research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld analysis of 2-[bis­­(1-methyl-1H-indol-3-yl)meth­yl]benzoic acid

CROSSMARK_Color_square_no_text.svg

aCentre of Advanced Materials and Renewable Resources, Faculty of Science and Technology, National University of Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and bCenter for Research and Instrumentation Management, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Correspondence e-mail: aishah80@ukm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 September 2018; accepted 8 October 2018; online 16 October 2018)

In the title compound, C26H22N2O2, the dihedral angles between the 1-methyl­indole units (A and B) and the benzoic acid moiety (C) are A/B = 64.87 (7), A/C = 80.92 (8) and B/C = 75.05 (8)°. An intra­molecular C—H⋯O inter­action arising from the methyne group helps to establish the conformation. In the crystal, R22(8) carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds are observed. A Hirshfeld surface analysis shows that the greatest contributions are from H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts (percentage values = 54.6%, 29.6% and 10.1%, respectively).

1. Chemical context

Bisindolyl methane and its derivatives are relatively easy to synthesize and show a broad spectrum of potential biological activities: for example, bis­(indol­yl)imidazole shows anti­plasmodial activity towards plasmodium falciparum (Alvarado et al., 2013[Alvarado, S., Roberts, B. F., Wright, A. E. & Chakrabarti, D. (2013). Antimicrob. Agents Chemother. 57, 2362-2364.]). Furthermore, they also have good potential as anti­bacterial (Imran et al., 2014[Imran, S., Taha, M., Ismail, N. H., Khan, K. M., Naz, F., Hussain, F. & Tauseef, S. (2014). Molecules, 19, 11722-11740.]; Challa et al., 2017[Challa, C., Ravindran, J., Konai, M. M., Varughese, S., Jacob, J., Kumar, B. S. D., Haldar, J. & Lankalapalli, R. S. (2017). ACS Omega. 2 (8), 5187-5195.]), anti­leishmanial (Bharate et al., 2013[Bharate, S. B., Bharate, J. B., Khan, S. I., Tekwani, B. L., Jacob, M. R., Mudududdla, R., Yadav, R. Y., Singh, B., Sharma, P. R., Maity, S., Singh, B., Khan, I. A. & Vishwakarma, R. A. (2013). Eur. J. Med. Chem. 63, 435-443.]), anti­tumor (Carbone et al., 2013[Carbone, A., Parrino, B., Barraja, P., Spanò, V., Cirrincione, G., Diana, P., Maier, A., Kelter, G. & Fiebig, H. (2013). Mar. Drugs. 11, 643-654.]), anti­platelet (Grumel et al., 2002[Grumel, V., Mérour, J., Lesur, B., Giboulot, T., Frydman, A. & Guillaumet, G. (2002). Eur. J. Med. Chem. 37, 45-62.]) and anti­cancer (Guo et al., 2010[Guo, J., Chintharlapalli, S., Lee, S., Cho, S. D., Lei, P., Papineni, S. & Safe, S. (2010). Cancer Chemother. Pharmacol. 66, 141-150.]; Jamsheena et al., 2016[Jamsheena, V., Shilpa, G., Saranya, J., Harry, N. A., Lankalapalli, R. S. & Priya, S. (2016). Chem. Biol. Interact. 247, 11-21.]) agents. Oxidized bis­(indol­yl)methanes containing an acidic hydrogen-bond-donor group and a basic hydrogen-bond-acceptor group can act as selective colorimetric sensors for either F or HSO4 in an aprotic solvent (He et al., 2006[He, X., Hu, S., Liu, K., Guo, Y., Xu, J. & Shao, S. (2006). Org. Lett. 8, 333-336.]). Aryl­furyl-bis­(indol­yl)methanes have selective chromogenic and fluoro­genic ratiometric receptors for the mercury ion in aqueous solution (Batista et al., 2014[Batista, R. M. F., Costa, S. P. G., Silva, R. M. P., Lima, N. E. M. & Raposo, M. M. M. (2014). Dyes Pigments, 102, 293-300.]). As part of our studies in this area, we now report the acid-catalysed condensation reaction between carb­oxy benzaldehyde and indole to generate the title compound.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the triclinic system with space group P[\overline{1}] and Z = 2. The mol­ecule consists of two methyl­ated indole ring systems [C8–C17/N1 (A) and C18–C26/N2 (B)] and a benzoic acid [C1–C7 (C)] system linked via the tertiary C8 atom, with dihedral angles between them of A/B = 64.87 (7), A/C = 80.92 (8) and B/C = 75.05 (8)°. Significant torsion angles include C7—C8—C9—C12 [67.3 (3)] and C7—C8—C18—C21 [50.2 (3)°]. An intra­molecular C8—H8⋯O1 hydrogen bond (Table 1[link]) may help to establish the conformation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.82 (4) 1.89 (5) 2.679 (3) 163 (6)
C8—H8⋯O1 0.98 2.20 2.945 (4) 132
Symmetry code: (i) -x, -y+2, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of the title compound, neighbouring mol­ecules are connected into dimers with an [R_{2}^{2}](8) graph-set motif via pairwise O3—H3O⋯O1 hydrogen bonds (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
Crystal packing of the title compound viewed down [100] showing inversion dimers linked by pairs of O—H⋯O hydrogen bonds (dashed lines; Table 1[link]).

4. Hirshfeld surface analysis

The Hirshfeld surface and fingerprint (FP) plots for the title compound were generated using CrystalExplorer17 (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). A view of the Hirshfeld surface mapped over dnorm is shown in Fig. 3[link]. The intense red spots near the O1-carbonyl and H30-benzoic acid atoms indicate the short inter­atomic O⋯H/H⋯O contacts relating to the hydrogen bond given in Table 1[link]. The two-dimensional fingerprint plots for the H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C and C⋯N/C⋯N contacts are illustrated in Fig. 4[link]. The percentage contributions from the different inter­atomic contact to the Hirshfeld surface are summarized in Table 2[link]. The fingerprint plot for the H⋯H contacts, which make the largest contribution to the Hirshfeld surface (54.6%), has a broad appearance with a single tip at de + di = 2.2 Å. The FP plot for the O⋯H/H⋯O (10.1%) contacts has prominent `forceps-like' tips at de + di = 1.7 Å, whereas that for C⋯H/H⋯C contacts (29.6%) shows two pairs of adjacent peaks with de + di = 2.6 Å. The other remaining inter­atomic contacts, which make a small percentage contribution, have a negligible effect on the packing.

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfield surface of the title compound

Contact Percentage contribution
H⋯H 54.6
O⋯H/H⋯O 10.1
C⋯H/H⋯C 29.6
N⋯H/H⋯N 1.1
C⋯N/C⋯N 1.7
C⋯C 2.8
[Figure 3]
Figure 3
View of the Hirshfeld surface of the title compound mapped over dnorm in the range −0.68 to +1.45 au.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the title compound delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C, C⋯N/N⋯C contacts.

5. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only seven structures of bis­(indole-3-yl) deriv­atives. These include 3,5-bis­(indol-3-yl)-1,2,4-triazin-6(1H,6H)-one methanol solvate (FOLSOP) and 3,6-bis­(indol-3-yl)-1,2,4-triazin-4(1H,4H)-one di­methyl­formamide solvate (FOLTAC; Garg & Stoltz, 2005[Garg, N. K. & Stoltz, B. M. (2005). Tetrahedron Lett. 46, 1997-2000.]), bis­(indol-3-yl)(p-tol­yl)methane (HODROH; Krishna et al., 1999[Krishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75-78.]), 1,1-bis­(indol-3-yl)-1-phenyl­ethane (MEDJEK; Ganesan et al., 2000[Ganesan, M., Gambarotta, S. & Yap, G. P. A. (2000). Private communication (refcode MEDJEK). CCDC, Cambridge, England.]), cyclo-N,N′-(α,α′-p-xyl­yl)bis­(indol-3-yl)-N-methyl­male­imide (UJALOG), cyclo-N,N′-(α,α′-m-xyl­yl)bis­(indol-3-yl)-N-methyl­male­imide (UJALUM) and cyclo-N,N′-[1,11-(3,6,9-trioxaundec­yl)]bis(indol-3-yl)-N-methyl­male­imide (UJAMAT; Mandl et al., 2003[Mandl, C., Zabel, M. & König, B. (2003). Collect. Czech. Chem. Commun. 68, 899-906.]). Two of these entries (MEDJEK and HODROH) are closely related to the title compound. Two of these entries (MEDJEK and HODROH) are closely related to the title compound with dihedral angles between the 1-methyl indole units of 63.4 (2) and 73.06 (19)° for the two independent mol­ecules in MEDJEK and of 80.8 (1)° in HODROH [64.87 (7)° in the title compound]. In another related compound 4-[bis­(1H-indol-3-yl)meth­yl]benzo­nitrile (Deng et al., 2011[Deng, X., Wu, D., Huang, X. & Luo, F. (2011). Acta Cryst. E67, o1603.]), the dihedral angle is 72.08 (6)°.

6. Synthesis and crystallization

Equimolar amounts of 2-carb­oxy­benzaldehyde (3.0 mmol) and 1-methyl­indole (3.0 mmol) was mixed in a reaction vessel. A few drops of anhydrous acetic acid was added and the mixture was then irradiated in a domestic microwave oven at 100 W for 5 min. The crude product obtained was purified by recrystallization from an acetone–EtOH solvent mixture (v:v = 1:2) to give the pure product in 13.3% yield. IR (ATR, υmax/cm−1): 3058, 2930 (broad, O—H), 1676 (C=O), 1473 (C=C), 1331–1067 (C—O, C—N), 731. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.67 (s, 6H, 2 × N-CH3), 6.70 (s, 2H, 2 × H), 6.91 (t, 2H, 2 × ArH), 6.99 (s, 1H, H), 7.11 (t, 2H, 2 × ArH), 7.25–7.30 (m, 3H, J = 7.6, 6.6, 2.2 Hz, ArH and 2 × ArH), 7.35–7.41 (m, 4H,J = 8.0, 5.6, 1.2 Hz, ArH and 2 × ArH), 7.77 (d, 1H, J = 8.0 Hz, ArH) (the OH signal cannot be seen in the 1H NMR sprectrum and hence there are only 21 H atoms in the integration peaks). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 32.7, 34.5, 110.1, 117.9, 118.9, 119.5, 121.6, 126.4, 127.4, 128.6, 130.0, 130.1, 131.3, 131.6, 137.4, 145.2, 170.1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hy­droxy H atom was freely refined. C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 and Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C26H22N2O2
Mr 394.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.654 (5), 10.923 (6), 10.964 (5)
α, β, γ (°) 85.85 (2), 82.38 (2), 74.57 (3)
V3) 989.4 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.55 × 0.39 × 0.30
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.548, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37627, 4929, 3077
Rint 0.101
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.190, 1.03
No. of reflections 4929
No. of parameters 277
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b), shelXle (Hübschle et al., 2011); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

2-[Bis(1-methyl-1H-indol-3-yl)methyl]benzoic acid top
Crystal data top
C26H22N2O2Z = 2
Mr = 394.45F(000) = 416
Triclinic, P1Dx = 1.324 Mg m3
a = 8.654 (5) ÅMo Kα radiation, λ = 0.71076 Å
b = 10.923 (6) ÅCell parameters from 8410 reflections
c = 10.964 (5) Åθ = 2.9–27.3°
α = 85.85 (2)°µ = 0.08 mm1
β = 82.38 (2)°T = 293 K
γ = 74.57 (3)°Block, colourless
V = 989.4 (9) Å30.55 × 0.39 × 0.30 mm
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
3077 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.101
φ and ω scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.548, Tmax = 0.746k = 1414
37627 measured reflectionsl = 1414
4929 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.5551P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4929 reflectionsΔρmax = 0.72 e Å3
277 parametersΔρmin = 0.35 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1286 (3)0.9468 (2)0.8786 (2)0.0672 (6)
C10.0635 (3)0.8626 (2)0.8846 (2)0.0418 (6)
H3O0.070 (8)0.925 (3)1.005 (6)0.20 (3)*
C260.8219 (3)0.8016 (3)0.3643 (3)0.0575 (7)
H26A0.8408260.7385820.3036060.086*
H26B0.9012630.7754870.4209760.086*
H26C0.8294790.8813430.3244570.086*
C250.4893 (3)0.9294 (2)0.2705 (2)0.0465 (6)
H250.5734390.9324370.2090510.056*
C240.3315 (4)0.9808 (3)0.2504 (3)0.0556 (7)
H240.3083501.0192790.1741350.067*
N10.6152 (2)0.6429 (2)0.97202 (18)0.0427 (5)
N20.6626 (2)0.81578 (19)0.43055 (18)0.0403 (5)
C20.1002 (3)0.7587 (2)0.7937 (2)0.0346 (5)
C140.7258 (3)0.3672 (3)0.7182 (3)0.0517 (7)
H140.7483860.3075090.6575870.062*
C30.0168 (3)0.6924 (2)0.7922 (2)0.0420 (6)
H30.1092880.7115780.8486120.050*
O30.0538 (3)0.8571 (2)0.97210 (19)0.0631 (6)
C40.0012 (3)0.5995 (2)0.7097 (2)0.0456 (6)
H40.0767460.5547730.7118280.055*
C50.1353 (3)0.5732 (3)0.6238 (2)0.0452 (6)
H50.1475650.5121180.5659090.054*
C60.2518 (3)0.6386 (2)0.6243 (2)0.0419 (6)
H60.3415320.6210370.5651930.050*
C70.2402 (3)0.7292 (2)0.7094 (2)0.0341 (5)
C210.3939 (3)0.8673 (2)0.4803 (2)0.0339 (5)
C80.3842 (3)0.7849 (2)0.7119 (2)0.0332 (5)
H80.3415610.8691350.7466660.040*
C220.2345 (3)0.9212 (2)0.4559 (2)0.0436 (6)
H220.1487930.9196120.5164220.052*
C90.4939 (3)0.7048 (2)0.7995 (2)0.0347 (5)
C230.2062 (3)0.9762 (3)0.3419 (3)0.0543 (7)
H230.1003271.0112190.3255640.065*
C100.5135 (3)0.7397 (2)0.9123 (2)0.0414 (6)
H100.4641250.8190360.9445870.050*
C110.6628 (3)0.5408 (2)0.8979 (2)0.0368 (5)
C130.6259 (3)0.4862 (2)0.6972 (2)0.0421 (6)
H130.5827260.5067900.6228010.050*
C120.5903 (3)0.5755 (2)0.7882 (2)0.0339 (5)
C190.6294 (3)0.7755 (2)0.5505 (2)0.0371 (5)
H190.7071400.7342040.6011450.044*
C150.7928 (3)0.3347 (3)0.8272 (3)0.0542 (7)
H150.8582480.2532820.8393230.065*
C170.6653 (4)0.6456 (3)1.0926 (2)0.0616 (8)
H17A0.7690950.6634171.0835780.092*
H17B0.6720040.5645731.1349050.092*
H17C0.5879160.7105211.1392100.092*
C160.7642 (3)0.4213 (3)0.9186 (2)0.0493 (6)
H160.8111970.4002850.9913510.059*
C200.5193 (3)0.8728 (2)0.3856 (2)0.0363 (5)
C180.4677 (3)0.8041 (2)0.5851 (2)0.0322 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0693 (14)0.0618 (13)0.0698 (14)0.0252 (11)0.0249 (11)0.0267 (11)
C10.0343 (12)0.0498 (15)0.0381 (13)0.0080 (11)0.0023 (10)0.0048 (11)
C260.0394 (14)0.0683 (19)0.0607 (18)0.0173 (13)0.0129 (12)0.0022 (14)
C250.0609 (16)0.0423 (13)0.0386 (13)0.0200 (12)0.0030 (12)0.0028 (11)
C240.0698 (19)0.0517 (16)0.0477 (16)0.0171 (14)0.0213 (14)0.0135 (12)
N10.0414 (11)0.0582 (13)0.0315 (10)0.0179 (10)0.0058 (8)0.0007 (9)
N20.0317 (10)0.0449 (11)0.0427 (11)0.0119 (8)0.0025 (8)0.0025 (9)
C20.0281 (10)0.0387 (12)0.0344 (11)0.0053 (9)0.0052 (9)0.0066 (9)
C140.0551 (16)0.0435 (14)0.0540 (16)0.0087 (12)0.0038 (13)0.0073 (12)
C30.0290 (11)0.0503 (14)0.0440 (13)0.0097 (10)0.0006 (10)0.0045 (11)
O30.0614 (13)0.0700 (14)0.0543 (12)0.0209 (11)0.0201 (10)0.0137 (11)
C40.0379 (13)0.0517 (15)0.0535 (15)0.0237 (11)0.0074 (11)0.0056 (12)
C50.0428 (13)0.0518 (15)0.0448 (14)0.0182 (11)0.0032 (11)0.0067 (11)
C60.0327 (12)0.0542 (15)0.0394 (13)0.0144 (11)0.0013 (10)0.0040 (11)
C70.0287 (10)0.0411 (12)0.0329 (11)0.0104 (9)0.0055 (9)0.0050 (9)
C210.0348 (11)0.0290 (11)0.0380 (12)0.0089 (9)0.0040 (9)0.0002 (9)
C80.0275 (10)0.0372 (12)0.0351 (12)0.0096 (9)0.0004 (9)0.0034 (9)
C220.0373 (12)0.0411 (13)0.0495 (15)0.0047 (10)0.0080 (11)0.0016 (11)
C90.0292 (11)0.0442 (13)0.0326 (11)0.0147 (9)0.0001 (9)0.0016 (9)
C230.0486 (15)0.0500 (16)0.0623 (18)0.0049 (12)0.0209 (13)0.0071 (13)
C100.0375 (12)0.0496 (14)0.0383 (13)0.0154 (11)0.0003 (10)0.0038 (11)
C110.0326 (11)0.0463 (13)0.0341 (12)0.0174 (10)0.0008 (9)0.0023 (10)
C130.0420 (13)0.0439 (14)0.0416 (13)0.0127 (11)0.0060 (10)0.0024 (11)
C120.0290 (10)0.0422 (12)0.0323 (11)0.0144 (9)0.0001 (9)0.0003 (9)
C190.0323 (11)0.0415 (13)0.0369 (12)0.0106 (10)0.0022 (9)0.0016 (10)
C150.0528 (16)0.0438 (15)0.0589 (17)0.0042 (12)0.0037 (13)0.0072 (13)
C170.0698 (19)0.087 (2)0.0350 (14)0.0299 (17)0.0130 (13)0.0032 (14)
C160.0462 (14)0.0571 (16)0.0433 (14)0.0139 (12)0.0085 (11)0.0141 (12)
C200.0381 (12)0.0321 (11)0.0399 (12)0.0125 (9)0.0021 (10)0.0017 (9)
C180.0293 (10)0.0304 (11)0.0363 (12)0.0082 (9)0.0009 (9)0.0018 (9)
Geometric parameters (Å, º) top
O1—C11.193 (3)C5—H50.9300
C1—O31.311 (3)C6—C71.384 (3)
C1—C21.507 (4)C6—H60.9300
C26—N21.445 (3)C7—C81.529 (3)
C26—H26A0.9600C21—C221.402 (3)
C26—H26B0.9600C21—C201.410 (3)
C26—H26C0.9600C21—C181.431 (3)
C25—C241.371 (4)C8—C91.507 (3)
C25—C201.389 (3)C8—C181.507 (3)
C25—H250.9300C8—H80.9800
C24—C231.385 (4)C22—C231.370 (4)
C24—H240.9300C22—H220.9300
N1—C111.368 (3)C9—C101.365 (3)
N1—C101.371 (3)C9—C121.441 (3)
N1—C171.449 (3)C23—H230.9300
N2—C201.370 (3)C10—H100.9300
N2—C191.375 (3)C11—C161.388 (4)
C2—C31.395 (3)C11—C121.410 (3)
C2—C71.402 (3)C13—C121.394 (3)
C14—C131.379 (4)C13—H130.9300
C14—C151.380 (4)C19—C181.358 (3)
C14—H140.9300C19—H190.9300
C3—C41.373 (4)C15—C161.380 (4)
C3—H30.9300C15—H150.9300
O3—H3O0.820 (10)C17—H17A0.9600
C4—C51.374 (3)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.383 (3)C16—H160.9300
O1—C1—O3120.9 (2)C9—C8—C7108.83 (18)
O1—C1—C2124.9 (2)C18—C8—C7112.70 (18)
O3—C1—C2114.1 (2)C9—C8—H8106.9
N2—C26—H26A109.5C18—C8—H8106.9
N2—C26—H26B109.5C7—C8—H8106.9
H26A—C26—H26B109.5C23—C22—C21119.3 (2)
N2—C26—H26C109.5C23—C22—H22120.3
H26A—C26—H26C109.5C21—C22—H22120.3
H26B—C26—H26C109.5C10—C9—C12105.5 (2)
C24—C25—C20117.9 (2)C10—C9—C8125.6 (2)
C24—C25—H25121.1C12—C9—C8128.7 (2)
C20—C25—H25121.1C22—C23—C24121.6 (3)
C25—C24—C23121.0 (3)C22—C23—H23119.2
C25—C24—H24119.5C24—C23—H23119.2
C23—C24—H24119.5C9—C10—N1111.3 (2)
C11—N1—C10108.1 (2)C9—C10—H10124.4
C11—N1—C17125.0 (2)N1—C10—H10124.4
C10—N1—C17126.9 (2)N1—C11—C16129.4 (2)
C20—N2—C19108.30 (19)N1—C11—C12108.1 (2)
C20—N2—C26126.1 (2)C16—C11—C12122.5 (2)
C19—N2—C26125.6 (2)C14—C13—C12119.5 (2)
C3—C2—C7119.2 (2)C14—C13—H13120.2
C3—C2—C1116.8 (2)C12—C13—H13120.2
C7—C2—C1123.9 (2)C13—C12—C11118.0 (2)
C13—C14—C15121.4 (3)C13—C12—C9135.0 (2)
C13—C14—H14119.3C11—C12—C9107.0 (2)
C15—C14—H14119.3C18—C19—N2110.8 (2)
C4—C3—C2121.6 (2)C18—C19—H19124.6
C4—C3—H3119.2N2—C19—H19124.6
C2—C3—H3119.2C14—C15—C16121.0 (2)
C1—O3—H3O102 (5)C14—C15—H15119.5
C3—C4—C5119.5 (2)C16—C15—H15119.5
C3—C4—H4120.2N1—C17—H17A109.5
C5—C4—H4120.2N1—C17—H17B109.5
C4—C5—C6119.2 (2)H17A—C17—H17B109.5
C4—C5—H5120.4N1—C17—H17C109.5
C6—C5—H5120.4H17A—C17—H17C109.5
C5—C6—C7122.6 (2)H17B—C17—H17C109.5
C5—C6—H6118.7C15—C16—C11117.6 (2)
C7—C6—H6118.7C15—C16—H16121.2
C6—C7—C2117.7 (2)C11—C16—H16121.2
C6—C7—C8118.5 (2)N2—C20—C25130.2 (2)
C2—C7—C8123.7 (2)N2—C20—C21107.6 (2)
C22—C21—C20118.0 (2)C25—C20—C21122.2 (2)
C22—C21—C18134.8 (2)C19—C18—C21106.1 (2)
C20—C21—C18107.2 (2)C19—C18—C8126.7 (2)
C9—C8—C18114.13 (18)C21—C18—C8126.96 (19)
C20—C25—C24—C230.1 (4)C14—C13—C12—C111.9 (3)
O1—C1—C2—C3161.0 (3)C14—C13—C12—C9179.8 (2)
O3—C1—C2—C316.6 (3)N1—C11—C12—C13178.30 (19)
O1—C1—C2—C716.6 (4)C16—C11—C12—C131.4 (3)
O3—C1—C2—C7165.8 (2)N1—C11—C12—C90.5 (2)
C7—C2—C3—C40.5 (3)C16—C11—C12—C9179.8 (2)
C1—C2—C3—C4177.2 (2)C10—C9—C12—C13178.4 (2)
C2—C3—C4—C51.9 (4)C8—C9—C12—C135.4 (4)
C3—C4—C5—C61.7 (4)C10—C9—C12—C110.1 (2)
C4—C5—C6—C70.8 (4)C8—C9—C12—C11176.1 (2)
C5—C6—C7—C23.1 (4)C20—N2—C19—C180.3 (3)
C5—C6—C7—C8172.9 (2)C26—N2—C19—C18179.6 (2)
C3—C2—C7—C62.9 (3)C13—C14—C15—C161.0 (4)
C1—C2—C7—C6174.7 (2)C14—C15—C16—C111.5 (4)
C3—C2—C7—C8172.9 (2)N1—C11—C16—C15179.9 (2)
C1—C2—C7—C89.5 (3)C12—C11—C16—C150.2 (4)
C6—C7—C8—C990.0 (2)C19—N2—C20—C25179.3 (2)
C2—C7—C8—C985.8 (3)C26—N2—C20—C250.1 (4)
C6—C7—C8—C1837.6 (3)C19—N2—C20—C210.2 (3)
C2—C7—C8—C18146.6 (2)C26—N2—C20—C21179.4 (2)
C20—C21—C22—C230.4 (3)C24—C25—C20—N2179.5 (2)
C18—C21—C22—C23179.7 (3)C24—C25—C20—C210.1 (4)
C18—C8—C9—C10125.1 (2)C22—C21—C20—N2179.5 (2)
C7—C8—C9—C10108.1 (2)C18—C21—C20—N20.0 (2)
C18—C8—C9—C1259.5 (3)C22—C21—C20—C250.0 (3)
C7—C8—C9—C1267.3 (3)C18—C21—C20—C25179.5 (2)
C21—C22—C23—C240.6 (4)N2—C19—C18—C210.3 (3)
C25—C24—C23—C220.4 (4)N2—C19—C18—C8174.8 (2)
C12—C9—C10—N10.4 (3)C22—C21—C18—C19179.2 (3)
C8—C9—C10—N1176.70 (19)C20—C21—C18—C190.2 (2)
C11—N1—C10—C90.7 (3)C22—C21—C18—C84.7 (4)
C17—N1—C10—C9179.4 (2)C20—C21—C18—C8174.7 (2)
C10—N1—C11—C16179.6 (2)C9—C8—C18—C1911.6 (3)
C17—N1—C11—C160.3 (4)C7—C8—C18—C19136.4 (2)
C10—N1—C11—C120.7 (2)C9—C8—C18—C21175.0 (2)
C17—N1—C11—C12179.4 (2)C7—C8—C18—C2150.2 (3)
C15—C14—C13—C120.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.82 (4)1.89 (5)2.679 (3)163 (6)
C8—H8···O10.982.202.945 (4)132
Symmetry code: (i) x, y+2, z+2.
Percentage contributions of interatomic contacts to the Hirshfield surface of the title compound top
ContactPercentage contribution
H···H54.6
O···H/H···O10.1
C···H/H···C29.6
N···H/H···N1.1
C···N/C···N1.7
C···C2.8
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H ··· H54.6
O ··· H / H ··· O10.1
C ··· H / H ··· C29.6
N ··· H / H ··· N1.1
C ··· N / N ··· C1.7
C ··· C2.8

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM), the Center of Advanced Materials and Renewable Energy (CAMARR) and the Center for Research and Instrumentation Management (CRIM), UKM, for providing facilities.

Funding information

Funding for this research was provided by: Ministry of Higher Education (grant No. FRGS-1-2015-STO1-UKM-02/2); Universiti Kebangsaan Malaysia (grant No. GUP- 2017-086; grant No. DIP-2015-015).

References

First citationAlvarado, S., Roberts, B. F., Wright, A. E. & Chakrabarti, D. (2013). Antimicrob. Agents Chemother. 57, 2362–2364.  Web of Science CrossRef PubMed Google Scholar
First citationBatista, R. M. F., Costa, S. P. G., Silva, R. M. P., Lima, N. E. M. & Raposo, M. M. M. (2014). Dyes Pigments, 102, 293–300.  Web of Science CrossRef Google Scholar
First citationBharate, S. B., Bharate, J. B., Khan, S. I., Tekwani, B. L., Jacob, M. R., Mudududdla, R., Yadav, R. Y., Singh, B., Sharma, P. R., Maity, S., Singh, B., Khan, I. A. & Vishwakarma, R. A. (2013). Eur. J. Med. Chem. 63, 435–443.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2016). APEX3, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarbone, A., Parrino, B., Barraja, P., Spanò, V., Cirrincione, G., Diana, P., Maier, A., Kelter, G. & Fiebig, H. (2013). Mar. Drugs. 11, 643–654.  Web of Science CrossRef PubMed Google Scholar
First citationChalla, C., Ravindran, J., Konai, M. M., Varughese, S., Jacob, J., Kumar, B. S. D., Haldar, J. & Lankalapalli, R. S. (2017). ACS Omega. 2 (8), 5187–5195.  Web of Science CrossRef Google Scholar
First citationDeng, X., Wu, D., Huang, X. & Luo, F. (2011). Acta Cryst. E67, o1603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanesan, M., Gambarotta, S. & Yap, G. P. A. (2000). Private communication (refcode MEDJEK). CCDC, Cambridge, England.  Google Scholar
First citationGarg, N. K. & Stoltz, B. M. (2005). Tetrahedron Lett. 46, 1997–2000.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrumel, V., Mérour, J., Lesur, B., Giboulot, T., Frydman, A. & Guillaumet, G. (2002). Eur. J. Med. Chem. 37, 45–62.  Web of Science CrossRef PubMed Google Scholar
First citationGuo, J., Chintharlapalli, S., Lee, S., Cho, S. D., Lei, P., Papineni, S. & Safe, S. (2010). Cancer Chemother. Pharmacol. 66, 141–150.  Web of Science CrossRef PubMed Google Scholar
First citationHe, X., Hu, S., Liu, K., Guo, Y., Xu, J. & Shao, S. (2006). Org. Lett. 8, 333–336.  Web of Science CrossRef PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationImran, S., Taha, M., Ismail, N. H., Khan, K. M., Naz, F., Hussain, F. & Tauseef, S. (2014). Molecules, 19, 11722–11740.  Web of Science CrossRef PubMed Google Scholar
First citationJamsheena, V., Shilpa, G., Saranya, J., Harry, N. A., Lankalapalli, R. S. & Priya, S. (2016). Chem. Biol. Interact. 247, 11–21.  Web of Science CrossRef PubMed Google Scholar
First citationKrishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75–78.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMandl, C., Zabel, M. & König, B. (2003). Collect. Czech. Chem. Commun. 68, 899–906.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds