research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (η4-cyclo­octa­diene)(3,3′-dimesityl-1,1′-methyl­enediimidazoline-2,2′-diyl­­idene)nickel(0) tetra­hydro­furan monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA
*Correspondence e-mail: sestieber@cpp.edu

Edited by M. Zeller, Purdue University, USA (Received 13 August 2018; accepted 28 August 2018; online 7 September 2018)

The crystal structure of the title compound, [Ni(C25H28N4)(C8H12)]·C4H8O or (MesNHC2Me)Ni(COD), which contains a bidentate N-heterocyclic carbene (NHC) ligand with mesityl aryl groups is reported. The complex at 100 K has monoclinic (P21/c) symmetry and a distorted tetra­hedral geometry around the nickel center, with the cyclo­octa­diene ligand coordinated in a κ2,η2 fashion. The bidentate NHC ligand is not planar, with a C(carbene)—Ni—C(carbene) angle of 91.51 (12)°, resulting in the mesityl groups being on the same side of the cyclo­octa­diene (COD) ligand. One mol­ecule of tetra­hydro­furan (THF) is co-crystallized with the nickel complex and has positional disorder.

1. Chemical context

N-heterocyclic carbene (NHC) ligands, which have found extensive use in catalysis and organometallic chemistry, coordinate to metal centers via the lone pair of electrons of the carbene (Arduengo, 1999[Arduengo, A. J. (1999). Acc. Chem. Res. 32, 913-921.]; Hopkinson et al., 2014[Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485-496.]; Lummiss et al., 2015[Lummiss, J. A. M., Higman, C. S., Fyson, D. L., McDonald, R. & Fogg, D. E. (2015). Chem. Sci. 6, 6739-6746.]). Bidentate NHC ligands (NHC2) may be formed by linking two NHC ligands together; however, coordination to first row transition metals has been limited (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]; Herrmann et al., 1999[Herrmann, W. A., Schwarz, J., Gardiner, M. G. & Spiegler, M. (1999). J. Organomet. Chem. 575, 80-86.]; Douthwaite et al., 1999[Douthwaite, R. E., Haüssinger, D., Green, M. L. H., Silcock, P. J., Gomes, P. T., Martins, A. M. & Danopoulos, A. A. (1999). Organometallics, 18, 4584-4590.]; Huffer et al., 2013[Huffer, A., Jeffery, B., Waller, B. J. & Danopoulos, A. A. (2013). C. R. Chim. 16, 557-565.]; Harrold & Hillhouse, 2013[Harrold, N. D. & Hillhouse, G. L. (2013). Chem. Sci. 4, 4011-4015.]). Nickel(0)cyclo­octa­diene complexes with {1,1′-di(isoprop­yl)phenyl-3,3′-methyl­ene­di­imid­azolin-2,2′-diyl­idene} and {1,1′-tert(but­yl)-3,3′-methyl­ene­diimidazolin-2,2′-diyl­idene} ligands have been reported, but the mesityl variant is not known (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]). Herein, a synthetic procedure for the synthesis of {1,1′-di(mes­it­yl)-3,3′-methyl­enediimidazolin-2,2′-diyl­idene}nickel(0)cyclo­octa­diene, (MesNHC2Me)Ni(COD), and its crystallographic characterization are reported.

[Scheme 1]

2. Structural commentary

(MesNHC2Me)Ni(COD) co-crystallizes with one mol­ecule of tetra­hydro­furan (THF) as shown in Fig. 1[link]. Fig. 2[link] depicts the structure without the THF for clarity. The nickel(0) center has a pseudo-tetra­hedral geometry, being coordinated to (MesNHC2Me) in a κ2 fashion with a C1—Ni1—C4 angle of 91.51 (12)° and to COD in a κ2,η2 fashion. The distances between the nickel center and the (MesNHC2Me) ligand are 1.909 (3) Å for Ni1—C1 and 1.916 (3) Å for Ni1—C4. These are slightly shorter than the analagous distances of 1.938 (3) and 1.953 (3) Å, respectively, reported for (DippNHC2Me)Ni(COD) (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]). The distances from the nickel center to the COD ligand are 1.921 (3) and 2.018 (3) Å as measured from Ni1 to the mid-points of C29—C30 and C26—C33, respectively. The backbone of each NHC contains unsaturated C=C double bonds, as evidenced by bond distances of 1.344 (4) Å for C2—C3 and 1.341 (4) Å for C5—C6. The other NHC backbone distances are 1.390 (4) Å for N1—C2, 1.384 (4) Å for N2—C3, 1.388 (3) Å for N3—C5, and 1.395 (3) Å for N4—C6. The remaining NHC bond lengths to the carbene are 1.377 (4) Å for N1—C1, 1.374 (3) Å for N2—C1, 1.379 (3) Å for N3—C4, and 1.374 (3) Å for N4—C4. These are comparable to the analagous NHC carbene distances reported for (DippNHC2Me)Ni(COD) of 1.374 (4), 1.387 (4), 1.379 (4), and 1.386 (4) Å, respectively (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]). The portions of the COD ligand that are coordin­ated to nickel have C=C bond distances of 1.411 (4) Å for C29=C30 and 1.374 (4) Å for C26=C33, consistent with unsaturated double bonds. These are slightly longer than the analagous C=C COD distances reported for (DippNHC2Me)Ni(COD) of 1.383 (5), and 1.355 (5) Å, respectively (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]). The remaining C—C bond distances of the COD fragment are in the range of 1.512 (4)–1.539 (4) Å, consistent with saturated C—C single bonds, and comparable to the range of bond lengths reported for (DippNHC2Me)Ni(COD) of 1.502–1.529 Å (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]).

[Figure 1]
Figure 1
View of (MesNHC2Me)Ni(COD)·THF with 50% probability ellipsoids, showing the THF disorder.
[Figure 2]
Figure 2
View of one mol­ecule of (MesNHC2Me)Ni(COD) with 50% probability ellipsoids. The THF mol­ecules and H atoms are omitted for clarity.

3. Supra­molecular features

Four mol­ecules of (MesNHC2Me)Ni(COD) and THF are present in the unit cell, as depicted in Fig. 3[link]. The mol­ecules are oriented such that the COD ligands from neighboring mol­ecules are adjacent to each other, with distances of 2.61 and 2.95 Å between nearest hydrogen atoms (H28A⋯H32A and H27B⋯H31B, respectively). Standard deviations for distances including hydrogen atoms are not listed because hydrogen atoms were positionally fixed. The methyl group at the para position of the mesityl fragment is oriented towards the aryl ring of the mesityl of the neighboring mol­ecule, with a distance of 2.72 Å between the aryl ring centroid (C8–C13) and the nearest methyl hydrogen atom (H15C). The THF mol­ecule is closest to the backbone of the (MesNHC2Me) ligand, such that the mol­ecules are 3.527 (17) Å apart from one oxygen atom (O1) to the next nearest carbon atom (C36) (Table 1[link]).

Table 1
Inter­molecular distances in the unit cell of (MesNHC2Me)Ni(COD)

Standard deviations for distances including H atoms are omitted because H atoms were positionally fixed.

  Distance (Å)
H15C⋯centroid(C8–C13) 2.72
H27B⋯H31B 2.95
H28A⋯H32A 2.61
O1⋯C36 3.527 (17)
[Figure 3]
Figure 3
View of four mol­ecules of (MesNHC2Me)Ni(COD) and THF in the unit cell with 50% probability ellipsoids, highlighting inter­molecular distances. Distances between H atoms are listed without standard deviations because the H atoms were positionally fixed.

4. Database survey

A survey of the Cambridge Structural Database (Web accessed August 9, 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and SciFinder (SciFinder, 2018[SciFinder (2018). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed August 10, 2018).]) yielded no exact matches for this complex, but related complexes with slightly varied ligands, such as (tBuNHC2Me)Ni(COD) (tBu = tert-but­yl) and (DippNHC2Me)Ni(COD) (Dipp = 2,6-di(isoprop­yl)phen­yl) (Brendel et al., 2014[Brendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741-8745.]) have been reported. The crystal structures of both these complexes have generally similar structural characteristics. The main difference is that the COD ligand in (tBuNHC2Me)Ni(COD) is coordinated in a κ1,η2 fashion.

5. Synthesis and crystallization

1-(2,4,6-Tri­methyl­phen­yl)-1H-imidazole, and 1,1′-di(mesit­yl)-3,3′-methyl­ene-diimidazolium dibromide were synthesized according to literature procedures (Liu et al., 2003[Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661-2666.]; Gardiner et al., 1999[Gardiner, M. G., Herrmann, W. A., Reisinger, C., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239-247.]). 1,1′-Di(mesit­yl)-3,3′-methyl­ene-diimidazolium dibromide was dried overnight on a high vacuum line before transferring to an inert atmosphere N2 glovebox. {1,1′-Di(mesit­yl)-3,3′-methyl­enediimidazolin-2,2′-diyl­idene}nickel(0)cyclo­octa­diene was synthesized by the following method. A 20 mL scintillation vial was charged with 0.203 g (0.366 mmol, 1 eq.) of 1,1′-di(mesit­yl)-3,3′-methyl­ene-diimidazolium dibromide, approximately 10 mL of tetra­hydro­furan and a stirbar. 1.80 mL (0.915 mmol, 2.5 eq.) of 0.5 M potassium bis­(tri­methyl­sil­yl)amide in toluene were added dropwise to the solution while stirring, resulting in a color change to blue–green. The mixture was stirred for approximately five h, resulting in a clear orange–brown solution, which was filtered through a glass frit with celite. The filtrate was transferred to a new 20 mL glass scintillation vial and stirred while adding 0.090 g (0.329 mmol, 0.9 eq.) of bis­(1,5-cyclo­octa­diene)nickel(0). The mixture was stirred for 4–12 h, resulting in a clear dark red–orange solution. The solvent was removed in vacuo, and the orange solid was washed with pentane (3–5 washes of approximately 10 mL), resulting in 0.151 g (78%) of an orange solid identified as {1,1′-di(mesit­yl)-3,3′-methyl­enediimidazolin-2,2′-diyl­idene}nickel(0)cyclo­octa­diene. Single crystals suitable for X-ray analysis were grown from a dilute solution of pentane with a drop of tetra­hydro­furan. 1H NMR (399.777 MHz, C6D6, 295 K): δ = 1.96–2.12 (m, 8H; CH2-COD), 2.13 (s, 6H; CH3 p-mesit­yl), 2.17 (s, 12H; CH3 o-mesit­yl), 4.07 (s, 4H; CH-Ni-COD), 4.68 (s, 2H, CH2), 6.12 (s, 2H, CH-Im), 6.42 (s, 2H, CH-Im), 6.84 (s, 4H, m-CH-Ar). 13C NMR (101 MHz, C6D6, 295 K): δ = 18.43 (CH3 o-mesit­yl), 21.14 (CH3 p-mesit­yl), 32.51 (CH2-COD), 61.31 (CH2), 74.17 (CH-Ni-COD), 118.18 (CH-Im), 119.81 (CH-Im), 128.94 (m-CH-Ar), 136.22 (o-C-Ar), 137.89 (p-C-Ar), 138.91 (i-C-Ar), 205.37 (N2C-Im).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Most hydrogen atoms were placed in calculated positions using the AFIX commands of SHELXL and refined as riding with distances of 0.95 Å for C—H, 0.99 Å for CH2 and 0.98 Å for CH3. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso values of riding H atoms were set to 1.2 times Ueq(C) for CH and CH2, and 1.5 times Ueq(C) for CH3. The positions of the hydrogen atoms on the portions of the COD ligand directly bound to nickel and attached to C26, C29, C30, and C33 were determined from the difference map. Positions and isotropic displacement parameters were refined, but the associated C—H atom distances were restrained to be similar to each other by using a SADI command of SHELXL (for C26—H26A, C29—H29A, C30—H30A, and C33—H33A).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C25H28N4)(C8H12)]·C4H8O
Mr 623.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.5557 (7), 35.308 (2), 8.5951 (5)
β (°) 99.591 (2)
V3) 3158.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.53 × 0.15 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Kappa
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.658, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 61849, 6973, 4784
Rint 0.141
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.104, 1.03
No. of reflections 6973
No. of parameters 456
No. of restraints 182
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The two moieties of the disordered THF mol­ecule were restrained to have similar geometries (a SAME command in SHELXL was applied for O1′ through C37′ and O1 through C34 to make bond distances and angles equivalent with standard deviations of 0.02 and 0.04 Å for 1,2- and 1,3 distances, respectively). Uij components of ADPs of the disordered atoms were restrained to be similar to each other with an esd of 0.01 Å2 for atoms closer to each other than 2.0 Å (SIMU command of SHELXL), resulting in a final close-to-equal site occupancy ratio of 0.502 (13) to 0.498 (13).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(η4-Cyclooctadiene)(3,3'-dimesityl-1,1'-methylenediimidazoline-2,2'-diylidene)nickel(0) tetrahydrofuran monosolvate top
Crystal data top
[Ni(C25H28N4)(C8H12)]·C4H8OF(000) = 1336
Mr = 623.50Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5557 (7) ÅCell parameters from 5806 reflections
b = 35.308 (2) Åθ = 4.6–54.2°
c = 8.5951 (5) ŵ = 0.65 mm1
β = 99.591 (2)°T = 100 K
V = 3158.6 (3) Å3Plate, orange
Z = 40.53 × 0.15 × 0.04 mm
Data collection top
Bruker D8 Venture Kappa
diffractometer
4784 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.141
φ and ω scansθmax = 27.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.658, Tmax = 0.746k = 4545
61849 measured reflectionsl = 1011
6973 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0168P)2 + 5.0058P]
where P = (Fo2 + 2Fc2)/3
6973 reflections(Δ/σ)max < 0.001
456 parametersΔρmax = 0.50 e Å3
182 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni010.40659 (3)0.59095 (2)0.82589 (4)0.01352 (10)
N10.5497 (2)0.66097 (7)0.9799 (3)0.0171 (5)
N20.4717 (2)0.62336 (7)1.1329 (3)0.0160 (5)
N30.2805 (2)0.58667 (7)1.0943 (3)0.0158 (5)
N40.1305 (2)0.58132 (7)0.8953 (3)0.0155 (5)
C10.4848 (3)0.62709 (8)0.9772 (3)0.0147 (6)
C20.5758 (3)0.67656 (9)1.1304 (3)0.0217 (7)
H20.6203620.6995261.1594410.026*
C30.5259 (3)0.65294 (9)1.2269 (3)0.0209 (7)
H30.5275000.6559311.3370050.025*
C40.2613 (3)0.58607 (8)0.9316 (3)0.0144 (6)
C50.1676 (3)0.58212 (8)1.1549 (3)0.0179 (6)
H50.1587140.5815831.2630730.021*
C60.0735 (3)0.57865 (8)1.0301 (3)0.0184 (6)
H60.0152910.5750441.0329100.022*
C70.4080 (3)0.59040 (9)1.1849 (3)0.0165 (6)
H7A0.4586910.5673801.1716540.020*
H7B0.4023610.5929851.2982630.020*
C80.5968 (3)0.67746 (8)0.8478 (3)0.0163 (6)
C90.5204 (3)0.70228 (8)0.7464 (3)0.0177 (6)
C100.5734 (3)0.71794 (8)0.6224 (4)0.0214 (7)
H100.5219380.7343480.5502780.026*
C110.6975 (3)0.71046 (8)0.6009 (3)0.0201 (7)
C120.7709 (3)0.68572 (8)0.7052 (3)0.0200 (7)
H120.8566580.6803190.6919930.024*
C130.7218 (3)0.66878 (8)0.8281 (3)0.0178 (6)
C140.3861 (3)0.71230 (9)0.7685 (4)0.0262 (7)
H14A0.3307460.7140820.6652880.039*
H14B0.3870350.7367030.8230460.039*
H14C0.3531200.6926570.8316900.039*
C150.7554 (3)0.72843 (10)0.4696 (4)0.0282 (8)
H15A0.7950530.7087900.4130470.042*
H15B0.8207950.7468810.5142940.042*
H15C0.6878980.7412710.3963400.042*
C160.8014 (3)0.64084 (9)0.9349 (4)0.0253 (7)
H16A0.7536950.6170550.9362580.038*
H16B0.8201610.6512111.0420690.038*
H16C0.8820590.6360530.8960790.038*
C170.0553 (3)0.58069 (8)0.7392 (3)0.0144 (6)
C180.0086 (3)0.54770 (8)0.6843 (3)0.0158 (6)
C190.0857 (3)0.54843 (8)0.5365 (3)0.0169 (6)
H190.1296190.5260320.4972170.020*
C200.1002 (3)0.58104 (8)0.4447 (3)0.0171 (6)
C210.0343 (3)0.61332 (8)0.5027 (3)0.0171 (6)
H210.0424100.6356030.4398300.021*
C220.0438 (3)0.61413 (8)0.6504 (3)0.0167 (6)
C230.0007 (3)0.51193 (8)0.7823 (3)0.0210 (7)
H23A0.0165310.4899020.7123490.032*
H23B0.0654040.5127970.8517470.032*
H23C0.0850740.5099050.8461780.032*
C240.1874 (3)0.58143 (9)0.2862 (3)0.0229 (7)
H24A0.1479390.5667540.2101440.034*
H24B0.2004540.6076030.2490460.034*
H24C0.2704780.5701740.2966540.034*
C250.1133 (3)0.64962 (8)0.7106 (3)0.0201 (7)
H25A0.2060660.6449300.7293240.030*
H25B0.0860990.6572910.8095840.030*
H25C0.0930350.6698400.6322880.030*
C260.4432 (3)0.53181 (8)0.8337 (3)0.0186 (7)
H26A0.423 (2)0.5236 (7)0.932 (2)0.010 (7)*
C270.3628 (3)0.51489 (9)0.6886 (3)0.0208 (7)
H27A0.2768960.5085450.7130970.025*
H27B0.4034030.4910040.6619760.025*
C280.3460 (3)0.54110 (8)0.5439 (3)0.0192 (7)
H28A0.4172780.5366930.4844570.023*
H28B0.2645800.5347380.4737220.023*
C290.3440 (3)0.58277 (8)0.5894 (3)0.0163 (6)
H29A0.262 (2)0.5947 (8)0.559 (3)0.014 (8)*
C300.4559 (3)0.60531 (8)0.6134 (3)0.0149 (6)
H30A0.443 (3)0.6319 (6)0.597 (4)0.024 (9)*
C310.5874 (3)0.59020 (9)0.5982 (3)0.0189 (6)
H31A0.6519530.6102490.6307340.023*
H31B0.5888870.5843070.4859380.023*
C320.6263 (3)0.55448 (9)0.6975 (4)0.0230 (7)
H32A0.6075650.5319370.6290230.028*
H32B0.7201400.5551570.7350620.028*
C330.5586 (3)0.55016 (9)0.8387 (3)0.0192 (7)
H33A0.612 (2)0.5536 (8)0.940 (3)0.014 (8)*
O10.1468 (10)0.7119 (3)0.3805 (9)0.0435 (18)0.502 (13)
C340.2266 (17)0.6845 (6)0.3253 (16)0.041 (2)0.502 (13)
H34A0.2001270.6587170.3518480.049*0.502 (13)
H34B0.3171280.6884060.3752220.049*0.502 (13)
C350.2128 (11)0.6890 (4)0.1491 (15)0.037 (2)0.502 (13)
H35A0.2833510.7046110.1203170.045*0.502 (13)
H35B0.2123070.6640920.0962500.045*0.502 (13)
C360.0855 (17)0.7087 (4)0.1057 (14)0.044 (2)0.502 (13)
H36A0.0149230.6900640.0799600.052*0.502 (13)
H36B0.0856080.7256730.0141670.052*0.502 (13)
C370.0717 (10)0.7310 (3)0.2521 (10)0.0352 (19)0.502 (13)
H37A0.1030290.7572110.2440430.042*0.502 (13)
H37B0.0194100.7319080.2662360.042*0.502 (13)
O1'0.0905 (10)0.7022 (2)0.3664 (9)0.0391 (17)0.498 (13)
C34'0.2015 (16)0.6844 (6)0.3267 (16)0.041 (2)0.498 (13)
H34C0.2134640.6589500.3751380.049*0.498 (13)
H34D0.2791630.6997800.3636670.049*0.498 (13)
C35'0.1769 (12)0.6816 (3)0.1473 (15)0.037 (2)0.498 (13)
H35C0.1319920.6576870.1116340.045*0.498 (13)
H35D0.2581050.6829940.1043000.045*0.498 (13)
C36'0.0919 (16)0.7159 (4)0.0979 (13)0.037 (2)0.498 (13)
H36C0.1434220.7386950.0841980.044*0.498 (13)
H36D0.0305690.7110260.0003850.044*0.498 (13)
C37'0.0240 (12)0.7195 (3)0.2392 (11)0.046 (2)0.498 (13)
H37C0.0135760.7466640.2631050.056*0.498 (13)
H37D0.0626990.7081170.2137870.056*0.498 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni010.01553 (18)0.01667 (19)0.00880 (17)0.00028 (16)0.00334 (13)0.00042 (16)
N10.0191 (13)0.0178 (14)0.0137 (12)0.0008 (10)0.0009 (10)0.0001 (10)
N20.0189 (13)0.0194 (14)0.0095 (12)0.0007 (10)0.0016 (10)0.0006 (10)
N30.0177 (12)0.0209 (14)0.0098 (11)0.0016 (11)0.0050 (9)0.0011 (10)
N40.0163 (12)0.0202 (14)0.0104 (12)0.0001 (10)0.0033 (10)0.0025 (10)
C10.0147 (14)0.0183 (16)0.0111 (14)0.0021 (12)0.0020 (11)0.0004 (12)
C20.0287 (18)0.0203 (17)0.0153 (15)0.0043 (14)0.0017 (13)0.0059 (12)
C30.0269 (17)0.0241 (17)0.0106 (15)0.0016 (14)0.0001 (13)0.0035 (12)
C40.0180 (14)0.0144 (15)0.0105 (13)0.0003 (12)0.0013 (11)0.0012 (11)
C50.0197 (15)0.0237 (17)0.0116 (14)0.0033 (13)0.0067 (12)0.0028 (12)
C60.0171 (15)0.0243 (17)0.0157 (15)0.0035 (12)0.0083 (12)0.0057 (12)
C70.0218 (15)0.0195 (15)0.0082 (13)0.0002 (13)0.0022 (11)0.0042 (12)
C80.0214 (15)0.0154 (15)0.0118 (14)0.0042 (12)0.0020 (12)0.0018 (11)
C90.0206 (16)0.0125 (15)0.0184 (16)0.0035 (12)0.0018 (12)0.0029 (12)
C100.0284 (18)0.0139 (16)0.0189 (16)0.0011 (13)0.0046 (13)0.0050 (12)
C110.0309 (18)0.0171 (16)0.0114 (15)0.0062 (13)0.0010 (13)0.0008 (12)
C120.0214 (16)0.0193 (17)0.0196 (16)0.0003 (13)0.0048 (13)0.0003 (13)
C130.0232 (16)0.0157 (16)0.0139 (15)0.0001 (13)0.0016 (12)0.0004 (12)
C140.0250 (18)0.0223 (18)0.0292 (18)0.0006 (14)0.0018 (14)0.0002 (14)
C150.037 (2)0.0299 (19)0.0182 (17)0.0086 (16)0.0055 (14)0.0058 (14)
C160.0259 (17)0.0259 (19)0.0248 (18)0.0037 (14)0.0060 (14)0.0118 (14)
C170.0130 (14)0.0207 (16)0.0104 (14)0.0035 (12)0.0041 (11)0.0023 (11)
C180.0158 (14)0.0192 (16)0.0136 (15)0.0020 (12)0.0062 (12)0.0045 (12)
C190.0165 (15)0.0197 (16)0.0151 (15)0.0016 (12)0.0047 (12)0.0017 (12)
C200.0159 (14)0.0233 (17)0.0124 (14)0.0048 (12)0.0032 (11)0.0022 (12)
C210.0193 (15)0.0189 (16)0.0144 (15)0.0030 (12)0.0063 (12)0.0048 (12)
C220.0143 (14)0.0203 (16)0.0168 (15)0.0014 (12)0.0060 (12)0.0011 (12)
C230.0264 (17)0.0196 (17)0.0171 (16)0.0029 (13)0.0037 (13)0.0041 (13)
C240.0235 (16)0.0286 (19)0.0169 (16)0.0020 (14)0.0037 (13)0.0030 (13)
C250.0208 (16)0.0214 (16)0.0179 (16)0.0013 (13)0.0029 (13)0.0041 (12)
C260.0257 (17)0.0169 (16)0.0140 (15)0.0060 (13)0.0055 (13)0.0046 (12)
C270.0261 (17)0.0171 (16)0.0192 (16)0.0018 (13)0.0040 (13)0.0006 (13)
C280.0233 (16)0.0219 (17)0.0119 (15)0.0025 (13)0.0016 (12)0.0030 (12)
C290.0204 (15)0.0205 (17)0.0084 (14)0.0026 (13)0.0032 (11)0.0009 (11)
C300.0224 (16)0.0180 (16)0.0053 (13)0.0006 (12)0.0049 (11)0.0006 (11)
C310.0182 (14)0.0286 (17)0.0109 (14)0.0019 (14)0.0053 (11)0.0001 (13)
C320.0171 (16)0.0274 (18)0.0256 (18)0.0070 (13)0.0065 (13)0.0021 (14)
C330.0201 (16)0.0231 (17)0.0137 (15)0.0072 (13)0.0011 (12)0.0013 (13)
O10.061 (4)0.047 (4)0.024 (3)0.020 (3)0.011 (3)0.005 (3)
C340.054 (5)0.037 (4)0.031 (3)0.019 (4)0.007 (3)0.002 (3)
C350.047 (4)0.040 (4)0.026 (3)0.013 (4)0.010 (3)0.004 (3)
C360.048 (4)0.053 (5)0.030 (3)0.009 (4)0.004 (3)0.004 (3)
C370.036 (4)0.042 (4)0.030 (3)0.005 (3)0.010 (3)0.003 (3)
O1'0.055 (4)0.038 (3)0.028 (3)0.015 (3)0.019 (3)0.009 (2)
C34'0.053 (5)0.039 (4)0.030 (3)0.014 (4)0.006 (4)0.006 (3)
C35'0.048 (4)0.039 (4)0.026 (3)0.017 (4)0.011 (4)0.001 (3)
C36'0.046 (4)0.037 (4)0.027 (3)0.005 (4)0.007 (3)0.006 (3)
C37'0.054 (4)0.054 (4)0.032 (3)0.016 (4)0.010 (4)0.005 (3)
Geometric parameters (Å, º) top
Ni01—C11.909 (3)C22—C251.500 (4)
Ni01—C41.916 (3)C23—H23A0.9800
Ni01—C302.045 (3)C23—H23B0.9800
Ni01—C292.051 (3)C23—H23C0.9800
Ni01—C262.123 (3)C24—H24A0.9800
Ni01—C332.145 (3)C24—H24B0.9800
N1—C11.377 (4)C24—H24C0.9800
N1—C21.390 (4)C25—H25A0.9800
N1—C81.437 (4)C25—H25B0.9800
N2—C11.374 (3)C25—H25C0.9800
N2—C31.384 (4)C26—C331.374 (4)
N2—C71.451 (4)C26—C271.510 (4)
N3—C41.379 (3)C26—H26A0.951 (18)
N3—C51.388 (3)C27—C281.536 (4)
N3—C71.444 (3)C27—H27A0.9900
N4—C41.374 (3)C27—H27B0.9900
N4—C61.395 (3)C28—C291.523 (4)
N4—C171.441 (3)C28—H28A0.9900
C2—C31.344 (4)C28—H28B0.9900
C2—H20.9500C29—C301.411 (4)
C3—H30.9500C29—H29A0.960 (18)
C5—C61.341 (4)C30—C311.512 (4)
C5—H50.9500C30—H30A0.956 (19)
C6—H60.9500C31—C321.539 (4)
C7—H7A0.9900C31—H31A0.9900
C7—H7B0.9900C31—H31B0.9900
C8—C131.392 (4)C32—C331.516 (4)
C8—C91.394 (4)C32—H32A0.9900
C9—C101.397 (4)C32—H32B0.9900
C9—C141.503 (4)C33—H33A0.960 (19)
C10—C111.379 (4)O1—C341.415 (11)
C10—H100.9500O1—C371.417 (8)
C11—C121.392 (4)C34—C351.506 (11)
C11—C151.510 (4)C34—H34A0.9900
C12—C131.387 (4)C34—H34B0.9900
C12—H120.9500C35—C361.503 (12)
C13—C161.505 (4)C35—H35A0.9900
C14—H14A0.9800C35—H35B0.9900
C14—H14B0.9800C36—C371.512 (11)
C14—H14C0.9800C36—H36A0.9900
C15—H15A0.9800C36—H36B0.9900
C15—H15B0.9800C37—H37A0.9900
C15—H15C0.9800C37—H37B0.9900
C16—H16A0.9800O1'—C37'1.344 (9)
C16—H16B0.9800O1'—C34'1.420 (10)
C16—H16C0.9800C34'—C35'1.524 (11)
C17—C181.389 (4)C34'—H34C0.9900
C17—C221.400 (4)C34'—H34D0.9900
C18—C191.390 (4)C35'—C36'1.526 (11)
C18—C231.512 (4)C35'—H35C0.9900
C19—C201.390 (4)C35'—H35D0.9900
C19—H190.9500C36'—C37'1.514 (11)
C20—C211.385 (4)C36'—H36C0.9900
C20—C241.512 (4)C36'—H36D0.9900
C21—C221.394 (4)C37'—H37C0.9900
C21—H210.9500C37'—H37D0.9900
C1—Ni01—C491.51 (12)C20—C24—H24A109.5
C1—Ni01—C30107.31 (12)C20—C24—H24B109.5
C4—Ni01—C30142.09 (12)H24A—C24—H24B109.5
C1—Ni01—C29143.24 (12)C20—C24—H24C109.5
C4—Ni01—C29107.85 (12)H24A—C24—H24C109.5
C30—Ni01—C2940.29 (11)H24B—C24—H24C109.5
C1—Ni01—C26125.47 (12)C22—C25—H25A109.5
C4—Ni01—C2693.00 (12)C22—C25—H25B109.5
C30—Ni01—C26101.53 (12)H25A—C25—H25B109.5
C29—Ni01—C2685.37 (12)C22—C25—H25C109.5
C1—Ni01—C33100.31 (12)H25A—C25—H25C109.5
C4—Ni01—C33124.47 (12)H25B—C25—H25C109.5
C30—Ni01—C3384.99 (12)C33—C26—C27125.9 (3)
C29—Ni01—C3394.06 (12)C33—C26—Ni0172.11 (18)
C26—Ni01—C3337.55 (11)C27—C26—Ni01106.80 (19)
C1—N1—C2112.4 (2)C33—C26—H26A116.6 (17)
C1—N1—C8125.1 (2)C27—C26—H26A115.6 (17)
C2—N1—C8122.3 (2)Ni01—C26—H26A105.1 (17)
C1—N2—C3113.4 (2)C26—C27—C28113.8 (3)
C1—N2—C7120.2 (2)C26—C27—H27A108.8
C3—N2—C7126.4 (2)C28—C27—H27A108.8
C4—N3—C5112.8 (2)C26—C27—H27B108.8
C4—N3—C7121.0 (2)C28—C27—H27B108.8
C5—N3—C7126.1 (2)H27A—C27—H27B107.7
C4—N4—C6112.1 (2)C29—C28—C27112.3 (2)
C4—N4—C17126.2 (2)C29—C28—H28A109.1
C6—N4—C17121.7 (2)C27—C28—H28A109.1
N2—C1—N1101.4 (2)C29—C28—H28B109.1
N2—C1—Ni01119.8 (2)C27—C28—H28B109.1
N1—C1—Ni01138.6 (2)H28A—C28—H28B107.9
C3—C2—N1106.9 (3)C30—C29—C28122.4 (3)
C3—C2—H2126.5C30—C29—Ni0169.64 (16)
N1—C2—H2126.5C28—C29—Ni01111.99 (19)
C2—C3—N2105.9 (3)C30—C29—H29A119.2 (17)
C2—C3—H3127.0C28—C29—H29A113.7 (17)
N2—C3—H3127.0Ni01—C29—H29A109.8 (17)
N4—C4—N3101.8 (2)C29—C30—C31123.1 (3)
N4—C4—Ni01139.2 (2)C29—C30—Ni0170.07 (16)
N3—C4—Ni01119.02 (19)C31—C30—Ni01111.30 (19)
C6—C5—N3106.2 (2)C29—C30—H30A116.0 (19)
C6—C5—H5126.9C31—C30—H30A116.3 (19)
N3—C5—H5126.9Ni01—C30—H30A108.9 (19)
C5—C6—N4107.1 (3)C30—C31—C32113.9 (2)
C5—C6—H6126.5C30—C31—H31A108.8
N4—C6—H6126.5C32—C31—H31A108.8
N3—C7—N2110.2 (2)C30—C31—H31B108.8
N3—C7—H7A109.6C32—C31—H31B108.8
N2—C7—H7A109.6H31A—C31—H31B107.7
N3—C7—H7B109.6C33—C32—C31114.1 (2)
N2—C7—H7B109.6C33—C32—H32A108.7
H7A—C7—H7B108.1C31—C32—H32A108.7
C13—C8—C9121.6 (3)C33—C32—H32B108.7
C13—C8—N1117.8 (3)C31—C32—H32B108.7
C9—C8—N1120.5 (3)H32A—C32—H32B107.6
C8—C9—C10117.5 (3)C26—C33—C32123.8 (3)
C8—C9—C14121.9 (3)C26—C33—Ni0170.34 (17)
C10—C9—C14120.6 (3)C32—C33—Ni01109.86 (19)
C11—C10—C9122.4 (3)C26—C33—H33A118.2 (17)
C11—C10—H10118.8C32—C33—H33A115.3 (17)
C9—C10—H10118.8Ni01—C33—H33A106.4 (17)
C10—C11—C12118.3 (3)C34—O1—C37110.5 (7)
C10—C11—C15122.1 (3)O1—C34—C35107.6 (9)
C12—C11—C15119.6 (3)O1—C34—H34A110.2
C13—C12—C11121.5 (3)C35—C34—H34A110.2
C13—C12—H12119.3O1—C34—H34B110.2
C11—C12—H12119.3C35—C34—H34B110.2
C12—C13—C8118.6 (3)H34A—C34—H34B108.5
C12—C13—C16120.4 (3)C36—C35—C34103.4 (8)
C8—C13—C16120.9 (3)C36—C35—H35A111.1
C9—C14—H14A109.5C34—C35—H35A111.1
C9—C14—H14B109.5C36—C35—H35B111.1
H14A—C14—H14B109.5C34—C35—H35B111.1
C9—C14—H14C109.5H35A—C35—H35B109.1
H14A—C14—H14C109.5C35—C36—C37103.9 (9)
H14B—C14—H14C109.5C35—C36—H36A111.0
C11—C15—H15A109.5C37—C36—H36A111.0
C11—C15—H15B109.5C35—C36—H36B111.0
H15A—C15—H15B109.5C37—C36—H36B111.0
C11—C15—H15C109.5H36A—C36—H36B109.0
H15A—C15—H15C109.5O1—C37—C36106.3 (7)
H15B—C15—H15C109.5O1—C37—H37A110.5
C13—C16—H16A109.5C36—C37—H37A110.5
C13—C16—H16B109.5O1—C37—H37B110.5
H16A—C16—H16B109.5C36—C37—H37B110.5
C13—C16—H16C109.5H37A—C37—H37B108.7
H16A—C16—H16C109.5C37'—O1'—C34'110.2 (7)
H16B—C16—H16C109.5O1'—C34'—C35'105.3 (8)
C18—C17—C22121.9 (3)O1'—C34'—H34C110.7
C18—C17—N4119.4 (2)C35'—C34'—H34C110.7
C22—C17—N4118.6 (3)O1'—C34'—H34D110.7
C17—C18—C19118.2 (3)C35'—C34'—H34D110.7
C17—C18—C23122.2 (3)H34C—C34'—H34D108.8
C19—C18—C23119.6 (3)C34'—C35'—C36'102.8 (9)
C18—C19—C20121.8 (3)C34'—C35'—H35C111.2
C18—C19—H19119.1C36'—C35'—H35C111.2
C20—C19—H19119.1C34'—C35'—H35D111.2
C21—C20—C19118.4 (3)C36'—C35'—H35D111.2
C21—C20—C24120.7 (3)H35C—C35'—H35D109.1
C19—C20—C24120.8 (3)C37'—C36'—C35'100.3 (8)
C20—C21—C22122.0 (3)C37'—C36'—H36C111.7
C20—C21—H21119.0C35'—C36'—H36C111.7
C22—C21—H21119.0C37'—C36'—H36D111.7
C21—C22—C17117.6 (3)C35'—C36'—H36D111.7
C21—C22—C25120.8 (3)H36C—C36'—H36D109.5
C17—C22—C25121.5 (3)O1'—C37'—C36'111.1 (7)
C18—C23—H23A109.5O1'—C37'—H37C109.4
C18—C23—H23B109.5C36'—C37'—H37C109.4
H23A—C23—H23B109.5O1'—C37'—H37D109.4
C18—C23—H23C109.5C36'—C37'—H37D109.4
H23A—C23—H23C109.5H37C—C37'—H37D108.0
H23B—C23—H23C109.5
C3—N2—C1—N10.4 (3)C9—C8—C13—C16177.7 (3)
C7—N2—C1—N1179.3 (2)N1—C8—C13—C164.4 (4)
C3—N2—C1—Ni01175.9 (2)C4—N4—C17—C18115.5 (3)
C7—N2—C1—Ni015.2 (3)C6—N4—C17—C1867.4 (4)
C2—N1—C1—N20.8 (3)C4—N4—C17—C2267.7 (4)
C8—N1—C1—N2175.4 (3)C6—N4—C17—C22109.3 (3)
C2—N1—C1—Ni01174.8 (3)C22—C17—C18—C190.2 (4)
C8—N1—C1—Ni0110.5 (5)N4—C17—C18—C19176.8 (2)
C1—N1—C2—C30.8 (3)C22—C17—C18—C23177.6 (3)
C8—N1—C2—C3175.7 (3)N4—C17—C18—C230.9 (4)
N1—C2—C3—N20.5 (3)C17—C18—C19—C200.4 (4)
C1—N2—C3—C20.1 (3)C23—C18—C19—C20177.4 (3)
C7—N2—C3—C2178.8 (3)C18—C19—C20—C210.8 (4)
C6—N4—C4—N30.8 (3)C18—C19—C20—C24178.3 (3)
C17—N4—C4—N3176.5 (2)C19—C20—C21—C221.1 (4)
C6—N4—C4—Ni01178.4 (3)C24—C20—C21—C22178.0 (3)
C17—N4—C4—Ni014.3 (5)C20—C21—C22—C170.9 (4)
C5—N3—C4—N40.6 (3)C20—C21—C22—C25179.5 (3)
C7—N3—C4—N4178.6 (2)C18—C17—C22—C210.4 (4)
C5—N3—C4—Ni01178.8 (2)N4—C17—C22—C21177.1 (2)
C7—N3—C4—Ni010.8 (4)C18—C17—C22—C25180.0 (3)
C4—N3—C5—C60.2 (3)N4—C17—C22—C253.4 (4)
C7—N3—C5—C6178.1 (3)C33—C26—C27—C2846.3 (4)
N3—C5—C6—N40.3 (3)Ni01—C26—C27—C2833.5 (3)
C4—N4—C6—C50.7 (3)C26—C27—C28—C2932.1 (4)
C17—N4—C6—C5176.7 (3)C27—C28—C29—C3092.8 (3)
C4—N3—C7—N253.4 (3)C27—C28—C29—Ni0113.6 (3)
C5—N3—C7—N2128.9 (3)C28—C29—C30—C310.7 (4)
C1—N2—C7—N356.0 (3)Ni01—C29—C30—C31103.0 (3)
C3—N2—C7—N3125.3 (3)C28—C29—C30—Ni01103.7 (3)
C1—N1—C8—C1391.4 (3)C29—C30—C31—C3252.8 (4)
C2—N1—C8—C1382.8 (4)Ni01—C30—C31—C3226.7 (3)
C1—N1—C8—C990.7 (4)C30—C31—C32—C3324.3 (4)
C2—N1—C8—C995.1 (3)C27—C26—C33—C323.1 (5)
C13—C8—C9—C100.7 (4)Ni01—C26—C33—C32101.2 (3)
N1—C8—C9—C10178.6 (3)C27—C26—C33—Ni0198.1 (3)
C13—C8—C9—C14178.9 (3)C31—C32—C33—C2689.1 (4)
N1—C8—C9—C141.1 (4)C31—C32—C33—Ni0110.0 (3)
C8—C9—C10—C111.8 (4)C37—O1—C34—C356.5 (17)
C14—C9—C10—C11177.9 (3)O1—C34—C35—C3622.2 (19)
C9—C10—C11—C121.4 (4)C34—C35—C36—C3728.4 (18)
C9—C10—C11—C15178.1 (3)C34—O1—C37—C3612.0 (16)
C10—C11—C12—C130.1 (4)C35—C36—C37—O125.4 (16)
C15—C11—C12—C13179.6 (3)C37'—O1'—C34'—C35'17.7 (17)
C11—C12—C13—C81.1 (4)O1'—C34'—C35'—C36'30.1 (18)
C11—C12—C13—C16177.3 (3)C34'—C35'—C36'—C37'29.8 (17)
C9—C8—C13—C120.7 (4)C34'—O1'—C37'—C36'2.5 (16)
N1—C8—C13—C12177.2 (3)C35'—C36'—C37'—O1'21.2 (17)
Intermolecular distances in the unit cell of (MesNHC2Me)Ni(COD) top
Standard deviations for distances including H atoms are omitted because H atoms were positionally fixed.
Distance (Å)
H15C···centroid(C8–C13)2.72
H27B···H31B2.95
H28A···H32A2.61
O1···C363.527 (17)
 

Acknowledgements

Special thanks to Charles Campana for helpful discussions.

Funding information

Funding for this research was provided by: U.S. Department of Defense, Army Research Office (grant No. W911NF-17-1-0537); California State University Program for Education Research in Biotechnology (CSUPERB); California State Polytechnic University, Pomona.

References

First citationArduengo, A. J. (1999). Acc. Chem. Res. 32, 913–921.  Web of Science CrossRef CAS Google Scholar
First citationBrendel, M., Braun, C., Rominger, F. & Hofmann, P. (2014). Angew. Chem. Int. Ed. 53, 8741–8745.  Web of Science CrossRef Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDouthwaite, R. E., Haüssinger, D., Green, M. L. H., Silcock, P. J., Gomes, P. T., Martins, A. M. & Danopoulos, A. A. (1999). Organometallics, 18, 4584–4590.  Web of Science CrossRef Google Scholar
First citationGardiner, M. G., Herrmann, W. A., Reisinger, C., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239–247.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrold, N. D. & Hillhouse, G. L. (2013). Chem. Sci. 4, 4011–4015.  Web of Science CrossRef Google Scholar
First citationHerrmann, W. A., Schwarz, J., Gardiner, M. G. & Spiegler, M. (1999). J. Organomet. Chem. 575, 80–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuffer, A., Jeffery, B., Waller, B. J. & Danopoulos, A. A. (2013). C. R. Chim. 16, 557–565.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661–2666.  Google Scholar
First citationLummiss, J. A. M., Higman, C. S., Fyson, D. L., McDonald, R. & Fogg, D. E. (2015). Chem. Sci. 6, 6739–6746.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSciFinder (2018). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed August 10, 2018).  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds