research communications
IMDAV reaction between phenylmaleic anhydride and thienyl(furyl)allylamines: synthesis and molecular structure of (3aSR,4RS,4aRS,7aSR)-5-oxothieno- and (3aSR,4SR,4aRS,7aSR)-5-oxofuro[2,3-f]isoindole-4-carboxylic acids
aDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon, bOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, cNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, and dInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
*Correspondence e-mail: toflavien@yahoo.fr
The title compounds C24H21NO3S, I, and C24H21NO4, II, are the products of the IMDAV reaction between phenylmaleic anhydride and thienyl(furyl)allylamines. Their molecular structures comprise fused tricyclic systems containing thiophene, cyclohexene and pyrrolidine rings (I) or furan, cyclohexene and pyrrolidine rings (II). The central cyclohexene and pyrrolidine rings in both compounds adopt slightly twisted boat and envelope conformations, respectively. The dihedral angles between the basal plane of the pyrrolidine ring and the thiophene (in I) or furan (in II) ring plane are 22.74 (16) and 26.29 (5)°, respectively. The nitrogen atom both in I and II has practically planar environment [the sums of the bond angles are 359.8 and 358.9°, respectively]. In the crystal of I, the molecules form hydrogen-bonded zigzag chains along [010] through strong intermolecular O—H⋯O hydrogen bonds involving carboxylic and keto groups, whereas in the crystal of II, the molecules are joined into centrosymmetric dimers by strong O—H⋯O hydrogen bonds between the carboxylic groups. In II, the atoms involved into these hydrogen bonds (and hence the whole carboxylic group) are disordered over two sets of sites with an occupancy ratio of 0.6:0.4. Compounds I and II crystallize as racemates consisting of enantiomeric pairs of the 3aSR,4RS,4aRS,7aSR and 3aSR,4SR,4aRS,7aSR respectively.
1. Chemical context
Cascade transformations including one or more tandem or sequential [4 + 2] cycloaddition reactions are a useful and high-usage tool in organic synthesis (Parvatkar et al., 2014; Sears & Boger, 2016; Borisova et al., 2018). In most cases, conjugated linear or cyclic alkadienes are the starting materials for these transformations. Along with this, it has long been known that furan, thiophene and pyrrole, possessing a of double bonds, can also act as a diene moiety. Around 50 years ago, it was found that 2-vinylfurans and 2-vinylthiophenes can play the role of dienes in the intermolecular Diels–Alder reaction, which cleared a short way to benzofuran or benzothiophene derivatives (Paul, 1943; Szmuszkovicz & Modest, 1950; Schmidt, 1953; Scully & Brown, 1953; Davies & Porter, 1957a,b; Kaufmann & Sen Gupta, 1963; Ancerewicz & Vogel, 1993; Drew et al., 2002; Wavrin et al., 2004; Ghobsi et al., 2008). At the end of the last century, it was demonstrated that this reaction could be performed in an intramolecular variant when both a heterocyclic diene and a dienophilic moiety are incorporated in the same molecule.
The IMDAV (IntraMolecular Diels–Alder Vinylarenes) reaction (Fig. 1) has become a powerful tool in organic synthesis because of its simplicity and reliability, which assures good yields of benzofurans and benzothiophenes annulated with other carbo- and heterocycles (Maas et al., 2006; Patre et al., 2007; Kim et al., 2014).
Previously, with the example of the interaction between maleic anhydride and 3-thienyl(furyl)allylamines, our group demonstrated the possibility of the domino-sequence involving N-acylation, IMDAV reaction and aromatization steps leading to 4H-furo- or thieno[2,3-f]isoindoles (Horak et al., 2015, 2017; Zubkov et al., 2016). The aim of the present study was elucidation of the regio- and stereoselectivity of the reaction between phenylmaleic anhydride and thienyl(furyl)allylamines in order to establish the scope and the limitations of the IMDAV reaction (Fig. 2).
The reaction proceeds smoothly at room temperature, a simple filtration of the resulting crystalline products from ethyl acetate giving adducts I and II in good yields. The Diels–Alder reaction proceeds regio- and stereoselectively as an exo-[4 + 2] cycloaddition (Fig. 2). The nucleophilic attack of the nitrogen atom is directed at the least sterically hindered carbon atom of the carbonyl group of phenylmaleic anhydride, thus amide A is not formed. The intermediate amide B cannot be isolated, and the spontaneous intramolecular Diels–Alder reaction completes the process, leading to the target compounds I and II. The migration of proton H3a in adducts I, II and the formation of compound C is not observed under these conditions (Horak et al., 2015, 2017; Zubkov et al., 2016).
2. Structural commentary
Despite the very similar molecular structures, compounds I, C24H21NO3S and II, C24H21NO4 are not isostructural. Compound I crystallizes in the monoclinic P21/n, while compound II crystallizes in the triclinic P.
The molecules of I and II comprise fused tricyclic systems containing thiophene, cyclohexene and pyrrolidine rings in I (Fig. 3) and furan, cyclohexene and pyrrolidine rings in II (Fig. 4). The central cyclohexene and pyrrolidine rings in both compounds adopt slightly distorted boat and envelope conformations, respectively. The dihedral angles between the basal plane of the pyrrolidine ring (N5/N6/C4A/C7) and the thiophene (in I) or furan (in II) ring planes are 22.74 (16) and 26.29 (5)°, respectively. The N6 nitrogen atom both in I and II has practically planar environment (the sums of the bond angles are 359.8 and 358.9°, respectively).
In the molecule of II, the carboxylic group is disordered over two orientations with interchanging hydrogen atom positions (Fig. 4), the occupancy ratio being 0.6:0.4.
The molecules of I and II possess four asymmetric centers at the C3A, C4, C4A and C7A carbon atoms and potentially can have numerous The crystals of I and II are racemic and consist of enantiomeric pairs with the following of the centers: 3aSR,4RS,4aRS,7aSR and 3aSR,4SR,4aRS,7aSR, respectively, thus I and II differ in the configuration at the C4 atom.
3. Supramolecular features
In the crystal of I, molecules form hydrogen-bonded zigzag chains propagating along [010] through strong O—H⋯O hydrogen bonds involving the carboxylic and keto groups (Table 1, Fig. 5).
Contrary to I, in the crystal of II, molecules form hydrogen-bonded centrosymmetric dimers through pairs of strong O—H⋯O hydrogen bonds between two carboxylic groups (Table 2, Fig. 6). The dimers are stacked along the a-axis direction.
4. Synthesis and crystallization
2-Methyl-4,6-diphenyl-4,4a,5,6,7,7a-hexahydro-3aH-thieno(furo)[2,3-f]isoindole-4-carboxylic acids (I and II) were synthesized using a method similar to the procedure described recently (Horak et al., 2015, 2017; Zubkov et al., 2016).
General procedure. A solution of N-[(2E)-3-(5-methylthiophen-2-yl)prop-2-en-1-yl]aniline (for I) or N-[(2E)-3-(5-methylfuran-2-yl)prop-2-en-1-yl]aniline (for II) (2 mmol) in ethyl acetate (10 mL) was placed into a 25 mL round-bottom flask and then phenylmaleic anhydride (0.35 g, 2.0 mmol) was added. The mixture was stirred for two days at room temperature. The formed precipitate was filtered off, washed with Et2O (2 × 10 mL) and dried in air. The resulting product was recrystallized from a mixture of EtOH–DMF (5:1 v:v) to afford the analytically pure samples of target products.
(3aRS,4SR,4aSR,7aSR)-2-Methyl-5-oxo-4,6-diphenyl-4,4a,5,6,7,7a-hexahydro-3aH-thieno[2,3-f]isoindole-4-carboxylic acid (I). Colourless prisms. Yield 0.69 g (85%). M.p. = 447.1–448.1 K. IR (KBr), ν (cm−1): 3095, 1701. 1H NMR (DMSO-d6, 600.2 MHz, 301 K) δ = 13.04 (s, 1H, CO2H), 7.52–7.03 (m, 10H, HAr), 6.30 (dt, 1H, H8, J = 1.0, J = 3.5), 5.15 (pent, 1H, H3, J = 1.3), 4.16–4.14 (m, 1H, H3a), 3.99 (dd, 1H, H7a, J = 7.6, J = 8.8), 3.67 (dd, 1H, H7b, J = 8.8, J = 10.8), 2.95–2.89 (m, 1H, H7a), 2.25 (d, 1H, H4a, J = 12.6), 1.92 (q, 3H, CH3, J = 1.3). 13C NMR (DMSO-d6, 150.9 MHz, 301 K): δ = 175.4, 171.2 (CO2, NCO), 143.1, 141.3, 140.4, 136.6, 129.1 (2C), 129.0 (2C), 127.7 (2C), 126.5, 124.1, 120.5, 120.3, 119.7 (2C), 61.9, 60.1, 54.7, 49.5, 37.9, 16.7 (CH3). MS (APCI): m/z = 404 [M + H]+.
(3aRS,4RS,4aSR,7aRS)-2-Methyl-5-oxo-4,6-diphenyl-4,4a,5,6,7,7a-hexahydro-3aH-furo[2,3-f]isoindole-4-carboxylic acid (II). Colourless prisms. Yield 0.60 g (77%). M.p. = 422-423 K. IR (KBr), ν (cm−1): 1703, 1656. 1H NMR (DMSO-d6, 600.2 MHz, 301 K) δ = 13.00 (s, 1H, CO2H), 7.55 (dd, 2H, HAr, J = 7.6, J = 8.3), 7.33 (dd, 2H, HAr, J = 7.6, J = 8.6), 7.24 (dd, 2H, HAr, J = 7.6, J = 8.3), 7.15–7.13 (m, 3H, HAr), 7.08 (t, 1H, HAr, J = 7.6), 5.59 (dt, 1H, H8, J = 1.0, J = 3.5), 4.68 (dd, 1H, H3a, J = 1.0, J = 1.5), 4.08–4.02 (m, 2H, H3, H7a), 3.68 (dd, 1H, H7b, J = 8.8, J = 10.8), 2.94–2.88 (m, 1H, H7a), 2.40 (d, 1H, H4a, J = 12.1), 1.91 (s, 3H, CH3). 13C NMR (DMSO-d6, 150.9 MHz, 301 K): δ = 174.8, 170.7 (CO2, NCO), 157.8, 154.3, 141.9, 139.9, 128.8 (2C), 128.5 (2C), 127.1 (2C), 125.9, 123.5, 119.1 (2C), 100.2, 97.6, 60.9, 53.4, 52.5, 49.3, 35.1, 13.3 (CH3). MS (APCI): m/z = 388 [M + H]+.
5. Refinement
Crystal data, data collection and structure . X-ray diffraction studies were carried out on the `Belok' beamline of the National Research Center `Kurchatov Institute' (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 720 images for each compounds were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006). The data were indexed, integrated and scaled using the utility iMOSFLM in the CCP4 program (Battye et al., 2011).
details are summarized in Table 3The COOH-group in II is disordered over two orientations. The of their occupancy factors was unstable, thus the occupancies were constrained to a 0.6:0.4 ratio. The two positions of this group were refined at fixed C=O and C—O distances of 1.210 (3) and 1.320 (3) Å, respectively. Moreover, the anisotropic displacement parameters for the oxygen atoms of the C=O and C—O groups were restrained to be equal.
The hydrogen atoms of the OH groups were localized in difference-Fourier maps and refined isotropically with fixed displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined using the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 groups and 1.2Ueq(C) for all others].
A relatively large number of reflections (a few dozen) were omitted for the following reasons: (1) In order to achieve better I/σ statistics for high-angle reflections we selected a larger exposure time, which resulted in some intensity overloads in the low-angle part of the area. These corrupted intensities were excluded from the final steps of the (2) In the current setup of the instrument, the low-temperature device eclipses a small region of the detector near its high-angle limit. This resulted in zero intensity for some reflections. (3) The quality of the single crystals chosen for the diffraction experiments was far from perfect. Some systematic intensity deviations can be due to extinction and defects present in the crystals.
Supporting information
https://doi.org/10.1107/S2056989018012239/yk2117sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018012239/yk2117Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018012239/yk2117IIsup3.hkl
For both structures, data collection: MarCCD (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H21NO3S | F(000) = 848 |
Mr = 403.48 | Dx = 1.327 Mg m−3 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.96260 Å |
a = 14.572 (3) Å | Cell parameters from 600 reflections |
b = 8.7989 (18) Å | θ = 3.6–36.0° |
c = 16.982 (3) Å | µ = 0.41 mm−1 |
β = 111.92 (3)° | T = 100 K |
V = 2020.0 (8) Å3 | Prism, colourless |
Z = 4 | 0.15 × 0.10 × 0.10 mm |
Rayonix SX165 CCD diffractometer | 2888 reflections with I > 2σ(I) |
/f scan | Rint = 0.101 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.4°, θmin = 3.6° |
Tmin = 0.930, Tmax = 0.950 | h = −12→18 |
12006 measured reflections | k = −10→8 |
4140 independent reflections | l = −21→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.244 | w = 1/[σ2(Fo2) + (0.08P)2 + 4P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4140 reflections | Δρmax = 0.57 e Å−3 |
267 parameters | Δρmin = −0.83 e Å−3 |
0 restraints | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.027 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.70674 (7) | 0.54365 (14) | 0.24110 (6) | 0.0381 (4) | |
C2 | 0.6019 (3) | 0.5821 (5) | 0.1467 (3) | 0.0360 (10) | |
C3 | 0.5152 (3) | 0.5575 (5) | 0.1543 (2) | 0.0337 (9) | |
H3 | 0.4540 | 0.5694 | 0.1079 | 0.040* | |
C3A | 0.5203 (3) | 0.5094 (5) | 0.2417 (2) | 0.0288 (8) | |
H3A | 0.4993 | 0.6007 | 0.2658 | 0.035* | |
C4 | 0.4494 (2) | 0.3754 (4) | 0.2477 (2) | 0.0253 (8) | |
C4A | 0.4981 (2) | 0.3035 (4) | 0.3372 (2) | 0.0249 (8) | |
H4A | 0.5376 | 0.2153 | 0.3299 | 0.030* | |
C5 | 0.4338 (3) | 0.2403 (4) | 0.3820 (2) | 0.0243 (8) | |
O3 | 0.35066 (18) | 0.1829 (3) | 0.34752 (14) | 0.0299 (7) | |
N6 | 0.4879 (2) | 0.2501 (4) | 0.46806 (17) | 0.0274 (7) | |
C7 | 0.5884 (3) | 0.3135 (5) | 0.4862 (2) | 0.0295 (9) | |
H7A | 0.6378 | 0.2318 | 0.4942 | 0.035* | |
H7B | 0.6097 | 0.3795 | 0.5371 | 0.035* | |
C7A | 0.5723 (2) | 0.4056 (4) | 0.4050 (2) | 0.0248 (8) | |
H7C | 0.5384 | 0.5029 | 0.4081 | 0.030* | |
C8 | 0.6579 (3) | 0.4419 (5) | 0.3776 (2) | 0.0305 (9) | |
H8 | 0.7252 | 0.4334 | 0.4146 | 0.037* | |
C8A | 0.6300 (3) | 0.4869 (5) | 0.2967 (2) | 0.0302 (9) | |
C9 | 0.6196 (4) | 0.6459 (6) | 0.0702 (3) | 0.0494 (12) | |
H9A | 0.6507 | 0.7462 | 0.0844 | 0.074* | |
H9B | 0.5563 | 0.6553 | 0.0223 | 0.074* | |
H9C | 0.6633 | 0.5773 | 0.0549 | 0.074* | |
C10 | 0.3550 (3) | 0.4624 (4) | 0.2411 (2) | 0.0243 (8) | |
O1 | 0.33975 (18) | 0.5090 (3) | 0.30274 (15) | 0.0303 (7) | |
O2 | 0.29599 (19) | 0.4951 (3) | 0.16006 (15) | 0.0294 (6) | |
H2 | 0.240 (3) | 0.567 (5) | 0.161 (3) | 0.044* | |
C11 | 0.4327 (2) | 0.2480 (5) | 0.1814 (2) | 0.0258 (8) | |
C12 | 0.3445 (3) | 0.1640 (4) | 0.1514 (2) | 0.0263 (8) | |
H12 | 0.2902 | 0.1956 | 0.1656 | 0.032* | |
C13 | 0.3348 (3) | 0.0346 (5) | 0.1011 (2) | 0.0305 (9) | |
H13 | 0.2747 | −0.0213 | 0.0819 | 0.037* | |
C14 | 0.4136 (3) | −0.0122 (5) | 0.0790 (2) | 0.0326 (9) | |
H14 | 0.4070 | −0.0992 | 0.0441 | 0.039* | |
C15 | 0.5016 (3) | 0.0688 (5) | 0.1082 (2) | 0.0338 (10) | |
H15 | 0.5554 | 0.0364 | 0.0936 | 0.041* | |
C16 | 0.5118 (3) | 0.1985 (4) | 0.1591 (2) | 0.0270 (8) | |
H16 | 0.5724 | 0.2531 | 0.1786 | 0.032* | |
C17 | 0.4580 (3) | 0.1950 (4) | 0.5344 (2) | 0.0270 (8) | |
C18 | 0.5317 (3) | 0.1501 (5) | 0.6121 (2) | 0.0324 (9) | |
H18 | 0.5993 | 0.1491 | 0.6185 | 0.039* | |
C19 | 0.5044 (3) | 0.1070 (5) | 0.6798 (2) | 0.0383 (10) | |
H19 | 0.5539 | 0.0761 | 0.7320 | 0.046* | |
C20 | 0.4059 (3) | 0.1088 (5) | 0.6717 (2) | 0.0372 (10) | |
H20 | 0.3882 | 0.0816 | 0.7183 | 0.045* | |
C21 | 0.3333 (3) | 0.1510 (5) | 0.5943 (2) | 0.0362 (10) | |
H21 | 0.2658 | 0.1505 | 0.5882 | 0.043* | |
C22 | 0.3584 (3) | 0.1941 (5) | 0.5253 (2) | 0.0323 (9) | |
H22 | 0.3083 | 0.2225 | 0.4729 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0248 (6) | 0.0533 (8) | 0.0398 (6) | −0.0065 (5) | 0.0164 (5) | 0.0001 (5) |
C2 | 0.030 (2) | 0.041 (2) | 0.042 (2) | 0.0030 (19) | 0.0195 (18) | 0.0056 (18) |
C3 | 0.024 (2) | 0.041 (3) | 0.037 (2) | 0.0027 (18) | 0.0123 (17) | 0.0063 (17) |
C3A | 0.0218 (18) | 0.032 (2) | 0.0324 (18) | 0.0015 (16) | 0.0094 (15) | 0.0003 (16) |
C4 | 0.0166 (17) | 0.035 (2) | 0.0225 (15) | 0.0000 (15) | 0.0049 (14) | 0.0036 (15) |
C4A | 0.0176 (17) | 0.034 (2) | 0.0223 (16) | 0.0016 (16) | 0.0063 (14) | −0.0051 (15) |
C5 | 0.0204 (17) | 0.028 (2) | 0.0212 (15) | −0.0020 (15) | 0.0043 (14) | −0.0019 (14) |
O3 | 0.0221 (14) | 0.0400 (17) | 0.0245 (12) | −0.0068 (12) | 0.0053 (10) | 0.0024 (11) |
N6 | 0.0190 (15) | 0.043 (2) | 0.0190 (13) | −0.0002 (14) | 0.0056 (12) | −0.0012 (13) |
C7 | 0.0196 (18) | 0.042 (2) | 0.0233 (16) | −0.0007 (17) | 0.0041 (14) | −0.0066 (16) |
C7A | 0.0179 (17) | 0.027 (2) | 0.0270 (17) | −0.0019 (15) | 0.0056 (14) | −0.0040 (15) |
C8 | 0.0168 (17) | 0.042 (2) | 0.0301 (18) | −0.0045 (16) | 0.0053 (15) | −0.0097 (16) |
C8A | 0.0248 (19) | 0.031 (2) | 0.0369 (19) | −0.0017 (17) | 0.0136 (16) | −0.0052 (16) |
C9 | 0.047 (3) | 0.053 (3) | 0.056 (3) | 0.000 (2) | 0.029 (2) | 0.017 (2) |
C10 | 0.0163 (17) | 0.032 (2) | 0.0226 (15) | −0.0054 (15) | 0.0052 (14) | −0.0008 (14) |
O1 | 0.0252 (14) | 0.0393 (17) | 0.0279 (12) | 0.0035 (12) | 0.0117 (11) | −0.0030 (11) |
O2 | 0.0220 (13) | 0.0398 (17) | 0.0251 (12) | 0.0064 (12) | 0.0073 (10) | 0.0021 (11) |
C11 | 0.0198 (17) | 0.038 (2) | 0.0194 (15) | 0.0005 (16) | 0.0070 (13) | 0.0056 (15) |
C12 | 0.0221 (18) | 0.034 (2) | 0.0213 (15) | 0.0016 (16) | 0.0066 (14) | 0.0011 (14) |
C13 | 0.029 (2) | 0.036 (2) | 0.0223 (16) | 0.0002 (17) | 0.0043 (15) | 0.0001 (15) |
C14 | 0.042 (2) | 0.034 (2) | 0.0204 (16) | 0.0033 (19) | 0.0101 (16) | −0.0011 (15) |
C15 | 0.035 (2) | 0.045 (3) | 0.0249 (17) | 0.0068 (19) | 0.0162 (17) | 0.0013 (17) |
C16 | 0.0240 (19) | 0.035 (2) | 0.0233 (16) | 0.0004 (16) | 0.0099 (14) | 0.0027 (15) |
C17 | 0.031 (2) | 0.029 (2) | 0.0221 (16) | 0.0044 (16) | 0.0110 (15) | −0.0002 (14) |
C18 | 0.032 (2) | 0.037 (2) | 0.0258 (17) | 0.0047 (18) | 0.0074 (16) | −0.0002 (16) |
C19 | 0.050 (3) | 0.036 (2) | 0.0252 (18) | 0.005 (2) | 0.0096 (18) | 0.0008 (16) |
C20 | 0.052 (3) | 0.038 (2) | 0.0273 (18) | 0.000 (2) | 0.0204 (18) | −0.0008 (16) |
C21 | 0.037 (2) | 0.040 (3) | 0.035 (2) | −0.0058 (19) | 0.0174 (18) | −0.0024 (17) |
C22 | 0.035 (2) | 0.038 (2) | 0.0254 (17) | 0.0021 (18) | 0.0133 (16) | −0.0007 (16) |
S1—C8A | 1.782 (4) | C9—H9B | 0.9800 |
S1—C2 | 1.785 (4) | C9—H9C | 0.9800 |
C2—C3 | 1.335 (5) | C10—O1 | 1.219 (4) |
C2—C9 | 1.523 (6) | C10—O2 | 1.353 (4) |
C3—C3A | 1.519 (5) | O2—H2 | 1.04 (5) |
C3—H3 | 0.9500 | C11—C12 | 1.404 (5) |
C3A—C8A | 1.534 (5) | C11—C16 | 1.409 (5) |
C3A—C4 | 1.596 (5) | C12—C13 | 1.399 (5) |
C3A—H3A | 1.0000 | C12—H12 | 0.9500 |
C4—C10 | 1.542 (5) | C13—C14 | 1.397 (5) |
C4—C11 | 1.543 (5) | C13—H13 | 0.9500 |
C4—C4A | 1.551 (5) | C14—C15 | 1.387 (6) |
C4A—C5 | 1.517 (5) | C14—H14 | 0.9500 |
C4A—C7A | 1.541 (5) | C15—C16 | 1.406 (5) |
C4A—H4A | 1.0000 | C15—H15 | 0.9500 |
C5—O3 | 1.239 (4) | C16—H16 | 0.9500 |
C5—N6 | 1.379 (4) | C17—C22 | 1.400 (5) |
N6—C17 | 1.435 (4) | C17—C18 | 1.412 (5) |
N6—C7 | 1.488 (4) | C18—C19 | 1.401 (5) |
C7—C7A | 1.540 (5) | C18—H18 | 0.9500 |
C7—H7A | 0.9900 | C19—C20 | 1.390 (6) |
C7—H7B | 0.9900 | C19—H19 | 0.9500 |
C7A—C8 | 1.519 (5) | C20—C21 | 1.394 (6) |
C7A—H7C | 1.0000 | C20—H20 | 0.9500 |
C8—C8A | 1.340 (5) | C21—C22 | 1.404 (5) |
C8—H8 | 0.9500 | C21—H21 | 0.9500 |
C9—H9A | 0.9800 | C22—H22 | 0.9500 |
C8A—S1—C2 | 91.87 (18) | C3A—C8A—S1 | 111.1 (3) |
C3—C2—C9 | 127.6 (4) | C2—C9—H9A | 109.5 |
C3—C2—S1 | 114.0 (3) | C2—C9—H9B | 109.5 |
C9—C2—S1 | 118.3 (3) | H9A—C9—H9B | 109.5 |
C2—C3—C3A | 115.9 (4) | C2—C9—H9C | 109.5 |
C2—C3—H3 | 122.1 | H9A—C9—H9C | 109.5 |
C3A—C3—H3 | 122.1 | H9B—C9—H9C | 109.5 |
C3—C3A—C8A | 106.9 (3) | O1—C10—O2 | 123.5 (3) |
C3—C3A—C4 | 118.1 (3) | O1—C10—C4 | 123.2 (3) |
C8A—C3A—C4 | 114.8 (3) | O2—C10—C4 | 113.0 (3) |
C3—C3A—H3A | 105.3 | C10—O2—H2 | 108 (2) |
C8A—C3A—H3A | 105.3 | C12—C11—C16 | 118.0 (3) |
C4—C3A—H3A | 105.3 | C12—C11—C4 | 121.4 (3) |
C10—C4—C11 | 114.5 (3) | C16—C11—C4 | 120.0 (3) |
C10—C4—C4A | 110.1 (3) | C13—C12—C11 | 121.3 (3) |
C11—C4—C4A | 107.9 (3) | C13—C12—H12 | 119.3 |
C10—C4—C3A | 102.1 (3) | C11—C12—H12 | 119.3 |
C11—C4—C3A | 114.8 (3) | C14—C13—C12 | 119.9 (4) |
C4A—C4—C3A | 107.0 (3) | C14—C13—H13 | 120.0 |
C5—C4A—C7A | 103.3 (3) | C12—C13—H13 | 120.0 |
C5—C4A—C4 | 119.9 (3) | C15—C14—C13 | 119.7 (4) |
C7A—C4A—C4 | 115.5 (3) | C15—C14—H14 | 120.2 |
C5—C4A—H4A | 105.6 | C13—C14—H14 | 120.2 |
C7A—C4A—H4A | 105.6 | C14—C15—C16 | 120.5 (3) |
C4—C4A—H4A | 105.6 | C14—C15—H15 | 119.7 |
O3—C5—N6 | 126.7 (3) | C16—C15—H15 | 119.7 |
O3—C5—C4A | 126.1 (3) | C15—C16—C11 | 120.5 (3) |
N6—C5—C4A | 107.1 (3) | C15—C16—H16 | 119.8 |
C5—N6—C17 | 126.1 (3) | C11—C16—H16 | 119.8 |
C5—N6—C7 | 111.8 (3) | C22—C17—C18 | 119.7 (3) |
C17—N6—C7 | 121.9 (3) | C22—C17—N6 | 121.4 (3) |
N6—C7—C7A | 101.7 (3) | C18—C17—N6 | 118.7 (3) |
N6—C7—H7A | 111.4 | C19—C18—C17 | 119.6 (4) |
C7A—C7—H7A | 111.4 | C19—C18—H18 | 120.2 |
N6—C7—H7B | 111.4 | C17—C18—H18 | 120.2 |
C7A—C7—H7B | 111.4 | C20—C19—C18 | 120.9 (4) |
H7A—C7—H7B | 109.3 | C20—C19—H19 | 119.5 |
C8—C7A—C7 | 121.1 (3) | C18—C19—H19 | 119.5 |
C8—C7A—C4A | 108.7 (3) | C19—C20—C21 | 119.2 (3) |
C7—C7A—C4A | 101.0 (3) | C19—C20—H20 | 120.4 |
C8—C7A—H7C | 108.4 | C21—C20—H20 | 120.4 |
C7—C7A—H7C | 108.4 | C20—C21—C22 | 121.0 (4) |
C4A—C7A—H7C | 108.4 | C20—C21—H21 | 119.5 |
C8A—C8—C7A | 114.0 (3) | C22—C21—H21 | 119.5 |
C8A—C8—H8 | 123.0 | C17—C22—C21 | 119.5 (4) |
C7A—C8—H8 | 123.0 | C17—C22—H22 | 120.3 |
C8—C8A—C3A | 120.7 (3) | C21—C22—H22 | 120.3 |
C8—C8A—S1 | 128.0 (3) | ||
C8A—S1—C2—C3 | 0.8 (4) | C3—C3A—C8A—C8 | −179.1 (4) |
C8A—S1—C2—C9 | 177.4 (4) | C4—C3A—C8A—C8 | −46.1 (5) |
C9—C2—C3—C3A | −173.4 (4) | C3—C3A—C8A—S1 | 5.9 (4) |
S1—C2—C3—C3A | 2.9 (5) | C4—C3A—C8A—S1 | 139.0 (3) |
C2—C3—C3A—C8A | −5.7 (5) | C2—S1—C8A—C8 | −178.5 (4) |
C2—C3—C3A—C4 | −136.9 (4) | C2—S1—C8A—C3A | −4.0 (3) |
C3—C3A—C4—C10 | −88.3 (4) | C11—C4—C10—O1 | 143.8 (4) |
C8A—C3A—C4—C10 | 144.2 (3) | C4A—C4—C10—O1 | 22.0 (5) |
C3—C3A—C4—C11 | 36.3 (5) | C3A—C4—C10—O1 | −91.4 (4) |
C8A—C3A—C4—C11 | −91.3 (4) | C11—C4—C10—O2 | −42.6 (4) |
C3—C3A—C4—C4A | 156.0 (3) | C4A—C4—C10—O2 | −164.4 (3) |
C8A—C3A—C4—C4A | 28.5 (4) | C3A—C4—C10—O2 | 82.2 (3) |
C10—C4—C4A—C5 | 36.4 (4) | C10—C4—C11—C12 | −32.8 (4) |
C11—C4—C4A—C5 | −89.2 (4) | C4A—C4—C11—C12 | 90.2 (4) |
C3A—C4—C4A—C5 | 146.7 (3) | C3A—C4—C11—C12 | −150.6 (3) |
C10—C4—C4A—C7A | −88.3 (3) | C10—C4—C11—C16 | 156.6 (3) |
C11—C4—C4A—C7A | 146.1 (3) | C4A—C4—C11—C16 | −80.3 (4) |
C3A—C4—C4A—C7A | 22.0 (4) | C3A—C4—C11—C16 | 38.9 (4) |
C7A—C4A—C5—O3 | 161.3 (4) | C16—C11—C12—C13 | 0.2 (5) |
C4—C4A—C5—O3 | 31.0 (6) | C4—C11—C12—C13 | −170.6 (3) |
C7A—C4A—C5—N6 | −22.5 (4) | C11—C12—C13—C14 | −0.7 (5) |
C4—C4A—C5—N6 | −152.8 (3) | C12—C13—C14—C15 | 0.9 (5) |
O3—C5—N6—C17 | 0.1 (6) | C13—C14—C15—C16 | −0.6 (5) |
C4A—C5—N6—C17 | −176.1 (3) | C14—C15—C16—C11 | 0.1 (5) |
O3—C5—N6—C7 | 174.8 (4) | C12—C11—C16—C15 | 0.1 (5) |
C4A—C5—N6—C7 | −1.4 (4) | C4—C11—C16—C15 | 171.0 (3) |
C5—N6—C7—C7A | 24.6 (4) | C5—N6—C17—C22 | −32.3 (6) |
C17—N6—C7—C7A | −160.5 (3) | C7—N6—C17—C22 | 153.5 (4) |
N6—C7—C7A—C8 | −156.3 (3) | C5—N6—C17—C18 | 151.7 (4) |
N6—C7—C7A—C4A | −36.3 (3) | C7—N6—C17—C18 | −22.4 (5) |
C5—C4A—C7A—C8 | 164.7 (3) | C22—C17—C18—C19 | −0.8 (6) |
C4—C4A—C7A—C8 | −62.4 (4) | N6—C17—C18—C19 | 175.2 (4) |
C5—C4A—C7A—C7 | 36.2 (3) | C17—C18—C19—C20 | −0.4 (6) |
C4—C4A—C7A—C7 | 169.1 (3) | C18—C19—C20—C21 | 1.4 (6) |
C7—C7A—C8—C8A | 163.6 (4) | C19—C20—C21—C22 | −1.2 (6) |
C4A—C7A—C8—C8A | 47.5 (5) | C18—C17—C22—C21 | 1.1 (6) |
C7A—C8—C8A—C3A | 4.4 (5) | N6—C17—C22—C21 | −174.8 (4) |
C7A—C8—C8A—S1 | 178.4 (3) | C20—C21—C22—C17 | −0.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 1.04 (5) | 1.63 (5) | 2.667 (4) | 174 (4) |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
C24H21NO4 | Z = 2 |
Mr = 387.42 | F(000) = 408 |
Triclinic, P1 | Dx = 1.294 Mg m−3 |
a = 8.1851 (16) Å | Synchrotron radiation, λ = 0.81182 Å |
b = 11.025 (2) Å | Cell parameters from 600 reflections |
c = 11.795 (2) Å | θ = 3.5–30.0° |
α = 99.14 (3)° | µ = 0.12 mm−1 |
β = 92.51 (3)° | T = 100 K |
γ = 107.99 (3)° | Prism, colourless |
V = 994.6 (4) Å3 | 0.20 × 0.12 × 0.08 mm |
Rayonix SX165 CCD diffractometer | 3839 reflections with I > 2σ(I) |
/f scan | Rint = 0.092 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 31.0°, θmin = 3.4° |
Tmin = 0.963, Tmax = 0.987 | h = −10→10 |
18107 measured reflections | k = −13→13 |
4204 independent reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.0543P)2 + 0.2912P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
4204 reflections | Δρmax = 0.31 e Å−3 |
276 parameters | Δρmin = −0.25 e Å−3 |
4 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.060 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.35211 (12) | −0.05879 (8) | 0.66567 (7) | 0.0201 (2) | |
O2 | 0.5385 (4) | 0.4663 (2) | 0.8623 (2) | 0.0241 (6) | 0.6 |
O3 | 0.5530 (4) | 0.35005 (19) | 1.00161 (16) | 0.0201 (5) | 0.6 |
H3B | 0.520 (4) | 0.413 (3) | 1.044 (3) | 0.030* | 0.6 |
O2' | 0.5693 (7) | 0.3756 (4) | 0.9980 (2) | 0.0241 (6) | 0.4 |
O3' | 0.5162 (7) | 0.4567 (4) | 0.8431 (3) | 0.0201 (5) | 0.4 |
H3C | 0.480 (6) | 0.505 (4) | 0.901 (4) | 0.030* | 0.4 |
O4 | 0.87874 (12) | 0.52722 (8) | 0.76246 (7) | 0.0223 (2) | |
C2 | 0.35057 (15) | −0.07054 (12) | 0.78383 (10) | 0.0190 (3) | |
C3 | 0.39805 (15) | 0.04459 (11) | 0.85592 (10) | 0.0187 (3) | |
H3 | 0.4076 | 0.0566 | 0.9378 | 0.022* | |
C3A | 0.43406 (15) | 0.15241 (11) | 0.78540 (10) | 0.0169 (3) | |
H3A | 0.3397 | 0.1921 | 0.7944 | 0.020* | |
C4 | 0.61590 (15) | 0.26934 (10) | 0.81143 (9) | 0.0148 (2) | |
C4A | 0.66305 (14) | 0.30967 (10) | 0.69318 (9) | 0.0145 (2) | |
H4A | 0.7364 | 0.2566 | 0.6627 | 0.017* | |
C5 | 0.76917 (15) | 0.44984 (11) | 0.68806 (10) | 0.0163 (3) | |
N6 | 0.72662 (13) | 0.46920 (9) | 0.57808 (8) | 0.0168 (2) | |
C7 | 0.60501 (15) | 0.34914 (11) | 0.50551 (10) | 0.0174 (3) | |
H7A | 0.6678 | 0.2984 | 0.4593 | 0.021* | |
H7B | 0.5233 | 0.3697 | 0.4533 | 0.021* | |
C7A | 0.51119 (14) | 0.27614 (11) | 0.59767 (10) | 0.0155 (3) | |
H7C | 0.4223 | 0.3152 | 0.6266 | 0.019* | |
C8 | 0.43213 (15) | 0.12915 (11) | 0.56824 (10) | 0.0175 (3) | |
H8 | 0.4044 | 0.0814 | 0.4916 | 0.021* | |
C8A | 0.40597 (15) | 0.07445 (11) | 0.66291 (10) | 0.0165 (3) | |
C9 | 0.30386 (19) | −0.20751 (12) | 0.80397 (11) | 0.0254 (3) | |
H9A | 0.1880 | −0.2570 | 0.7663 | 0.038* | |
H9B | 0.3056 | −0.2078 | 0.8871 | 0.038* | |
H9C | 0.3874 | −0.2473 | 0.7717 | 0.038* | |
C10 | 0.56971 (15) | 0.37472 (10) | 0.89451 (9) | 0.0163 (3) | |
C11 | 0.76528 (15) | 0.23063 (11) | 0.86340 (10) | 0.0157 (3) | |
C12 | 0.78551 (16) | 0.10987 (11) | 0.81712 (10) | 0.0181 (3) | |
H12 | 0.7030 | 0.0516 | 0.7581 | 0.022* | |
C13 | 0.92622 (17) | 0.07539 (12) | 0.85763 (11) | 0.0223 (3) | |
H13 | 0.9373 | −0.0063 | 0.8266 | 0.027* | |
C14 | 1.04993 (17) | 0.16108 (13) | 0.94346 (11) | 0.0243 (3) | |
H14 | 1.1443 | 0.1373 | 0.9712 | 0.029* | |
C15 | 1.03410 (17) | 0.28250 (13) | 0.98856 (11) | 0.0235 (3) | |
H15 | 1.1188 | 0.3415 | 1.0459 | 0.028* | |
C16 | 0.89229 (16) | 0.31656 (11) | 0.94849 (10) | 0.0189 (3) | |
H16 | 0.8823 | 0.3987 | 0.9794 | 0.023* | |
C17 | 0.81267 (15) | 0.58110 (11) | 0.53022 (10) | 0.0175 (3) | |
C18 | 0.87154 (17) | 0.70563 (12) | 0.60084 (11) | 0.0216 (3) | |
H18 | 0.8574 | 0.7155 | 0.6809 | 0.026* | |
C19 | 0.95104 (17) | 0.81456 (12) | 0.55163 (12) | 0.0250 (3) | |
H19 | 0.9921 | 0.8980 | 0.5992 | 0.030* | |
C20 | 0.97049 (17) | 0.80153 (12) | 0.43305 (12) | 0.0249 (3) | |
H20 | 1.0234 | 0.8759 | 0.4005 | 0.030* | |
C21 | 0.91129 (16) | 0.67809 (12) | 0.36291 (11) | 0.0226 (3) | |
H21 | 0.9237 | 0.6690 | 0.2826 | 0.027* | |
C22 | 0.83345 (15) | 0.56730 (12) | 0.41117 (11) | 0.0197 (3) | |
H22 | 0.7952 | 0.4838 | 0.3637 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0251 (5) | 0.0155 (4) | 0.0175 (4) | 0.0025 (3) | 0.0019 (3) | 0.0051 (3) |
O2 | 0.0368 (12) | 0.0244 (9) | 0.0186 (11) | 0.0183 (8) | 0.0076 (8) | 0.0064 (7) |
O3 | 0.0347 (11) | 0.0239 (10) | 0.0123 (8) | 0.0210 (9) | 0.0104 (6) | 0.0078 (6) |
O2' | 0.0368 (12) | 0.0244 (9) | 0.0186 (11) | 0.0183 (8) | 0.0076 (8) | 0.0064 (7) |
O3' | 0.0347 (11) | 0.0239 (10) | 0.0123 (8) | 0.0210 (9) | 0.0104 (6) | 0.0078 (6) |
O4 | 0.0264 (5) | 0.0184 (4) | 0.0182 (4) | 0.0030 (3) | 0.0001 (4) | 0.0016 (3) |
C2 | 0.0186 (6) | 0.0206 (6) | 0.0189 (6) | 0.0054 (4) | 0.0048 (4) | 0.0077 (4) |
C3 | 0.0189 (6) | 0.0211 (6) | 0.0173 (6) | 0.0065 (5) | 0.0054 (4) | 0.0059 (4) |
C3A | 0.0168 (5) | 0.0173 (5) | 0.0175 (6) | 0.0057 (4) | 0.0044 (4) | 0.0042 (4) |
C4 | 0.0173 (5) | 0.0140 (5) | 0.0140 (5) | 0.0060 (4) | 0.0042 (4) | 0.0026 (4) |
C4A | 0.0161 (5) | 0.0152 (5) | 0.0140 (5) | 0.0072 (4) | 0.0036 (4) | 0.0031 (4) |
C5 | 0.0181 (6) | 0.0163 (5) | 0.0158 (6) | 0.0072 (4) | 0.0041 (4) | 0.0026 (4) |
N6 | 0.0194 (5) | 0.0144 (5) | 0.0169 (5) | 0.0050 (4) | 0.0029 (4) | 0.0043 (4) |
C7 | 0.0195 (6) | 0.0168 (5) | 0.0157 (5) | 0.0049 (4) | 0.0014 (4) | 0.0043 (4) |
C7A | 0.0154 (5) | 0.0165 (5) | 0.0162 (5) | 0.0064 (4) | 0.0020 (4) | 0.0048 (4) |
C8 | 0.0172 (5) | 0.0177 (5) | 0.0168 (6) | 0.0051 (4) | −0.0005 (4) | 0.0024 (4) |
C8A | 0.0150 (5) | 0.0143 (5) | 0.0198 (6) | 0.0040 (4) | 0.0018 (4) | 0.0033 (4) |
C9 | 0.0323 (7) | 0.0201 (6) | 0.0227 (6) | 0.0044 (5) | 0.0040 (5) | 0.0080 (5) |
C10 | 0.0180 (6) | 0.0171 (5) | 0.0153 (6) | 0.0075 (4) | 0.0037 (4) | 0.0034 (4) |
C11 | 0.0184 (6) | 0.0168 (5) | 0.0144 (5) | 0.0070 (4) | 0.0061 (4) | 0.0060 (4) |
C12 | 0.0206 (6) | 0.0181 (5) | 0.0175 (6) | 0.0084 (4) | 0.0043 (4) | 0.0034 (4) |
C13 | 0.0268 (7) | 0.0237 (6) | 0.0232 (6) | 0.0150 (5) | 0.0070 (5) | 0.0086 (5) |
C14 | 0.0229 (6) | 0.0361 (7) | 0.0215 (6) | 0.0165 (5) | 0.0054 (5) | 0.0121 (5) |
C15 | 0.0198 (6) | 0.0325 (7) | 0.0177 (6) | 0.0084 (5) | 0.0011 (5) | 0.0035 (5) |
C16 | 0.0198 (6) | 0.0200 (6) | 0.0171 (6) | 0.0069 (5) | 0.0038 (4) | 0.0020 (4) |
C17 | 0.0155 (5) | 0.0177 (5) | 0.0222 (6) | 0.0071 (4) | 0.0037 (4) | 0.0077 (4) |
C18 | 0.0237 (6) | 0.0190 (6) | 0.0231 (6) | 0.0074 (5) | 0.0027 (5) | 0.0054 (5) |
C19 | 0.0237 (6) | 0.0170 (6) | 0.0346 (7) | 0.0060 (5) | 0.0028 (5) | 0.0068 (5) |
C20 | 0.0201 (6) | 0.0230 (6) | 0.0371 (7) | 0.0089 (5) | 0.0089 (5) | 0.0154 (5) |
C21 | 0.0203 (6) | 0.0277 (6) | 0.0260 (7) | 0.0117 (5) | 0.0088 (5) | 0.0131 (5) |
C22 | 0.0189 (6) | 0.0210 (6) | 0.0224 (6) | 0.0091 (5) | 0.0048 (5) | 0.0070 (4) |
O1—C8A | 1.4034 (14) | C7A—H7C | 1.0000 |
O1—C2 | 1.4203 (14) | C8—C8A | 1.3460 (17) |
O2—C10 | 1.226 (2) | C8—H8 | 0.9500 |
O3—C10 | 1.3378 (19) | C9—H9A | 0.9800 |
O3—H3B | 0.91 (3) | C9—H9B | 0.9800 |
O2'—C10 | 1.219 (3) | C9—H9C | 0.9800 |
O3'—C10 | 1.331 (3) | C11—C16 | 1.4083 (18) |
O3'—H3C | 0.91 (5) | C11—C12 | 1.4181 (16) |
O4—C5 | 1.2339 (16) | C12—C13 | 1.4069 (17) |
C2—C3 | 1.3447 (18) | C12—H12 | 0.9500 |
C2—C9 | 1.4994 (16) | C13—C14 | 1.399 (2) |
C3—C3A | 1.5202 (16) | C13—H13 | 0.9500 |
C3—H3 | 0.9500 | C14—C15 | 1.4066 (19) |
C3A—C8A | 1.5274 (17) | C14—H14 | 0.9500 |
C3A—C4 | 1.6187 (17) | C15—C16 | 1.4104 (18) |
C3A—H3A | 1.0000 | C15—H15 | 0.9500 |
C4—C11 | 1.5469 (16) | C16—H16 | 0.9500 |
C4—C10 | 1.5475 (15) | C17—C22 | 1.4118 (17) |
C4—C4A | 1.5590 (15) | C17—C18 | 1.4154 (18) |
C4A—C5 | 1.5333 (16) | C18—C19 | 1.4052 (17) |
C4A—C7A | 1.5530 (17) | C18—H18 | 0.9500 |
C4A—H4A | 1.0000 | C19—C20 | 1.404 (2) |
C5—N6 | 1.3943 (15) | C19—H19 | 0.9500 |
N6—C17 | 1.4339 (15) | C20—C21 | 1.404 (2) |
N6—C7 | 1.4922 (16) | C20—H20 | 0.9500 |
C7—C7A | 1.5455 (16) | C21—C22 | 1.4120 (17) |
C7—H7A | 0.9900 | C21—H21 | 0.9500 |
C7—H7B | 0.9900 | C22—H22 | 0.9500 |
C7A—C8 | 1.5229 (16) | ||
C8A—O1—C2 | 106.64 (9) | O1—C8A—C3A | 110.05 (10) |
C10—O3—H3B | 108.7 (19) | C2—C9—H9A | 109.5 |
C10—O3'—H3C | 105 (3) | C2—C9—H9B | 109.5 |
C3—C2—O1 | 113.10 (10) | H9A—C9—H9B | 109.5 |
C3—C2—C9 | 132.64 (11) | C2—C9—H9C | 109.5 |
O1—C2—C9 | 114.21 (11) | H9A—C9—H9C | 109.5 |
C2—C3—C3A | 109.08 (10) | H9B—C9—H9C | 109.5 |
C2—C3—H3 | 125.5 | O2'—C10—O3' | 122.8 (3) |
C3A—C3—H3 | 125.5 | O2—C10—O3 | 123.54 (18) |
C3—C3A—C8A | 101.04 (9) | O2'—C10—C4 | 122.2 (2) |
C3—C3A—C4 | 119.58 (10) | O2—C10—C4 | 122.69 (16) |
C8A—C3A—C4 | 113.14 (10) | O3'—C10—C4 | 114.8 (2) |
C3—C3A—H3A | 107.5 | O3—C10—C4 | 113.54 (12) |
C8A—C3A—H3A | 107.5 | C16—C11—C12 | 118.27 (11) |
C4—C3A—H3A | 107.5 | C16—C11—C4 | 122.03 (10) |
C11—C4—C10 | 113.00 (9) | C12—C11—C4 | 119.44 (10) |
C11—C4—C4A | 108.45 (9) | C13—C12—C11 | 120.79 (12) |
C10—C4—C4A | 112.78 (9) | C13—C12—H12 | 119.6 |
C11—C4—C3A | 113.68 (9) | C11—C12—H12 | 119.6 |
C10—C4—C3A | 102.35 (9) | C14—C13—C12 | 120.22 (11) |
C4A—C4—C3A | 106.37 (9) | C14—C13—H13 | 119.9 |
C5—C4A—C7A | 104.03 (9) | C12—C13—H13 | 119.9 |
C5—C4A—C4 | 120.24 (10) | C13—C14—C15 | 119.79 (12) |
C7A—C4A—C4 | 116.57 (9) | C13—C14—H14 | 120.1 |
C5—C4A—H4A | 104.8 | C15—C14—H14 | 120.1 |
C7A—C4A—H4A | 104.8 | C14—C15—C16 | 119.94 (12) |
C4—C4A—H4A | 104.8 | C14—C15—H15 | 120.0 |
O4—C5—N6 | 126.58 (11) | C16—C15—H15 | 120.0 |
O4—C5—C4A | 127.39 (10) | C11—C16—C15 | 120.97 (11) |
N6—C5—C4A | 105.85 (10) | C11—C16—H16 | 119.5 |
C5—N6—C17 | 124.82 (10) | C15—C16—H16 | 119.5 |
C5—N6—C7 | 112.14 (9) | C22—C17—C18 | 119.90 (11) |
C17—N6—C7 | 121.96 (9) | C22—C17—N6 | 119.68 (11) |
N6—C7—C7A | 101.90 (9) | C18—C17—N6 | 120.39 (11) |
N6—C7—H7A | 111.4 | C19—C18—C17 | 119.53 (12) |
C7A—C7—H7A | 111.4 | C19—C18—H18 | 120.2 |
N6—C7—H7B | 111.4 | C17—C18—H18 | 120.2 |
C7A—C7—H7B | 111.4 | C20—C19—C18 | 120.80 (12) |
H7A—C7—H7B | 109.3 | C20—C19—H19 | 119.6 |
C8—C7A—C7 | 118.78 (10) | C18—C19—H19 | 119.6 |
C8—C7A—C4A | 108.15 (9) | C21—C20—C19 | 119.66 (12) |
C7—C7A—C4A | 100.28 (9) | C21—C20—H20 | 120.2 |
C8—C7A—H7C | 109.7 | C19—C20—H20 | 120.2 |
C7—C7A—H7C | 109.7 | C20—C21—C22 | 120.33 (12) |
C4A—C7A—H7C | 109.7 | C20—C21—H21 | 119.8 |
C8A—C8—C7A | 112.47 (10) | C22—C21—H21 | 119.8 |
C8A—C8—H8 | 123.8 | C17—C22—C21 | 119.77 (12) |
C7A—C8—H8 | 123.8 | C17—C22—H22 | 120.1 |
C8—C8A—O1 | 126.48 (11) | C21—C22—H22 | 120.1 |
C8—C8A—C3A | 123.47 (10) | ||
C8A—O1—C2—C3 | 0.41 (14) | C4—C3A—C8A—C8 | −47.35 (15) |
C8A—O1—C2—C9 | −177.19 (10) | C3—C3A—C8A—O1 | 2.97 (12) |
O1—C2—C3—C3A | 1.57 (14) | C4—C3A—C8A—O1 | 132.04 (10) |
C9—C2—C3—C3A | 178.61 (13) | C11—C4—C10—O2' | −38.9 (3) |
C2—C3—C3A—C8A | −2.68 (13) | C4A—C4—C10—O2' | −162.3 (3) |
C2—C3—C3A—C4 | −127.51 (11) | C3A—C4—C10—O2' | 83.8 (3) |
C3—C3A—C4—C11 | 27.00 (14) | C11—C4—C10—O2 | 137.8 (2) |
C8A—C3A—C4—C11 | −91.82 (11) | C4A—C4—C10—O2 | 14.3 (2) |
C3—C3A—C4—C10 | −95.20 (11) | C3A—C4—C10—O2 | −99.5 (2) |
C8A—C3A—C4—C10 | 145.99 (9) | C11—C4—C10—O3' | 146.8 (3) |
C3—C3A—C4—C4A | 146.28 (10) | C4A—C4—C10—O3' | 23.3 (3) |
C8A—C3A—C4—C4A | 27.46 (12) | C3A—C4—C10—O3' | −90.5 (3) |
C11—C4—C4A—C5 | −87.06 (12) | C11—C4—C10—O3 | −47.5 (2) |
C10—C4—C4A—C5 | 38.87 (14) | C4A—C4—C10—O3 | −170.99 (17) |
C3A—C4—C4A—C5 | 150.30 (10) | C3A—C4—C10—O3 | 75.12 (19) |
C11—C4—C4A—C7A | 145.69 (9) | C10—C4—C11—C16 | −26.72 (14) |
C10—C4—C4A—C7A | −88.38 (12) | C4A—C4—C11—C16 | 99.09 (12) |
C3A—C4—C4A—C7A | 23.04 (12) | C3A—C4—C11—C16 | −142.82 (10) |
C7A—C4A—C5—O4 | 162.69 (11) | C10—C4—C11—C12 | 159.31 (10) |
C4—C4A—C5—O4 | 29.90 (17) | C4A—C4—C11—C12 | −74.88 (13) |
C7A—C4A—C5—N6 | −21.89 (11) | C3A—C4—C11—C12 | 43.20 (14) |
C4—C4A—C5—N6 | −154.68 (10) | C16—C11—C12—C13 | 1.81 (17) |
O4—C5—N6—C17 | 4.24 (19) | C4—C11—C12—C13 | 176.01 (10) |
C4A—C5—N6—C17 | −171.23 (10) | C11—C12—C13—C14 | −0.89 (18) |
O4—C5—N6—C7 | 172.53 (11) | C12—C13—C14—C15 | −0.55 (18) |
C4A—C5—N6—C7 | −2.94 (12) | C13—C14—C15—C16 | 1.02 (19) |
C5—N6—C7—C7A | 26.50 (12) | C12—C11—C16—C15 | −1.34 (17) |
C17—N6—C7—C7A | −164.83 (9) | C4—C11—C16—C15 | −175.38 (10) |
N6—C7—C7A—C8 | −154.90 (10) | C14—C15—C16—C11 | −0.06 (18) |
N6—C7—C7A—C4A | −37.46 (10) | C5—N6—C17—C22 | 145.02 (12) |
C5—C4A—C7A—C8 | 161.73 (9) | C7—N6—C17—C22 | −22.18 (16) |
C4—C4A—C7A—C8 | −63.41 (12) | C5—N6—C17—C18 | −37.12 (17) |
C5—C4A—C7A—C7 | 36.67 (10) | C7—N6—C17—C18 | 155.69 (11) |
C4—C4A—C7A—C7 | 171.53 (9) | C22—C17—C18—C19 | −0.28 (18) |
C7—C7A—C8—C8A | 159.62 (11) | N6—C17—C18—C19 | −178.14 (11) |
C4A—C7A—C8—C8A | 46.40 (13) | C17—C18—C19—C20 | 0.93 (19) |
C7A—C8—C8A—O1 | −172.99 (10) | C18—C19—C20—C21 | −0.6 (2) |
C7A—C8—C8A—C3A | 6.30 (16) | C19—C20—C21—C22 | −0.37 (19) |
C2—O1—C8A—C8 | 177.14 (12) | C18—C17—C22—C21 | −0.67 (17) |
C2—O1—C8A—C3A | −2.22 (12) | N6—C17—C22—C21 | 177.20 (10) |
C3—C3A—C8A—C8 | −176.42 (11) | C20—C21—C22—C17 | 1.00 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O2i | 0.91 (3) | 1.79 (3) | 2.692 (3) | 176 (3) |
O3′—H3C···O2′i | 0.91 (5) | 1.79 (5) | 2.690 (6) | 169 (4) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Funding information
This publication was supported by the Ministry of Education and Science of the Russian Federation (contract No. 4.1154.2017/4.6; X-ray structural analysis) and by the Russian Foundation for Basic Research (grant No. 16–03-00125; synthetic part).
References
Ancerewicz, J. & Vogel, P. (1993). Heterocycles, 36, 537–552. Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018). J. Org. Chem. 83, 4840–4850. Web of Science CrossRef Google Scholar
Davies, W. & Porter, Q. N. (1957a). J. Chem. Soc. pp. 4958–4960. CrossRef Web of Science Google Scholar
Davies, W. & Porter, Q. N. (1957b). J. Chem. Soc. pp. 4961–4967. CrossRef Web of Science Google Scholar
Doyle, R. A. (2011). MarCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA. Google Scholar
Drew, M. B., Jahans, A., Harwood, L. M. & Apoux, S. B. H. (2002). Eur. J. Org. Chem. pp. 3589–3594. CrossRef Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghobsi, A., Hacini, S., Wavrin, L., Gaudel-Siri, A., Corbères, A., Nicolas, C., Bonne, D., Viala, J. & Rodriguez, J. (2008). Eur. J. Org. Chem. pp. 4446–4453. Web of Science CrossRef Google Scholar
Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499–4501. Web of Science CrossRef Google Scholar
Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103–4106. Web of Science CrossRef Google Scholar
Kaufmann, H. P. & Sen Gupta, A. K. (1963). Chem. Ber. 96, 2489–2498. CrossRef Web of Science Google Scholar
Kim, J. W., Lim, J. W., Moon, H. R. & Kim, J. N. (2014). Bull. Korean Chem. Soc. 35, 3254–3260. Web of Science CrossRef Google Scholar
Maas, G., Reinhard, R. & Herz, H.-G. (2006). Z. Naturforsch. B, 61, 385–395. CrossRef Google Scholar
Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888. Web of Science CrossRef Google Scholar
Patre, R. E., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517–3520. Web of Science CrossRef CAS Google Scholar
Paul, R. (1943). Bull. Soc. Chim. Fr. 10, 163–167. Google Scholar
Schmidt, C. H. (1953). Naturwissenschaften, 40, 581–582. CrossRef Web of Science Google Scholar
Scully, J. F. & Brown, E. V. (1953). J. Am. Chem. Soc. 75, 6329–6330. CrossRef Web of Science Google Scholar
Sears, J. E. & Boger, D. L. (2016). Acc. Chem. Res. 49, 241–251. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Szmuszkovicz, M. & Modest, E. J. (1950). J. Am. Chem. Soc. 72, 571–577. CrossRef Web of Science Google Scholar
Wavrin, L., Nicolas, C., Viala, J. & Rodriguez, J. (2004). Synlett, pp. 1820–1822. Google Scholar
Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239–2253. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.