research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

IMDAV reaction between phenyl­maleic anhydride and thien­yl(fur­yl)allyl­amines: synthesis and mol­ecular structure of (3aSR,4RS,4aRS,7aSR)-5-oxothieno- and (3aSR,4SR,4aRS,7aSR)-5-oxofuro[2,3-f]iso­indole-4-carb­­oxy­lic acids

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon, bOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, cNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, and dInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
*Correspondence e-mail: toflavien@yahoo.fr

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 21 August 2018; accepted 28 August 2018; online 7 September 2018)

The title compounds C24H21NO3S, I, and C24H21NO4, II, are the products of the IMDAV reaction between phenyl­maleic anhydride and thien­yl(fur­yl)allyl­amines. Their mol­ecular structures comprise fused tricyclic systems containing thio­phene, cyclo­hexene and pyrrolidine rings (I) or furan, cyclo­hexene and pyrrolidine rings (II). The central cyclo­hexene and pyrrolidine rings in both compounds adopt slightly twisted boat and envelope conformations, respectively. The dihedral angles between the basal plane of the pyrrolidine ring and the thio­phene (in I) or furan (in II) ring plane are 22.74 (16) and 26.29 (5)°, respectively. The nitro­gen atom both in I and II has practically planar environment [the sums of the bond angles are 359.8 and 358.9°, respectively]. In the crystal of I, the mol­ecules form hydrogen-bonded zigzag chains along [010] through strong inter­molecular O—H⋯O hydrogen bonds involving carb­oxy­lic and keto groups, whereas in the crystal of II, the mol­ecules are joined into centrosymmetric dimers by strong O—H⋯O hydrogen bonds between the carb­oxy­lic groups. In II, the atoms involved into these hydrogen bonds (and hence the whole carb­oxy­lic group) are disordered over two sets of sites with an occupancy ratio of 0.6:0.4. Compounds I and II crystallize as racemates consisting of enanti­omeric pairs of the 3aSR,4RS,4aRS,7aSR and 3aSR,4SR,4aRS,7aSR diastereomers, respectively.

1. Chemical context

Cascade transformations including one or more tandem or sequential [4 + 2] cyclo­addition reactions are a useful and high-usage tool in organic synthesis (Parvatkar et al., 2014[Parvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857-2888.]; Sears & Boger, 2016[Sears, J. E. & Boger, D. L. (2016). Acc. Chem. Res. 49, 241-251.]; Borisova et al., 2018[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018). J. Org. Chem. 83, 4840-4850.]). In most cases, conjugated linear or cyclic alkadienes are the starting mat­erials for these transformations. Along with this, it has long been known that furan, thio­phene and pyrrole, possessing a conjugated system of double bonds, can also act as a diene moiety. Around 50 years ago, it was found that 2-vinyl­furans and 2-vinyl­thio­phenes can play the role of dienes in the inter­molecular Diels–Alder reaction, which cleared a short way to benzo­furan or benzo­thio­phene derivatives (Paul, 1943[Paul, R. (1943). Bull. Soc. Chim. Fr. 10, 163-167.]; Szmuszkovicz & Modest, 1950[Szmuszkovicz, M. & Modest, E. J. (1950). J. Am. Chem. Soc. 72, 571-577.]; Schmidt, 1953[Schmidt, C. H. (1953). Naturwissenschaften, 40, 581-582.]; Scully & Brown, 1953[Scully, J. F. & Brown, E. V. (1953). J. Am. Chem. Soc. 75, 6329-6330.]; Davies & Porter, 1957a[Davies, W. & Porter, Q. N. (1957a). J. Chem. Soc. pp. 4958-4960.],b[Davies, W. & Porter, Q. N. (1957b). J. Chem. Soc. pp. 4961-4967.]; Kaufmann & Sen Gupta, 1963[Kaufmann, H. P. & Sen Gupta, A. K. (1963). Chem. Ber. 96, 2489-2498.]; Ancerewicz & Vogel, 1993[Ancerewicz, J. & Vogel, P. (1993). Heterocycles, 36, 537-552.]; Drew et al., 2002[Drew, M. B., Jahans, A., Harwood, L. M. & Apoux, S. B. H. (2002). Eur. J. Org. Chem. pp. 3589-3594.]; Wavrin et al., 2004[Wavrin, L., Nicolas, C., Viala, J. & Rodriguez, J. (2004). Synlett, pp. 1820-1822.]; Ghobsi et al., 2008[Ghobsi, A., Hacini, S., Wavrin, L., Gaudel-Siri, A., Corbères, A., Nicolas, C., Bonne, D., Viala, J. & Rodriguez, J. (2008). Eur. J. Org. Chem. pp. 4446-4453.]). At the end of the last century, it was demonstrated that this reaction could be performed in an intra­molecular variant when both a heterocyclic diene and a dienophilic moiety are incorporated in the same mol­ecule.

The IMDAV (IntraMolecular Diels–Alder Vinylarenes) reaction (Fig. 1[link]) has become a powerful tool in organic synthesis because of its simplicity and reliability, which assures good yields of benzo­furans and benzo­thio­phenes annulated with other carbo- and heterocycles (Maas et al., 2006[Maas, G., Reinhard, R. & Herz, H.-G. (2006). Z. Naturforsch. B, 61, 385-395.]; Patre et al., 2007[Patre, R. E., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517-3520.]; Kim et al., 2014[Kim, J. W., Lim, J. W., Moon, H. R. & Kim, J. N. (2014). Bull. Korean Chem. Soc. 35, 3254-3260.]).

[Figure 1]
Figure 1
Intra- and inter­molecular Diels–Alder reaction in vinyl­furans and vinyl­thio­phenes in the synthesis of benzo­furans and benzo­thio­phenes.

Previously, with the example of the inter­action between maleic anhydride and 3-thien­yl(fur­yl)allyl­amines, our group demonstrated the possibility of the domino-sequence involving N-acyl­ation, IMDAV reaction and aromatization steps leading to 4H-furo- or thieno[2,3-f]iso­indoles (Horak et al., 2015[Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499-4501.], 2017[Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103-4106.]; Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239-2253.]). The aim of the present study was elucidation of the regio- and stereoselectivity of the reaction between phenyl­maleic anhydride and thien­yl(fur­yl)allyl­amines in order to establish the scope and the limitations of the IMDAV reaction (Fig. 2[link]).

[Figure 2]
Figure 2
Synthesis of (3aSR,4RS,4aRS,7aSR)-5-oxothieno[2,3-f]iso­indole-4-carb­oxy­lic acid (I)[link] and (3aSR,4SR,4aRS,7aSR)-5-oxofuro[2,3-f]iso­indole-4-carb­oxy­lic acid (II)[link].

The reaction proceeds smoothly at room temperature, a simple filtration of the resulting crystalline products from ethyl acetate giving adducts I and II in good yields. The Diels–Alder reaction proceeds regio- and stereoselectively as an exo-[4 + 2] cyclo­addition (Fig. 2[link]). The nucleophilic attack of the nitro­gen atom is directed at the least sterically hindered carbon atom of the carbonyl group of phenyl­maleic anhydride, thus amide A is not formed. The inter­mediate amide B cannot be isolated, and the spontaneous intra­molecular Diels–Alder reaction completes the process, leading to the target compounds I and II. The migration of proton H3a in adducts I, II and the formation of compound C is not observed under these conditions (Horak et al., 2015[Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499-4501.], 2017[Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103-4106.]; Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239-2253.]).

[Scheme 1]

2. Structural commentary

Despite the very similar mol­ecular structures, compounds I, C24H21NO3S and II, C24H21NO4 are not isostructural. Compound I crystallizes in the monoclinic space group P21/n, while compound II crystallizes in the triclinic space group P[\overline{1}].

The mol­ecules of I and II comprise fused tricyclic systems containing thio­phene, cyclo­hexene and pyrrolidine rings in I (Fig. 3[link]) and furan, cyclo­hexene and pyrrolidine rings in II (Fig. 4[link]). The central cyclo­hexene and pyrrolidine rings in both compounds adopt slightly distorted boat and envelope conformations, respectively. The dihedral angles between the basal plane of the pyrrolidine ring (N5/N6/C4A/C7) and the thio­phene (in I) or furan (in II) ring planes are 22.74 (16) and 26.29 (5)°, respectively. The N6 nitro­gen atom both in I and II has practically planar environment (the sums of the bond angles are 359.8 and 358.9°, respectively).

[Figure 3]
Figure 3
Mol­ecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 4]
Figure 4
Mol­ecular structure of II. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The minor occupancy position of the –COOH group is depicted with dashed lines.

In the mol­ecule of II, the carb­oxy­lic group is disordered over two orientations with inter­changing hydrogen atom positions (Fig. 4[link]), the occupancy ratio being 0.6:0.4.

The mol­ecules of I and II possess four asymmetric centers at the C3A, C4, C4A and C7A carbon atoms and potentially can have numerous diastereomers. The crystals of I and II are racemic and consist of enanti­omeric pairs with the following relative configuration of the centers: 3aSR,4RS,4aRS,7aSR and 3aSR,4SR,4aRS,7aSR, respectively, thus I and II differ in the configuration at the C4 atom.

3. Supra­molecular features

In the crystal of I, mol­ecules form hydrogen-bonded zigzag chains propagating along [010] through strong O—H⋯O hydrogen bonds involving the carb­oxy­lic and keto groups (Table 1[link], Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 1.04 (5) 1.63 (5) 2.667 (4) 174 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 5]
Figure 5
The hydrogen-bonded zigzag chains along the b-axis direction in I. Dashed lines indicate the inter­molecular O—H⋯O hydrogen bonds.

Contrary to I, in the crystal of II, mol­ecules form hydrogen-bonded centrosymmetric dimers through pairs of strong O—H⋯O hydrogen bonds between two carb­oxy­lic groups (Table 2[link], Fig. 6[link]). The dimers are stacked along the a-axis direction.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2i 0.91 (3) 1.79 (3) 2.692 (3) 176 (3)
O3′—H3C⋯O2′i 0.91 (5) 1.79 (5) 2.690 (6) 169 (4)
Symmetry code: (i) -x+1, -y+1, -z+2.
[Figure 6]
Figure 6
The hydrogen-bonded centrosymmetric dimers of II. Dashed lines indicate the inter­molecular O—H⋯O hydrogen bonds. The minor occupancy –COOH groups are omitted for clarity.

4. Synthesis and crystallization

2-Methyl-4,6-diphenyl-4,4a,5,6,7,7a-hexa­hydro-3aH-thieno(furo)[2,3-f]iso­indole-4-carb­oxy­lic acids (I and II) were synthesized using a method similar to the procedure described recently (Horak et al., 2015[Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499-4501.], 2017[Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103-4106.]; Zubkov et al., 2016[Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239-2253.]).

General procedure. A solution of N-[(2E)-3-(5-methyl­thio­phen-2-yl)prop-2-en-1-yl]aniline (for I) or N-[(2E)-3-(5-methyl­furan-2-yl)prop-2-en-1-yl]aniline (for II) (2 mmol) in ethyl acetate (10 mL) was placed into a 25 mL round-bottom flask and then phenyl­maleic anhydride (0.35 g, 2.0 mmol) was added. The mixture was stirred for two days at room temperature. The formed precipitate was filtered off, washed with Et2O (2 × 10 mL) and dried in air. The resulting product was recrystallized from a mixture of EtOH–DMF (5:1 v:v) to afford the analytically pure samples of target products.

(3aRS,4SR,4aSR,7aSR)-2-Methyl-5-oxo-4,6-diphenyl-4,4a,5,6,7,7a-hexa­hydro-3aH-thieno[2,3-f]iso­indole-4-carb­oxy­lic acid (I)[link]. Colourless prisms. Yield 0.69 g (85%). M.p. = 447.1–448.1 K. IR (KBr), ν (cm−1): 3095, 1701. 1H NMR (DMSO-d6, 600.2 MHz, 301 K) δ = 13.04 (s, 1H, CO2H), 7.52–7.03 (m, 10H, HAr), 6.30 (dt, 1H, H8, J = 1.0, J = 3.5), 5.15 (pent, 1H, H3, J = 1.3), 4.16–4.14 (m, 1H, H3a), 3.99 (dd, 1H, H7a, J = 7.6, J = 8.8), 3.67 (dd, 1H, H7b, J = 8.8, J = 10.8), 2.95–2.89 (m, 1H, H7a), 2.25 (d, 1H, H4a, J = 12.6), 1.92 (q, 3H, CH3, J = 1.3). 13C NMR (DMSO-d6, 150.9 MHz, 301 K): δ = 175.4, 171.2 (CO2, NCO), 143.1, 141.3, 140.4, 136.6, 129.1 (2C), 129.0 (2C), 127.7 (2C), 126.5, 124.1, 120.5, 120.3, 119.7 (2C), 61.9, 60.1, 54.7, 49.5, 37.9, 16.7 (CH3). MS (APCI): m/z = 404 [M + H]+.

(3aRS,4RS,4aSR,7aRS)-2-Methyl-5-oxo-4,6-diphenyl-4,4a,5,6,7,7a-hexa­hydro-3aH-furo[2,3-f]iso­indole-4-carb­oxy­lic acid (II)[link]. Colourless prisms. Yield 0.60 g (77%). M.p. = 422-423 K. IR (KBr), ν (cm−1): 1703, 1656. 1H NMR (DMSO-d6, 600.2 MHz, 301 K) δ = 13.00 (s, 1H, CO2H), 7.55 (dd, 2H, HAr, J = 7.6, J = 8.3), 7.33 (dd, 2H, HAr, J = 7.6, J = 8.6), 7.24 (dd, 2H, HAr, J = 7.6, J = 8.3), 7.15–7.13 (m, 3H, HAr), 7.08 (t, 1H, HAr, J = 7.6), 5.59 (dt, 1H, H8, J = 1.0, J = 3.5), 4.68 (dd, 1H, H3a, J = 1.0, J = 1.5), 4.08–4.02 (m, 2H, H3, H7a), 3.68 (dd, 1H, H7b, J = 8.8, J = 10.8), 2.94–2.88 (m, 1H, H7a), 2.40 (d, 1H, H4a, J = 12.1), 1.91 (s, 3H, CH3). 13C NMR (DMSO-d6, 150.9 MHz, 301 K): δ = 174.8, 170.7 (CO2, NCO), 157.8, 154.3, 141.9, 139.9, 128.8 (2C), 128.5 (2C), 127.1 (2C), 125.9, 123.5, 119.1 (2C), 100.2, 97.6, 60.9, 53.4, 52.5, 49.3, 35.1, 13.3 (CH3). MS (APCI): m/z = 388 [M + H]+.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. X-ray diffraction studies were carried out on the `Belok' beamline of the National Research Center `Kurchatov Institute' (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 720 images for each compounds were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMOSFLM in the CCP4 program (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

Table 3
Experimental details

  I II
Crystal data
Chemical formula C24H21NO3S C24H21NO4
Mr 403.48 387.42
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 14.572 (3), 8.7989 (18), 16.982 (3) 8.1851 (16), 11.025 (2), 11.795 (2)
α, β, γ (°) 90, 111.92 (3), 90 99.14 (3), 92.51 (3), 107.99 (3)
V3) 2020.0 (8) 994.6 (4)
Z 4 2
Radiation type Synchrotron, λ = 0.96260 Å Synchrotron, λ = 0.81182 Å
μ (mm−1) 0.41 0.12
Crystal size (mm) 0.15 × 0.10 × 0.10 0.20 × 0.12 × 0.08
 
Data collection
Diffractometer Rayonix SX165 CCD Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.930, 0.950 0.963, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 12006, 4140, 2888 18107, 4204, 3839
Rint 0.101 0.092
(sin θ/λ)max−1) 0.645 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.244, 1.04 0.048, 0.129, 1.06
No. of reflections 4140 4204
No. of parameters 267 276
No. of restraints 0 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.83 0.31, −0.25
Computer programs: MarCCD (Doyle, 2011[Doyle, R. A. (2011). MarCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The COOH-group in II is disordered over two orientations. The refinement of their occupancy factors was unstable, thus the occupancies were constrained to a 0.6:0.4 ratio. The two positions of this group were refined at fixed C=O and C—O distances of 1.210 (3) and 1.320 (3) Å, respectively. Moreover, the anisotropic displacement parameters for the oxygen atoms of the C=O and C—O groups were restrained to be equal.

The hydrogen atoms of the OH groups were localized in difference-Fourier maps and refined isotropically with fixed displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined using the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 groups and 1.2Ueq(C) for all others].

A relatively large number of reflections (a few dozen) were omitted for the following reasons: (1) In order to achieve better I/σ statistics for high-angle reflections we selected a larger exposure time, which resulted in some intensity overloads in the low-angle part of the area. These corrupted intensities were excluded from the final steps of the refinement. (2) In the current setup of the instrument, the low-temperature device eclipses a small region of the detector near its high-angle limit. This resulted in zero intensity for some reflections. (3) The quality of the single crystals chosen for the diffraction experiments was far from perfect. Some systematic intensity deviations can be due to extinction and defects present in the crystals.

Supporting information


Computing details top

For both structures, data collection: MarCCD (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3aSR,4RS,4aRS,7aSR)-5-Oxothieno[2,3-f]isoindole-4-carboxylic acid (I) top
Crystal data top
C24H21NO3SF(000) = 848
Mr = 403.48Dx = 1.327 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.96260 Å
a = 14.572 (3) ÅCell parameters from 600 reflections
b = 8.7989 (18) Åθ = 3.6–36.0°
c = 16.982 (3) ŵ = 0.41 mm1
β = 111.92 (3)°T = 100 K
V = 2020.0 (8) Å3Prism, colourless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2888 reflections with I > 2σ(I)
/f scanRint = 0.101
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 3.6°
Tmin = 0.930, Tmax = 0.950h = 1218
12006 measured reflectionsk = 108
4140 independent reflectionsl = 2114
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.082H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.244 w = 1/[σ2(Fo2) + (0.08P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4140 reflectionsΔρmax = 0.57 e Å3
267 parametersΔρmin = 0.83 e Å3
0 restraintsExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.027 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70674 (7)0.54365 (14)0.24110 (6)0.0381 (4)
C20.6019 (3)0.5821 (5)0.1467 (3)0.0360 (10)
C30.5152 (3)0.5575 (5)0.1543 (2)0.0337 (9)
H30.45400.56940.10790.040*
C3A0.5203 (3)0.5094 (5)0.2417 (2)0.0288 (8)
H3A0.49930.60070.26580.035*
C40.4494 (2)0.3754 (4)0.2477 (2)0.0253 (8)
C4A0.4981 (2)0.3035 (4)0.3372 (2)0.0249 (8)
H4A0.53760.21530.32990.030*
C50.4338 (3)0.2403 (4)0.3820 (2)0.0243 (8)
O30.35066 (18)0.1829 (3)0.34752 (14)0.0299 (7)
N60.4879 (2)0.2501 (4)0.46806 (17)0.0274 (7)
C70.5884 (3)0.3135 (5)0.4862 (2)0.0295 (9)
H7A0.63780.23180.49420.035*
H7B0.60970.37950.53710.035*
C7A0.5723 (2)0.4056 (4)0.4050 (2)0.0248 (8)
H7C0.53840.50290.40810.030*
C80.6579 (3)0.4419 (5)0.3776 (2)0.0305 (9)
H80.72520.43340.41460.037*
C8A0.6300 (3)0.4869 (5)0.2967 (2)0.0302 (9)
C90.6196 (4)0.6459 (6)0.0702 (3)0.0494 (12)
H9A0.65070.74620.08440.074*
H9B0.55630.65530.02230.074*
H9C0.66330.57730.05490.074*
C100.3550 (3)0.4624 (4)0.2411 (2)0.0243 (8)
O10.33975 (18)0.5090 (3)0.30274 (15)0.0303 (7)
O20.29599 (19)0.4951 (3)0.16006 (15)0.0294 (6)
H20.240 (3)0.567 (5)0.161 (3)0.044*
C110.4327 (2)0.2480 (5)0.1814 (2)0.0258 (8)
C120.3445 (3)0.1640 (4)0.1514 (2)0.0263 (8)
H120.29020.19560.16560.032*
C130.3348 (3)0.0346 (5)0.1011 (2)0.0305 (9)
H130.27470.02130.08190.037*
C140.4136 (3)0.0122 (5)0.0790 (2)0.0326 (9)
H140.40700.09920.04410.039*
C150.5016 (3)0.0688 (5)0.1082 (2)0.0338 (10)
H150.55540.03640.09360.041*
C160.5118 (3)0.1985 (4)0.1591 (2)0.0270 (8)
H160.57240.25310.17860.032*
C170.4580 (3)0.1950 (4)0.5344 (2)0.0270 (8)
C180.5317 (3)0.1501 (5)0.6121 (2)0.0324 (9)
H180.59930.14910.61850.039*
C190.5044 (3)0.1070 (5)0.6798 (2)0.0383 (10)
H190.55390.07610.73200.046*
C200.4059 (3)0.1088 (5)0.6717 (2)0.0372 (10)
H200.38820.08160.71830.045*
C210.3333 (3)0.1510 (5)0.5943 (2)0.0362 (10)
H210.26580.15050.58820.043*
C220.3584 (3)0.1941 (5)0.5253 (2)0.0323 (9)
H220.30830.22250.47290.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0248 (6)0.0533 (8)0.0398 (6)0.0065 (5)0.0164 (5)0.0001 (5)
C20.030 (2)0.041 (2)0.042 (2)0.0030 (19)0.0195 (18)0.0056 (18)
C30.024 (2)0.041 (3)0.037 (2)0.0027 (18)0.0123 (17)0.0063 (17)
C3A0.0218 (18)0.032 (2)0.0324 (18)0.0015 (16)0.0094 (15)0.0003 (16)
C40.0166 (17)0.035 (2)0.0225 (15)0.0000 (15)0.0049 (14)0.0036 (15)
C4A0.0176 (17)0.034 (2)0.0223 (16)0.0016 (16)0.0063 (14)0.0051 (15)
C50.0204 (17)0.028 (2)0.0212 (15)0.0020 (15)0.0043 (14)0.0019 (14)
O30.0221 (14)0.0400 (17)0.0245 (12)0.0068 (12)0.0053 (10)0.0024 (11)
N60.0190 (15)0.043 (2)0.0190 (13)0.0002 (14)0.0056 (12)0.0012 (13)
C70.0196 (18)0.042 (2)0.0233 (16)0.0007 (17)0.0041 (14)0.0066 (16)
C7A0.0179 (17)0.027 (2)0.0270 (17)0.0019 (15)0.0056 (14)0.0040 (15)
C80.0168 (17)0.042 (2)0.0301 (18)0.0045 (16)0.0053 (15)0.0097 (16)
C8A0.0248 (19)0.031 (2)0.0369 (19)0.0017 (17)0.0136 (16)0.0052 (16)
C90.047 (3)0.053 (3)0.056 (3)0.000 (2)0.029 (2)0.017 (2)
C100.0163 (17)0.032 (2)0.0226 (15)0.0054 (15)0.0052 (14)0.0008 (14)
O10.0252 (14)0.0393 (17)0.0279 (12)0.0035 (12)0.0117 (11)0.0030 (11)
O20.0220 (13)0.0398 (17)0.0251 (12)0.0064 (12)0.0073 (10)0.0021 (11)
C110.0198 (17)0.038 (2)0.0194 (15)0.0005 (16)0.0070 (13)0.0056 (15)
C120.0221 (18)0.034 (2)0.0213 (15)0.0016 (16)0.0066 (14)0.0011 (14)
C130.029 (2)0.036 (2)0.0223 (16)0.0002 (17)0.0043 (15)0.0001 (15)
C140.042 (2)0.034 (2)0.0204 (16)0.0033 (19)0.0101 (16)0.0011 (15)
C150.035 (2)0.045 (3)0.0249 (17)0.0068 (19)0.0162 (17)0.0013 (17)
C160.0240 (19)0.035 (2)0.0233 (16)0.0004 (16)0.0099 (14)0.0027 (15)
C170.031 (2)0.029 (2)0.0221 (16)0.0044 (16)0.0110 (15)0.0002 (14)
C180.032 (2)0.037 (2)0.0258 (17)0.0047 (18)0.0074 (16)0.0002 (16)
C190.050 (3)0.036 (2)0.0252 (18)0.005 (2)0.0096 (18)0.0008 (16)
C200.052 (3)0.038 (2)0.0273 (18)0.000 (2)0.0204 (18)0.0008 (16)
C210.037 (2)0.040 (3)0.035 (2)0.0058 (19)0.0174 (18)0.0024 (17)
C220.035 (2)0.038 (2)0.0254 (17)0.0021 (18)0.0133 (16)0.0007 (16)
Geometric parameters (Å, º) top
S1—C8A1.782 (4)C9—H9B0.9800
S1—C21.785 (4)C9—H9C0.9800
C2—C31.335 (5)C10—O11.219 (4)
C2—C91.523 (6)C10—O21.353 (4)
C3—C3A1.519 (5)O2—H21.04 (5)
C3—H30.9500C11—C121.404 (5)
C3A—C8A1.534 (5)C11—C161.409 (5)
C3A—C41.596 (5)C12—C131.399 (5)
C3A—H3A1.0000C12—H120.9500
C4—C101.542 (5)C13—C141.397 (5)
C4—C111.543 (5)C13—H130.9500
C4—C4A1.551 (5)C14—C151.387 (6)
C4A—C51.517 (5)C14—H140.9500
C4A—C7A1.541 (5)C15—C161.406 (5)
C4A—H4A1.0000C15—H150.9500
C5—O31.239 (4)C16—H160.9500
C5—N61.379 (4)C17—C221.400 (5)
N6—C171.435 (4)C17—C181.412 (5)
N6—C71.488 (4)C18—C191.401 (5)
C7—C7A1.540 (5)C18—H180.9500
C7—H7A0.9900C19—C201.390 (6)
C7—H7B0.9900C19—H190.9500
C7A—C81.519 (5)C20—C211.394 (6)
C7A—H7C1.0000C20—H200.9500
C8—C8A1.340 (5)C21—C221.404 (5)
C8—H80.9500C21—H210.9500
C9—H9A0.9800C22—H220.9500
C8A—S1—C291.87 (18)C3A—C8A—S1111.1 (3)
C3—C2—C9127.6 (4)C2—C9—H9A109.5
C3—C2—S1114.0 (3)C2—C9—H9B109.5
C9—C2—S1118.3 (3)H9A—C9—H9B109.5
C2—C3—C3A115.9 (4)C2—C9—H9C109.5
C2—C3—H3122.1H9A—C9—H9C109.5
C3A—C3—H3122.1H9B—C9—H9C109.5
C3—C3A—C8A106.9 (3)O1—C10—O2123.5 (3)
C3—C3A—C4118.1 (3)O1—C10—C4123.2 (3)
C8A—C3A—C4114.8 (3)O2—C10—C4113.0 (3)
C3—C3A—H3A105.3C10—O2—H2108 (2)
C8A—C3A—H3A105.3C12—C11—C16118.0 (3)
C4—C3A—H3A105.3C12—C11—C4121.4 (3)
C10—C4—C11114.5 (3)C16—C11—C4120.0 (3)
C10—C4—C4A110.1 (3)C13—C12—C11121.3 (3)
C11—C4—C4A107.9 (3)C13—C12—H12119.3
C10—C4—C3A102.1 (3)C11—C12—H12119.3
C11—C4—C3A114.8 (3)C14—C13—C12119.9 (4)
C4A—C4—C3A107.0 (3)C14—C13—H13120.0
C5—C4A—C7A103.3 (3)C12—C13—H13120.0
C5—C4A—C4119.9 (3)C15—C14—C13119.7 (4)
C7A—C4A—C4115.5 (3)C15—C14—H14120.2
C5—C4A—H4A105.6C13—C14—H14120.2
C7A—C4A—H4A105.6C14—C15—C16120.5 (3)
C4—C4A—H4A105.6C14—C15—H15119.7
O3—C5—N6126.7 (3)C16—C15—H15119.7
O3—C5—C4A126.1 (3)C15—C16—C11120.5 (3)
N6—C5—C4A107.1 (3)C15—C16—H16119.8
C5—N6—C17126.1 (3)C11—C16—H16119.8
C5—N6—C7111.8 (3)C22—C17—C18119.7 (3)
C17—N6—C7121.9 (3)C22—C17—N6121.4 (3)
N6—C7—C7A101.7 (3)C18—C17—N6118.7 (3)
N6—C7—H7A111.4C19—C18—C17119.6 (4)
C7A—C7—H7A111.4C19—C18—H18120.2
N6—C7—H7B111.4C17—C18—H18120.2
C7A—C7—H7B111.4C20—C19—C18120.9 (4)
H7A—C7—H7B109.3C20—C19—H19119.5
C8—C7A—C7121.1 (3)C18—C19—H19119.5
C8—C7A—C4A108.7 (3)C19—C20—C21119.2 (3)
C7—C7A—C4A101.0 (3)C19—C20—H20120.4
C8—C7A—H7C108.4C21—C20—H20120.4
C7—C7A—H7C108.4C20—C21—C22121.0 (4)
C4A—C7A—H7C108.4C20—C21—H21119.5
C8A—C8—C7A114.0 (3)C22—C21—H21119.5
C8A—C8—H8123.0C17—C22—C21119.5 (4)
C7A—C8—H8123.0C17—C22—H22120.3
C8—C8A—C3A120.7 (3)C21—C22—H22120.3
C8—C8A—S1128.0 (3)
C8A—S1—C2—C30.8 (4)C3—C3A—C8A—C8179.1 (4)
C8A—S1—C2—C9177.4 (4)C4—C3A—C8A—C846.1 (5)
C9—C2—C3—C3A173.4 (4)C3—C3A—C8A—S15.9 (4)
S1—C2—C3—C3A2.9 (5)C4—C3A—C8A—S1139.0 (3)
C2—C3—C3A—C8A5.7 (5)C2—S1—C8A—C8178.5 (4)
C2—C3—C3A—C4136.9 (4)C2—S1—C8A—C3A4.0 (3)
C3—C3A—C4—C1088.3 (4)C11—C4—C10—O1143.8 (4)
C8A—C3A—C4—C10144.2 (3)C4A—C4—C10—O122.0 (5)
C3—C3A—C4—C1136.3 (5)C3A—C4—C10—O191.4 (4)
C8A—C3A—C4—C1191.3 (4)C11—C4—C10—O242.6 (4)
C3—C3A—C4—C4A156.0 (3)C4A—C4—C10—O2164.4 (3)
C8A—C3A—C4—C4A28.5 (4)C3A—C4—C10—O282.2 (3)
C10—C4—C4A—C536.4 (4)C10—C4—C11—C1232.8 (4)
C11—C4—C4A—C589.2 (4)C4A—C4—C11—C1290.2 (4)
C3A—C4—C4A—C5146.7 (3)C3A—C4—C11—C12150.6 (3)
C10—C4—C4A—C7A88.3 (3)C10—C4—C11—C16156.6 (3)
C11—C4—C4A—C7A146.1 (3)C4A—C4—C11—C1680.3 (4)
C3A—C4—C4A—C7A22.0 (4)C3A—C4—C11—C1638.9 (4)
C7A—C4A—C5—O3161.3 (4)C16—C11—C12—C130.2 (5)
C4—C4A—C5—O331.0 (6)C4—C11—C12—C13170.6 (3)
C7A—C4A—C5—N622.5 (4)C11—C12—C13—C140.7 (5)
C4—C4A—C5—N6152.8 (3)C12—C13—C14—C150.9 (5)
O3—C5—N6—C170.1 (6)C13—C14—C15—C160.6 (5)
C4A—C5—N6—C17176.1 (3)C14—C15—C16—C110.1 (5)
O3—C5—N6—C7174.8 (4)C12—C11—C16—C150.1 (5)
C4A—C5—N6—C71.4 (4)C4—C11—C16—C15171.0 (3)
C5—N6—C7—C7A24.6 (4)C5—N6—C17—C2232.3 (6)
C17—N6—C7—C7A160.5 (3)C7—N6—C17—C22153.5 (4)
N6—C7—C7A—C8156.3 (3)C5—N6—C17—C18151.7 (4)
N6—C7—C7A—C4A36.3 (3)C7—N6—C17—C1822.4 (5)
C5—C4A—C7A—C8164.7 (3)C22—C17—C18—C190.8 (6)
C4—C4A—C7A—C862.4 (4)N6—C17—C18—C19175.2 (4)
C5—C4A—C7A—C736.2 (3)C17—C18—C19—C200.4 (6)
C4—C4A—C7A—C7169.1 (3)C18—C19—C20—C211.4 (6)
C7—C7A—C8—C8A163.6 (4)C19—C20—C21—C221.2 (6)
C4A—C7A—C8—C8A47.5 (5)C18—C17—C22—C211.1 (6)
C7A—C8—C8A—C3A4.4 (5)N6—C17—C22—C21174.8 (4)
C7A—C8—C8A—S1178.4 (3)C20—C21—C22—C170.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i1.04 (5)1.63 (5)2.667 (4)174 (4)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(3aSR,4SR,4aRS,7aSR)-5-Oxofuro[2,3-f]isoindole-4-carboxylic acid (II) top
Crystal data top
C24H21NO4Z = 2
Mr = 387.42F(000) = 408
Triclinic, P1Dx = 1.294 Mg m3
a = 8.1851 (16) ÅSynchrotron radiation, λ = 0.81182 Å
b = 11.025 (2) ÅCell parameters from 600 reflections
c = 11.795 (2) Åθ = 3.5–30.0°
α = 99.14 (3)°µ = 0.12 mm1
β = 92.51 (3)°T = 100 K
γ = 107.99 (3)°Prism, colourless
V = 994.6 (4) Å30.20 × 0.12 × 0.08 mm
Data collection top
Rayonix SX165 CCD
diffractometer
3839 reflections with I > 2σ(I)
/f scanRint = 0.092
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 31.0°, θmin = 3.4°
Tmin = 0.963, Tmax = 0.987h = 1010
18107 measured reflectionsk = 1313
4204 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.2912P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4204 reflectionsΔρmax = 0.31 e Å3
276 parametersΔρmin = 0.25 e Å3
4 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.060 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.35211 (12)0.05879 (8)0.66567 (7)0.0201 (2)
O20.5385 (4)0.4663 (2)0.8623 (2)0.0241 (6)0.6
O30.5530 (4)0.35005 (19)1.00161 (16)0.0201 (5)0.6
H3B0.520 (4)0.413 (3)1.044 (3)0.030*0.6
O2'0.5693 (7)0.3756 (4)0.9980 (2)0.0241 (6)0.4
O3'0.5162 (7)0.4567 (4)0.8431 (3)0.0201 (5)0.4
H3C0.480 (6)0.505 (4)0.901 (4)0.030*0.4
O40.87874 (12)0.52722 (8)0.76246 (7)0.0223 (2)
C20.35057 (15)0.07054 (12)0.78383 (10)0.0190 (3)
C30.39805 (15)0.04459 (11)0.85592 (10)0.0187 (3)
H30.40760.05660.93780.022*
C3A0.43406 (15)0.15241 (11)0.78540 (10)0.0169 (3)
H3A0.33970.19210.79440.020*
C40.61590 (15)0.26934 (10)0.81143 (9)0.0148 (2)
C4A0.66305 (14)0.30967 (10)0.69318 (9)0.0145 (2)
H4A0.73640.25660.66270.017*
C50.76917 (15)0.44984 (11)0.68806 (10)0.0163 (3)
N60.72662 (13)0.46920 (9)0.57808 (8)0.0168 (2)
C70.60501 (15)0.34914 (11)0.50551 (10)0.0174 (3)
H7A0.66780.29840.45930.021*
H7B0.52330.36970.45330.021*
C7A0.51119 (14)0.27614 (11)0.59767 (10)0.0155 (3)
H7C0.42230.31520.62660.019*
C80.43213 (15)0.12915 (11)0.56824 (10)0.0175 (3)
H80.40440.08140.49160.021*
C8A0.40597 (15)0.07445 (11)0.66291 (10)0.0165 (3)
C90.30386 (19)0.20751 (12)0.80397 (11)0.0254 (3)
H9A0.18800.25700.76630.038*
H9B0.30560.20780.88710.038*
H9C0.38740.24730.77170.038*
C100.56971 (15)0.37472 (10)0.89451 (9)0.0163 (3)
C110.76528 (15)0.23063 (11)0.86340 (10)0.0157 (3)
C120.78551 (16)0.10987 (11)0.81712 (10)0.0181 (3)
H120.70300.05160.75810.022*
C130.92622 (17)0.07539 (12)0.85763 (11)0.0223 (3)
H130.93730.00630.82660.027*
C141.04993 (17)0.16108 (13)0.94346 (11)0.0243 (3)
H141.14430.13730.97120.029*
C151.03410 (17)0.28250 (13)0.98856 (11)0.0235 (3)
H151.11880.34151.04590.028*
C160.89229 (16)0.31656 (11)0.94849 (10)0.0189 (3)
H160.88230.39870.97940.023*
C170.81267 (15)0.58110 (11)0.53022 (10)0.0175 (3)
C180.87154 (17)0.70563 (12)0.60084 (11)0.0216 (3)
H180.85740.71550.68090.026*
C190.95104 (17)0.81456 (12)0.55163 (12)0.0250 (3)
H190.99210.89800.59920.030*
C200.97049 (17)0.80153 (12)0.43305 (12)0.0249 (3)
H201.02340.87590.40050.030*
C210.91129 (16)0.67809 (12)0.36291 (11)0.0226 (3)
H210.92370.66900.28260.027*
C220.83345 (15)0.56730 (12)0.41117 (11)0.0197 (3)
H220.79520.48380.36370.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0251 (5)0.0155 (4)0.0175 (4)0.0025 (3)0.0019 (3)0.0051 (3)
O20.0368 (12)0.0244 (9)0.0186 (11)0.0183 (8)0.0076 (8)0.0064 (7)
O30.0347 (11)0.0239 (10)0.0123 (8)0.0210 (9)0.0104 (6)0.0078 (6)
O2'0.0368 (12)0.0244 (9)0.0186 (11)0.0183 (8)0.0076 (8)0.0064 (7)
O3'0.0347 (11)0.0239 (10)0.0123 (8)0.0210 (9)0.0104 (6)0.0078 (6)
O40.0264 (5)0.0184 (4)0.0182 (4)0.0030 (3)0.0001 (4)0.0016 (3)
C20.0186 (6)0.0206 (6)0.0189 (6)0.0054 (4)0.0048 (4)0.0077 (4)
C30.0189 (6)0.0211 (6)0.0173 (6)0.0065 (5)0.0054 (4)0.0059 (4)
C3A0.0168 (5)0.0173 (5)0.0175 (6)0.0057 (4)0.0044 (4)0.0042 (4)
C40.0173 (5)0.0140 (5)0.0140 (5)0.0060 (4)0.0042 (4)0.0026 (4)
C4A0.0161 (5)0.0152 (5)0.0140 (5)0.0072 (4)0.0036 (4)0.0031 (4)
C50.0181 (6)0.0163 (5)0.0158 (6)0.0072 (4)0.0041 (4)0.0026 (4)
N60.0194 (5)0.0144 (5)0.0169 (5)0.0050 (4)0.0029 (4)0.0043 (4)
C70.0195 (6)0.0168 (5)0.0157 (5)0.0049 (4)0.0014 (4)0.0043 (4)
C7A0.0154 (5)0.0165 (5)0.0162 (5)0.0064 (4)0.0020 (4)0.0048 (4)
C80.0172 (5)0.0177 (5)0.0168 (6)0.0051 (4)0.0005 (4)0.0024 (4)
C8A0.0150 (5)0.0143 (5)0.0198 (6)0.0040 (4)0.0018 (4)0.0033 (4)
C90.0323 (7)0.0201 (6)0.0227 (6)0.0044 (5)0.0040 (5)0.0080 (5)
C100.0180 (6)0.0171 (5)0.0153 (6)0.0075 (4)0.0037 (4)0.0034 (4)
C110.0184 (6)0.0168 (5)0.0144 (5)0.0070 (4)0.0061 (4)0.0060 (4)
C120.0206 (6)0.0181 (5)0.0175 (6)0.0084 (4)0.0043 (4)0.0034 (4)
C130.0268 (7)0.0237 (6)0.0232 (6)0.0150 (5)0.0070 (5)0.0086 (5)
C140.0229 (6)0.0361 (7)0.0215 (6)0.0165 (5)0.0054 (5)0.0121 (5)
C150.0198 (6)0.0325 (7)0.0177 (6)0.0084 (5)0.0011 (5)0.0035 (5)
C160.0198 (6)0.0200 (6)0.0171 (6)0.0069 (5)0.0038 (4)0.0020 (4)
C170.0155 (5)0.0177 (5)0.0222 (6)0.0071 (4)0.0037 (4)0.0077 (4)
C180.0237 (6)0.0190 (6)0.0231 (6)0.0074 (5)0.0027 (5)0.0054 (5)
C190.0237 (6)0.0170 (6)0.0346 (7)0.0060 (5)0.0028 (5)0.0068 (5)
C200.0201 (6)0.0230 (6)0.0371 (7)0.0089 (5)0.0089 (5)0.0154 (5)
C210.0203 (6)0.0277 (6)0.0260 (7)0.0117 (5)0.0088 (5)0.0131 (5)
C220.0189 (6)0.0210 (6)0.0224 (6)0.0091 (5)0.0048 (5)0.0070 (4)
Geometric parameters (Å, º) top
O1—C8A1.4034 (14)C7A—H7C1.0000
O1—C21.4203 (14)C8—C8A1.3460 (17)
O2—C101.226 (2)C8—H80.9500
O3—C101.3378 (19)C9—H9A0.9800
O3—H3B0.91 (3)C9—H9B0.9800
O2'—C101.219 (3)C9—H9C0.9800
O3'—C101.331 (3)C11—C161.4083 (18)
O3'—H3C0.91 (5)C11—C121.4181 (16)
O4—C51.2339 (16)C12—C131.4069 (17)
C2—C31.3447 (18)C12—H120.9500
C2—C91.4994 (16)C13—C141.399 (2)
C3—C3A1.5202 (16)C13—H130.9500
C3—H30.9500C14—C151.4066 (19)
C3A—C8A1.5274 (17)C14—H140.9500
C3A—C41.6187 (17)C15—C161.4104 (18)
C3A—H3A1.0000C15—H150.9500
C4—C111.5469 (16)C16—H160.9500
C4—C101.5475 (15)C17—C221.4118 (17)
C4—C4A1.5590 (15)C17—C181.4154 (18)
C4A—C51.5333 (16)C18—C191.4052 (17)
C4A—C7A1.5530 (17)C18—H180.9500
C4A—H4A1.0000C19—C201.404 (2)
C5—N61.3943 (15)C19—H190.9500
N6—C171.4339 (15)C20—C211.404 (2)
N6—C71.4922 (16)C20—H200.9500
C7—C7A1.5455 (16)C21—C221.4120 (17)
C7—H7A0.9900C21—H210.9500
C7—H7B0.9900C22—H220.9500
C7A—C81.5229 (16)
C8A—O1—C2106.64 (9)O1—C8A—C3A110.05 (10)
C10—O3—H3B108.7 (19)C2—C9—H9A109.5
C10—O3'—H3C105 (3)C2—C9—H9B109.5
C3—C2—O1113.10 (10)H9A—C9—H9B109.5
C3—C2—C9132.64 (11)C2—C9—H9C109.5
O1—C2—C9114.21 (11)H9A—C9—H9C109.5
C2—C3—C3A109.08 (10)H9B—C9—H9C109.5
C2—C3—H3125.5O2'—C10—O3'122.8 (3)
C3A—C3—H3125.5O2—C10—O3123.54 (18)
C3—C3A—C8A101.04 (9)O2'—C10—C4122.2 (2)
C3—C3A—C4119.58 (10)O2—C10—C4122.69 (16)
C8A—C3A—C4113.14 (10)O3'—C10—C4114.8 (2)
C3—C3A—H3A107.5O3—C10—C4113.54 (12)
C8A—C3A—H3A107.5C16—C11—C12118.27 (11)
C4—C3A—H3A107.5C16—C11—C4122.03 (10)
C11—C4—C10113.00 (9)C12—C11—C4119.44 (10)
C11—C4—C4A108.45 (9)C13—C12—C11120.79 (12)
C10—C4—C4A112.78 (9)C13—C12—H12119.6
C11—C4—C3A113.68 (9)C11—C12—H12119.6
C10—C4—C3A102.35 (9)C14—C13—C12120.22 (11)
C4A—C4—C3A106.37 (9)C14—C13—H13119.9
C5—C4A—C7A104.03 (9)C12—C13—H13119.9
C5—C4A—C4120.24 (10)C13—C14—C15119.79 (12)
C7A—C4A—C4116.57 (9)C13—C14—H14120.1
C5—C4A—H4A104.8C15—C14—H14120.1
C7A—C4A—H4A104.8C14—C15—C16119.94 (12)
C4—C4A—H4A104.8C14—C15—H15120.0
O4—C5—N6126.58 (11)C16—C15—H15120.0
O4—C5—C4A127.39 (10)C11—C16—C15120.97 (11)
N6—C5—C4A105.85 (10)C11—C16—H16119.5
C5—N6—C17124.82 (10)C15—C16—H16119.5
C5—N6—C7112.14 (9)C22—C17—C18119.90 (11)
C17—N6—C7121.96 (9)C22—C17—N6119.68 (11)
N6—C7—C7A101.90 (9)C18—C17—N6120.39 (11)
N6—C7—H7A111.4C19—C18—C17119.53 (12)
C7A—C7—H7A111.4C19—C18—H18120.2
N6—C7—H7B111.4C17—C18—H18120.2
C7A—C7—H7B111.4C20—C19—C18120.80 (12)
H7A—C7—H7B109.3C20—C19—H19119.6
C8—C7A—C7118.78 (10)C18—C19—H19119.6
C8—C7A—C4A108.15 (9)C21—C20—C19119.66 (12)
C7—C7A—C4A100.28 (9)C21—C20—H20120.2
C8—C7A—H7C109.7C19—C20—H20120.2
C7—C7A—H7C109.7C20—C21—C22120.33 (12)
C4A—C7A—H7C109.7C20—C21—H21119.8
C8A—C8—C7A112.47 (10)C22—C21—H21119.8
C8A—C8—H8123.8C17—C22—C21119.77 (12)
C7A—C8—H8123.8C17—C22—H22120.1
C8—C8A—O1126.48 (11)C21—C22—H22120.1
C8—C8A—C3A123.47 (10)
C8A—O1—C2—C30.41 (14)C4—C3A—C8A—C847.35 (15)
C8A—O1—C2—C9177.19 (10)C3—C3A—C8A—O12.97 (12)
O1—C2—C3—C3A1.57 (14)C4—C3A—C8A—O1132.04 (10)
C9—C2—C3—C3A178.61 (13)C11—C4—C10—O2'38.9 (3)
C2—C3—C3A—C8A2.68 (13)C4A—C4—C10—O2'162.3 (3)
C2—C3—C3A—C4127.51 (11)C3A—C4—C10—O2'83.8 (3)
C3—C3A—C4—C1127.00 (14)C11—C4—C10—O2137.8 (2)
C8A—C3A—C4—C1191.82 (11)C4A—C4—C10—O214.3 (2)
C3—C3A—C4—C1095.20 (11)C3A—C4—C10—O299.5 (2)
C8A—C3A—C4—C10145.99 (9)C11—C4—C10—O3'146.8 (3)
C3—C3A—C4—C4A146.28 (10)C4A—C4—C10—O3'23.3 (3)
C8A—C3A—C4—C4A27.46 (12)C3A—C4—C10—O3'90.5 (3)
C11—C4—C4A—C587.06 (12)C11—C4—C10—O347.5 (2)
C10—C4—C4A—C538.87 (14)C4A—C4—C10—O3170.99 (17)
C3A—C4—C4A—C5150.30 (10)C3A—C4—C10—O375.12 (19)
C11—C4—C4A—C7A145.69 (9)C10—C4—C11—C1626.72 (14)
C10—C4—C4A—C7A88.38 (12)C4A—C4—C11—C1699.09 (12)
C3A—C4—C4A—C7A23.04 (12)C3A—C4—C11—C16142.82 (10)
C7A—C4A—C5—O4162.69 (11)C10—C4—C11—C12159.31 (10)
C4—C4A—C5—O429.90 (17)C4A—C4—C11—C1274.88 (13)
C7A—C4A—C5—N621.89 (11)C3A—C4—C11—C1243.20 (14)
C4—C4A—C5—N6154.68 (10)C16—C11—C12—C131.81 (17)
O4—C5—N6—C174.24 (19)C4—C11—C12—C13176.01 (10)
C4A—C5—N6—C17171.23 (10)C11—C12—C13—C140.89 (18)
O4—C5—N6—C7172.53 (11)C12—C13—C14—C150.55 (18)
C4A—C5—N6—C72.94 (12)C13—C14—C15—C161.02 (19)
C5—N6—C7—C7A26.50 (12)C12—C11—C16—C151.34 (17)
C17—N6—C7—C7A164.83 (9)C4—C11—C16—C15175.38 (10)
N6—C7—C7A—C8154.90 (10)C14—C15—C16—C110.06 (18)
N6—C7—C7A—C4A37.46 (10)C5—N6—C17—C22145.02 (12)
C5—C4A—C7A—C8161.73 (9)C7—N6—C17—C2222.18 (16)
C4—C4A—C7A—C863.41 (12)C5—N6—C17—C1837.12 (17)
C5—C4A—C7A—C736.67 (10)C7—N6—C17—C18155.69 (11)
C4—C4A—C7A—C7171.53 (9)C22—C17—C18—C190.28 (18)
C7—C7A—C8—C8A159.62 (11)N6—C17—C18—C19178.14 (11)
C4A—C7A—C8—C8A46.40 (13)C17—C18—C19—C200.93 (19)
C7A—C8—C8A—O1172.99 (10)C18—C19—C20—C210.6 (2)
C7A—C8—C8A—C3A6.30 (16)C19—C20—C21—C220.37 (19)
C2—O1—C8A—C8177.14 (12)C18—C17—C22—C210.67 (17)
C2—O1—C8A—C3A2.22 (12)N6—C17—C22—C21177.20 (10)
C3—C3A—C8A—C8176.42 (11)C20—C21—C22—C171.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2i0.91 (3)1.79 (3)2.692 (3)176 (3)
O3—H3C···O2i0.91 (5)1.79 (5)2.690 (6)169 (4)
Symmetry code: (i) x+1, y+1, z+2.
 

Funding information

This publication was supported by the Ministry of Education and Science of the Russian Federation (contract No. 4.1154.2017/4.6; X-ray structural analysis) and by the Russian Foundation for Basic Research (grant No. 16–03-00125; synthetic part).

References

First citationAncerewicz, J. & Vogel, P. (1993). Heterocycles, 36, 537–552.  Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018). J. Org. Chem. 83, 4840–4850.  Web of Science CrossRef Google Scholar
First citationDavies, W. & Porter, Q. N. (1957a). J. Chem. Soc. pp. 4958–4960.  CrossRef Web of Science Google Scholar
First citationDavies, W. & Porter, Q. N. (1957b). J. Chem. Soc. pp. 4961–4967.  CrossRef Web of Science Google Scholar
First citationDoyle, R. A. (2011). MarCCD software manual. Rayonix L. L. C. Evanston, IL 60201 USA.  Google Scholar
First citationDrew, M. B., Jahans, A., Harwood, L. M. & Apoux, S. B. H. (2002). Eur. J. Org. Chem. pp. 3589–3594.  CrossRef Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhobsi, A., Hacini, S., Wavrin, L., Gaudel-Siri, A., Corbères, A., Nicolas, C., Bonne, D., Viala, J. & Rodriguez, J. (2008). Eur. J. Org. Chem. pp. 4446–4453.  Web of Science CrossRef Google Scholar
First citationHorak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499–4501.  Web of Science CrossRef Google Scholar
First citationHorak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103–4106.  Web of Science CrossRef Google Scholar
First citationKaufmann, H. P. & Sen Gupta, A. K. (1963). Chem. Ber. 96, 2489–2498.  CrossRef Web of Science Google Scholar
First citationKim, J. W., Lim, J. W., Moon, H. R. & Kim, J. N. (2014). Bull. Korean Chem. Soc. 35, 3254–3260.  Web of Science CrossRef Google Scholar
First citationMaas, G., Reinhard, R. & Herz, H.-G. (2006). Z. Naturforsch. B, 61, 385–395.  CrossRef Google Scholar
First citationParvatkar, P. T., Kadam, H. K. & Tilve, S. G. (2014). Tetrahedron, 70, 2857–2888.  Web of Science CrossRef Google Scholar
First citationPatre, R. E., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517–3520.  Web of Science CrossRef CAS Google Scholar
First citationPaul, R. (1943). Bull. Soc. Chim. Fr. 10, 163–167.  Google Scholar
First citationSchmidt, C. H. (1953). Naturwissenschaften, 40, 581–582.  CrossRef Web of Science Google Scholar
First citationScully, J. F. & Brown, E. V. (1953). J. Am. Chem. Soc. 75, 6329–6330.  CrossRef Web of Science Google Scholar
First citationSears, J. E. & Boger, D. L. (2016). Acc. Chem. Res. 49, 241–251.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzmuszkovicz, M. & Modest, E. J. (1950). J. Am. Chem. Soc. 72, 571–577.  CrossRef Web of Science Google Scholar
First citationWavrin, L., Nicolas, C., Viala, J. & Rodriguez, J. (2004). Synlett, pp. 1820–1822.  Google Scholar
First citationZubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239–2253.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds