research communications
and Hirshfeld surface analysis of diethyl 2-[4-(4-fluorophenyl)-2-methyl-4-oxobutan-2-yl]malonate
aInstitute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Campus, Bellary Road, Bangalore 560 065, Karnataka, India, bDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440 010, Maharashtra, India, and cDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: katharigattav@dut.ac.za, sknayak@chm.vnit.ac.in
The title compound, C18H23FO5, was synthesized by reacting diethyl malonate with 1-(4-fluorophenyl)-3-methylbut-2-en-1-one. The molecule adopts a loose conformation stabilized by weak C—H⋯O and C—H⋯π interactions. In the crystal, the molecules are joined by C—H⋯O contacts into infinite chains along the b-axis direction with a C(6) graph-set motif. Hirshfeld surface analysis and fingerprint plots demonstrate the predominance of H⋯H, O⋯H and F⋯H intermolecular interactions in the crystal structure.
Keywords: crystal structure; malonate; Hirshfeld surface.
CCDC reference: 1863914
1. Chemical context
Polyfunctionalized reactions are used to synthesize the bioactive compounds that are interesting core structures for the development of new drug molecules. The direct functionalization of chemical intermediates has attracted extensive attention of synthetic chemists (Fournier et al., 1994; Liu & Couldwell, 2005; Markham & Faulds, 1998) for the construction of that are known to exhibit various pharmacological properties such as anticancer (Kasumbwe et al., 2017), antimosquito (Venugopala et al., 2013a), anti-tubercular (Narayanaswamy et al., 2013b), anti-HIV (Poty et al., 2015), anti-diabetic (Shahidpour et al., 2015) and anti-microbial (Ji et al., 2015) activities. The title compound, achieved by Michael addition (Simamura et al., 1954), is an important precursor in the construction of the heterocyclic compound N2-(3-(difluoromethoxy)-4-(3-methyl-1H-1,2,4-triazol-1-yl)phenyl)-7-(4-fluorophenyl)-N4,5,5-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimidine-2,4-diamine, which is a modulator of β-amyloid peptide production in treating Alzheimer's disease (Boy et al., 2015).
2. Structural commentary
The title compound crystallizes in the monoclinic P21/n, with one molecule in the (Z′ = 1). The molecular conformation is stabilized by an intramolecular C—H⋯O hydrogen bonds and C—H⋯π interaction (Fig. 1, Table 1) and short O3⋯O7 contact [3.007 (2) Å]. All bonds between sp3-hybridized atoms adopt staggered conformations, thus indicating that steric tensions are absent from this molecule. The dihedral angle between the two ester groups of the malonate residue is 61.79 (5)°; the dihedral angles formed by aromatic ring with adjacent and opposite ester groups are 56.66 (4) and 16.08 (4)°, respectively. The dihedral angle between aromatic ring and ketone carbonyl unit is 14.04 (5)°.
in the3. Supramolecular features
In the crystal of the title compound, the shortest intermolecular contact is C15–H15B⋯O2, which join the molecules into infinite chains with graph-set motif C(6) (Etter et al., 1990) along the b-axis direction (Table 1, Fig. 2). There are also a few other H⋯O contacts at the level of the sum of covalent radii.
4. Hirshfeld surfaces analysis
The approach based on Hirshfeld surfaces is a tool for visualizing the intermolecular interaction (Spackman & Jayatilaka, 2009). The Hirshfeld surfaces and two-dimensional fingerprint plot generated using CrystalExplorer 3.1 (Wolff et al., 2012) are presented in Figs. 3 and 4. The red spots on the Hirshfeld surface correspond to the C15—H15B⋯O2 contact, whereas the blue areas are completely free from close contacts, thus indicating that the only important contact is of the C—H⋯O type. The fingerprint plots (Fig. 4) show that the H⋯H intermolecular contacts give the largest contribution of 56.8%, and the observed white spots on the dnorm surface are considered to be weak interactions. The O⋯H/H⋯O contacts, which are shown as a sharp spike in the fingerprint plots, correspond to 22.8% of the total interactions. The percentage contribution of other weak interactions are as follows: H⋯F/F⋯H – 10.7%, C⋯H/H⋯C – 6.5%, C⋯O/O⋯C – 1.7%, C⋯C – 1.2% and F⋯O/O⋯F – 0.2%.
5. Database survey
A search in the Cambridge Structural Database (version 5.39, last updated May 2018; Groom et al., 2016) for the fragments F—C6H4—C(=O)—CH2 and C6H4—C(=O)—CH2—CH2—CH(COO)2 gave 102 and 62 hits, respectively. Among them, two hits, (S)-ethyl-2-(4-t-butylbenzylsulfanyl)-4-(4-fluorophenyl)-4-oxobutanoate (refcode: YOGMEO; Kowalczyk et al., 2014) and dimethyl (S)-2-(1-(4-nitrophenyl)-1,4-dioxopentan-3-yl) malonate (refcode: YUFSOJ; Lippur et al., 2015) are the most closely related to the title The dihedral angles between the adjacent alkyl ester group and the aromatic ring in YOGMEO, YUFSOJ and the title structure are 78.97 (3), 39.37 (2) and 56.66 (4)°, respectively. As in the title structure, in YUFSOJ there are intermolecular C—H⋯O contacts involving the methyl groups, whereas in YOGMEO the C—H⋯O contacts are formed with a hydrogen atom of the aromatic group.
6. Synthesis and crystallization
To a stirred solution of diethyl malonate (1 g, 6.25 mmol) in tetrahydrofuran (5 ml), sodium hydride (0.33 g, 13.75 mmol) was added at 273 K. The reaction mixture was allowed to stir for 15 min. A solution of 1-(4-fluorophenyl)-3-methylbut-2-en-1-one (1.11 g, 6.25 mmol) in THF was added into the reaction mixture. The reaction mixture was then allowed to stir overnight at room temperature. The completion of the reaction was monitored by thin layer v/v = 1:2). Single crystals of the title compound were obtained by slow evaporation from acetone solvent at room temperature.
The reaction mixture was quenched with saturated ammonium chloride and extracted with ethyl acetate (2 × 25 ml). The combined organic layer was washed with water (2 × 25 ml), brine (25 ml), dried over sodium sulfate and evaporated under reduced pressure to obtain the crude product, which was purified by using 60–120 mesh silica gel with ethyl acetate and hexane (7. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed in idealized positions (C—H = 0.95–1.00 Å) and refined using riding model with Uiso = 1.2 or 1.5Ueq(C). The methyl groups were allowed to rotate.
details are summarized in Table 2Supporting information
CCDC reference: 1863914
https://doi.org/10.1107/S2056989018012094/yk2116sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018012094/yk2116Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018012094/yk2116Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).C18H23FO5 | F(000) = 720 |
Mr = 338.36 | Dx = 1.320 Mg m−3 Dm = 1.32 Mg m−3 Dm measured by |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3066 (6) Å | Cell parameters from 2274 reflections |
b = 11.5182 (9) Å | θ = 5.4–52.6° |
c = 20.2701 (17) Å | µ = 0.10 mm−1 |
β = 93.673 (2)° | T = 153 K |
V = 1702.4 (2) Å3 | Block, colorless |
Z = 4 | 0.22 × 0.13 × 0.10 mm |
Bruker Kappa DUO APEXII diffractometer | 2835 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.053 |
0.5° φ scans and ω scans | θmax = 27.8°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2015) | h = −9→9 |
Tmin = 0.929, Tmax = 0.941 | k = −15→15 |
15690 measured reflections | l = −26→23 |
4045 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0423P)2 + 0.1543P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4045 reflections | Δρmax = 0.26 e Å−3 |
222 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0022 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.81620 (15) | 0.89772 (7) | 0.46296 (5) | 0.0405 (3) | |
O1 | 0.74992 (16) | 0.35297 (9) | 0.46976 (5) | 0.0307 (3) | |
O2 | 0.42377 (17) | 0.28973 (10) | 0.24940 (5) | 0.0383 (3) | |
O3 | 0.45134 (15) | 0.40181 (8) | 0.34014 (5) | 0.0262 (3) | |
O4 | 0.56685 (18) | 0.04282 (10) | 0.28153 (5) | 0.0411 (3) | |
O5 | 0.45277 (15) | 0.05130 (8) | 0.38152 (5) | 0.0258 (3) | |
C1 | 0.8140 (2) | 0.78062 (13) | 0.45372 (7) | 0.0268 (4) | |
C2 | 0.8913 (2) | 0.73723 (13) | 0.39876 (7) | 0.0260 (3) | |
H2 | 0.9456 | 0.7873 | 0.3683 | 0.031* | |
C3 | 0.8875 (2) | 0.61769 (12) | 0.38918 (7) | 0.0221 (3) | |
H3 | 0.9381 | 0.5856 | 0.3512 | 0.026* | |
C4 | 0.8102 (2) | 0.54422 (12) | 0.43457 (7) | 0.0205 (3) | |
C5 | 0.7325 (2) | 0.59304 (13) | 0.48947 (7) | 0.0247 (3) | |
H5 | 0.6782 | 0.5440 | 0.5204 | 0.030* | |
C6 | 0.7340 (2) | 0.71182 (13) | 0.49918 (7) | 0.0285 (4) | |
H6 | 0.6809 | 0.7451 | 0.5364 | 0.034* | |
C7 | 0.8023 (2) | 0.41483 (13) | 0.42581 (7) | 0.0217 (3) | |
C8 | 0.8624 (2) | 0.36640 (12) | 0.36098 (7) | 0.0224 (3) | |
H8A | 0.9977 | 0.3724 | 0.3620 | 0.027* | |
H8B | 0.8129 | 0.4183 | 0.3252 | 0.027* | |
C9 | 0.8105 (2) | 0.24080 (12) | 0.34080 (7) | 0.0223 (3) | |
C10 | 0.8648 (2) | 0.22647 (14) | 0.26926 (7) | 0.0294 (4) | |
H10A | 0.9970 | 0.2395 | 0.2675 | 0.044* | |
H10B | 0.7978 | 0.2830 | 0.2408 | 0.044* | |
H10C | 0.8344 | 0.1477 | 0.2538 | 0.044* | |
C11 | 0.9171 (2) | 0.15246 (13) | 0.38520 (8) | 0.0331 (4) | |
H11A | 0.8871 | 0.0736 | 0.3699 | 0.050* | |
H11B | 0.8832 | 0.1616 | 0.4309 | 0.050* | |
H11C | 1.0491 | 0.1659 | 0.3831 | 0.050* | |
C12 | 0.5999 (2) | 0.22011 (12) | 0.34749 (7) | 0.0218 (3) | |
H12 | 0.5754 | 0.2345 | 0.3948 | 0.026* | |
C13 | 0.4813 (2) | 0.30483 (13) | 0.30589 (7) | 0.0232 (3) | |
C14 | 0.3506 (2) | 0.49428 (13) | 0.30408 (7) | 0.0261 (4) | |
H14A | 0.2225 | 0.4698 | 0.2930 | 0.031* | |
H14B | 0.4089 | 0.5117 | 0.2624 | 0.031* | |
C15 | 0.3541 (2) | 0.60000 (13) | 0.34758 (8) | 0.0288 (4) | |
H15A | 0.2984 | 0.5814 | 0.3890 | 0.043* | |
H15B | 0.2848 | 0.6627 | 0.3249 | 0.043* | |
H15C | 0.4812 | 0.6248 | 0.3572 | 0.043* | |
C16 | 0.5405 (2) | 0.09577 (13) | 0.33143 (7) | 0.0247 (3) | |
C17 | 0.3988 (2) | −0.07089 (12) | 0.37518 (7) | 0.0285 (4) | |
H17A | 0.5063 | −0.1196 | 0.3666 | 0.034* | |
H17B | 0.3050 | −0.0809 | 0.3382 | 0.034* | |
C18 | 0.3222 (2) | −0.10521 (13) | 0.43942 (8) | 0.0325 (4) | |
H18A | 0.4151 | −0.0925 | 0.4757 | 0.049* | |
H18B | 0.2879 | −0.1875 | 0.4378 | 0.049* | |
H18C | 0.2137 | −0.0580 | 0.4466 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0591 (7) | 0.0204 (5) | 0.0428 (6) | 0.0001 (4) | 0.0096 (5) | −0.0073 (4) |
O1 | 0.0479 (8) | 0.0261 (6) | 0.0187 (5) | −0.0084 (5) | 0.0049 (5) | 0.0033 (5) |
O2 | 0.0477 (8) | 0.0406 (7) | 0.0252 (6) | 0.0070 (6) | −0.0085 (5) | −0.0085 (5) |
O3 | 0.0358 (7) | 0.0219 (6) | 0.0208 (5) | 0.0039 (5) | 0.0003 (4) | 0.0000 (4) |
O4 | 0.0665 (9) | 0.0319 (7) | 0.0269 (6) | −0.0175 (6) | 0.0188 (6) | −0.0121 (5) |
O5 | 0.0378 (7) | 0.0175 (5) | 0.0227 (5) | −0.0069 (5) | 0.0075 (5) | −0.0008 (4) |
C1 | 0.0324 (9) | 0.0199 (8) | 0.0279 (8) | −0.0001 (6) | −0.0004 (7) | −0.0038 (6) |
C2 | 0.0322 (9) | 0.0245 (8) | 0.0216 (8) | −0.0043 (6) | 0.0038 (6) | 0.0014 (6) |
C3 | 0.0236 (8) | 0.0250 (8) | 0.0178 (7) | −0.0026 (6) | 0.0038 (6) | −0.0028 (6) |
C4 | 0.0222 (8) | 0.0220 (7) | 0.0172 (7) | −0.0023 (6) | −0.0010 (6) | −0.0002 (6) |
C5 | 0.0281 (9) | 0.0281 (8) | 0.0182 (7) | −0.0042 (6) | 0.0031 (6) | −0.0004 (6) |
C6 | 0.0333 (9) | 0.0322 (9) | 0.0208 (8) | 0.0015 (7) | 0.0069 (6) | −0.0070 (7) |
C7 | 0.0224 (8) | 0.0238 (8) | 0.0187 (7) | −0.0034 (6) | −0.0009 (6) | 0.0005 (6) |
C8 | 0.0262 (8) | 0.0219 (8) | 0.0194 (7) | −0.0025 (6) | 0.0041 (6) | 0.0001 (6) |
C9 | 0.0270 (8) | 0.0197 (8) | 0.0206 (7) | −0.0008 (6) | 0.0048 (6) | −0.0012 (6) |
C10 | 0.0324 (9) | 0.0297 (9) | 0.0273 (8) | −0.0027 (7) | 0.0105 (7) | −0.0068 (7) |
C11 | 0.0372 (10) | 0.0239 (8) | 0.0376 (9) | 0.0034 (7) | −0.0032 (7) | 0.0006 (7) |
C12 | 0.0299 (9) | 0.0196 (7) | 0.0162 (7) | −0.0042 (6) | 0.0049 (6) | −0.0007 (6) |
C13 | 0.0244 (8) | 0.0244 (8) | 0.0213 (8) | −0.0054 (6) | 0.0056 (6) | −0.0011 (6) |
C14 | 0.0276 (9) | 0.0279 (8) | 0.0227 (8) | 0.0013 (6) | 0.0004 (6) | 0.0070 (6) |
C15 | 0.0320 (9) | 0.0273 (9) | 0.0275 (8) | 0.0058 (7) | 0.0048 (7) | 0.0055 (7) |
C16 | 0.0295 (9) | 0.0234 (8) | 0.0214 (8) | −0.0037 (6) | 0.0036 (6) | −0.0009 (6) |
C17 | 0.0412 (10) | 0.0177 (8) | 0.0266 (8) | −0.0071 (7) | 0.0031 (7) | −0.0024 (6) |
C18 | 0.0450 (11) | 0.0229 (8) | 0.0302 (9) | −0.0092 (7) | 0.0073 (7) | −0.0006 (7) |
F1—C1 | 1.3617 (17) | C9—C11 | 1.537 (2) |
O1—C7 | 1.2212 (17) | C9—C12 | 1.572 (2) |
O2—C13 | 1.2070 (17) | C10—H10A | 0.9800 |
O3—C13 | 1.3407 (17) | C10—H10B | 0.9800 |
O3—C14 | 1.4633 (17) | C10—H10C | 0.9800 |
O4—C16 | 1.2070 (17) | C11—H11A | 0.9800 |
O5—C16 | 1.3372 (17) | C11—H11B | 0.9800 |
O5—C17 | 1.4650 (17) | C11—H11C | 0.9800 |
C1—C6 | 1.374 (2) | C12—C13 | 1.523 (2) |
C1—C2 | 1.375 (2) | C12—C16 | 1.5254 (19) |
C2—C3 | 1.391 (2) | C12—H12 | 1.0000 |
C2—H2 | 0.9500 | C14—C15 | 1.503 (2) |
C3—C4 | 1.396 (2) | C14—H14A | 0.9900 |
C3—H3 | 0.9500 | C14—H14B | 0.9900 |
C4—C5 | 1.399 (2) | C15—H15A | 0.9800 |
C4—C7 | 1.502 (2) | C15—H15B | 0.9800 |
C5—C6 | 1.382 (2) | C15—H15C | 0.9800 |
C5—H5 | 0.9500 | C17—C18 | 1.503 (2) |
C6—H6 | 0.9500 | C17—H17A | 0.9900 |
C7—C8 | 1.518 (2) | C17—H17B | 0.9900 |
C8—C9 | 1.5442 (19) | C18—H18A | 0.9800 |
C8—H8A | 0.9900 | C18—H18B | 0.9800 |
C8—H8B | 0.9900 | C18—H18C | 0.9800 |
C9—C10 | 1.537 (2) | ||
C13—O3—C14 | 116.19 (11) | C9—C11—H11B | 109.5 |
C16—O5—C17 | 116.16 (11) | H11A—C11—H11B | 109.5 |
F1—C1—C6 | 118.74 (14) | C9—C11—H11C | 109.5 |
F1—C1—C2 | 118.01 (14) | H11A—C11—H11C | 109.5 |
C6—C1—C2 | 123.25 (14) | H11B—C11—H11C | 109.5 |
C1—C2—C3 | 117.86 (14) | C13—C12—C16 | 109.85 (12) |
C1—C2—H2 | 121.1 | C13—C12—C9 | 112.35 (12) |
C3—C2—H2 | 121.1 | C16—C12—C9 | 112.98 (12) |
C2—C3—C4 | 120.92 (13) | C13—C12—H12 | 107.1 |
C2—C3—H3 | 119.5 | C16—C12—H12 | 107.1 |
C4—C3—H3 | 119.5 | C9—C12—H12 | 107.1 |
C3—C4—C5 | 118.84 (13) | O2—C13—O3 | 123.55 (14) |
C3—C4—C7 | 122.56 (13) | O2—C13—C12 | 125.75 (14) |
C5—C4—C7 | 118.58 (13) | O3—C13—C12 | 110.68 (11) |
C6—C5—C4 | 120.75 (14) | O3—C14—C15 | 107.93 (11) |
C6—C5—H5 | 119.6 | O3—C14—H14A | 110.1 |
C4—C5—H5 | 119.6 | C15—C14—H14A | 110.1 |
C1—C6—C5 | 118.37 (14) | O3—C14—H14B | 110.1 |
C1—C6—H6 | 120.8 | C15—C14—H14B | 110.1 |
C5—C6—H6 | 120.8 | H14A—C14—H14B | 108.4 |
O1—C7—C4 | 120.29 (13) | C14—C15—H15A | 109.5 |
O1—C7—C8 | 122.59 (13) | C14—C15—H15B | 109.5 |
C4—C7—C8 | 117.12 (12) | H15A—C15—H15B | 109.5 |
C7—C8—C9 | 119.59 (12) | C14—C15—H15C | 109.5 |
C7—C8—H8A | 107.4 | H15A—C15—H15C | 109.5 |
C9—C8—H8A | 107.4 | H15B—C15—H15C | 109.5 |
C7—C8—H8B | 107.4 | O4—C16—O5 | 123.54 (13) |
C9—C8—H8B | 107.4 | O4—C16—C12 | 126.51 (14) |
H8A—C8—H8B | 107.0 | O5—C16—C12 | 109.95 (12) |
C10—C9—C11 | 109.24 (13) | O5—C17—C18 | 106.84 (12) |
C10—C9—C8 | 106.06 (12) | O5—C17—H17A | 110.4 |
C11—C9—C8 | 110.99 (12) | C18—C17—H17A | 110.4 |
C10—C9—C12 | 112.26 (12) | O5—C17—H17B | 110.4 |
C11—C9—C12 | 108.15 (12) | C18—C17—H17B | 110.4 |
C8—C9—C12 | 110.15 (12) | H17A—C17—H17B | 108.6 |
C9—C10—H10A | 109.5 | C17—C18—H18A | 109.5 |
C9—C10—H10B | 109.5 | C17—C18—H18B | 109.5 |
H10A—C10—H10B | 109.5 | H18A—C18—H18B | 109.5 |
C9—C10—H10C | 109.5 | C17—C18—H18C | 109.5 |
H10A—C10—H10C | 109.5 | H18A—C18—H18C | 109.5 |
H10B—C10—H10C | 109.5 | H18B—C18—H18C | 109.5 |
C9—C11—H11A | 109.5 | ||
F1—C1—C2—C3 | −179.48 (13) | C11—C9—C12—C13 | 179.22 (12) |
C6—C1—C2—C3 | 0.1 (2) | C8—C9—C12—C13 | 57.76 (15) |
C1—C2—C3—C4 | −1.1 (2) | C10—C9—C12—C16 | 64.78 (15) |
C2—C3—C4—C5 | 1.4 (2) | C11—C9—C12—C16 | −55.81 (15) |
C2—C3—C4—C7 | 179.59 (13) | C8—C9—C12—C16 | −177.27 (11) |
C3—C4—C5—C6 | −0.8 (2) | C14—O3—C13—O2 | −3.2 (2) |
C7—C4—C5—C6 | −179.03 (13) | C14—O3—C13—C12 | 175.51 (12) |
F1—C1—C6—C5 | −179.90 (13) | C16—C12—C13—O2 | −36.6 (2) |
C2—C1—C6—C5 | 0.6 (2) | C9—C12—C13—O2 | 90.11 (18) |
C4—C5—C6—C1 | −0.2 (2) | C16—C12—C13—O3 | 144.81 (13) |
C3—C4—C7—O1 | 172.84 (14) | C9—C12—C13—O3 | −88.52 (15) |
C5—C4—C7—O1 | −9.0 (2) | C13—O3—C14—C15 | −172.32 (13) |
C3—C4—C7—C8 | −6.9 (2) | C17—O5—C16—O4 | 4.1 (2) |
C5—C4—C7—C8 | 171.30 (13) | C17—O5—C16—C12 | −175.80 (12) |
O1—C7—C8—C9 | 16.5 (2) | C13—C12—C16—O4 | 72.5 (2) |
C4—C7—C8—C9 | −163.76 (13) | C9—C12—C16—O4 | −53.8 (2) |
C7—C8—C9—C10 | 171.38 (13) | C13—C12—C16—O5 | −107.55 (14) |
C7—C8—C9—C11 | −70.08 (17) | C9—C12—C16—O5 | 126.14 (13) |
C7—C8—C9—C12 | 49.67 (17) | C16—O5—C17—C18 | 173.97 (13) |
C10—C9—C12—C13 | −60.19 (16) |
Cg is the centroid of the C1–C6 aromatic ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10C···O4 | 0.98 | 2.40 | 3.057 (2) | 124 |
C11—H11B···O1 | 0.98 | 2.55 | 3.167 (2) | 121 |
C12—H12···O1 | 1.00 | 2.36 | 3.056 (2) | 126 |
C15—H15B···O2i | 0.98 | 2.54 | 3.500 (2) | 168 |
C15—H15C···Cg | 0.98 | 2.93 | 3.836 (2) | 154 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Funding information
The authors are thankful to the National Research Foundation (96807 and 98884), South Africa and Durban University of Technology, South Africa, for support and encouragement. KMB thanks VNIT Nagpur for support of a research fellowship.
References
Boy, K. M., Mercer, S. E., Olson, R. E. & Zhuo, X. (2015). Difluoromethoxy compound with low bioactivation potential for the reduction of β-amyloid production. Application WO2015153709A1. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fournier, C., Hamon, M., Hamon, M., Wannebroucq, J., Petiprez, S., Pruvo, J. & Hecquet, B. (1994). Int. J. Pharm. 106, 41–49. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ji, C., Miller, P. A. & Miller, M. J. (2015). ACS Med. Chem. Lett. 6, 707–710. Web of Science CrossRef Google Scholar
Kasumbwe, K., Venugopala, K. N., Mohanlall, V. & Odhav, B. (2017). Anticancer Agents Med. Chem. 17, 276–285. Web of Science CrossRef Google Scholar
Kowalczyk, R., Wierzba, A. J., Boratyński, P. J. & Bąkowicz, J. (2014). Tetrahedron, 70, 5834–5842. Web of Science CrossRef Google Scholar
Lippur, K., Kaabel, S., Järving, I., Rissanen, K. & Kanger, T. (2015). J. Org. Chem. 80, 6336–6341. Web of Science CrossRef Google Scholar
Liu, J. K. & Couldwell, W. T. (2005). Neurocrit. Care, 2, 124–132. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Markham, A. & Faulds, D. (1998). Drugs, 56, 251–256. Web of Science CrossRef Google Scholar
Narayanaswamy, V. K., Nayak, S. K., Pillay, M., Prasanna, R., Coovadia, Y. M. & Odhav, B. (2013b). Chem. Biol. Drug Des. 81, 219–227. Web of Science CrossRef Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Poty, S., Désogère, P., Goze, C., Boschetti, F., D'huys, T., Schols, D., Cawthorne, C., Archibald, S. J., Maëcke, H. R. & Denat, F. (2015). Dalton Trans. 44, 5004–5016. Web of Science CrossRef Google Scholar
Shahidpour, S., Panahi, F., Yousefi, R., Nourisefat, M., Nabipoor, M. & Khalafi-Nezhad, A. (2015). Med. Chem. Res. 24, 3086–3096. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simamura, O., Inamoto, N. & Suehiro, T. (1954). Bull. Chem. Soc. Jpn, 27, 221–225. CrossRef Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Venugopala, K. N., Krishnappa, M., Nayak, S. K., Subrahmanya, B. K., Vaderapura, J. P., Chalannavar, R. K., Gleiser, R. M. & Odhav, B. (2013a). Eur. J. Med. Chem. 65, 295–303. Web of Science CrossRef Google Scholar
Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. The University of Western Australia, Perth, Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.