research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N,N′-bis­­(2-nitro­phen­yl)glutaramide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, cPURSE Lab, Mangalore University, Mangalagangothri 574 199, India, and dKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by M. Zeller, Purdue University, USA (Received 15 August 2018; accepted 15 September 2018; online 21 September 2018)

The asymmetric unit of the title compound, C17H16N4O6, contains two independent mol­ecules (A and B). The two benzene rings are twisted by an angle of 79.14 (7)° in mol­ecule A, whereas, in mol­ecule B, they are inclined by 19.02 (14)°. The conformations of the mol­ecules are stabilized by intra­molecular N—H⋯O hydrogen bonds between the amide nitro­gen atom and the O atom of the ortho-nitro substituent on the phenyl ring, enclosing an S(6) ring motif. In the amide and aliphatic segments, all the N—H, C=O and C—H bonds are anti to each other. In the crystal, the A and B mol­ecules are linked by inter­molecular amide-to-amide N—H⋯O hydrogen bonds, resulting in chains running along the b-axis direction. The inter­molecular inter­actions were analysed using Hirshfeld surface analysis. The two-dimensional fingerprint plots of the inter­molecular contacts indicate that the major contributions are from H⋯H and O⋯H inter­actions.

1. Chemical context

Alkanedi­amide derivatives are known to possess a variety of biological activities. There has been a study on the influence of the length of the connecting chain on the anti­malarial activity of bis­quinolines (Raynes et al., 1995[Raynes, K., Galatis, D., Cowman, A. F., Tilley, L. & Deady, L. W. (1995). J. Med. Chem. 38, 204-206.]) and OER (oxygen evolution rate) inhibiting activity in spinach in a series of N,N′-bis­(3,4-di­chloro­phen­yl)alkanedi­amides (Kubicova et al., 2000a[Kubicova, L., Kralova, K., Kunes, J. & Waisser, K. (2000a). Chem. Papers, 54, 90-93.],b[Kubicova, L., Waisser, K., Kunes, J., Kralova, K., Odlerova, Z., Slosarek, M., Janota, J. & Svoboda, Z. (2000b). Molecules, 5, 714-726.]). The crystal structures of a homologous series of bis­(pyridine­carboxamido)­alkanes have been studied to analyse their supra­molecular structures (Sarkar & Biradha, 2006[Sarkar, M. & Biradha, K. (2006). Cryst. Growth Des. 6, 202-208.]). As a part of a study on substituent effects on the structures of bis-amides, the crystal structure of N,N′-bis­(2-nitro­phen­yl)glutaramide has been determined and is described in the present work.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (I)[link] contains two independent mol­ecules (designated as A and B in Fig. 1[link]), and four mol­ecules in the unit cell. In both the mol­ecules present in the asymmetric unit, all the N—H, C=O and C—H bonds of the amide and aliphatic segments are anti to each other. The conformation of the nearest C=O group is anti to the ortho-nitro group in the aniline ring in one half of each mol­ecule, as indicated by the torsion angles of −159.5 (3) and −161.9 (3)° for C2—C1—N1—C7 and C19—C18—N5—C24, respectively. In the other half, they are syn to the ortho-substituent as shown by the torsion angles of 48.6 (4) and −50.6 (4)° for C13—C12—N2—C11 and C30—C29—N6—C28, respectively. The O1—C7, O2—C11, O7—C24 and O8—C28 bond lengths are 1.213 (3), 1.224 (3), 1.218 (3) and 1.218 (3) Å, respectively, which indicate that the mol­ecules exist in their keto forms in the solid state. In mol­ecule A, the bis-amide group forms dihedral angles of 24.79 (12) and 55.04 (7)° with the phenyl rings C1–C6 and C12–C17, respectively. In mol­ecule B, the plane of the amide group forms dihedral angles of 34.24 (13) and 24.27 (12)° with the C18–C23 and C29–C34 phenyl rings, respectively, while the two benzene rings form a dihedral angle of 79.14 (7) and 19.02 (14)° in mol­ecules A and B, respectively. The planes of mol­ecules A and B are almost coplanar with each other, as is evident from the dihedral angle of only 3.15 (17)° between phenyl rings C1–C6 and C18–C23.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity.

The O atoms of the ortho-substituted nitro groups attached to the C1/C6 and C18/C23 phenyl rings form short intra­molecular contacts, each of 2.01 (3) Å, with the nearest amide N atom, forming an N—H⋯O contact resulting in an S(6) hydrogen bonding motif.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). An inter­molecular amide-to-amide N—H⋯O hydrogen bond between two bis-amide groups results in mol­ecular chains running along the b-axis direction. The oxygen atom of the amide C=O group in mol­ecule B forms a bifurcated hydrogen bond with the N—H group of the amide unit and the C—H group of the aliphatic chain of an adjacent mol­ecule. The C3—H3 unit of the C1–C6 ring of mol­ecule A forms a short inter­molecular contact with the oxygen atom O5 belonging to the nitro group of the C12–C17 phenyl ring of another A mol­ecule at position −x, 1 − y, −z. C—H groups of the C12–C17 and C29–C34 phenyl rings form hydrogen bonds with the O atoms of the nitro groups of the C12/C17 and C29/C34 phenyl rings at −x, −y + 2, −z + 1 and −x + 1, −y + 1, −z + 1, respectively. A packing diagram of the title compound is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.86 (2) 2.01 (3) 2.639 (3) 130 (3)
N2—H2N⋯O8 0.86 (2) 2.17 (2) 3.002 (3) 162 (3)
C3—H3⋯O5i 0.93 2.49 3.337 (4) 151
C14—H14⋯O6ii 0.93 2.50 3.267 (3) 140
N5—H5N⋯O10 0.86 (2) 2.01 (3) 2.651 (3) 130 (3)
N6—H6N⋯O2iii 0.86 (2) 2.11 (2) 2.959 (3) 171 (3)
C27—H27B⋯O2iii 0.97 2.55 3.396 (3) 146
C31—H31⋯O12iv 0.93 2.49 3.238 (3) 138
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z+1; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Hydrogen-bonding pattern in (I)[link] with hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
Mol­ecular packing of (I)[link] with hydrogen bonds shown as dashed lines.

4. Hirshfeld Surface analysis

The inter­molecular contacts in the crystal structure were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, generated using CrystalExplorer (Figs. 4[link], 5[link] and 6[link]). The red-coloured areas of the Hirshfeld surface indicate inter­molecular inter­actions (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Madan et al., 2013[Madan, K. S., Manjunath, B. C., Lingaraju, G. S., Abdoh, M. M. M., Sadashiva, M. P. & Lokanath, N. K. (2013). Cryst. Struct. Theor. Appl. 3, 124-131.]). Dark-red areas on the dnorm surface arise as a result of short inter­atomic contacts, i.e. strong hydrogen bonds, while the other inter­molecular inter­actions appear as light-red spots (Fig. 4[link]). In the surface mapped over the electrostatic potential (Fig. 5[link]), blue and red regions around the atoms correspond to the positive and negative electrostatic potentials of the N—H⋯O and C—H⋯O hydrogen-bond donors and acceptors, respectively.

[Figure 4]
Figure 4
View of the Hirshfeld surface mapped over dnorm for the two independent mol­ecules (A and B). The colour scale is between −0.21 au (red) to 1.2 au (blue).
[Figure 5]
Figure 5
View of the Hirshfeld surface mapped over the electrostatic potential for the two mol­ecules (A and B).
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound showing the contributions of different types of inter­actions

In the two-dimensional fingerprint plot (Fig. 6[link]), di is the closest inter­nal distance from a given point on the Hirshfeld surface to the nearest atom and de is the closest external contact. The outline of the full fingerprint is shown in grey. The fingerprint plots are used to plot inter­molecular contacts with respect to di and de. Visualization of the Hirshfeld surfaces and fingerprint plots allow the inter­molecular inter­actions to be qu­anti­fied. The fingerprint plot of O⋯H/H⋯O contacts shows two symmetrical narrow pointed wings, which represent the largest contribution to the Hirshfeld surfaces (41.7%), with de + di ∼ 2.4 Å (Fig. 6[link]b). H⋯H contacts represent the next largest contribution to the Hirshfeld surfaces (29.2%) and show a distinct pattern with a minimum value of de = di ∼ 1.2 Å (Fig. 6[link]c). O⋯C/C⋯O and N⋯H/H⋯N inter­actions cover only 5.4% (Fig. 6[link]d) and 3.4% (Fig. 6[link]e) of the surface, respectively. Two triangles featuring the C⋯C contacts contribute 3.2% to the Hirshfeld surfaces, with a minimum (de + di) distance of 3.5 Å (Fig. 6[link]f).

5. Related structures

The structure of bis-amides, namely, 3-methyl; 2-chloro-propanedi­amides (Gowda et al., 2010b[Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o3037.],c[Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010c). Acta Cryst. E66, o3038.]), N,N′-bis­(phen­yl)suberamide (Gowda et al., 2010a[Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010a). Acta Cryst. E66, o1363.]), bis-2-methyl; 2-chloro; 4-chloro­succinamide (Saraswathi et al., 2011a[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o607.], 2011b[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1139.], Purandara et al., 2012[Purandara, H., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2063.]) and bis-3-chloro­phenyl­malonamide (Rodrigues et al., 2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2278.]) have been investigated as part of our studies on the substituent effect on the structures and other aspects of the bis-amides. The title compound is similar to these compounds with the difference being the length of the aliphatic chain, substituent type and position in the phenyl ring of the mol­ecule.

6. Synthesis and crystallization

A mixture of glutaric acid (0.2 mol) and thionyl chloride (1.0 mol) was heated for half an hour at 363 K. Then 2-nitro­aniline (0.4 mol) was added dropwise under stirring. The resultant mixture was stirred for 3 h and left standing for 12 h for the completion of the reaction. The product was added to crushed ice. The white precipitate obtained was washed thoroughly with water and then with saturated sodium bicarbonate solution and again with water. It was washed first with 2 N HCl, then with water, collected by filtration, dried and recrystallized from dimethyl formamide (melting point: 503–504 K). The purity of the compound was checked by TLC and it was characterized by IR spectroscopy. The characteristic absorptions were observed at 3334.9, 1693.5 and 1330.9 cm−1 for N—H, C=O and C—N, respectively. 1H NMR (400 MHz, DMSO, δ in p.p.m): 1.93 to 2.00 (q, 1H, alk­yl–H), 2.48 (t, 2H, alk­yl–H, J = 7.4 Hz), 7.95 (dd, 1H, Ar–H, J = 8.2, 1.4 Hz) , 7.28–7.33 (m, 1H, Ar–H), 7.63–7.70 (m, 1H, Ar–H), 7.82 (dd, 1H, Ar–H, J = 8.2, 1.2 Hz) , 10.24 (s, 1H, –NH–). 13C NMR (100 MHz, DMSO, δ in p.p.m): 20.40, 35.19, 124.38, 124.65, 124.68, 131.71, 133.75, 141.36 and 170.82. Rod-shaped yellow single crystals of the title compound were obtained by slow evaporation of a DMF solution at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned with idealized geometry [C—H = 0.93 Å or 0.97 Å (methyl­ene)] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The H atoms of the NH groups were located in a difference map and later restrained to a distance of N—H = 0.86 (2) Å. They were refined with Uiso(H) = 1.2 Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C17H16N4O6
Mr 372.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.625 (1), 9.673 (1), 18.500 (2)
α, β, γ (°) 95.37 (1), 93.38 (1), 92.77 (1)
V3) 1709.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.48 × 0.26 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.])
Tmin, Tmax 0.948, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 10696, 6248, 3877
Rint 0.030
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.158, 1.05
No. of reflections 6248
No. of parameters 499
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.22
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]), SHELXS2013/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015).

N,N'-bis(2-nitrophenyl)glutaramide top
Crystal data top
C17H16N4O6Z = 4
Mr = 372.34F(000) = 776
Triclinic, P1Dx = 1.447 Mg m3
a = 9.625 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.673 (1) ÅCell parameters from 2127 reflections
c = 18.500 (2) Åθ = 2.9–27.7°
α = 95.37 (1)°µ = 0.11 mm1
β = 93.38 (1)°T = 293 K
γ = 92.77 (1)°Rod, yellow
V = 1709.3 (3) Å30.48 × 0.26 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3877 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.030
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.948, Tmax = 0.993k = 116
10696 measured reflectionsl = 2022
6248 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: mixed
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.4948P]
where P = (Fo2 + 2Fc2)/3
6248 reflections(Δ/σ)max < 0.001
499 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3147 (3)0.67820 (19)0.05292 (11)0.0655 (7)
O20.2237 (2)0.73540 (16)0.33207 (10)0.0451 (5)
O30.0896 (3)0.2146 (3)0.18879 (14)0.1000 (10)
O40.0869 (3)0.2646 (3)0.07551 (13)0.0799 (8)
O50.0882 (2)0.6967 (2)0.35971 (12)0.0655 (6)
O60.0156 (2)0.9019 (2)0.40685 (13)0.0644 (6)
N10.2543 (3)0.4663 (2)0.00794 (13)0.0491 (6)
H1N0.206 (3)0.391 (2)0.0022 (16)0.059*
N20.1565 (3)0.5376 (2)0.37960 (12)0.0408 (6)
H2N0.154 (3)0.4480 (18)0.3730 (15)0.049*
N30.1320 (3)0.2859 (3)0.13395 (15)0.0515 (6)
N40.0203 (2)0.7745 (2)0.40554 (13)0.0452 (6)
C10.2958 (3)0.4828 (3)0.07765 (14)0.0393 (6)
C20.2399 (3)0.3959 (3)0.13878 (15)0.0408 (7)
C30.2840 (3)0.4113 (3)0.20821 (16)0.0543 (8)
H30.24610.35200.24770.065*
C40.3825 (4)0.5128 (4)0.21869 (18)0.0607 (9)
H40.41110.52370.26510.073*
C50.4389 (3)0.5990 (3)0.15941 (18)0.0551 (8)
H50.50610.66820.16630.066*
C60.3978 (3)0.5847 (3)0.09057 (17)0.0485 (7)
H60.43840.64370.05170.058*
C70.2653 (3)0.5604 (3)0.05253 (15)0.0424 (7)
C80.2078 (3)0.5029 (3)0.11788 (15)0.0480 (7)
H8A0.24760.41410.12380.058*
H8B0.10790.48580.10880.058*
C90.2354 (3)0.5960 (3)0.18866 (14)0.0441 (7)
H9A0.33410.62280.19560.053*
H9B0.18500.68000.18590.053*
C100.1911 (4)0.5236 (3)0.25192 (15)0.0541 (8)
H10A0.25030.44620.25720.065*
H10B0.09660.48490.24060.065*
C110.1953 (3)0.6099 (2)0.32375 (14)0.0361 (6)
C120.1367 (3)0.5978 (2)0.45035 (14)0.0336 (6)
C130.0578 (3)0.7132 (3)0.46469 (14)0.0360 (6)
C140.0414 (3)0.7718 (3)0.53445 (16)0.0482 (8)
H140.01100.84960.54180.058*
C150.1025 (3)0.7150 (3)0.59281 (16)0.0548 (8)
H150.09250.75410.64000.066*
C160.1794 (3)0.5988 (3)0.58054 (16)0.0546 (8)
H160.21980.55860.61980.065*
C170.1970 (3)0.5415 (3)0.51009 (16)0.0451 (7)
H170.25010.46420.50290.054*
O70.3045 (3)0.17649 (19)0.05705 (11)0.0663 (7)
O80.2036 (2)0.23692 (17)0.33766 (10)0.0448 (5)
O90.0953 (3)0.2729 (3)0.19779 (13)0.0802 (8)
O100.0912 (3)0.2415 (2)0.08189 (13)0.0700 (7)
O110.5169 (2)0.2177 (2)0.34074 (12)0.0629 (6)
O120.4749 (2)0.41508 (19)0.39786 (11)0.0568 (6)
N50.2408 (3)0.0328 (2)0.00706 (13)0.0455 (6)
H5N0.197 (3)0.112 (2)0.0042 (16)0.055*
N60.2854 (2)0.0364 (2)0.37197 (12)0.0376 (5)
H6N0.272 (3)0.0524 (18)0.3653 (14)0.045*
N70.1378 (3)0.2110 (2)0.13923 (15)0.0509 (6)
N80.4744 (2)0.2875 (2)0.39265 (13)0.0432 (6)
C180.2939 (3)0.0158 (3)0.07437 (14)0.0386 (6)
C190.2469 (3)0.1001 (3)0.13854 (15)0.0407 (7)
C200.3026 (3)0.0821 (3)0.20481 (16)0.0559 (8)
H200.27000.13930.24610.067*
C210.4051 (4)0.0189 (3)0.20990 (17)0.0592 (9)
H210.44220.03060.25440.071*
C220.4527 (3)0.1035 (3)0.14813 (17)0.0530 (8)
H220.52130.17330.15140.064*
C230.3996 (3)0.0855 (3)0.08174 (15)0.0463 (7)
H230.43510.14220.04080.056*
C240.2492 (3)0.0601 (3)0.05446 (15)0.0422 (7)
C250.1819 (3)0.0042 (3)0.11826 (14)0.0429 (7)
H25A0.21080.08940.12290.052*
H25B0.08150.00080.10890.052*
C260.2196 (3)0.0934 (3)0.18947 (14)0.0410 (7)
H26A0.18570.18550.18590.049*
H26B0.32020.10290.19750.049*
C270.1582 (3)0.0320 (3)0.25438 (14)0.0434 (7)
H27A0.05750.03520.25030.052*
H27B0.18110.06450.25450.052*
C280.2149 (3)0.1123 (2)0.32459 (14)0.0340 (6)
C290.3407 (3)0.0933 (2)0.44173 (14)0.0334 (6)
C300.4243 (3)0.2158 (2)0.45335 (14)0.0348 (6)
C310.4704 (3)0.2724 (3)0.52307 (16)0.0463 (7)
H310.52480.35530.52950.056*
C320.4354 (3)0.2058 (3)0.58253 (16)0.0539 (8)
H320.46550.24330.62930.065*
C330.3553 (3)0.0829 (3)0.57198 (16)0.0538 (8)
H330.33250.03670.61190.065*
C340.3083 (3)0.0273 (3)0.50262 (15)0.0448 (7)
H340.25420.05570.49670.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.111 (2)0.0311 (11)0.0515 (13)0.0148 (12)0.0110 (12)0.0030 (9)
O20.0691 (13)0.0216 (9)0.0441 (11)0.0060 (9)0.0122 (10)0.0012 (8)
O30.111 (2)0.118 (2)0.0579 (17)0.0585 (19)0.0034 (15)0.0241 (15)
O40.0968 (19)0.0837 (17)0.0527 (16)0.0467 (15)0.0060 (14)0.0017 (13)
O50.0732 (16)0.0596 (14)0.0594 (15)0.0004 (12)0.0224 (12)0.0010 (11)
O60.0776 (16)0.0361 (12)0.0822 (17)0.0150 (11)0.0116 (13)0.0100 (11)
N10.0760 (19)0.0321 (12)0.0369 (14)0.0132 (12)0.0053 (12)0.0010 (11)
N20.0626 (16)0.0208 (10)0.0395 (14)0.0009 (11)0.0136 (11)0.0003 (10)
N30.0525 (16)0.0524 (15)0.0454 (16)0.0078 (13)0.0075 (13)0.0049 (13)
N40.0467 (15)0.0373 (14)0.0520 (16)0.0063 (11)0.0070 (12)0.0020 (12)
C10.0477 (17)0.0326 (14)0.0374 (16)0.0024 (12)0.0005 (13)0.0045 (12)
C20.0438 (16)0.0379 (15)0.0400 (17)0.0018 (13)0.0035 (13)0.0032 (12)
C30.062 (2)0.064 (2)0.0360 (18)0.0035 (17)0.0036 (15)0.0015 (15)
C40.066 (2)0.074 (2)0.046 (2)0.0075 (19)0.0119 (17)0.0167 (17)
C50.0527 (19)0.0509 (18)0.065 (2)0.0003 (15)0.0138 (16)0.0166 (16)
C60.0539 (18)0.0393 (16)0.0509 (19)0.0059 (14)0.0024 (14)0.0017 (13)
C70.0597 (19)0.0290 (14)0.0371 (16)0.0001 (13)0.0012 (13)0.0008 (12)
C80.069 (2)0.0327 (15)0.0414 (17)0.0047 (14)0.0072 (15)0.0005 (12)
C90.066 (2)0.0299 (14)0.0355 (16)0.0008 (13)0.0070 (14)0.0023 (12)
C100.092 (2)0.0304 (15)0.0388 (17)0.0057 (15)0.0142 (16)0.0030 (12)
C110.0445 (16)0.0273 (14)0.0367 (15)0.0010 (12)0.0086 (12)0.0016 (11)
C120.0343 (14)0.0313 (13)0.0349 (15)0.0054 (11)0.0070 (11)0.0031 (11)
C130.0397 (15)0.0316 (14)0.0355 (15)0.0061 (12)0.0040 (12)0.0003 (11)
C140.0534 (18)0.0427 (16)0.0459 (18)0.0076 (14)0.0140 (15)0.0117 (14)
C150.059 (2)0.067 (2)0.0349 (18)0.0189 (17)0.0070 (15)0.0050 (15)
C160.0450 (18)0.077 (2)0.0412 (19)0.0155 (17)0.0016 (14)0.0176 (16)
C170.0406 (16)0.0461 (17)0.0506 (19)0.0011 (13)0.0056 (14)0.0147 (14)
O70.118 (2)0.0311 (11)0.0479 (13)0.0172 (12)0.0230 (13)0.0062 (9)
O80.0652 (13)0.0241 (10)0.0440 (12)0.0046 (9)0.0024 (9)0.0004 (8)
O90.0763 (17)0.0865 (17)0.0662 (17)0.0178 (14)0.0146 (13)0.0306 (13)
O100.0775 (17)0.0651 (15)0.0622 (16)0.0260 (13)0.0001 (13)0.0028 (12)
O110.0771 (16)0.0529 (13)0.0581 (14)0.0100 (11)0.0341 (12)0.0102 (11)
O120.0718 (15)0.0289 (11)0.0686 (15)0.0100 (10)0.0086 (11)0.0032 (9)
N50.0667 (17)0.0322 (12)0.0354 (14)0.0096 (12)0.0028 (12)0.0016 (10)
N60.0516 (14)0.0201 (10)0.0393 (13)0.0046 (10)0.0016 (11)0.0001 (10)
N70.0477 (15)0.0455 (14)0.0551 (17)0.0016 (12)0.0094 (13)0.0094 (13)
N80.0452 (14)0.0335 (13)0.0494 (15)0.0088 (11)0.0105 (11)0.0035 (11)
C180.0478 (17)0.0310 (14)0.0366 (16)0.0050 (12)0.0008 (13)0.0000 (11)
C190.0445 (16)0.0370 (15)0.0385 (16)0.0058 (13)0.0044 (13)0.0048 (12)
C200.065 (2)0.061 (2)0.0389 (19)0.0070 (17)0.0041 (15)0.0070 (15)
C210.068 (2)0.067 (2)0.0425 (19)0.0055 (18)0.0116 (16)0.0030 (16)
C220.057 (2)0.0473 (18)0.055 (2)0.0008 (15)0.0095 (16)0.0054 (15)
C230.0570 (19)0.0407 (16)0.0390 (17)0.0041 (14)0.0023 (14)0.0036 (12)
C240.0616 (19)0.0280 (14)0.0365 (16)0.0020 (13)0.0025 (13)0.0011 (12)
C250.0571 (18)0.0327 (14)0.0378 (16)0.0053 (13)0.0037 (13)0.0010 (12)
C260.0541 (18)0.0319 (14)0.0357 (16)0.0045 (13)0.0028 (13)0.0004 (11)
C270.0599 (19)0.0324 (14)0.0361 (16)0.0104 (13)0.0020 (13)0.0042 (12)
C280.0423 (15)0.0261 (14)0.0332 (15)0.0056 (11)0.0053 (12)0.0031 (11)
C290.0340 (14)0.0278 (13)0.0381 (15)0.0042 (11)0.0017 (11)0.0006 (11)
C300.0396 (15)0.0287 (13)0.0357 (15)0.0003 (11)0.0076 (12)0.0016 (11)
C310.0464 (17)0.0389 (15)0.0501 (19)0.0007 (13)0.0019 (14)0.0092 (13)
C320.059 (2)0.062 (2)0.0387 (18)0.0054 (17)0.0029 (15)0.0039 (15)
C330.0527 (19)0.070 (2)0.0409 (18)0.0060 (16)0.0005 (14)0.0147 (15)
C340.0448 (17)0.0435 (16)0.0466 (18)0.0057 (13)0.0011 (14)0.0127 (13)
Geometric parameters (Å, º) top
O1—C71.213 (3)O7—C241.218 (3)
O2—C111.224 (3)O8—C281.218 (3)
O3—N31.210 (3)O9—N71.225 (3)
O4—N31.220 (3)O10—N71.231 (3)
O5—N41.217 (3)O11—N81.223 (3)
O6—N41.228 (3)O12—N81.229 (3)
N1—C71.370 (3)N5—C241.378 (3)
N1—C11.393 (3)N5—C181.394 (3)
N1—H1N0.863 (17)N5—H5N0.862 (17)
N2—C111.361 (3)N6—C281.366 (3)
N2—C121.409 (3)N6—C291.417 (3)
N2—H2N0.863 (17)N6—H6N0.859 (16)
N3—C21.463 (4)N7—C191.464 (4)
N4—C131.477 (4)N8—C301.467 (3)
C1—C61.404 (4)C18—C231.399 (4)
C1—C21.408 (4)C18—C191.414 (4)
C2—C31.395 (4)C19—C201.389 (4)
C3—C41.367 (4)C20—C211.368 (4)
C3—H30.9300C20—H200.9300
C4—C51.381 (4)C21—C221.383 (4)
C4—H40.9300C21—H210.9300
C5—C61.373 (4)C22—C231.380 (4)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.501 (4)C24—C251.510 (4)
C8—C91.521 (3)C25—C261.520 (3)
C8—H8A0.9700C25—H25A0.9700
C8—H8B0.9700C25—H25B0.9700
C9—C101.492 (4)C26—C271.525 (4)
C9—H9A0.9700C26—H26A0.9700
C9—H9B0.9700C26—H26B0.9700
C10—C111.499 (4)C27—C281.508 (3)
C10—H10A0.9700C27—H27A0.9700
C10—H10B0.9700C27—H27B0.9700
C12—C171.386 (4)C29—C341.389 (3)
C12—C131.394 (4)C29—C301.392 (3)
C13—C141.381 (4)C30—C311.392 (4)
C14—C151.371 (4)C31—C321.376 (4)
C14—H140.9300C31—H310.9300
C15—C161.384 (4)C32—C331.376 (4)
C15—H150.9300C32—H320.9300
C16—C171.391 (4)C33—C341.385 (4)
C16—H160.9300C33—H330.9300
C17—H170.9300C34—H340.9300
C7—N1—C1128.9 (2)C24—N5—C18128.3 (2)
C7—N1—H1N114 (2)C24—N5—H5N117 (2)
C1—N1—H1N117 (2)C18—N5—H5N115 (2)
C11—N2—C12124.6 (2)C28—N6—C29123.0 (2)
C11—N2—H2N117.7 (19)C28—N6—H6N116.9 (18)
C12—N2—H2N117.2 (19)C29—N6—H6N116.9 (18)
O3—N3—O4120.3 (3)O9—N7—O10121.3 (3)
O3—N3—C2118.9 (3)O9—N7—C19118.5 (3)
O4—N3—C2120.7 (2)O10—N7—C19120.2 (2)
O5—N4—O6124.0 (3)O11—N8—O12123.6 (2)
O5—N4—C13118.4 (2)O11—N8—C30118.5 (2)
O6—N4—C13117.7 (2)O12—N8—C30117.9 (2)
N1—C1—C6121.9 (2)N5—C18—C23121.3 (2)
N1—C1—C2121.7 (2)N5—C18—C19122.6 (2)
C6—C1—C2116.4 (3)C23—C18—C19116.1 (3)
C3—C2—C1121.4 (3)C20—C19—C18121.5 (3)
C3—C2—N3116.0 (2)C20—C19—N7116.2 (3)
C1—C2—N3122.6 (3)C18—C19—N7122.3 (3)
C4—C3—C2120.5 (3)C21—C20—C19120.7 (3)
C4—C3—H3119.7C21—C20—H20119.7
C2—C3—H3119.7C19—C20—H20119.7
C3—C4—C5119.0 (3)C20—C21—C22119.2 (3)
C3—C4—H4120.5C20—C21—H21120.4
C5—C4—H4120.5C22—C21—H21120.4
C6—C5—C4121.3 (3)C23—C22—C21120.8 (3)
C6—C5—H5119.4C23—C22—H22119.6
C4—C5—H5119.4C21—C22—H22119.6
C5—C6—C1121.4 (3)C22—C23—C18121.8 (3)
C5—C6—H6119.3C22—C23—H23119.1
C1—C6—H6119.3C18—C23—H23119.1
O1—C7—N1123.5 (3)O7—C24—N5123.3 (3)
O1—C7—C8123.6 (2)O7—C24—C25123.1 (2)
N1—C7—C8112.9 (2)N5—C24—C25113.6 (2)
C7—C8—C9114.8 (2)C24—C25—C26112.7 (2)
C7—C8—H8A108.6C24—C25—H25A109.0
C9—C8—H8A108.6C26—C25—H25A109.0
C7—C8—H8B108.6C24—C25—H25B109.0
C9—C8—H8B108.6C26—C25—H25B109.0
H8A—C8—H8B107.6H25A—C25—H25B107.8
C10—C9—C8111.1 (2)C25—C26—C27112.5 (2)
C10—C9—H9A109.4C25—C26—H26A109.1
C8—C9—H9A109.4C27—C26—H26A109.1
C10—C9—H9B109.4C25—C26—H26B109.1
C8—C9—H9B109.4C27—C26—H26B109.1
H9A—C9—H9B108.0H26A—C26—H26B107.8
C9—C10—C11116.5 (2)C28—C27—C26110.5 (2)
C9—C10—H10A108.2C28—C27—H27A109.6
C11—C10—H10A108.2C26—C27—H27A109.6
C9—C10—H10B108.2C28—C27—H27B109.6
C11—C10—H10B108.2C26—C27—H27B109.6
H10A—C10—H10B107.3H27A—C27—H27B108.1
O2—C11—N2121.9 (2)O8—C28—N6121.8 (2)
O2—C11—C10124.2 (2)O8—C28—C27123.0 (2)
N2—C11—C10113.8 (2)N6—C28—C27115.2 (2)
C17—C12—C13116.7 (2)C34—C29—C30117.2 (2)
C17—C12—N2119.8 (2)C34—C29—N6119.5 (2)
C13—C12—N2123.5 (2)C30—C29—N6123.3 (2)
C14—C13—C12122.5 (3)C31—C30—C29121.6 (3)
C14—C13—N4116.1 (3)C31—C30—N8116.7 (2)
C12—C13—N4121.2 (2)C29—C30—N8121.6 (2)
C15—C14—C13119.9 (3)C32—C31—C30120.0 (3)
C15—C14—H14120.1C32—C31—H31120.0
C13—C14—H14120.1C30—C31—H31120.0
C14—C15—C16119.1 (3)C33—C32—C31119.2 (3)
C14—C15—H15120.5C33—C32—H32120.4
C16—C15—H15120.5C31—C32—H32120.4
C15—C16—C17120.7 (3)C32—C33—C34120.8 (3)
C15—C16—H16119.6C32—C33—H33119.6
C17—C16—H16119.6C34—C33—H33119.6
C12—C17—C16121.1 (3)C33—C34—C29121.2 (3)
C12—C17—H17119.4C33—C34—H34119.4
C16—C17—H17119.4C29—C34—H34119.4
C7—N1—C1—C622.1 (5)C24—N5—C18—C2319.3 (4)
C7—N1—C1—C2159.5 (3)C24—N5—C18—C19161.9 (3)
N1—C1—C2—C3178.7 (3)N5—C18—C19—C20179.2 (3)
C6—C1—C2—C30.2 (4)C23—C18—C19—C200.3 (4)
N1—C1—C2—N32.0 (4)N5—C18—C19—N70.6 (4)
C6—C1—C2—N3179.4 (2)C23—C18—C19—N7179.5 (2)
O3—N3—C2—C31.1 (4)O9—N7—C19—C205.5 (4)
O4—N3—C2—C3180.0 (3)O10—N7—C19—C20173.9 (3)
O3—N3—C2—C1179.5 (3)O9—N7—C19—C18174.7 (3)
O4—N3—C2—C10.7 (4)O10—N7—C19—C185.9 (4)
C1—C2—C3—C40.6 (4)C18—C19—C20—C210.3 (4)
N3—C2—C3—C4178.7 (3)N7—C19—C20—C21179.9 (3)
C2—C3—C4—C50.7 (5)C19—C20—C21—C220.1 (5)
C3—C4—C5—C60.1 (5)C20—C21—C22—C231.0 (5)
C4—C5—C6—C10.6 (5)C21—C22—C23—C181.6 (5)
N1—C1—C6—C5179.3 (3)N5—C18—C23—C22179.8 (3)
C2—C1—C6—C50.8 (4)C19—C18—C23—C221.2 (4)
C1—N1—C7—O10.7 (5)C18—N5—C24—O72.0 (5)
C1—N1—C7—C8179.8 (3)C18—N5—C24—C25178.7 (3)
O1—C7—C8—C98.9 (4)O7—C24—C25—C2613.5 (4)
N1—C7—C8—C9172.0 (3)N5—C24—C25—C26167.2 (2)
C7—C8—C9—C10172.7 (3)C24—C25—C26—C27176.7 (2)
C8—C9—C10—C11172.3 (3)C25—C26—C27—C28171.9 (2)
C12—N2—C11—O24.0 (4)C29—N6—C28—O85.2 (4)
C12—N2—C11—C10172.6 (3)C29—N6—C28—C27177.3 (2)
C9—C10—C11—O24.8 (5)C26—C27—C28—O857.3 (4)
C9—C10—C11—N2178.7 (3)C26—C27—C28—N6120.2 (3)
C11—N2—C12—C17131.7 (3)C28—N6—C29—C34127.7 (3)
C11—N2—C12—C1348.6 (4)C28—N6—C29—C3050.6 (4)
C17—C12—C13—C141.3 (4)C34—C29—C30—C311.9 (4)
N2—C12—C13—C14179.0 (2)N6—C29—C30—C31176.4 (2)
C17—C12—C13—N4175.0 (2)C34—C29—C30—N8174.8 (2)
N2—C12—C13—N44.7 (4)N6—C29—C30—N86.9 (4)
O5—N4—C13—C14131.3 (3)O11—N8—C30—C31134.3 (3)
O6—N4—C13—C1446.7 (3)O12—N8—C30—C3143.7 (3)
O5—N4—C13—C1245.2 (4)O11—N8—C30—C2942.5 (4)
O6—N4—C13—C12136.7 (3)O12—N8—C30—C29139.5 (3)
C12—C13—C14—C150.9 (4)C29—C30—C31—C321.2 (4)
N4—C13—C14—C15175.5 (2)N8—C30—C31—C32175.7 (3)
C13—C14—C15—C160.3 (4)C30—C31—C32—C330.3 (4)
C14—C15—C16—C171.2 (4)C31—C32—C33—C340.9 (5)
C13—C12—C17—C160.4 (4)C32—C33—C34—C290.1 (4)
N2—C12—C17—C16179.9 (2)C30—C29—C34—C331.3 (4)
C15—C16—C17—C120.9 (4)N6—C29—C34—C33177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.86 (2)2.01 (3)2.639 (3)130 (3)
N2—H2N···O80.86 (2)2.17 (2)3.002 (3)162 (3)
C3—H3···O5i0.932.493.337 (4)151
C14—H14···O6ii0.932.503.267 (3)140
N5—H5N···O100.86 (2)2.01 (3)2.651 (3)130 (3)
N6—H6N···O2iii0.86 (2)2.11 (2)2.959 (3)171 (3)
C27—H27B···O2iii0.972.553.396 (3)146
C31—H31···O12iv0.932.493.238 (3)138
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank SAIF Panjab University for use of their NMR equipment and Mangalore University for providing all the facilities required.

Funding information

ARS thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its DST–PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.

References

First citationGowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010a). Acta Cryst. E66, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o3037.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010c). Acta Cryst. E66, o3038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubicova, L., Kralova, K., Kunes, J. & Waisser, K. (2000a). Chem. Papers, 54, 90–93.  Google Scholar
First citationKubicova, L., Waisser, K., Kunes, J., Kralova, K., Odlerova, Z., Slosarek, M., Janota, J. & Svoboda, Z. (2000b). Molecules, 5, 714–726.  CrossRef Google Scholar
First citationMadan, K. S., Manjunath, B. C., Lingaraju, G. S., Abdoh, M. M. M., Sadashiva, M. P. & Lokanath, N. K. (2013). Cryst. Struct. Theor. Appl. 3, 124–131.  Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationPurandara, H., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2063.  CrossRef IUCr Journals Google Scholar
First citationRaynes, K., Galatis, D., Cowman, A. F., Tilley, L. & Deady, L. W. (1995). J. Med. Chem. 38, 204–206.  CrossRef Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2278.  CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarkar, M. & Biradha, K. (2006). Cryst. Growth Des. 6, 202–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds