research communications
at 100 K of bis[1,2-bis(diphenylphosphanyl)ethane]nickel(II) bis(trifluoromethanesulfonate): a possible negative molecular material
aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá Kr 30 No 45-03, Colombia, and bDepartment of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University El Paso, Texas 79968, USA
*Correspondence e-mail: aduarter@unal.edu.co
In the title salt, [Ni(C26H24P2)2](CF3SO3)2 or [Ni(dppe)2]2+·(OTf−)2 [dppe = 1,2-bis(diphenylphosphanyl)ethane and OTf− = trifluoromethanesulfonate], the Ni atom (site symmetry ) has a square-planar geometry with the bidentate ligands chelating the metal. As a result of the of the phenyl rings, the counter-ions are blocked from the metal coordination sphere. The dynamic disorder of the anion existing at 296 K is reduced at 100 K and based on these two temperatures, negative behaviour is observed.
Keywords: 100 K; RT; dppe; square-planar geometry; Negative thermal expansion; NTE; crystal structure.
CCDC reference: 1874698
1. Chemical context
The cation presented here has been synthesized with different counter-ions [Ni(C26H24P2)2]·X2 for different reasons: as by-product in a halogenation process (X = Cl−, Br−, I−) (Zarkesh et al., 2014); to research its anticancer properties (X = Br−, I−, NO3−) (Jarrett & Sadler, 1991); as result of protonation studies (X = ClO4−) (Cariati et al., 1966); and as byproducts while trying to increase the of [Ni(dppe)X2] (X = Cl−, Br−, I−; Hudson et al., 1968). Moreover, to date there are just two reports of its with NO3− (VASCIB; Williams, 1989) and Br− counter-ions (XUQYOZ; Higgs et al., 2010).
Triflates (trifluromethanesulfonates, CF3SO4−) are known as precursors of a wide range of compounds due to their lability (Lawrence, 1986). Therefore, we compare the title structure, 1, to the structures reported with the other two counter-ions to evaluate the effect of introducing the triflate. As we describe below, the at room temperature (see supplementary material) shows disorder of the anion that is reduced, but not completely eliminated at 100 K. In addition, the structure shows negative (NTE) (Liu et al., 2018) based on the unit-cell volume at the two measured temperatures.
2. Structural commentary
The geometry of the cation formed by Ni (site symmetry ) with the two dppe ligands is square planar (Fig. 1). We might expect the Ni—P distances to be the same (the ligand is symmetric); however, they are different. The corresponding distances are listed in Table 1 for the structure collected at 296 and 100 K and compared to the ones from VASCIB (Williams, 1989) and XUQYOZ (Higgs et al., 2010). As this structure is formed by of a simple bidentate ligand, the counter-ion has a limited effect on it, and as in the two previous structures reported, the triflate ions remain outside of the coordination sphere, being blocked from the metal center by the phenyl rings. However, there is an effect on the P—C—C—P torsion angle of the chelate ring, which is probably dependent on the size of the counter-ion (Table 1).
|
The bulky cation formed and the lack of strong interactions with the counter-ions lead to presumed dynamic disorder of the triflate ion at room temperature (296 K), which was also observed in the case of VASCIB (Williams, 1989). XUQYOZ on the other hand was acquired at a lower temperature (85 K) and no reference to any disorder was reported (Higgs et al., 2010).
For 1 at 296 K, the triflate anion is disordered over two sets of sites with 65% occupancy for the major component, which is the one with the shortest distance to the Ni atom (Fig. 2). The distance between the disordered structures is as follows, for the carbon atoms 0.744 (15) and for the S atoms 0.34 (4) Å (Fig. 2). For 1 at 100 K, the disorder is reduced although not eliminated completely (Fig. 2): the two disorder components share the S atom, while the distance between the carbon atoms is 0.354 (19) Å; the major component occupancy is similar, 67%. At 296 K there is a differentiation between the distances Ni—O from each of the parts [4.272 (8) and 4.365 (14) Å], but at 100 K the two distances are not statistically different [4.267 (8) and 4.320 (14) Å]. This could be analysed in two ways: the disorder is also static or the temperature is not low enough to eliminate completely the dynamic disorder.
Surprisingly, a negative et al., 2018). The Ni—P bond distances for 1 at 100 K (Table 1) are elongated by 1.08 and 1.20% in comparison to the values for 1 at 296 K, very close values to the volumetric expansion of the of 1.25 (12)%. With respect to the the a and b axes are affected most in comparison with c, with coefficients of linear expansion (αl) of −29 (4) × 10−6, −30 (4) × 10−6, and −6(4) × 10 −6 K−1 respectively. Based on two temperatures, the volumetric coefficient for the title compound is −63 (6) × 10 −6 K−1.
was observed (LiuAnother feature of the anion–cation interaction is that the Ni⋯O long-distance interaction is not perpendicular to the mean plane formed by Ni and the four P atoms but tilted at an angle of 74° (Fig. 3). This tilted orientation is also present in the crystal structures of VASCIB (Williams, 1989) and XUQYOZ (Higgs et al., 2010) with angles of 73 and 71°, respectively.
A packing diagram of 1 at 100 K viewed down [100] is shown in Fig. 4; there are C—H⋯X (X = O, F) interactions, but because of the disorder of the triflate ion they are not described in detail.
3. Database survey
Dppe is a very common ligand: more than 2800 structures are reported in the Cambridge Structural Database (CSD version 5.38, updated ofMay2017; Groom et al., 2016), 240 of them are with nickel, and only one (LUCLOK; Uehara et al., 2002) has triflate as counter-ion. In this example, as in other reports of nickel with different ligands (e.g. Lyubartseva et al., 2013), the triflate anions are outside the coordination sphere as is the case with the title compound and with the two reports with different counter-ions: NO3− (VASCIB; Williams, 1989) and Cl− (XUQYOZ; Higgs et al., 2010).
For comparison, compounds with similar structures to the title compound and the same metallic group (group 10: PII, PtII) with bis[1,2–bis(diphenylphosphanyl)ethane], show almost an ideal square-planar geometry and also counter-ions outside the coordination sphere (see, for example, Engelhardt et al., 1984).
With respect to the Ni—P distances, we found in the CSD that both equivalent and non-equivalent Ni—P distances occur for Ni(+2)-bis(diphosphines), although it is hard to discern a pattern: for example, the Ni complexes formed with the 1-para-X-phenyl-3,6-triphenyl-1-aza-3,6-diphosphacycloheptane ligand, X = Cl (IFOFOA) or Br (IFOFEQ), are isostructural compounds that crystallize in P (Stewart et al., 2013), but one has equivalent Ni—P bonds while the other does not.
4. Synthesis and crystallization
The title compound was prepared in two steps. First, 1,2–bis(diphenylphosphanyl)ethane and nickel(II) chloride hexahydrate (molar ratio 1:2) were reacted in hot ethanol. The product obtained, dichloro-bis[1,2–bis(diphenylphosphanyl)ethane]nickel(II), was then reacted with silver(I) trifluoromethanesulfonate in dichloromethane (molar ratio 1:2). The product of this second reaction was filtered off and purified using a Soxhlet system with dichloromethane in which the by product, silver(I) chloride, was insoluble (Cano, 2012).
The crystallization process was carried out by dissolution of the purified compound in the minimum volume of methanol at 323 K (≃ 2.5 mg mL−1). When the solution reached room temperature, it was transferred to a chamber saturated with diethyl ether. Diffusion of diethyl ether into the solution over a three-week period led to the formation of translucent intensely yellow block-like crystals at the bottom and on the walls of the vessel.
5. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1874698
https://doi.org/10.1107/S2056989018014846/hb7775sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014846/hb7775Isup2.hkl
Data at 296K. DOI: https://doi.org/10.1107/S2056989018014846/hb7775sup3.txt
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and OLEX2 (Dolomanov et al., 2009).[Ni(C26H24P2)2](CF3O3S)2 | F(000) = 1188 |
Mr = 1153.63 | Dx = 1.505 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.0462 (4) Å | Cell parameters from 8190 reflections |
b = 16.1813 (6) Å | θ = 2.3–29.9° |
c = 14.3914 (5) Å | µ = 0.66 mm−1 |
β = 98.143 (1)° | T = 100 K |
V = 2546.41 (16) Å3 | Cube, yellow |
Z = 2 | 0.21 × 0.19 × 0.09 mm |
Bruker SMART APEX CCD diffractometer | 5928 reflections with I > 2σ(I) |
Radiation source: fine-focus X-ray tube, Bruker SMART APEX CCD | Rint = 0.039 |
ω and φ scans | θmax = 30.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −15→15 |
Tmin = 0.828, Tmax = 0.974 | k = −22→20 |
30965 measured reflections | l = −19→16 |
7253 independent reflections |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0417P)2 + 1.7778P] where P = (Fo2 + 2Fc2)/3 |
7253 reflections | (Δ/σ)max = 0.001 |
395 parameters | Δρmax = 0.64 e Å−3 |
144 restraints | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01104 (8) | |
P1 | 0.53302 (4) | 0.38286 (3) | 0.42411 (3) | 0.01285 (10) | |
P2 | 0.69870 (4) | 0.48827 (3) | 0.56393 (3) | 0.01274 (10) | |
S1 | 0.26698 (4) | 0.39668 (3) | 0.80990 (3) | 0.02173 (11) | |
F1 | 0.2529 (7) | 0.5524 (4) | 0.8625 (7) | 0.0447 (13) | 0.65 (2) |
F2 | 0.4016 (7) | 0.4830 (5) | 0.9367 (4) | 0.0379 (13) | 0.65 (2) |
F3 | 0.2175 (10) | 0.4617 (6) | 0.9650 (5) | 0.0491 (18) | 0.65 (2) |
O1 | 0.3362 (11) | 0.4294 (11) | 0.7393 (10) | 0.0208 (17) | 0.65 (2) |
O2 | 0.1365 (6) | 0.3986 (9) | 0.7762 (11) | 0.039 (2) | 0.65 (2) |
O3 | 0.3121 (10) | 0.3245 (4) | 0.8587 (7) | 0.0390 (14) | 0.65 (2) |
C27 | 0.2842 (7) | 0.4783 (5) | 0.8967 (5) | 0.0258 (12) | 0.65 (2) |
F1A | 0.2385 (18) | 0.5530 (8) | 0.8295 (13) | 0.054 (3) | 0.35 (2) |
F2A | 0.3693 (16) | 0.5037 (11) | 0.9377 (10) | 0.052 (3) | 0.35 (2) |
F3A | 0.1751 (13) | 0.4830 (6) | 0.9399 (10) | 0.038 (2) | 0.35 (2) |
O1A | 0.353 (2) | 0.419 (2) | 0.7470 (19) | 0.018 (3) | 0.35 (2) |
O2A | 0.1429 (12) | 0.3789 (17) | 0.778 (2) | 0.040 (4) | 0.35 (2) |
O3A | 0.323 (2) | 0.3366 (11) | 0.8793 (14) | 0.052 (4) | 0.35 (2) |
C27A | 0.2607 (15) | 0.4870 (11) | 0.8830 (11) | 0.039 (3) | 0.35 (2) |
C1 | 0.69589 (16) | 0.38126 (12) | 0.41112 (13) | 0.0163 (3) | |
H1A | 0.7191 | 0.3259 | 0.3902 | 0.020* | |
H1B | 0.7127 | 0.4224 | 0.3636 | 0.020* | |
C2 | 0.76932 (16) | 0.40193 (11) | 0.50616 (13) | 0.0163 (3) | |
H2A | 0.8537 | 0.4173 | 0.4974 | 0.020* | |
H2B | 0.7739 | 0.3525 | 0.5470 | 0.020* | |
C3 | 0.79945 (15) | 0.57547 (11) | 0.55049 (12) | 0.0146 (3) | |
C4 | 0.82936 (17) | 0.59377 (12) | 0.46148 (13) | 0.0189 (4) | |
H4 | 0.7979 | 0.5603 | 0.4094 | 0.023* | |
C5 | 0.90443 (17) | 0.66028 (13) | 0.44857 (14) | 0.0216 (4) | |
H5 | 0.9241 | 0.6724 | 0.3879 | 0.026* | |
C6 | 0.95088 (17) | 0.70922 (12) | 0.52492 (14) | 0.0218 (4) | |
H6 | 1.0015 | 0.7552 | 0.5162 | 0.026* | |
C7 | 0.92328 (18) | 0.69083 (12) | 0.61367 (14) | 0.0217 (4) | |
H7 | 0.9562 | 0.7238 | 0.6658 | 0.026* | |
C8 | 0.84752 (17) | 0.62430 (12) | 0.62676 (13) | 0.0177 (4) | |
H8 | 0.8286 | 0.6122 | 0.6877 | 0.021* | |
C9 | 0.72551 (16) | 0.45953 (11) | 0.68697 (12) | 0.0144 (3) | |
C10 | 0.84583 (16) | 0.45136 (12) | 0.73350 (13) | 0.0170 (4) | |
H10 | 0.9133 | 0.4647 | 0.7020 | 0.020* | |
C11 | 0.86528 (17) | 0.42372 (12) | 0.82559 (13) | 0.0194 (4) | |
H11 | 0.9464 | 0.4189 | 0.8575 | 0.023* | |
C12 | 0.76717 (18) | 0.40297 (12) | 0.87152 (13) | 0.0206 (4) | |
H12 | 0.7815 | 0.3842 | 0.9347 | 0.025* | |
C13 | 0.64807 (18) | 0.40952 (12) | 0.82552 (14) | 0.0202 (4) | |
H13 | 0.5810 | 0.3948 | 0.8568 | 0.024* | |
C14 | 0.62791 (16) | 0.43798 (12) | 0.73299 (13) | 0.0173 (4) | |
H14 | 0.5467 | 0.4426 | 0.7013 | 0.021* | |
C15 | 0.51023 (15) | 0.29773 (11) | 0.50214 (12) | 0.0145 (3) | |
C16 | 0.55540 (17) | 0.21858 (12) | 0.48785 (13) | 0.0183 (4) | |
H16 | 0.5976 | 0.2081 | 0.4359 | 0.022* | |
C17 | 0.53812 (18) | 0.15561 (12) | 0.55013 (14) | 0.0207 (4) | |
H17 | 0.5694 | 0.1020 | 0.5411 | 0.025* | |
C18 | 0.47550 (18) | 0.17043 (13) | 0.62542 (14) | 0.0215 (4) | |
H18 | 0.4645 | 0.1270 | 0.6678 | 0.026* | |
C19 | 0.42870 (18) | 0.24842 (13) | 0.63928 (14) | 0.0216 (4) | |
H19 | 0.3848 | 0.2583 | 0.6904 | 0.026* | |
C20 | 0.44672 (16) | 0.31192 (12) | 0.57772 (13) | 0.0175 (4) | |
H20 | 0.4155 | 0.3655 | 0.5872 | 0.021* | |
C21 | 0.45902 (16) | 0.35263 (11) | 0.30856 (12) | 0.0145 (3) | |
C22 | 0.49303 (17) | 0.39130 (12) | 0.22954 (13) | 0.0184 (4) | |
H22 | 0.5538 | 0.4333 | 0.2367 | 0.022* | |
C23 | 0.43798 (18) | 0.36837 (12) | 0.14041 (13) | 0.0212 (4) | |
H23 | 0.4621 | 0.3941 | 0.0866 | 0.025* | |
C24 | 0.34774 (17) | 0.30791 (12) | 0.12975 (13) | 0.0188 (4) | |
H24 | 0.3092 | 0.2932 | 0.0688 | 0.023* | |
C25 | 0.31386 (17) | 0.26894 (12) | 0.20790 (13) | 0.0195 (4) | |
H25 | 0.2524 | 0.2274 | 0.2004 | 0.023* | |
C26 | 0.37007 (16) | 0.29075 (11) | 0.29752 (13) | 0.0158 (3) | |
H26 | 0.3478 | 0.2635 | 0.3511 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01002 (14) | 0.01164 (16) | 0.01101 (15) | 0.00041 (11) | −0.00007 (11) | −0.00175 (11) |
P1 | 0.01274 (19) | 0.0129 (2) | 0.0127 (2) | −0.00012 (15) | 0.00118 (16) | −0.00210 (16) |
P2 | 0.01096 (19) | 0.0140 (2) | 0.0127 (2) | 0.00037 (15) | −0.00016 (16) | −0.00071 (16) |
S1 | 0.0190 (2) | 0.0257 (3) | 0.0215 (2) | −0.00271 (18) | 0.00664 (18) | −0.00384 (19) |
F1 | 0.059 (2) | 0.0265 (18) | 0.054 (3) | 0.0053 (13) | 0.028 (3) | −0.008 (2) |
F2 | 0.040 (2) | 0.051 (3) | 0.0218 (16) | −0.0196 (18) | −0.0022 (15) | −0.0033 (15) |
F3 | 0.063 (3) | 0.058 (3) | 0.035 (2) | −0.027 (3) | 0.033 (2) | −0.019 (2) |
O1 | 0.014 (3) | 0.029 (4) | 0.019 (2) | 0.001 (3) | 0.002 (2) | −0.0005 (18) |
O2 | 0.0135 (16) | 0.068 (6) | 0.036 (2) | −0.0056 (18) | 0.0026 (14) | −0.015 (4) |
O3 | 0.052 (3) | 0.0208 (18) | 0.047 (3) | −0.0021 (16) | 0.015 (2) | 0.0070 (19) |
C27 | 0.031 (2) | 0.028 (2) | 0.020 (2) | −0.0097 (18) | 0.0108 (17) | −0.0060 (16) |
F1A | 0.077 (6) | 0.037 (3) | 0.059 (6) | 0.015 (3) | 0.048 (5) | 0.005 (4) |
F2A | 0.049 (5) | 0.065 (7) | 0.045 (4) | −0.027 (4) | 0.019 (3) | −0.026 (4) |
F3A | 0.049 (4) | 0.038 (3) | 0.036 (4) | −0.007 (3) | 0.032 (3) | −0.009 (3) |
O1A | 0.011 (4) | 0.027 (6) | 0.017 (5) | 0.006 (3) | 0.003 (4) | −0.002 (3) |
O2A | 0.032 (4) | 0.057 (9) | 0.033 (4) | −0.014 (4) | 0.014 (3) | −0.016 (5) |
O3A | 0.057 (6) | 0.045 (6) | 0.053 (7) | 0.022 (5) | 0.011 (5) | 0.017 (5) |
C27A | 0.044 (5) | 0.042 (5) | 0.036 (5) | −0.012 (4) | 0.024 (4) | −0.006 (3) |
C1 | 0.0148 (7) | 0.0181 (9) | 0.0163 (8) | 0.0003 (6) | 0.0036 (7) | −0.0036 (7) |
C2 | 0.0140 (7) | 0.0174 (9) | 0.0169 (8) | 0.0037 (6) | 0.0008 (6) | −0.0007 (7) |
C3 | 0.0111 (7) | 0.0153 (9) | 0.0171 (8) | 0.0011 (6) | 0.0008 (6) | 0.0005 (7) |
C4 | 0.0170 (8) | 0.0227 (10) | 0.0167 (9) | −0.0017 (7) | 0.0011 (7) | −0.0014 (7) |
C5 | 0.0195 (8) | 0.0256 (10) | 0.0202 (9) | −0.0013 (7) | 0.0046 (7) | 0.0028 (8) |
C6 | 0.0194 (8) | 0.0186 (10) | 0.0275 (10) | −0.0031 (7) | 0.0036 (8) | 0.0003 (8) |
C7 | 0.0230 (9) | 0.0195 (10) | 0.0219 (9) | −0.0034 (7) | 0.0005 (8) | −0.0029 (7) |
C8 | 0.0194 (8) | 0.0168 (9) | 0.0168 (8) | 0.0011 (7) | 0.0017 (7) | −0.0011 (7) |
C9 | 0.0158 (7) | 0.0136 (8) | 0.0131 (8) | 0.0016 (6) | 0.0002 (6) | −0.0011 (6) |
C10 | 0.0150 (8) | 0.0180 (9) | 0.0172 (8) | 0.0009 (6) | −0.0003 (7) | 0.0007 (7) |
C11 | 0.0201 (8) | 0.0186 (9) | 0.0177 (9) | 0.0035 (7) | −0.0033 (7) | 0.0006 (7) |
C12 | 0.0275 (9) | 0.0194 (9) | 0.0145 (8) | 0.0057 (7) | 0.0018 (7) | 0.0006 (7) |
C13 | 0.0217 (9) | 0.0204 (10) | 0.0199 (9) | 0.0030 (7) | 0.0074 (7) | 0.0012 (7) |
C14 | 0.0162 (8) | 0.0184 (9) | 0.0173 (8) | 0.0023 (7) | 0.0017 (7) | −0.0004 (7) |
C15 | 0.0141 (7) | 0.0147 (8) | 0.0140 (8) | 0.0003 (6) | −0.0010 (6) | −0.0011 (6) |
C16 | 0.0188 (8) | 0.0182 (9) | 0.0178 (8) | 0.0022 (7) | 0.0027 (7) | −0.0032 (7) |
C17 | 0.0247 (9) | 0.0152 (9) | 0.0211 (9) | 0.0034 (7) | 0.0001 (8) | 0.0003 (7) |
C18 | 0.0222 (9) | 0.0212 (10) | 0.0204 (9) | −0.0007 (7) | 0.0006 (7) | 0.0052 (7) |
C19 | 0.0215 (9) | 0.0268 (11) | 0.0174 (9) | 0.0013 (8) | 0.0053 (7) | 0.0026 (7) |
C20 | 0.0177 (8) | 0.0179 (9) | 0.0170 (8) | 0.0024 (7) | 0.0025 (7) | −0.0002 (7) |
C21 | 0.0156 (7) | 0.0129 (8) | 0.0148 (8) | 0.0018 (6) | 0.0011 (6) | −0.0026 (6) |
C22 | 0.0223 (8) | 0.0162 (9) | 0.0168 (9) | −0.0044 (7) | 0.0024 (7) | −0.0013 (7) |
C23 | 0.0264 (9) | 0.0218 (10) | 0.0155 (9) | −0.0016 (8) | 0.0029 (7) | 0.0003 (7) |
C24 | 0.0199 (8) | 0.0200 (9) | 0.0153 (8) | 0.0009 (7) | −0.0012 (7) | −0.0035 (7) |
C25 | 0.0192 (8) | 0.0176 (9) | 0.0205 (9) | −0.0026 (7) | −0.0013 (7) | −0.0036 (7) |
C26 | 0.0180 (8) | 0.0143 (9) | 0.0152 (8) | −0.0014 (6) | 0.0026 (7) | −0.0015 (6) |
Ni1—P1 | 2.2431 (5) | C3—C8 | 1.395 (2) |
Ni1—P1i | 2.2431 (5) | C3—C4 | 1.399 (3) |
Ni1—P2 | 2.2646 (4) | C4—C5 | 1.387 (3) |
Ni1—P2i | 2.2646 (4) | C5—C6 | 1.392 (3) |
P1—C21 | 1.8132 (18) | C6—C7 | 1.387 (3) |
P1—C15 | 1.8172 (19) | C7—C8 | 1.393 (3) |
P1—C1 | 1.8350 (18) | C9—C14 | 1.387 (3) |
P2—C9 | 1.8141 (18) | C9—C10 | 1.407 (2) |
P2—C3 | 1.8243 (19) | C10—C11 | 1.386 (3) |
P2—C2 | 1.8533 (18) | C11—C12 | 1.388 (3) |
S1—O2A | 1.413 (12) | C12—C13 | 1.390 (3) |
S1—O3 | 1.416 (6) | C13—C14 | 1.397 (3) |
S1—O1A | 1.442 (12) | C15—C20 | 1.394 (3) |
S1—O2 | 1.454 (6) | C15—C16 | 1.400 (3) |
S1—O1 | 1.455 (7) | C16—C17 | 1.388 (3) |
S1—O3A | 1.467 (11) | C17—C18 | 1.386 (3) |
S1—C27A | 1.807 (17) | C18—C19 | 1.389 (3) |
S1—C27 | 1.809 (7) | C19—C20 | 1.389 (3) |
F1—C27 | 1.323 (6) | C21—C22 | 1.395 (3) |
F2—C27 | 1.345 (6) | C21—C26 | 1.396 (2) |
F3—C27 | 1.337 (6) | C22—C23 | 1.390 (3) |
F1A—C27A | 1.319 (11) | C23—C24 | 1.390 (3) |
F2A—C27A | 1.366 (11) | C24—C25 | 1.386 (3) |
F3A—C27A | 1.337 (11) | C25—C26 | 1.395 (2) |
C1—C2 | 1.525 (2) | ||
P1—Ni1—P1i | 179.999 (19) | F3A—C27A—F2A | 107.2 (11) |
P1—Ni1—P2 | 84.943 (16) | F1A—C27A—S1 | 109.5 (10) |
P1i—Ni1—P2 | 95.056 (16) | F3A—C27A—S1 | 114.0 (11) |
P1—Ni1—P2i | 95.057 (16) | F2A—C27A—S1 | 113.2 (10) |
P1i—Ni1—P2i | 84.945 (16) | C2—C1—P1 | 108.06 (12) |
P2—Ni1—P2i | 180.0 | C1—C2—P2 | 111.31 (12) |
C21—P1—C15 | 106.16 (8) | C8—C3—C4 | 119.18 (17) |
C21—P1—C1 | 102.94 (8) | C8—C3—P2 | 121.64 (14) |
C15—P1—C1 | 106.01 (8) | C4—C3—P2 | 119.18 (14) |
C21—P1—Ni1 | 126.24 (6) | C5—C4—C3 | 120.67 (18) |
C15—P1—Ni1 | 107.06 (6) | C4—C5—C6 | 119.74 (19) |
C1—P1—Ni1 | 106.91 (6) | C7—C6—C5 | 120.03 (18) |
C9—P2—C3 | 106.51 (8) | C6—C7—C8 | 120.34 (18) |
C9—P2—C2 | 102.93 (8) | C7—C8—C3 | 120.03 (18) |
C3—P2—C2 | 103.51 (8) | C14—C9—C10 | 119.65 (16) |
C9—P2—Ni1 | 115.65 (6) | C14—C9—P2 | 120.00 (13) |
C3—P2—Ni1 | 117.57 (6) | C10—C9—P2 | 120.08 (14) |
C2—P2—Ni1 | 109.04 (6) | C11—C10—C9 | 119.56 (17) |
O2A—S1—O1A | 122.4 (18) | C10—C11—C12 | 120.49 (17) |
O3—S1—O2 | 116.5 (7) | C11—C12—C13 | 120.31 (17) |
O3—S1—O1 | 117.6 (7) | C12—C13—C14 | 119.43 (18) |
O2—S1—O1 | 110.7 (9) | C9—C14—C13 | 120.55 (16) |
O2A—S1—O3A | 112.6 (15) | C20—C15—C16 | 119.63 (17) |
O1A—S1—O3A | 109.8 (13) | C20—C15—P1 | 119.09 (14) |
O2A—S1—C27A | 103.9 (12) | C16—C15—P1 | 121.28 (14) |
O1A—S1—C27A | 104.4 (16) | C17—C16—C15 | 119.48 (18) |
O3A—S1—C27A | 100.8 (8) | C18—C17—C16 | 120.48 (18) |
O3—S1—C27 | 105.3 (4) | C17—C18—C19 | 120.43 (18) |
O2—S1—C27 | 102.5 (6) | C18—C19—C20 | 119.38 (18) |
O1—S1—C27 | 101.7 (9) | C19—C20—C15 | 120.59 (18) |
F1—C27—F3 | 108.3 (6) | C22—C21—C26 | 119.69 (16) |
F1—C27—F2 | 107.0 (6) | C22—C21—P1 | 119.21 (14) |
F3—C27—F2 | 107.1 (5) | C26—C21—P1 | 121.10 (14) |
F1—C27—S1 | 114.1 (5) | C23—C22—C21 | 119.96 (17) |
F3—C27—S1 | 110.3 (5) | C24—C23—C22 | 120.20 (18) |
F2—C27—S1 | 109.7 (5) | C25—C24—C23 | 120.17 (17) |
F1A—C27A—F3A | 107.9 (11) | C24—C25—C26 | 119.94 (17) |
F1A—C27A—F2A | 104.5 (13) | C25—C26—C21 | 120.03 (17) |
O3—S1—C27—F1 | 176.3 (7) | Ni1—P2—C9—C14 | 6.68 (17) |
O2—S1—C27—F1 | −61.4 (9) | C3—P2—C9—C10 | −46.75 (17) |
O1—S1—C27—F1 | 53.1 (7) | C2—P2—C9—C10 | 61.80 (16) |
O3—S1—C27—F3 | −61.6 (7) | Ni1—P2—C9—C10 | −179.41 (13) |
O2—S1—C27—F3 | 60.7 (9) | C14—C9—C10—C11 | −1.5 (3) |
O1—S1—C27—F3 | 175.2 (6) | P2—C9—C10—C11 | −175.45 (15) |
O3—S1—C27—F2 | 56.2 (7) | C9—C10—C11—C12 | 0.9 (3) |
O2—S1—C27—F2 | 178.5 (8) | C10—C11—C12—C13 | 0.1 (3) |
O1—S1—C27—F2 | −67.0 (7) | C11—C12—C13—C14 | −0.7 (3) |
O2A—S1—C27A—F1A | −77.5 (16) | C10—C9—C14—C13 | 1.0 (3) |
O1A—S1—C27A—F1A | 51.8 (14) | P2—C9—C14—C13 | 174.95 (15) |
O3A—S1—C27A—F1A | 165.7 (13) | C12—C13—C14—C9 | 0.1 (3) |
O2A—S1—C27A—F3A | 43.5 (16) | C21—P1—C15—C20 | −119.49 (14) |
O1A—S1—C27A—F3A | 172.8 (13) | C1—P1—C15—C20 | 131.50 (14) |
O3A—S1—C27A—F3A | −73.3 (13) | Ni1—P1—C15—C20 | 17.63 (15) |
O2A—S1—C27A—F2A | 166.3 (15) | C21—P1—C15—C16 | 60.66 (16) |
O1A—S1—C27A—F2A | −64.4 (14) | C1—P1—C15—C16 | −48.34 (16) |
O3A—S1—C27A—F2A | 49.5 (14) | Ni1—P1—C15—C16 | −162.22 (13) |
C21—P1—C1—C2 | −177.35 (12) | C20—C15—C16—C17 | −1.1 (3) |
C15—P1—C1—C2 | −66.06 (14) | P1—C15—C16—C17 | 178.74 (14) |
Ni1—P1—C1—C2 | 47.91 (13) | C15—C16—C17—C18 | 0.7 (3) |
P1—C1—C2—P2 | −42.78 (16) | C16—C17—C18—C19 | 0.3 (3) |
C9—P2—C2—C1 | 143.54 (13) | C17—C18—C19—C20 | −0.9 (3) |
C3—P2—C2—C1 | −105.67 (14) | C18—C19—C20—C15 | 0.5 (3) |
Ni1—P2—C2—C1 | 20.24 (14) | C16—C15—C20—C19 | 0.5 (3) |
C9—P2—C3—C8 | −20.77 (17) | P1—C15—C20—C19 | −179.36 (14) |
C2—P2—C3—C8 | −128.91 (15) | C15—P1—C21—C22 | −159.38 (15) |
Ni1—P2—C3—C8 | 110.83 (14) | C1—P1—C21—C22 | −48.20 (17) |
C9—P2—C3—C4 | 159.16 (14) | Ni1—P1—C21—C22 | 74.38 (16) |
C2—P2—C3—C4 | 51.03 (16) | C15—P1—C21—C26 | 19.77 (17) |
Ni1—P2—C3—C4 | −69.23 (15) | C1—P1—C21—C26 | 130.94 (15) |
C8—C3—C4—C5 | −0.9 (3) | Ni1—P1—C21—C26 | −106.47 (14) |
P2—C3—C4—C5 | 179.16 (15) | C26—C21—C22—C23 | 0.3 (3) |
C3—C4—C5—C6 | 0.2 (3) | P1—C21—C22—C23 | 179.44 (15) |
C4—C5—C6—C7 | 0.8 (3) | C21—C22—C23—C24 | 1.0 (3) |
C5—C6—C7—C8 | −1.1 (3) | C22—C23—C24—C25 | −1.3 (3) |
C6—C7—C8—C3 | 0.3 (3) | C23—C24—C25—C26 | 0.3 (3) |
C4—C3—C8—C7 | 0.6 (3) | C24—C25—C26—C21 | 1.0 (3) |
P2—C3—C8—C7 | −179.43 (14) | C22—C21—C26—C25 | −1.3 (3) |
C3—P2—C9—C14 | 139.35 (15) | P1—C21—C26—C25 | 179.59 (14) |
C2—P2—C9—C14 | −112.11 (16) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Parameter | 1 at 296 K | 1 at 100 K | VASCIB | XUQYOZ |
Ni—P | 2.219 (2) | 2.243 (1) | 2.256 (3) | 2.237 (1) |
2.238 (2) | 2.265 (1) | 2.261 (3) | 2.245 (1) | |
P1—Ni—P2 | 84.7 (1) | 84.9 (1) | 83.2 (1) | 83.6 (1) |
P1—C—C—P2 | 43.9 (4) | 42.8 (2) | 30.8 (1) | 39.9 (3) |
Acknowledgements
AD-R would like to acknowledge the unconditional support given by Dr Echegoyen from the Department of Chemistry at UTEP, and the kind collaboration of the College of Science at UTEP.
Funding information
Funding for this research was provided by: Universidad Nacional de Colombia, Dirección de Investigación, Universidad Nacional de Colombia (grant No. 35544 to Á. Duarte-Ruiz); Departamento Administrativo de Ciencia, Tecnología e Innovación-COLCIENCIAS (grant No. 110171249591 to Á. Duarte-Ruiz).
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA. Google Scholar
Cano, C. A. (2012). Undergraduate thesis, Universidad Nacional de Colombia, Bogotá D. C., Colombia. Google Scholar
Cariati, F., Ugo, R. & Bonati, F. (1966). Inorg. Chem. 5, 1128–1132. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Engelhardt, L. M., Patrick, J. M., Raston, C. L., Twiss, P. & White, A. H. (1984). Aust. J. Chem. 37, 2193–2200. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higgs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446–5449. CrossRef Google Scholar
Hudson, M. J., Nyholm, R. S. & Stiddard, M. H. B. (1968). J. Chem. Soc. A, pp. 40–43. CrossRef Web of Science Google Scholar
Jarrett, P. S. & Sadler, P. J. (1991). Inorg. Chem. 30, 2098–2104. CrossRef CAS Web of Science Google Scholar
Lawrence, G. A. (1986). Chem. Rev. 86, 17–33. Google Scholar
Liu, Z., Gao, Q., Chen, J., Deng, J., Lin, K. & Xing, X. (2018). Chem. Commun. 54, 5164–5176. CrossRef Google Scholar
Lyubartseva, G., Parkin, S. & Mallik, U. P. (2013). Acta Cryst. E69, m532–m533. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stewart, M. P., Ho, M.-H., Wiese, S., Lindstrom, M. L., Thogerson, C. E., Raugei, S., Bullock, R. M. & Helm, M. L. (2013). J. Am. Chem. Soc. 135, 6033–6046. CrossRef PubMed Google Scholar
Uehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529–3538. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, A. F. (1989). Acta Cryst. C45, 1002–1005. CrossRef IUCr Journals Google Scholar
Zarkesh, R. A., Hopkins, M. D. & Jordan, R. F. (2014). Eur. J. Inorg. Chem. pp. 5491–5494. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.