H10120.6 (12)C23—C24—H24B112 (2)
C9—C10—H10123.2 (12)H24A—C24—H24B110 (2)
C15—N5—C14—C13179.30 (18)C7—N2—C6—C5178.55 (18)
C15—N5—C14—C90.93 (19)C7—N2—C6—C11.15 (19)
C23—N8—C22—C171.03 (19)C2—C1—C6—N2179.60 (15)
C23—N8—C22—C21179.49 (17)N1—C1—C6—N20.52 (18)
C15—N4—C9—C10178.27 (18)C2—C1—C6—C50.1 (3)
C15—N4—C9—C140.41 (18)N1—C1—C6—C5179.23 (15)
C13—C14—C9—C101.1 (3)N5—C14—C13—C12179.48 (17)
N5—C14—C9—C10179.15 (15)C9—C14—C13—C120.8 (2)
C13—C14—C9—N4179.89 (15)C17—N7—C23—N81.29 (19)
N5—C14—C9—N40.31 (18)C17—N7—C23—C24175.17 (18)
C9—N4—C15—N51.02 (19)C22—N8—C23—N71.5 (2)
C9—N4—C15—C16175.38 (18)C22—N8—C23—C24175.21 (16)
C14—N5—C15—N41.22 (19)C19—C20—C21—C220.5 (3)
C14—N5—C15—C16175.38 (16)N8—C22—C21—C20179.87 (17)
C7—N1—C1—C2178.68 (18)C17—C22—C21—C200.7 (2)
C7—N1—C1—C60.28 (18)C14—C13—C12—C110.2 (3)
N8—C22—C17—C18179.76 (15)N2—C6—C5—C4179.37 (18)
C21—C22—C17—C180.2 (2)C1—C6—C5—C40.3 (3)
N8—C22—C17—N70.25 (17)C17—C18—C19—C200.8 (3)
C21—C22—C17—N7179.79 (15)C21—C20—C19—C180.3 (3)
C23—N7—C17—C18179.37 (18)C6—C5—C4—C30.3 (3)
C23—N7—C17—C220.62 (18)C9—C10—C11—C120.0 (3)
N4—C9—C10—C11179.14 (17)C13—C12—C11—C100.2 (3)
C14—C9—C10—C110.6 (2)N2—C7—C8—N3178.27 (17)
C22—C17—C18—C190.5 (2)N1—C7—C8—N36.0 (3)
N7—C17—C18—C19179.44 (17)N4—C15—C16—N66.7 (3)
C6—N2—C7—N11.4 (2)N5—C15—C16—N6177.37 (17)
C6—N2—C7—C8175.02 (16)C1—C2—C3—C40.1 (3)
C1—N1—C7—N21.02 (19)C5—C4—C3—C20.1 (3)
C1—N1—C7—C8175.20 (17)N7—C23—C24—N98.3 (3)
N1—C1—C2—C3178.75 (17)N8—C23—C24—N9175.69 (17)
C6—C1—C2—C30.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl4i0.82 (2)2.63 (2)3.4431 (15)168 (3)
O1—H2B···Cl20.81 (2)2.36 (2)3.1598 (18)169 (3)
O2—H2C···Cl30.82 (2)2.33 (2)3.1244 (17)165 (2)
O2—H2D···Cl10.81 (1)2.64 (1)3.4492 (15)171 (3)
O3—H3D···Cl5ii0.80 (2)2.69 (2)3.4586 (15)164 (3)
O3—H3E···Cl6ii0.82 (2)2.32 (2)3.1364 (18)173 (3)
N1—H1···O10.83 (2)1.92 (2)2.746 (2)174 (2)
N2—H2···Cl1iii0.71 (2)2.44 (2)3.1519 (17)175 (2)
N3—H3···Cl30.88 (3)2.30 (3)3.105 (2)153 (2)
N3—H3A···Cl10.86 (4)2.26 (3)3.119 (2)173 (3)
N3—H3B···Cl4iv0.99 (3)2.33 (2)3.267 (2)156.8 (19)
N4—H4A···O20.85 (2)1.91 (2)2.754 (2)171 (2)
N5—H5A···Cl50.83 (2)2.31 (2)3.1205 (17)165 (2)
N6—H6A···Cl20.87 (3)2.33 (3)3.107 (2)150 (2)
N6—H6B···Cl1v0.98 (3)2.36 (2)3.287 (2)158.2 (18)
N6—H6C···Cl4i0.79 (3)2.35 (4)3.1347 (19)176 (3)
N7—H7···O30.85 (3)1.89 (3)2.742 (2)175 (3)
N8—H8···Cl40.81 (2)2.31 (2)3.1049 (17)172 (2)
N9—H9A···Cl60.83 (3)2.35 (3)3.100 (2)151 (2)
N9—H9B···Cl50.80 (3)2.32 (2)3.120 (2)176 (2)
N9—H9C···Cl5vi0.99 (3)2.34 (3)3.270 (2)157 (2)
C4—H4···Cl1i0.92 (2)2.81 (2)3.535 (2)136.7 (16)
C8—H8B···Cl3vii0.93 (3)2.65 (3)3.544 (2)162 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x+3, y, z+2; (iv) x+1, y1, z; (v) x1, y, z; (vi) x+1, y+1, z+1; (vii) x+2, y, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationCui, Y. (2011). Acta Cryst. E67, o625–o626.  CrossRef IUCr Journals Google Scholar
First citationEl-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationKansız, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220.  CrossRef IUCr Journals Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationMaurya, M. R., Chandrakar, A. K. & Chand, S. (2007). J. Mol. Catal. A Chem. 263, 227–237.  CrossRef Google Scholar
First citationPeng, P., Xiong, J., Mo, G., Zheng, J., Chen, R., Chen, X. & Wang, Z. (2014). Amino Acids, 46, 2427–2433.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWu, H.-Y., Li, H., Zhu, B.-L., Wang, S.-R., Zhang, S.-M., Wu, S.-H. & Huang, W.-P. (2008). Transition Met. Chem. 33, 9–15.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds