research communications
Structure of 2-chloro-N-(p-tolyl)propanamide
aSynthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemical and, Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland, and bSchool of Chemistry, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
*Correspondence e-mail: roderick.jones@ucd.ie
Two independent samples of the title compound, alternatively 2-chloro-N-(4-methylphenyl)propanamide, C10H12ClNO, 1, were studied using Cu Kα, 1a, and Mo Kα, 1b, radiation as part of a continuous crystallization study. The molecule crystallizes with disorder in the Cl/terminal methyl positions [occupancies for the major disorder component of 0.783 (2) in 1a and and 0.768 (2) in 1b] and exhibits N—C bond lengths of 1.3448 (19), 1.344 (2) Å, C=O bond lengths of 1.2233 (18) and 1.2245 (19) Å and an acetamide moiety C—N—C—C torsion angle of 179.00 (13), 178.97 (14) ° for 1a and 1b, respectively. In the crystal, chains along the a axis are formed via N—H⋯O hydrogen bonds between acetamide groups, as well as C—H⋯O interactions. These chains arrange themselves into parallel running stacks which display weak C—Cl⋯O=C halogen bonding as well as weak C—H⋯π interactions.
Keywords: crystal structure; API; continuous processing; biphasic.
1. Chemical context
The introduction of continuous processing has been a paradigm shift in safety and productivity in the synthesis and isolation of active pharmaceutical ingredients (APIs) in both industry and academic research (Mascia et al., 2013 and Lee et al., 2015 and references contained therein). A major focus of our current research is developing design and optimization strategies to deliver robust, scalable and tunable continuous processes for API manufacturing, which can deliver specific API characteristics (Power et al., 2015; Zhao et al., 2015; O'Mahony et al., 2017; Simon et al., 2018). As part of this work we have been examining the continuous crystallization of 2-chloro-N-(p-tolyl)propanamide, 1, a key intermediate of α-thio-β-chloroacrylamides, a class of compound that has shown importance in the literature as synthetically viable APIs (Murphy et al., 2007; Foley et al., 2011; Kissane & Maguire, 2011) that can undergo transformations; such as Diels–Alder cycloadditions (Kissane et al., 2010a), 1,3-dipolar cycloadditions (Kissane et al., 2010b), sulfide group (Kissane et al., 2010c,d) and nucleophilic substitution (Kissane et al., 2011). To design and understand a continuous crystallization process for 1, an extensive solubility study was conducted examining the compound's solubility characteristics in common organic solvents (Pascual et al., 2017). During this study, an improved bi-phasic synthesis was developed and crystals from two different continuous crystallization process runs were isolated to detect and characterize any variability of the crystalline material produced. These samples, 1a and 1b, of 2-chloro-N-(p-tolyl)propanamide, see Fig. 1, are described herein.
2. Structural commentary
Compound 1a and 1b both crystallize with one molecule in the in the orthorhombic Pbca and exhibit normal bond lengths and angles compared to similar compounds (2-chloro-N-phenylpropanamide, IQOHOL, Gowda et al., 2003 and references below). The disorder observed in 1 between the methyl/chloro positions is similarly displayed in IQOHOL. The aryl ring-to-amide backbone plane is twisted with a C1—C7—N8—C9 torsion angle of 45.3 (2) in 1a and 45.6 (2)° in 1b (Table 1).
An overlay of the molecular structures of 1a and 1b without inversion and an r.m.s. fit of 0.040 Å is shown in Fig. 2. The data, collected using different sources (Cu Kα for 1a and Mo Kα for 1b), show remarkable similarity even down to the hydrogen-bonding metrics seen in Tables 2 and 3. Data were collected on crystals of a similar size and at 100 K. As can be seen in Table 1, a comparison between several bond lengths and angles in 1a, 1b and IQOHOL show how the metrics are similar, even with data that was collected at room temperature (IQOHOL). The disorder occupancy is different in 1a, 1b and in IQOHOL, but to no great extent with the occupancy of the major component being 0.783 (2) for 1a, 0.768 (2) for 1b and for 0.899 IQOHOL.
|
3. Supramolecular features
In the extended structure there is, as expected, a strong amide hydrogen bond, between the N—H group and the ketone oxygen (N8⋯O10i, see Tables 2 and 3). This feature can be seen in many of the known phenylacetamides and the donor–acceptor distance in similar congeners below range from 2.8175 (8) Å (XIHMOQ; Gowda et al., 2001) to the longer interaction in CEXPOK of 3.2576 (6) Å. The distance in IQOHOL is 2.8632 (6) Å, slightly longer than that found in 1.
There is also a weaker interaction between the methine group and the ketone (C11—H11⋯O10i, see Tables 2 and 3). This type of chelate hydrogen bonding is also seen in IQOHOL and XIHMOQ [D⋯A = 3.2699 (8) and 2.8632 (6) Å respectively)] The head-to-tail packing and the chelate hydrogen bonding allows an approximately linear arrangement of 1, forming ribbons propagating along the [100] direction, see Fig. 3. Only IQOHOL and XIHMOQ exhibit similar characteristics with head-to-tail and approximately linear packing [0.21367 (6) and 3.5472 (14)° respectively, as measured by the amide OCN and aryl carbon plane normal to plane normal angle, compared to 1.80942 (8)° in 1a and 1.71940 (13)° in 1b).
There are other supramolecular interactions that assist in the packing of 1. Complimenting the hydrogen bonding above, there is a weak C—Cl⋯Oii=Cii halogen bond between the terminal chlorine and the ketone, with distances of 1a, 3.1761 (14) and 1b, 3.1734 (18) Å [symmetry code: (ii) − x, − + y, z]. A very weak example of a C—H⋯πiii interaction is also present in 1, with the methyl group C12 directed towards the centroid of ring C1–C6 (see Tables 2 and 3).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.39, February 2018 update; Groom et al., 2016) for similar systems (R-PhNHCOCH–, where R = H, methyl, halogen) yielded several similar substituted phenylacetamides: CLACTN (Subramanian, 1966), CLACTN01 (Gowda et al., 2007a), CLACTN02 (Naumov et al., 2007), CLACTN03 [Coles (née Huth) et al., 2008], CEXPOK (Banks et al., 1999), FOWYIA (Gowda et al., 2009), IFALIK (Frohberg et al., 2002), IQOHOL (Gowda et al., 2003), JODQEZ (Si-shun Kang et al., 2008), NIYYEB (Pathak et al., 2014), NUWQUT (Hursthouse et al., 2009), NUZBUF (Pal et al., 1998), NUZBUF01 (Gowda et al., 2001), RIYWIG (Gowda et al., 2008), SALYIN (Chekhlov et al., 1987), WINSUI (Gowda et al., 2007b), XEKNEJ (Gupta et al., 2017), XICMAY (Gowda et al., 2007c), XIHMIK and XIHMOQ (Gowda et al., 2001) and XIQNIV (Staples & Vidnovio, 2007).
5. Synthesis and crystallization
A solution of α-chloropropionyl chloride (1.16 mL, 12mmol 1.2 equiv.) in toluene (30 mL) was added dropwise (with extreme caution) to a vigorously stirred bi-phasic suspension of p-toluidine (1.07 g, 10 mmol) in toluene (50 mL) and 40 mL of aqueous NaOH (1.20 g, 30 mmol, 3 equiv.) at 273 K. After the addition was complete, the biphasic suspension was warmed to room temperature and stirred vigorously for 1 h. The organic phase was separated, and the aqueous layer extracted with ethyl acetate (3 × 15 mL). The organic layers were then combined, dried with Na2SO4, filtered and the solvent removed under vacuum. The resulting off-white solid was collected and washed with thoroughly with cold cyclohexane (1.89 g, 96%). Single crystals for X-ray analysis were grown by slow evaporation of a toluene solution at room temperature. Spectroscopic data for the obtained product matched that reported in the literature (Pascual et al., 2017).
1H NMR (300 MHz, CDCl3): δ 8.21 (s, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 4.54 (q, J = 7.1 Hz, 1H) 2.13 (s, 3H), 1.83 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 166.9 134.4, 134.0, 129.1, 119.7, 55.9, 22.4, 20.5. MS (EI) m/z 197 [M]+, [12C10H1235Cl14N16O 197]. HRMS (EI) m/z Found: [M]+ 197.0604, [C10H12ClNO]+ requires 197.0607.
6. Refinement
Crystal data, data collection and structure . In both 1a and 1b, Cl1/Cl1a and C12/C12a were modelled as disordered over two positions using restraints (DFIX for C11—C12, C11—C12a distances) and constraints (EADP, Cl atoms). The occupancy was allowed to refine with a population parameter of 1a = 0.783 (2), and 1b = 0.768 (2). The amide N—H H atom was located in a difference-Fourier map and freely refined. H atoms bonded to carbon were placed with idealized geometry and refined using a riding model with C—H = 0.95 Å aromatic, C—H = 0.90 Å methine, with Uiso(H) = 1.2Ueq(C) and C—H = 0.98 Å methyl with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989018013889/ds2252sup1.cif
contains datablock . DOI:Structure factors: contains datablock 1a. DOI: https://doi.org/10.1107/S2056989018013889/ds22521asup2.hkl
Structure factors: contains datablock 1b. DOI: https://doi.org/10.1107/S2056989018013889/ds22521bsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018013889/ds22521asup4.cml
For both structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H12ClNO | Dx = 1.304 Mg m−3 |
Mr = 197.66 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pbca | Cell parameters from 9895 reflections |
a = 9.5119 (3) Å | θ = 4.1–69.6° |
b = 9.6885 (4) Å | µ = 3.03 mm−1 |
c = 21.8439 (8) Å | T = 100 K |
V = 2013.05 (13) Å3 | Irregular, clear colourless |
Z = 8 | 0.27 × 0.14 × 0.10 mm |
F(000) = 832 |
Bruker APEXII Kappa Duo diffractometer | 1892 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 1819 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.045 |
Detector resolution: 7.9 pixels mm-1 | θmax = 69.7°, θmin = 4.1° |
ω and φ scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −11→11 |
Tmin = 0.565, Tmax = 0.753 | l = −26→26 |
18191 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0541P)2 + 1.2115P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1892 reflections | Δρmax = 0.29 e Å−3 |
138 parameters | Δρmin = −0.26 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The terminal chloro/methyl groups are disordered and overlap with an occupancy of 78:22%. The disorder was modelled with restraints (DFIX) and constraints (EADP for the Cl atoms). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.60104 (11) | 0.01803 (8) | 0.42660 (5) | 0.0298 (2) | 0.783 (2) |
Cl1A | 0.6006 (11) | 0.2847 (11) | 0.3649 (4) | 0.0328 (12) | 0.217 (2) |
O10 | 0.74965 (11) | 0.26055 (12) | 0.48882 (5) | 0.0281 (3) | |
N8 | 0.53542 (13) | 0.31060 (13) | 0.52846 (6) | 0.0208 (3) | |
H8 | 0.453 (2) | 0.2949 (17) | 0.5247 (7) | 0.016 (4)* | |
C1 | 0.69159 (16) | 0.46725 (17) | 0.58476 (7) | 0.0257 (4) | |
H1 | 0.7392 | 0.4906 | 0.5480 | 0.031* | |
C2 | 0.73137 (17) | 0.52711 (18) | 0.63985 (8) | 0.0303 (4) | |
H2 | 0.8067 | 0.5915 | 0.6402 | 0.036* | |
C3 | 0.66349 (18) | 0.49513 (17) | 0.69457 (8) | 0.0286 (4) | |
C4 | 0.7043 (2) | 0.5651 (2) | 0.75375 (9) | 0.0408 (5) | |
H4A | 0.7236 | 0.4951 | 0.7850 | 0.061* | |
H4B | 0.6272 | 0.6246 | 0.7675 | 0.061* | |
H4C | 0.7888 | 0.6212 | 0.7471 | 0.061* | |
C5 | 0.55361 (18) | 0.40046 (17) | 0.69264 (7) | 0.0286 (4) | |
H5 | 0.5058 | 0.3771 | 0.7294 | 0.034* | |
C6 | 0.51263 (16) | 0.33958 (16) | 0.63802 (7) | 0.0253 (3) | |
H6 | 0.4374 | 0.2751 | 0.6376 | 0.030* | |
C7 | 0.58167 (15) | 0.37290 (16) | 0.58389 (7) | 0.0208 (3) | |
C9 | 0.62129 (15) | 0.25772 (15) | 0.48554 (7) | 0.0204 (3) | |
C11 | 0.54665 (16) | 0.19425 (16) | 0.43058 (7) | 0.0223 (3) | |
H11 | 0.4426 | 0.1988 | 0.4369 | 0.027* | 0.783 (2) |
H11A | 0.4428 | 0.2050 | 0.4358 | 0.027* | 0.217 (2) |
C12A | 0.582 (2) | 0.0409 (11) | 0.4215 (10) | 0.035 (2) | 0.217 (2) |
H12A | 0.5437 | −0.0127 | 0.4558 | 0.053* | 0.217 (2) |
H12B | 0.6838 | 0.0290 | 0.4197 | 0.053* | 0.217 (2) |
H12C | 0.5395 | 0.0084 | 0.3831 | 0.053* | 0.217 (2) |
C12 | 0.5856 (12) | 0.2688 (11) | 0.3711 (4) | 0.035 (2) | 0.783 (2) |
H12D | 0.6871 | 0.2610 | 0.3641 | 0.053* | 0.783 (2) |
H12E | 0.5597 | 0.3664 | 0.3743 | 0.053* | 0.783 (2) |
H12F | 0.5350 | 0.2266 | 0.3368 | 0.053* | 0.783 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0401 (5) | 0.0204 (4) | 0.0290 (4) | 0.0037 (2) | −0.0030 (3) | −0.0030 (3) |
Cl1A | 0.034 (2) | 0.036 (2) | 0.0278 (15) | −0.0036 (14) | −0.0033 (13) | 0.0100 (13) |
O10 | 0.0158 (6) | 0.0365 (7) | 0.0320 (6) | 0.0011 (5) | 0.0005 (4) | −0.0073 (5) |
N8 | 0.0125 (6) | 0.0255 (7) | 0.0244 (6) | −0.0016 (5) | 0.0002 (5) | −0.0020 (5) |
C1 | 0.0207 (7) | 0.0299 (8) | 0.0266 (8) | −0.0025 (6) | 0.0027 (6) | −0.0026 (6) |
C2 | 0.0215 (8) | 0.0348 (9) | 0.0347 (9) | −0.0034 (7) | −0.0014 (7) | −0.0071 (7) |
C3 | 0.0281 (8) | 0.0310 (8) | 0.0266 (8) | 0.0070 (7) | −0.0060 (7) | −0.0037 (6) |
C4 | 0.0409 (10) | 0.0500 (11) | 0.0315 (9) | 0.0061 (9) | −0.0089 (8) | −0.0112 (9) |
C5 | 0.0332 (8) | 0.0295 (8) | 0.0233 (7) | 0.0048 (7) | 0.0034 (6) | 0.0033 (6) |
C6 | 0.0242 (7) | 0.0230 (7) | 0.0286 (8) | −0.0005 (6) | 0.0032 (6) | 0.0016 (6) |
C7 | 0.0181 (7) | 0.0215 (7) | 0.0229 (7) | 0.0032 (6) | −0.0005 (5) | −0.0003 (6) |
C9 | 0.0182 (7) | 0.0195 (7) | 0.0235 (7) | 0.0001 (5) | 0.0010 (5) | 0.0024 (6) |
C11 | 0.0175 (7) | 0.0244 (8) | 0.0250 (7) | 0.0020 (6) | 0.0010 (5) | −0.0016 (6) |
C12A | 0.034 (3) | 0.030 (3) | 0.042 (4) | 0.006 (2) | −0.007 (2) | −0.005 (2) |
C12 | 0.034 (3) | 0.030 (3) | 0.042 (4) | 0.006 (2) | −0.007 (2) | −0.005 (2) |
Cl1—C11 | 1.7861 (17) | C5—H5 | 0.9500 |
Cl1A—C11 | 1.758 (8) | C5—C6 | 1.387 (2) |
O10—C9 | 1.2233 (18) | C6—H6 | 0.9500 |
N8—H8 | 0.80 (2) | C6—C7 | 1.391 (2) |
N8—C7 | 1.4226 (19) | C9—C11 | 1.524 (2) |
N8—C9 | 1.3448 (19) | C11—H11 | 1.0000 |
C1—H1 | 0.9500 | C11—H11A | 1.0000 |
C1—C2 | 1.388 (2) | C11—C12A | 1.536 (9) |
C1—C7 | 1.389 (2) | C11—C12 | 1.532 (7) |
C2—H2 | 0.9500 | C12A—H12A | 0.9800 |
C2—C3 | 1.394 (2) | C12A—H12B | 0.9800 |
C3—C4 | 1.511 (2) | C12A—H12C | 0.9800 |
C3—C5 | 1.391 (2) | C12—H12D | 0.9800 |
C4—H4A | 0.9800 | C12—H12E | 0.9800 |
C4—H4B | 0.9800 | C12—H12F | 0.9800 |
C4—H4C | 0.9800 | ||
C7—N8—H8 | 118.0 (12) | O10—C9—N8 | 123.83 (14) |
C9—N8—H8 | 116.7 (12) | O10—C9—C11 | 121.34 (13) |
C9—N8—C7 | 124.55 (13) | N8—C9—C11 | 114.82 (13) |
C2—C1—H1 | 120.3 | Cl1—C11—H11 | 109.6 |
C2—C1—C7 | 119.47 (15) | Cl1A—C11—H11A | 109.2 |
C7—C1—H1 | 120.3 | C9—C11—Cl1 | 106.80 (10) |
C1—C2—H2 | 119.2 | C9—C11—Cl1A | 107.8 (4) |
C1—C2—C3 | 121.63 (16) | C9—C11—H11 | 109.6 |
C3—C2—H2 | 119.2 | C9—C11—H11A | 109.2 |
C2—C3—C4 | 121.00 (16) | C9—C11—C12A | 113.1 (8) |
C5—C3—C2 | 117.95 (15) | C9—C11—C12 | 111.4 (5) |
C5—C3—C4 | 121.02 (16) | C12A—C11—Cl1A | 108.3 (9) |
C3—C4—H4A | 109.5 | C12A—C11—H11A | 109.2 |
C3—C4—H4B | 109.5 | C12—C11—Cl1 | 109.8 (4) |
C3—C4—H4C | 109.5 | C12—C11—H11 | 109.6 |
H4A—C4—H4B | 109.5 | C11—C12A—H12A | 109.5 |
H4A—C4—H4C | 109.5 | C11—C12A—H12B | 109.5 |
H4B—C4—H4C | 109.5 | C11—C12A—H12C | 109.5 |
C3—C5—H5 | 119.4 | H12A—C12A—H12B | 109.5 |
C6—C5—C3 | 121.17 (15) | H12A—C12A—H12C | 109.5 |
C6—C5—H5 | 119.4 | H12B—C12A—H12C | 109.5 |
C5—C6—H6 | 120.0 | C11—C12—H12D | 109.5 |
C5—C6—C7 | 120.01 (15) | C11—C12—H12E | 109.5 |
C7—C6—H6 | 120.0 | C11—C12—H12F | 109.5 |
C1—C7—N8 | 121.58 (14) | H12D—C12—H12E | 109.5 |
C1—C7—C6 | 119.77 (14) | H12D—C12—H12F | 109.5 |
C6—C7—N8 | 118.63 (14) | H12E—C12—H12F | 109.5 |
O10—C9—C11—Cl1 | 59.49 (17) | C2—C1—C7—C6 | 0.1 (2) |
O10—C9—C11—Cl1A | −59.4 (4) | C2—C3—C5—C6 | 0.0 (2) |
O10—C9—C11—C12A | 60.2 (10) | C3—C5—C6—C7 | 0.0 (2) |
O10—C9—C11—C12 | −60.4 (5) | C4—C3—C5—C6 | 177.74 (16) |
N8—C9—C11—Cl1 | −121.40 (12) | C5—C6—C7—N8 | −178.85 (14) |
N8—C9—C11—Cl1A | 119.7 (4) | C5—C6—C7—C1 | 0.0 (2) |
N8—C9—C11—C12A | −120.7 (10) | C7—N8—C9—O10 | −1.9 (2) |
N8—C9—C11—C12 | 118.7 (5) | C7—N8—C9—C11 | 179.00 (13) |
C1—C2—C3—C4 | −177.66 (16) | C7—C1—C2—C3 | −0.1 (3) |
C1—C2—C3—C5 | 0.1 (3) | C9—N8—C7—C1 | 45.3 (2) |
C2—C1—C7—N8 | 178.89 (14) | C9—N8—C7—C6 | −135.93 (15) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8···O10i | 0.80 (2) | 2.03 (2) | 2.8295 (16) | 174.8 (17) |
C11—H11···O10i | 1.00 | 2.48 | 3.3574 (18) | 146 |
C12—H12E···Cg1ii | 0.98 | 2.61 | 3.503 (11) | 151 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1. |
C10H12ClNO | Dx = 1.307 Mg m−3 |
Mr = 197.66 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 6677 reflections |
a = 9.5053 (6) Å | θ = 2.8–26.5° |
b = 9.6793 (5) Å | µ = 0.34 mm−1 |
c = 21.8380 (13) Å | T = 100 K |
V = 2009.2 (2) Å3 | Fragment, clear colourless |
Z = 8 | 0.25 × 0.11 × 0.1 mm |
F(000) = 832 |
Bruker D8 Quest ECO diffractometer | 2061 independent reflections |
Radiation source: sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 1668 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 5.12 pixels mm-1 | θmax = 26.5°, θmin = 3.5° |
ω and φ scans | h = −11→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −12→12 |
Tmin = 0.702, Tmax = 0.745 | l = −26→27 |
19741 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0322P)2 + 1.4949P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2061 reflections | Δρmax = 0.30 e Å−3 |
138 parameters | Δρmin = −0.31 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The terminal chloro/methyl groups are disordered and overlap with an occupancy of 77:23%. The disorder was modelled with restraints (DFIX) and constraints (EADP for the Cl atoms). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.60085 (14) | 0.01841 (9) | 0.42661 (6) | 0.0233 (2) | 0.768 (2) |
Cl1A | 0.5999 (11) | 0.2831 (11) | 0.3648 (4) | 0.0253 (12) | 0.232 (2) |
O10 | 0.74993 (12) | 0.26099 (13) | 0.48878 (5) | 0.0217 (3) | |
N8 | 0.53537 (14) | 0.31069 (14) | 0.52838 (6) | 0.0141 (3) | |
H8 | 0.450 (2) | 0.2946 (19) | 0.5248 (9) | 0.019 (5)* | |
C1 | 0.69140 (18) | 0.46745 (18) | 0.58487 (8) | 0.0186 (4) | |
H1 | 0.7389 | 0.4913 | 0.5481 | 0.022* | |
C2 | 0.73115 (18) | 0.52705 (19) | 0.63992 (8) | 0.0236 (4) | |
H2 | 0.8064 | 0.5916 | 0.6404 | 0.028* | |
C3 | 0.66346 (19) | 0.49466 (19) | 0.69465 (8) | 0.0217 (4) | |
C4 | 0.7041 (2) | 0.5647 (2) | 0.75373 (9) | 0.0331 (5) | |
H4A | 0.6236 | 0.6170 | 0.7695 | 0.050* | |
H4B | 0.7829 | 0.6278 | 0.7462 | 0.050* | |
H4C | 0.7323 | 0.4949 | 0.7838 | 0.050* | |
C5 | 0.5537 (2) | 0.39994 (18) | 0.69253 (8) | 0.0220 (4) | |
H5 | 0.5059 | 0.3763 | 0.7293 | 0.026* | |
C6 | 0.51244 (18) | 0.33931 (18) | 0.63806 (8) | 0.0187 (4) | |
H6 | 0.4370 | 0.2750 | 0.6376 | 0.022* | |
C7 | 0.58171 (16) | 0.37265 (16) | 0.58381 (7) | 0.0140 (3) | |
C9 | 0.62137 (16) | 0.25791 (16) | 0.48549 (7) | 0.0135 (3) | |
C11 | 0.54663 (17) | 0.19470 (17) | 0.43051 (8) | 0.0158 (3) | |
H11 | 0.4425 | 0.1995 | 0.4367 | 0.019* | 0.768 (2) |
H11A | 0.4426 | 0.2044 | 0.4357 | 0.019* | 0.232 (2) |
C12A | 0.585 (3) | 0.0413 (12) | 0.4233 (12) | 0.033 (3) | 0.232 (2) |
H12A | 0.5527 | −0.0098 | 0.4595 | 0.049* | 0.232 (2) |
H12B | 0.6867 | 0.0317 | 0.4191 | 0.049* | 0.232 (2) |
H12C | 0.5383 | 0.0041 | 0.3867 | 0.049* | 0.232 (2) |
C12 | 0.5869 (14) | 0.2707 (13) | 0.3713 (4) | 0.033 (3) | 0.768 (2) |
H12D | 0.6883 | 0.2615 | 0.3643 | 0.049* | 0.768 (2) |
H12E | 0.5625 | 0.3687 | 0.3752 | 0.049* | 0.768 (2) |
H12F | 0.5355 | 0.2303 | 0.3368 | 0.049* | 0.768 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0348 (6) | 0.0136 (3) | 0.0214 (4) | 0.0023 (3) | −0.0026 (3) | −0.0033 (3) |
Cl1A | 0.032 (2) | 0.027 (2) | 0.0167 (16) | 0.0008 (15) | −0.0042 (14) | 0.0061 (13) |
O10 | 0.0104 (6) | 0.0306 (7) | 0.0242 (7) | 0.0017 (5) | 0.0004 (5) | −0.0076 (5) |
N8 | 0.0078 (7) | 0.0183 (7) | 0.0161 (7) | −0.0014 (5) | −0.0005 (6) | −0.0017 (6) |
C1 | 0.0156 (8) | 0.0216 (9) | 0.0185 (9) | −0.0030 (7) | 0.0031 (6) | −0.0029 (7) |
C2 | 0.0166 (9) | 0.0273 (10) | 0.0268 (10) | −0.0046 (7) | −0.0006 (7) | −0.0077 (8) |
C3 | 0.0216 (9) | 0.0238 (9) | 0.0196 (9) | 0.0063 (7) | −0.0061 (7) | −0.0040 (7) |
C4 | 0.0351 (11) | 0.0407 (12) | 0.0234 (10) | 0.0051 (9) | −0.0089 (8) | −0.0098 (9) |
C5 | 0.0293 (10) | 0.0222 (9) | 0.0145 (8) | 0.0042 (7) | 0.0041 (7) | 0.0040 (7) |
C6 | 0.0195 (8) | 0.0166 (8) | 0.0201 (9) | −0.0017 (7) | 0.0029 (7) | 0.0015 (7) |
C7 | 0.0130 (8) | 0.0144 (8) | 0.0145 (8) | 0.0023 (6) | 0.0001 (6) | −0.0001 (6) |
C9 | 0.0124 (8) | 0.0131 (7) | 0.0151 (8) | 0.0007 (6) | 0.0012 (6) | 0.0014 (6) |
C11 | 0.0125 (7) | 0.0179 (8) | 0.0169 (8) | 0.0009 (6) | 0.0018 (6) | −0.0017 (7) |
C12A | 0.028 (3) | 0.031 (4) | 0.039 (5) | 0.009 (3) | −0.007 (3) | −0.006 (3) |
C12 | 0.028 (3) | 0.031 (4) | 0.039 (5) | 0.009 (3) | −0.007 (3) | −0.006 (3) |
Cl1—C11 | 1.7845 (18) | C5—H5 | 0.9500 |
Cl1A—C11 | 1.746 (8) | C5—C6 | 1.383 (2) |
O10—C9 | 1.2245 (19) | C6—H6 | 0.9500 |
N8—H8 | 0.83 (2) | C6—C7 | 1.393 (2) |
N8—C7 | 1.421 (2) | C9—C11 | 1.523 (2) |
N8—C9 | 1.344 (2) | C11—H11 | 1.0000 |
C1—H1 | 0.9500 | C11—H11A | 1.0000 |
C1—C2 | 1.386 (2) | C11—C12A | 1.536 (9) |
C1—C7 | 1.389 (2) | C11—C12 | 1.535 (7) |
C2—H2 | 0.9500 | C12A—H12A | 0.9800 |
C2—C3 | 1.393 (3) | C12A—H12B | 0.9800 |
C3—C4 | 1.508 (2) | C12A—H12C | 0.9800 |
C3—C5 | 1.390 (3) | C12—H12D | 0.9800 |
C4—H4A | 0.9800 | C12—H12E | 0.9800 |
C4—H4B | 0.9800 | C12—H12F | 0.9800 |
C4—H4C | 0.9800 | ||
C7—N8—H8 | 117.6 (13) | O10—C9—N8 | 123.83 (15) |
C9—N8—H8 | 117.2 (14) | O10—C9—C11 | 121.43 (14) |
C9—N8—C7 | 124.44 (14) | N8—C9—C11 | 114.73 (14) |
C2—C1—H1 | 120.2 | Cl1—C11—H11 | 109.7 |
C2—C1—C7 | 119.60 (16) | Cl1A—C11—H11A | 109.5 |
C7—C1—H1 | 120.2 | C9—C11—Cl1 | 106.68 (12) |
C1—C2—H2 | 119.2 | C9—C11—Cl1A | 108.4 (4) |
C1—C2—C3 | 121.64 (17) | C9—C11—H11 | 109.7 |
C3—C2—H2 | 119.2 | C9—C11—H11A | 109.5 |
C2—C3—C4 | 120.96 (17) | C9—C11—C12A | 111.1 (9) |
C5—C3—C2 | 117.83 (16) | C9—C11—C12 | 110.8 (5) |
C5—C3—C4 | 121.17 (17) | C12A—C11—Cl1A | 108.8 (10) |
C3—C4—H4A | 109.5 | C12A—C11—H11A | 109.5 |
C3—C4—H4B | 109.5 | C12—C11—Cl1 | 110.2 (5) |
C3—C4—H4C | 109.5 | C12—C11—H11 | 109.7 |
H4A—C4—H4B | 109.5 | C11—C12A—H12A | 109.5 |
H4A—C4—H4C | 109.5 | C11—C12A—H12B | 109.5 |
H4B—C4—H4C | 109.5 | C11—C12A—H12C | 109.5 |
C3—C5—H5 | 119.3 | H12A—C12A—H12B | 109.5 |
C6—C5—C3 | 121.41 (16) | H12A—C12A—H12C | 109.5 |
C6—C5—H5 | 119.3 | H12B—C12A—H12C | 109.5 |
C5—C6—H6 | 120.0 | C11—C12—H12D | 109.5 |
C5—C6—C7 | 119.94 (16) | C11—C12—H12E | 109.5 |
C7—C6—H6 | 120.0 | C11—C12—H12F | 109.5 |
C1—C7—N8 | 121.71 (14) | H12D—C12—H12E | 109.5 |
C1—C7—C6 | 119.58 (15) | H12D—C12—H12F | 109.5 |
C6—C7—N8 | 118.69 (14) | H12E—C12—H12F | 109.5 |
O10—C9—C11—Cl1 | 59.75 (18) | C2—C1—C7—C6 | 0.4 (2) |
O10—C9—C11—Cl1A | −58.9 (4) | C2—C3—C5—C6 | 0.1 (3) |
O10—C9—C11—C12A | 60.5 (11) | C3—C5—C6—C7 | 0.2 (3) |
O10—C9—C11—C12 | −60.2 (6) | C4—C3—C5—C6 | 177.51 (17) |
N8—C9—C11—Cl1 | −121.32 (14) | C5—C6—C7—N8 | −178.85 (15) |
N8—C9—C11—Cl1A | 120.0 (4) | C5—C6—C7—C1 | −0.4 (2) |
N8—C9—C11—C12A | −120.6 (11) | C7—N8—C9—O10 | −2.1 (3) |
N8—C9—C11—C12 | 118.7 (6) | C7—N8—C9—C11 | 178.97 (14) |
C1—C2—C3—C4 | −177.50 (17) | C7—C1—C2—C3 | −0.2 (3) |
C1—C2—C3—C5 | 0.0 (3) | C9—N8—C7—C1 | 45.6 (2) |
C2—C1—C7—N8 | 178.82 (16) | C9—N8—C7—C6 | −136.01 (17) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8···O10i | 0.83 (2) | 2.00 (2) | 2.8255 (18) | 174.2 (19) |
C11—H11···O10i | 1.00 | 2.48 | 3.353 (2) | 146 |
C12—H12E···Cg1ii | 0.98 | 2.62 | 3.493 (13) | 149 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1. |
1a | 1b | IQOHOLa | |
Cl1—C11 | 1.7861 (17) | 1.7845 (18) | 1.785 (16) |
O10—C9 | 1.2233 (18) | 1.2245 (19) | 1.219 (15) |
N8—C7 | 1.4226 (19) | 1.421 (2) | 1.421 (16) |
N8—C9 | 1.3448 (19) | 1.344 (2) | 1.341 (16) |
C9—C11 | 1.524 (2) | 1.523 (2) | 1.522 (18) |
O10—C9—C11—C12 | -60.4 (5) | -60.2 (6) | 61.35 (1) |
C9—N8—C7—C1 | 45.3 (2) | 45.6 (2) | -44.19 (1) |
Note: (a) Equivalent geometric parameters are given for IQOHOL as atom labels do not matchthose of 1a and 1b. |
Acknowledgements
RCJ would like to thank Professor Brian Glennon for the use of the lab and experimental assistance.
Funding information
Funding for this research was provided by: Synthesis and Solid State Pharmaceutical Center (SSPC); Science Foundation Ireland (grant No. SFI, 12/RC/2275).
References
Banks, J. W., Batsanov, A. S., Howard, J. A. K., O'Hagan, D., Rzepa, H. S. & Martin-Santamaria, S. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2409–2411. Web of Science CrossRef Google Scholar
Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). APEX3 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1987). Russ. Chem. Bull. 36, 1198–1201. CrossRef Web of Science Google Scholar
Coles (née Huth), S. L., Threlfall, T. L. & Hursthouse, M. B. (2008). University of Southampton, Crystal Structure Report Archive, 1387. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foley, D. A., Doecke, C. W., Buser, J. Y., Merritt, J. M., Murphy, L., Kissane, M., Collins, S. G., Maguire, A. R. & Kaerner, A. (2011). J. Org. Chem. 76, 9630–9640. Web of Science CrossRef PubMed Google Scholar
Frohberg, P., Drutkowski, G., Wagner, C. & Lichtenberger, O. (2002). J. Chem. Res. (S), pp. 13–14. CrossRef Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3392. Web of Science CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2333–o2334. Web of Science CrossRef IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A Phys. Sci. 58A, 225–230. Google Scholar
Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A Phys. Sci. 56A, 386–394. Google Scholar
Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gupta, E., Kant, R. & Mohanan, K. (2017). Org. Lett. 19, 6016–6019. Web of Science CrossRef PubMed Google Scholar
Hursthouse, M. B., Huth, S. L. & Threlfall, T. L. (2009). Org. Process Res. Dev. 13, 1231–1240. Web of Science CrossRef Google Scholar
Kang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194. Web of Science CrossRef IUCr Journals Google Scholar
Kissane, M., Lawrence, S. E. & Maguire, A. R. (2010b). Tetrahedron, 66, 4564–4572. Web of Science CrossRef Google Scholar
Kissane, M., Lawrence, S. E. & Maguire, A. R. (2010c). Tetrahedron Asymmetry, 21, 871–884. Web of Science CrossRef Google Scholar
Kissane, M., Lynch, D., Chopra, J., Lawrence, S. E. & Maguire, A. R. (2010a). Org. Biomol. Chem. 8, 5602–5613. Web of Science CrossRef PubMed Google Scholar
Kissane, M. & Maguire, A. R. (2011). Synlett, pp. 1212–1232. Google Scholar
Kissane, M., Murphy, M., Lawrence, S. E. & Maguire, A. R. (2010d). Tetrahedron Asymmetry, 21, 2550–2558. Web of Science CrossRef Google Scholar
Kissane, M., Murphy, M., O'Brien, E., Chopra, J., Murphy, L., Collins, S. G., Lawrence, S. E. & Maguire, A. R. (2011). Org. Biomol. Chem. 9, 2452–2472. Web of Science CrossRef PubMed Google Scholar
Lee, S. L., O'Connor, T. F., Yang, X., Cruz, C. N., Chatterjee, S., Madurawe, R. D., Moore, C. M. V., Yu, L. X. & Woodcock, J. (2015). J. Pharm. Innov. 10, 191–199. Web of Science CrossRef Google Scholar
Mascia, S., Heider, P. L., Zhang, H., Lakerveld, R., Benyahia, B., Barton, P. I., Braatz, R. D., Cooney, C. L., Evans, J. M. B., Jamison, T. F., Jensen, K. F., Myerson, A. S. & Trout, B. L. (2013). Angew. Chem. Int. Ed. 52, 12359–12363. Web of Science CrossRef Google Scholar
Murphy, M., Lynch, D., Schaeffer, M., Kissane, M., Chopra, J., O'Brien, E., Ford, A., Ferguson, G. & Maguire, A. R. (2007). Org. Biomol. Chem. 5, 1228–1241. Web of Science CrossRef PubMed Google Scholar
Naumov, P., Sakurai, K., Tanaka, M. & Hara, H. (2007). J. Phys. Chem. B, 111, 10373–10378. Web of Science CrossRef PubMed Google Scholar
O'Mahony, R. M., Lynch, D., Hayes, H. L. D., Ní Thuama, E., Donnellan, P., Jones, R. C., Glennon, B., Collins, S. G. & Maguire, A. R. (2017). Eur. J. Org. Chem. pp. 6533–6539. Google Scholar
Pal, A. K., Bera, A. K. & Banerjee, A. (1998). Z. Kristallogr. New Cryst. Struct. 213, 249–. Google Scholar
Pascual, G. K., Donnellan, P., Glennon, B., Kamaraju, V. K. & Jones, R. C. (2017). J. Chem. Eng. Data, 62, 3193–3205. Web of Science CrossRef Google Scholar
Pathak, S., Kundu, A. & Pramanik, A. (2014). RSC Adv. 4, 10180–10187. Web of Science CrossRef Google Scholar
Power, G., Hou, G., Kamaraju, V. K., Morris, G., Zhao, Y. & Glennon, B. (2015). Chem. Eng. Sci. 133, 125–139. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simon, M., Donnellan, P., Glennon, B. & Jones, R. C. (2018). Chem. Eng. Technol. 41, 921–927. Web of Science CrossRef Google Scholar
Staples, R. J. & Vidnovio, N. (2007). Z. Kristallogr. New Cryst. Struct. 222, 269–270. Google Scholar
Subramanian, E. (1966). Z. Kristallogr. 123, 222–234. CrossRef CAS Web of Science Google Scholar
Zhao, Y., Kamaraju, V. K., Hou, G., Power, G., Donnellan, P. & Glennon, B. (2015). Chem. Eng. Sci. 133, 106–115. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.