research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Investigation of nitro–nitrito photoisomerization: crystal structures of trans-bis­­(acetyl­acetonato-O,O′)(pyridine/4-methyl­pyridine/3-hy­dr­oxy­pridine)nitro­cobalt(III)

CROSSMARK_Color_square_no_text.svg

aResearch and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1 , Kohoku-ku, Yokohama 223-8521, Japan, bDepartment of Chemistry, Chiba Institute of Technology, Shibazono 2-1-1, Narashino, Chiba 275-0023, Japan, and cDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: ohba@a3.keio.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 October 2018; accepted 18 October 2018; online 23 October 2018)

The reaction cavities of the nitro groups in the title compounds, trans-bis­(acetyl­acetonato-κ2O,O′)(nitro)(pyridine-κN)cobalt(III), [Co(C5H7O2)2(NO2)(C5H5N)], (I), trans-bis­(acetyl­acetonato-κ2O,O′)(4-methyl­pyridine-κN)(nitro)cobalt(III), [Co(C5H7O2)2(NO2)(C6H7N)], (II), and trans-bis­(acetyl­acetonato-κ2O,O′)(3-hy­droxy­pyridine-κN)(nitro)cobalt(III) monohydrate, [Co(C5H7O2)2(NO2)(C5H5NO)]·H2O, (III), have been investigated to reveal that bifurcated inter­molecular C(py)—H⋯O,O contacts in (III) are unfeasible for the nitro–nitrito photochemical linkage isomerization process. In each structure, the pyridine ring and the Co atom lie on a crystallographic mirror plane; in (I) and (II) the nitro group lies in the same plane, whereas in (III), which crystallizes as a monohydrate, the nitro group is disordered over three orientations in a 0.672 (16):0.164 (8):0.164 (8) ratio; the water mol­ecule of crystallization is statistically disordered over two sites adjacent to the mirror plane. In the crystals of (I) and (II), the mol­ecules are linked into [100] chains by C—H⋯O hydrogen bonds, whereas the extended structure of (III) features (010) layers linked by O—H⋯O and C—H⋯O hydrogen bonds. Compounds (I) and (II) were refined as inversion twins.

1. Chemical context

Solid-state reactions are restricted by the cage effect, which is helpful for stereo-selectivity, but it sometimes inter­rupts the reaction. The photochemical nitro–nitrito linkage isomerization in crystals was investigated for the salts of [Co(NH3)5(NO2)]+, and indicated that insufficient free space around the nitro ligand prevents the isomerization from occurring (Boldyreva, 2001[Boldyreva, E. V. (2001). Russ. J. Coord. Chem. 27, 297-323.]). For the salts of trans-[Co(en)2(NO2)(NCS)]+, a certain geometry of the inter­molecular N—H⋯O hydrogen bonds restricts the photoisomerization (Ohba et al., 2018[Ohba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526-1531.]). In the present study, we investigated another type of nitro­cobalt complex, trans-[Co(acac)2(NO2)(X-py)], where acac stands for acetyl­acetonate ion, and X-py = pyridine (I)[link] or pyridine derivative; 4-Me-py (II)[link], 3-OH-py (III)[link], and 3-Me-py (IV). The photoactivity of (I)[link] in the solid state had been reported based on the infrared spectra while irradiated with a high-pressure mercury arc, a remarkable increase in absorption in the region 1000–1050 cm−1 being detected (Johnson & Martin, 1969[Johnson, D. A. & Martin, J. E. (1969). Inorg. Chem. 8, 2509-2510.]). This is due to the symmetric N—O stretching mode of the nitrito form, and it corresponds to 1055 cm−1 for [Co(NH3)5ONO]Cl2 (Heyns & de Waal, 1989[Heyns, A. M. & de Waal, D. (1989). Spectrochim. Acta A, 45, 905-909.]).

[Scheme 1]

When the IR spectra were measured after irradiation for 30 min to the KBr disks containing each complex by a 150 W Xe lamp without filtering, those of py (I)[link] and 4-Me-py (II)[link] showed an apparent increase of an absorption peak at 1051 and 1025 cm−1, respectively (see the figure in the supporting information), and the spectra reverted to those before irradiation on standing at room temperature for ca 16 h. The changing color of the KBr disks by photoirradiation was ambiguous, which might be due to the dark-red color of the crystals. On the other hand, the 3-OH-py (III)[link] and 3-Me-py (IV) complexes were photo-stable and did not show the change in IR spectra by irradiation. In the present study, the crystal structures of (I)–(III) have been determined to reveal the differences in the circumstances of the nitro ligand. The structure of (IV) was reported previously (Miyazaki et al., 1998[Miyazaki, H., Tsuchimoto, M. & Ohba, S. (1998). Acta Cryst. C54, 46-47.]).

2. Structural commentary

The mol­ecular structures of (I)–(III) are shown in Figs. 1[link]–3[link][link], respectively. In these crystals, the complex has crystallographic mirror symmetry, and the py/4-Me-py/3-OH-py ligands and the cobalt atom lie on a mirror plane. The nitro group also lies on the mirror plane in (I)[link] and (II)[link]. However, in (III)[link] the nitro group shows positional disorder, and the major component [O4—N8—O4i, 67.2 (16)%] is oriented perpendicular to the mirror plane. The minor component [O5A—N8—O5B, 16.4 (8)%] and the water mol­ecule (O7) are disordered near the mirror. The Co—N(nitro) bond distances are 1.923 (9) Å in (I)[link], 1.949 (10) Å in (II)[link] and 1.915 (3) Å in (III)[link]. In each case, a distorted trans-CoN2O4 octa­hedral coordination polyhedron arises.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 30% probability level. Symmetry code: (i) x, −y + 1, z.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing displacement ellipsoids at the 30% probability level. Symmetry code: (i) x, −y + 1, z. One of the two set of H-atom positions of the C18 methyl group is omitted for clarity.
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing displacement ellipsoids at the 30% probability level. Symmetry code: (i) x, −y + [{3\over 2}], z. The minor occupancy O5A/O5B atoms of the nitro group and one of two possible positions of the water mol­ecule O7 are omitted for clarity.

3. Supra­molecular features

The crystal structures of (I)–(III) are shown in Figs. 4[link]–6[link][link], respectively. In (I)[link] and (II)[link], the mol­ecules are connected by C—H⋯O hydrogen bonds (Tables 1–3[link][link][link]), forming chains propagating along the a-axis direction. In (III)[link], the complex mol­ecules are connected via O—H⋯O hydrogen bonds involving the water mol­ecules, forming layers lying parallel to (010).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4ii 0.93 2.47 3.150 (11) 130
Symmetry code: (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4ii 0.93 2.39 3.104 (10) 133
Symmetry code: (ii) x+1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O7 0.84 (2) 1.77 (2) 2.593 (4) 166 (3)
O6—H6⋯O7i 0.84 (2) 1.77 (2) 2.593 (4) 166 (3)
O7—H7A⋯O2ii 0.83 (2) 2.15 (3) 2.962 (4) 165 (8)
O7—H7B⋯O3iii 0.83 (2) 2.23 (3) 3.030 (5) 164 (8)
C10—H10C⋯O4iv 0.96 2.53 3.446 (5) 161
C19—H19⋯O5Aiv 0.93 2.49 3.413 (11) 171
C19—H19⋯O5Av 0.93 2.49 3.413 (11) 171
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z]; (ii) [x, -y+{\script{3\over 2}}, z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal structure of (I)[link], projected along c. The C—H⋯O hydrogen bonds are shown as blue dashed lines.
[Figure 5]
Figure 5
The crystal structure of (II)[link], projected along c. The C—H⋯O hydrogen bonds are shown as blue dashed lines.
[Figure 6]
Figure 6
The crystal structure of (III)[link], projected along c. The O—H⋯O hydrogen bonds are shown as blue dashed lines. The minor occupancy O5A/O5B atoms of the nitro group and one of two possible positions of the water mol­ecule O7 are omitted for clarity.

Slices of the reaction cavities around the nitro group near its plane in (I)–(IV) are compared in Fig. 7[link], where the radii of the neighboring atoms are assumed to be 1.0 Å greater than the corresponding van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) except for Co, its radius being set to 1.90 Å. The inter­molecular contacts that define the shape of cavity of NO2 in its place in (I)–(IV) are shown in Figs. 8[link]–11[link][link][link], respectively, where the C—H⋯O hydrogen bonds are shown as blue dashed lines (the O⋯H distances being in the range from 2.39 to 2.53 Å), and other O⋯H contacts of less than 2.8 Å are shown as green dashed lines. The cavities in the photo-stable crystals of (III)[link] and (IV) are thinner than those in the photo-active ones (I)[link] and (II)[link], where it seems that there are no close contacts that prevents the linkage isomerization (Figs. 8[link] and 9[link]). The narrow cavities in (III)[link] and (IV) are due to the bifurcated inter­molecular C—H(py)⋯O,O(nitro) contacts as seen in Figs. 10[link] and 11[link]. On the extension of the Co–N(nitro) bond axis, there is a neighboring pyridine ring perpendicular to the nitro plane, suggesting that this ring will block the rotation of NO2 to become a nitrito form.

[Figure 7]
Figure 7
Comparison of the slices of the cavity around the nitro group within 0.1 Å from the plane in (I)–(IV). Symmetry code for (III)[link] (i) x, −y + [{3\over 2}], z; for (IV): (i) x, −y + [{1\over 2}], z.
[Figure 8]
Figure 8
The steric circumstance of the nitro group in (I)[link]. Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines. The green dashed lines indicate other O⋯H contacts shorter than 2.8 Å, O5⋯H15iv=2.73 Å. Symmetry codes: (i) x, −y + 1, z; (ii) x + 1, y, z; (iii) x − 1, y, z; (iv) x − 1, y, z − 1; (v) x − 1, −y + 1, z.
[Figure 9]
Figure 9
The steric circumstance of the nitro group in (II)[link]. Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines. The green dashed lines indicate other O⋯H contacts shorter than 2.8 Å. Symmetry codes: (i) x, −y + 1, z; (ii) x + 1, y, z; (iii) x − 1, y, z; (iv) x, y, z + 1; (v) x − 1, y, z + 1; (vi) x − 1, −y + 1, z.
[Figure 10]
Figure 10
The steric circumstance of the nitro group in (III)[link]. Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines, O4⋯H10Cvii = 2.53 Å. The green dashed lines indicate the other O⋯H contacts, O4⋯H19vi = 2.71 Å. Symmetry codes: (i) x, −y + [{3\over 2}], z; (ii) x, −y + [{3\over 2}], z + 1; (iii) x + [{1\over 2}], −y + [{3\over 2}], −z + [{3\over 2}]; (iv) x + [{1\over 2}], y, −z + [{1\over 2}]; (v) x + [{1\over 2}], −y + [{3\over 2}], −z + [{1\over 2}]; (vi) x − [{1\over 2}], −y + [{3\over 2}], −z + [{1\over 2}]; (vii) x − [{1\over 2}], y, [{1\over 2}] − z.
[Figure 11]
Figure 11
The steric circumstance of the nitro group in (IV). Only parts of the complexes are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines, O4⋯H11Aiv = 2.41 Å. The green dashed lines indicate the other O⋯H contacts, O4⋯H16iii = 2.69 Å. Symmetry codes: (i) x, −y + [{1\over 2}], z; (ii) −x + [{3\over 2}], −y, z + [{1\over 2}]; (iii) x + [{1\over 2}], y, −z + [{3\over 2}]; (iv) −x + [{3\over 2}], y − [{1\over 2}], z + [{1\over 2}].

4. Database survey

There are two entries of trans-[Co(acac)2(NO2)(X-py)] in the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the pyridine derivative being 3-methyl­pyridine (Miyazaki et al., 1998[Miyazaki, H., Tsuchimoto, M. & Ohba, S. (1998). Acta Cryst. C54, 46-47.]), and 4,4,5,5-tetra­methyl-2-(3-pyrid­yl)imidazolin-1-oxyl radical (Ogita et al., 2002[Ogita, M., Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2002). Eur. J. Inorg. Chem. pp. 886-894.]). Entries for the other related compounds include trans-[Co(acac)2(NO2)(2-amino­pyrimidine)] (Kistenmacher et al., 1978[Kistenmacher, T. J., Sorrell, T., Rossi, M., Chiang, C. C. & Marzilli, L. G. (1978). Inorg. Chem. 17, 479-481.]), trans-[Co(acac)2(NO2)(H2O)] (Englert & Strähle, 1987[Englert, U. & Strähle, J. (1987). Z. Naturforsch. Teil B, 42, 959-966.]), and trans-[Co(acac)2(4-methylpyridine)2]PF6 (Tayyari et al., 2015[Tayyari, S. F., Habibi, M. H., Shojaee, E., Jamialahmadi, M., Sammelson, R. E., Wada, K. & Suzuki, T. (2015). Spectrochim. Acta A,139, 94-101.]), for which theoretical assignments of the IR bands were presented.

5. Synthesis and crystallization

The title compounds were prepared according to the method of Boucher & Bailar (1965[Boucher, L. J. & Bailar, J. C. Jr (1965). J. Inorg. Nucl. Chem. 27, 1093-1099.]) from Na[Co(acac)2(NO2)2] and the appropriate pyridine derivative. Dark-red plates of (I)[link], dark-red prisms of (II)[link] and dark-red needles of (III)[link] were grown from aceto­nitrile, nitro­methane and methanol solutions, respectively.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms bound to C were positioned geometrically, the methyl H atoms being introduced by an HFIX 137 command. They were refined as riding, with C—H = 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). (I)[link]: two reflections showing poor agreement with Iobs much smaller than Icalc were omitted from the final refinement. (II)[link]: one reflection showing poor agreement was omitted. The DELU instruction was applied to C15 and C18 to avoid the 10 s.u. of the Hirshfeld test difference. (III)[link]: six reflections showing poor agreement were omitted. The minor occupancy nitro atoms O5A and O5B were refined anisotropically with an ISOR instruction. The H atoms bound to O were positioned from difference density maps, and their positional parameters were refined with the geometry restrained and with Uiso(H) = 1.5Ueq(O). Compounds (I)[link] and (II)[link] were refined as inversion twins.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Co(C5H7O2)2(NO2)(C5H5N)] [Co(C5H7O2)2(NO2)(C6H7N)] [Co(C5H7O2)2(NO2)(C5H5NO)]·H2O
Mr 382.25 396.28 416.27
Crystal system, space group Monoclinic, Cm Monoclinic, Cm Orthorhombic, Pnma
Temperature (K) 301 301 301
a, b, c (Å) 8.1971 (14), 13.942 (2), 7.4148 (11) 8.2459 (9), 13.9603 (14), 7.9222 (8) 12.3811 (4), 14.0483 (5), 10.6443 (3)
α, β, γ (°) 90, 91.588 (6), 90 90, 96.997 (4), 90 90, 90, 90
V3) 847.1 (2) 905.17 (16) 1851.40 (10)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.05 0.98 0.97
Crystal size (mm) 0.31 × 0.27 × 0.13 0.35 × 0.15 × 0.15 0.35 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.731, 0.886 0.749, 0.895 0.780, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 3958, 1529, 1449 4495, 1810, 1754 19560, 2292, 1887
Rint 0.024 0.021 0.032
(sin θ/λ)max−1) 0.659 0.660 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.083, 1.12 0.031, 0.074, 1.13 0.032, 0.087, 1.10
No. of reflections 1529 1810 2292
No. of parameters 128 134 165
No. of restraints 2 3 16
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.34 0.35, −0.37 0.46, −0.46
Absolute structure Refined as an inversion twin Refined as an inversion twin
Absolute structure parameter 0.41 (3) 0.37 (3)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CAVITY (Ohashi et al., 1981[Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805-5812.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and CAVITY (Ohashi et al., 1981); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) top
Crystal data top
[Co(C5H7O2)2(NO2)(C5H5N)]F(000) = 396
Mr = 382.25Dx = 1.499 Mg m3
Monoclinic, CmMo Kα radiation, λ = 0.71073 Å
a = 8.1971 (14) ÅCell parameters from 2813 reflections
b = 13.942 (2) Åθ = 2.8–27.4°
c = 7.4148 (11) ŵ = 1.05 mm1
β = 91.588 (6)°T = 301 K
V = 847.1 (2) Å3Plate, dark red
Z = 20.31 × 0.27 × 0.13 mm
Data collection top
Bruker D8 VENTURE
diffractometer
1449 reflections with I > 2σ(I)
φ and ω scansRint = 0.024
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 27.9°, θmin = 2.8°
Tmin = 0.731, Tmax = 0.886h = 810
3958 measured reflectionsk = 1718
1529 independent reflectionsl = 89
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0237P)2 + 1.1288P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max = 0.013
wR(F2) = 0.083Δρmax = 0.32 e Å3
S = 1.12Δρmin = 0.34 e Å3
1529 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parametersExtinction coefficient: 0.0076 (16)
2 restraintsAbsolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.41 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.42186 (18)0.50000.42933 (17)0.0438 (3)
O20.3213 (6)0.5899 (5)0.5783 (6)0.0519 (15)
O30.5237 (6)0.5919 (5)0.2843 (6)0.0510 (15)
O40.1030 (10)0.50000.3107 (12)0.109 (4)
O50.2595 (11)0.50000.1013 (12)0.124 (4)
N60.2370 (11)0.50000.2638 (11)0.052 (2)
N70.6127 (10)0.50000.6056 (11)0.046 (2)
C80.2472 (10)0.7342 (6)0.7050 (8)0.068 (2)
H8A0.13470.71530.70850.103*
H8B0.25370.80180.68130.103*
H8C0.30030.72030.81910.103*
C90.3290 (9)0.6804 (7)0.5596 (9)0.050 (2)
C100.4051 (12)0.7261 (3)0.4179 (11)0.0578 (14)
H100.39460.79240.40900.069*
C110.4946 (9)0.6800 (7)0.2902 (9)0.0476 (19)
C120.5655 (11)0.7380 (7)0.1361 (9)0.072 (2)
H12A0.61200.69520.05020.107*
H12B0.64850.78030.18340.107*
H12C0.48030.77500.07800.107*
C130.7701 (12)0.50000.5474 (12)0.0441 (18)
H130.78840.50000.42420.053*
C140.8993 (9)0.50000.6648 (10)0.0560 (17)
H141.00500.50000.62240.067*
C150.8733 (10)0.50000.8481 (10)0.0607 (18)
H150.96070.50000.93080.073*
C160.7142 (10)0.50000.9055 (9)0.0577 (18)
H160.69310.50001.02810.069*
C170.5893 (11)0.50000.7818 (11)0.049 (2)
H170.48290.50000.82220.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0433 (4)0.0486 (4)0.0404 (4)0.0000.0172 (3)0.000
O20.054 (4)0.058 (4)0.044 (3)0.006 (3)0.017 (3)0.001 (3)
O30.056 (4)0.052 (4)0.046 (3)0.004 (3)0.021 (3)0.008 (3)
O40.040 (4)0.212 (10)0.076 (5)0.0000.012 (4)0.000
O50.075 (6)0.242 (12)0.056 (5)0.0000.006 (4)0.000
N60.055 (6)0.066 (6)0.035 (4)0.0000.017 (4)0.000
N70.043 (5)0.051 (5)0.045 (4)0.0000.010 (3)0.000
C80.083 (5)0.072 (5)0.050 (4)0.021 (4)0.008 (3)0.020 (4)
C90.040 (4)0.062 (5)0.047 (4)0.009 (3)0.006 (3)0.004 (3)
C100.071 (4)0.048 (2)0.054 (3)0.002 (4)0.002 (3)0.005 (4)
C110.051 (4)0.051 (4)0.040 (3)0.013 (3)0.005 (3)0.013 (3)
C120.070 (5)0.083 (6)0.062 (4)0.020 (4)0.007 (4)0.019 (4)
C130.048 (5)0.044 (4)0.041 (4)0.0000.021 (3)0.000
C140.044 (4)0.064 (4)0.061 (4)0.0000.012 (3)0.000
C150.065 (5)0.061 (4)0.055 (4)0.0000.004 (4)0.000
C160.070 (5)0.068 (5)0.035 (3)0.0000.009 (3)0.000
C170.055 (5)0.056 (4)0.039 (4)0.0000.029 (4)0.000
Geometric parameters (Å, º) top
Co1—O2i1.877 (5)C9—C101.392 (11)
Co1—O21.877 (5)C10—C111.374 (12)
Co1—O31.883 (6)C10—H100.9300
Co1—O3i1.883 (6)C11—C121.527 (9)
Co1—N61.923 (9)C12—H12A0.9600
Co1—N72.010 (8)C12—H12B0.9600
O2—C91.270 (10)C12—H12C0.9600
O3—C111.252 (10)C13—C141.352 (12)
O4—N61.162 (11)C13—H130.9300
O5—N61.224 (12)C14—C151.381 (10)
N7—C171.325 (11)C14—H140.9300
N7—C131.372 (12)C15—C161.383 (10)
C8—C91.489 (10)C15—H150.9300
C8—H8A0.9600C16—C171.356 (12)
C8—H8B0.9600C16—H160.9300
C8—H8C0.9600C17—H170.9300
O2i—Co1—O283.8 (4)O2—C9—C8113.4 (8)
O2i—Co1—O3178.7 (3)C10—C9—C8122.4 (9)
O2—Co1—O395.18 (10)C11—C10—C9124.4 (4)
O2i—Co1—O3i95.18 (10)C11—C10—H10117.8
O2—Co1—O3i178.7 (3)C9—C10—H10117.8
O3—Co1—O3i85.8 (4)O3—C11—C10126.1 (7)
O2i—Co1—N691.4 (3)O3—C11—C12114.6 (8)
O2—Co1—N691.4 (3)C10—C11—C12119.3 (8)
O3—Co1—N689.4 (2)C11—C12—H12A109.5
O3i—Co1—N689.4 (2)C11—C12—H12B109.5
O2i—Co1—N787.9 (2)H12A—C12—H12B109.5
O2—Co1—N787.9 (2)C11—C12—H12C109.5
O3—Co1—N791.3 (3)H12A—C12—H12C109.5
O3i—Co1—N791.3 (3)H12B—C12—H12C109.5
N6—Co1—N7179.1 (5)C14—C13—N7121.6 (8)
C9—O2—Co1125.1 (6)C14—C13—H13119.2
C11—O3—Co1124.1 (6)N7—C13—H13119.2
O4—N6—O5117.7 (10)C13—C14—C15119.6 (7)
O4—N6—Co1122.9 (8)C13—C14—H14120.2
O5—N6—Co1119.4 (8)C15—C14—H14120.2
C17—N7—C13118.2 (8)C16—C15—C14118.4 (7)
C17—N7—Co1120.7 (7)C16—C15—H15120.8
C13—N7—Co1121.1 (7)C14—C15—H15120.8
C9—C8—H8A109.5C17—C16—C15119.5 (6)
C9—C8—H8B109.5C17—C16—H16120.2
H8A—C8—H8B109.5C15—C16—H16120.2
C9—C8—H8C109.5N7—C17—C16122.7 (8)
H8A—C8—H8C109.5N7—C17—H17118.7
H8B—C8—H8C109.5C16—C17—H17118.7
O2—C9—C10124.2 (8)
O2i—Co1—O2—C9178.3 (4)Co1—O3—C11—C1010.4 (11)
O3—Co1—O2—C92.5 (6)Co1—O3—C11—C12168.5 (5)
N6—Co1—O2—C987.0 (6)C9—C10—C11—O31.6 (15)
N7—Co1—O2—C993.6 (6)C9—C10—C11—C12177.2 (7)
O2—Co1—O3—C119.7 (6)C17—N7—C13—C140.000 (2)
O3i—Co1—O3—C11171.1 (4)Co1—N7—C13—C14180.000 (1)
N6—Co1—O3—C1181.7 (6)N7—C13—C14—C150.000 (2)
N7—Co1—O3—C1197.7 (6)C13—C14—C15—C160.000 (2)
Co1—O2—C9—C104.4 (10)C14—C15—C16—C170.000 (2)
Co1—O2—C9—C8175.9 (4)C13—N7—C17—C160.000 (2)
O2—C9—C10—C116.6 (14)Co1—N7—C17—C16180.000 (2)
C8—C9—C10—C11173.8 (7)C15—C16—C17—N70.000 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4ii0.932.473.150 (11)130
Symmetry code: (ii) x+1, y, z.
trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) top
Crystal data top
[Co(C5H7O2)2(NO2)(C6H7N)]F(000) = 412
Mr = 396.28Dx = 1.454 Mg m3
Monoclinic, CmMo Kα radiation, λ = 0.71073 Å
a = 8.2459 (9) ÅCell parameters from 4544 reflections
b = 13.9603 (14) Åθ = 2.5–27.8°
c = 7.9222 (8) ŵ = 0.98 mm1
β = 96.997 (4)°T = 301 K
V = 905.17 (16) Å3Prism, dark red
Z = 20.35 × 0.15 × 0.15 mm
Data collection top
Bruker D8 VENTURE
diffractometer
1754 reflections with I > 2σ(I)
φ and ω scansRint = 0.021
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 28.0°, θmin = 2.9°
Tmin = 0.749, Tmax = 0.895h = 108
4495 measured reflectionsk = 1718
1810 independent reflectionsl = 910
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0113P)2 + 1.2247P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.35 e Å3
1810 reflectionsΔρmin = 0.37 e Å3
134 parametersAbsolute structure: Refined as an inversion twin
3 restraintsAbsolute structure parameter: 0.37 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.42176 (19)0.50000.52127 (18)0.03463 (18)
O20.3036 (5)0.5901 (4)0.3806 (5)0.0400 (12)
O30.5407 (5)0.5913 (4)0.6616 (5)0.0439 (13)
O40.1207 (11)0.50000.6291 (11)0.125 (4)
O50.2965 (10)0.50000.8253 (10)0.125 (4)
N60.2587 (12)0.50000.6799 (11)0.048 (2)
N70.5891 (9)0.50000.3642 (10)0.0330 (18)
C80.2352 (11)0.7359 (5)0.2501 (9)0.065 (3)
H8A0.30870.74990.16830.097*
H8B0.19570.79460.29300.097*
H8C0.14470.69910.19680.097*
C90.3220 (9)0.6804 (6)0.3917 (9)0.043 (2)
C100.4208 (15)0.7268 (2)0.5206 (12)0.0577 (10)
H100.42150.79340.52060.069*
C110.5191 (9)0.6796 (6)0.6500 (9)0.046 (2)
C120.6150 (13)0.7373 (6)0.7949 (8)0.072 (3)
H12A0.59360.71170.90240.108*
H12B0.58130.80320.78680.108*
H12C0.72980.73310.78570.108*
C130.7505 (10)0.50000.4153 (10)0.0363 (16)
H130.78510.50000.53150.044*
C140.8686 (8)0.50000.3045 (8)0.0468 (14)
H140.97870.50000.34750.056*
C150.8232 (8)0.50000.1291 (8)0.0463 (14)
C160.6569 (8)0.50000.0745 (7)0.0450 (14)
H160.62090.50000.04140.054*
C170.5439 (10)0.50000.1900 (10)0.0393 (17)
H170.43330.50000.14910.047*
C180.9477 (16)0.50000.0121 (19)0.078 (3)
H18A0.90790.53490.08890.117*0.5
H18B0.97140.43520.01740.117*0.5
H18C1.04540.52990.06600.117*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0384 (4)0.0391 (3)0.0248 (3)0.0000.0026 (2)0.000
O20.045 (3)0.041 (3)0.033 (3)0.005 (2)0.001 (2)0.001 (3)
O30.047 (3)0.049 (3)0.032 (3)0.002 (3)0.010 (2)0.007 (3)
O40.059 (5)0.261 (12)0.056 (5)0.0000.015 (4)0.000
O50.066 (6)0.271 (12)0.039 (4)0.0000.009 (4)0.000
N60.056 (6)0.057 (6)0.029 (5)0.0000.002 (4)0.000
N70.021 (4)0.044 (4)0.033 (5)0.0000.001 (3)0.000
C80.072 (6)0.053 (5)0.065 (5)0.009 (4)0.015 (5)0.013 (5)
C90.052 (5)0.044 (5)0.034 (4)0.009 (3)0.005 (4)0.001 (3)
C100.080 (3)0.0389 (17)0.051 (2)0.007 (6)0.0049 (18)0.005 (6)
C110.053 (5)0.049 (5)0.037 (4)0.008 (3)0.008 (4)0.013 (3)
C120.104 (7)0.068 (5)0.042 (5)0.021 (6)0.002 (5)0.023 (5)
C130.026 (3)0.047 (3)0.031 (4)0.0000.014 (3)0.000
C140.043 (4)0.050 (3)0.047 (4)0.0000.002 (3)0.000
C150.055 (4)0.043 (3)0.041 (4)0.0000.007 (3)0.000
C160.055 (4)0.055 (3)0.026 (3)0.0000.004 (3)0.000
C170.040 (4)0.052 (4)0.024 (3)0.0000.007 (3)0.000
C180.073 (8)0.098 (5)0.064 (5)0.0000.012 (4)0.000
Geometric parameters (Å, º) top
Co1—O21.874 (5)C10—H100.9300
Co1—O2i1.874 (5)C11—C121.539 (9)
Co1—O31.886 (5)C12—H12A0.9600
Co1—O3i1.886 (5)C12—H12B0.9600
Co1—N61.949 (10)C12—H12C0.9600
Co1—N71.968 (8)C13—C141.388 (11)
O2—C91.271 (8)C13—H130.9300
O3—C111.248 (9)C14—C151.394 (9)
O4—N61.160 (12)C14—H140.9300
O5—N61.156 (11)C15—C161.387 (9)
N7—C131.343 (10)C15—C181.464 (14)
N7—C171.385 (10)C16—C171.383 (11)
C8—C91.475 (10)C16—H160.9300
C8—H8A0.9600C17—H170.9300
C8—H8B0.9600C18—H18A0.9600
C8—H8C0.9600C18—H18B0.9600
C9—C101.387 (11)C18—H18C0.9600
C10—C111.392 (11)
O2—Co1—O2i84.4 (3)C9—C10—H10118.0
O2—Co1—O395.28 (9)C11—C10—H10118.0
O2i—Co1—O3179.6 (3)O3—C11—C10125.9 (7)
O2—Co1—O3i179.6 (3)O3—C11—C12114.0 (7)
O2i—Co1—O3i95.29 (9)C10—C11—C12120.1 (8)
O3—Co1—O3i85.0 (3)C11—C12—H12A109.5
O2—Co1—N691.9 (3)C11—C12—H12B109.5
O2i—Co1—N691.9 (3)H12A—C12—H12B109.5
O3—Co1—N688.3 (2)C11—C12—H12C109.5
O3i—Co1—N688.3 (2)H12A—C12—H12C109.5
O2—Co1—N788.7 (2)H12B—C12—H12C109.5
O2i—Co1—N788.7 (2)N7—C13—C14123.7 (7)
O3—Co1—N791.1 (2)N7—C13—H13118.1
O3i—Co1—N791.1 (2)C14—C13—H13118.1
N6—Co1—N7179.1 (5)C13—C14—C15120.4 (6)
C9—O2—Co1125.1 (5)C13—C14—H14119.8
C11—O3—Co1124.4 (5)C15—C14—H14119.8
O5—N6—O4118.7 (11)C16—C15—C14116.5 (6)
O5—N6—Co1121.2 (9)C16—C15—C18123.1 (8)
O4—N6—Co1120.1 (8)C14—C15—C18120.5 (8)
C13—N7—C17115.9 (8)C17—C16—C15120.9 (6)
C13—N7—Co1123.7 (7)C17—C16—H16119.5
C17—N7—Co1120.4 (6)C15—C16—H16119.5
C9—C8—H8A109.5C16—C17—N7122.5 (7)
C9—C8—H8B109.5C16—C17—H17118.7
H8A—C8—H8B109.5N7—C17—H17118.7
C9—C8—H8C109.5C15—C18—H18A109.5
H8A—C8—H8C109.5C15—C18—H18B109.5
H8B—C8—H8C109.5H18A—C18—H18B109.5
O2—C9—C10124.7 (7)C15—C18—H18C109.5
O2—C9—C8115.1 (7)H18A—C18—H18C109.5
C10—C9—C8120.2 (7)H18B—C18—H18C109.5
C9—C10—C11123.9 (3)
O2i—Co1—O2—C9176.7 (5)Co1—O3—C11—C12172.0 (5)
O3—Co1—O2—C93.1 (7)C9—C10—C11—O35.3 (18)
N6—Co1—O2—C991.5 (6)C9—C10—C11—C12175.5 (9)
N7—Co1—O2—C987.9 (6)C17—N7—C13—C140.000 (1)
O2—Co1—O3—C114.5 (7)Co1—N7—C13—C14180.000 (1)
O3i—Co1—O3—C11175.7 (5)N7—C13—C14—C150.000 (1)
N6—Co1—O3—C1187.3 (6)C13—C14—C15—C160.000 (1)
N7—Co1—O3—C1193.3 (6)C13—C14—C15—C18180.000 (1)
Co1—O2—C9—C106.9 (12)C14—C15—C16—C170.000 (1)
Co1—O2—C9—C8170.3 (5)C18—C15—C16—C17180.000 (1)
O2—C9—C10—C113.4 (18)C15—C16—C17—N70.000 (1)
C8—C9—C10—C11173.6 (8)C13—N7—C17—C160.000 (1)
Co1—O3—C11—C108.8 (12)Co1—N7—C17—C16180.000 (1)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O4ii0.932.393.104 (10)133
Symmetry code: (ii) x+1, y, z.
trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) top
Crystal data top
[Co(C5H7O2)2(NO2)(C5H5NO)]·H2ODx = 1.493 Mg m3
Mr = 416.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9558 reflections
a = 12.3811 (4) Åθ = 2.4–27.9°
b = 14.0483 (5) ŵ = 0.97 mm1
c = 10.6443 (3) ÅT = 301 K
V = 1851.40 (10) Å3Needle, dark red
Z = 40.35 × 0.11 × 0.08 mm
F(000) = 864
Data collection top
Bruker D8 VENTURE
diffractometer
1887 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 28.0°, θmin = 2.5°
Tmin = 0.780, Tmax = 0.938h = 1615
19560 measured reflectionsk = 1817
2292 independent reflectionsl = 1414
Refinement top
Refinement on F216 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0204P)2 + 2.0145P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2292 reflectionsΔρmax = 0.46 e Å3
165 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.35185 (3)0.75000.39108 (4)0.03386 (13)
O20.44528 (12)0.66083 (11)0.31791 (14)0.0410 (3)
O30.25897 (12)0.66025 (12)0.46516 (14)0.0439 (4)
O40.2376 (4)0.6750 (2)0.1940 (3)0.076 (3)0.672 (16)
O5A0.1771 (13)0.7215 (16)0.2462 (12)0.078 (12)0.164 (8)
O5B0.3040 (13)0.7736 (15)0.1426 (10)0.076 (13)0.164 (8)
O60.4018 (2)0.75000.8767 (2)0.0756 (10)
H60.446 (3)0.75000.936 (4)0.113*
O70.5265 (3)0.7776 (6)1.0691 (3)0.088 (4)0.5
H7A0.502 (5)0.784 (6)1.141 (3)0.132*0.5
H7B0.5927 (18)0.785 (6)1.068 (6)0.132*0.5
N80.2659 (2)0.75000.2415 (3)0.0440 (6)
N90.44358 (19)0.75000.5455 (2)0.0359 (5)
C100.5278 (2)0.5157 (2)0.2729 (3)0.0669 (8)
H10A0.51460.51280.18410.100*
H10B0.52950.45230.30670.100*
H10C0.59600.54620.28800.100*
C110.43951 (19)0.57141 (17)0.3353 (2)0.0454 (5)
C120.3602 (2)0.52607 (18)0.4046 (3)0.0581 (7)
H120.36490.46030.41230.070*
C130.2749 (2)0.57064 (18)0.4630 (2)0.0493 (6)
C140.1918 (3)0.5134 (2)0.5334 (3)0.0771 (9)
H14A0.20890.51380.62140.116*
H14B0.19200.44910.50300.116*
H14C0.12170.54090.52080.116*
C150.3987 (2)0.75000.6592 (3)0.0416 (7)
H150.32370.75000.66470.050*
C160.4571 (3)0.75000.7686 (3)0.0440 (7)
C170.5695 (3)0.75000.7601 (3)0.0449 (7)
H170.61220.75000.83200.054*
C180.6153 (3)0.75000.6424 (3)0.0449 (7)
H180.69010.75000.63430.054*
C190.5519 (2)0.75000.5370 (3)0.0404 (7)
H190.58430.75000.45810.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0317 (2)0.0381 (2)0.0318 (2)0.0000.00176 (15)0.000
O20.0397 (8)0.0418 (8)0.0415 (8)0.0026 (7)0.0031 (6)0.0036 (7)
O30.0383 (8)0.0528 (9)0.0407 (8)0.0074 (7)0.0028 (7)0.0044 (7)
O40.106 (6)0.0559 (19)0.066 (4)0.003 (2)0.039 (4)0.0118 (16)
O5A0.053 (7)0.15 (3)0.036 (5)0.045 (13)0.016 (5)0.009 (9)
O5B0.069 (8)0.12 (4)0.035 (5)0.040 (15)0.009 (5)0.023 (9)
O60.0423 (14)0.152 (3)0.0329 (13)0.0000.0008 (11)0.000
O70.0508 (19)0.175 (12)0.0375 (16)0.014 (3)0.0008 (14)0.015 (3)
N80.0380 (14)0.0506 (16)0.0434 (15)0.0000.0011 (12)0.000
N90.0311 (12)0.0414 (13)0.0352 (13)0.0000.0007 (10)0.000
C100.0668 (18)0.0595 (16)0.0743 (19)0.0186 (14)0.0060 (15)0.0180 (15)
C110.0503 (13)0.0424 (12)0.0435 (12)0.0061 (10)0.0125 (10)0.0060 (10)
C120.0725 (18)0.0372 (12)0.0645 (16)0.0016 (12)0.0020 (14)0.0066 (12)
C130.0523 (14)0.0518 (14)0.0437 (12)0.0124 (11)0.0083 (11)0.0127 (11)
C140.078 (2)0.079 (2)0.075 (2)0.0267 (17)0.0003 (17)0.0309 (17)
C150.0322 (14)0.0586 (19)0.0339 (15)0.0000.0036 (12)0.000
C160.0418 (17)0.060 (2)0.0299 (15)0.0000.0006 (13)0.000
C170.0380 (16)0.0575 (19)0.0391 (16)0.0000.0096 (13)0.000
C180.0296 (14)0.0544 (19)0.0507 (19)0.0000.0025 (13)0.000
C190.0332 (15)0.0466 (17)0.0414 (16)0.0000.0032 (13)0.000
Geometric parameters (Å, º) top
Co1—O2i1.8745 (15)C10—H10A0.9600
Co1—O21.8745 (15)C10—H10B0.9600
Co1—O31.8799 (15)C10—H10C0.9600
Co1—O3i1.8800 (15)C11—C121.384 (4)
Co1—N81.915 (3)C12—C131.376 (4)
Co1—N91.998 (2)C12—H120.9300
O2—C111.272 (3)C13—C141.505 (3)
O3—C131.274 (3)C14—H14A0.9600
O4—N81.220 (3)C14—H14B0.9600
O5A—N81.172 (13)C14—H14C0.9600
O5B—N81.200 (13)C15—C161.371 (4)
O6—C161.340 (4)C15—H150.9300
O6—H60.84 (2)C16—C171.394 (4)
O7—H7A0.83 (2)C17—C181.376 (5)
O7—H7B0.83 (2)C17—H170.9300
N8—O4i1.220 (3)C18—C191.370 (4)
N9—C151.332 (4)C18—H180.9300
N9—C191.344 (4)C19—H190.9300
C10—C111.500 (3)
O2i—Co1—O283.87 (9)H10A—C10—H10C109.5
O2i—Co1—O3179.59 (7)H10B—C10—H10C109.5
O2—Co1—O395.94 (7)O2—C11—C12124.9 (2)
O2i—Co1—O3i95.94 (7)O2—C11—C10114.2 (2)
O2—Co1—O3i179.59 (7)C12—C11—C10120.9 (2)
O3—Co1—O3i84.24 (10)C13—C12—C11125.2 (2)
O2i—Co1—N889.85 (8)C13—C12—H12117.4
O2—Co1—N889.85 (8)C11—C12—H12117.4
O3—Co1—N890.51 (8)O3—C13—C12125.2 (2)
O3i—Co1—N890.51 (8)O3—C13—C14114.4 (3)
O2i—Co1—N989.49 (7)C12—C13—C14120.4 (3)
O2—Co1—N989.49 (7)C13—C14—H14A109.5
O3—Co1—N990.14 (7)C13—C14—H14B109.5
O3i—Co1—N990.14 (7)H14A—C14—H14B109.5
N8—Co1—N9179.12 (11)C13—C14—H14C109.5
C11—O2—Co1124.40 (16)H14A—C14—H14C109.5
C13—O3—Co1124.08 (16)H14B—C14—H14C109.5
C16—O6—H6108 (4)N9—C15—C16123.4 (3)
H7A—O7—H7B111 (5)N9—C15—H15118.3
O5A—N8—O5B120.1 (9)C16—C15—H15118.3
O4—N8—O4i119.5 (4)O6—C16—C15117.4 (3)
O5A—N8—Co1119.1 (6)O6—C16—C17124.4 (3)
O5B—N8—Co1120.7 (7)C15—C16—C17118.2 (3)
O4—N8—Co1120.26 (19)C18—C17—C16118.1 (3)
O4i—N8—Co1120.26 (19)C18—C17—H17121.0
C15—N9—C19118.6 (3)C16—C17—H17121.0
C15—N9—Co1120.7 (2)C19—C18—C17120.6 (3)
C19—N9—Co1120.7 (2)C19—C18—H18119.7
C11—C10—H10A109.5C17—C18—H18119.7
C11—C10—H10B109.5N9—C19—C18121.1 (3)
H10A—C10—H10B109.5N9—C19—H19119.5
C11—C10—H10C109.5C18—C19—H19119.5
O2i—Co1—O2—C11173.79 (14)Co1—O3—C13—C14177.53 (16)
O3—Co1—O2—C115.84 (18)C11—C12—C13—O32.6 (4)
N8—Co1—O2—C1196.34 (18)C11—C12—C13—C14178.5 (2)
N9—Co1—O2—C1184.25 (18)C19—N9—C15—C160.000 (1)
O2—Co1—O3—C134.64 (19)Co1—N9—C15—C16180.000 (1)
O3i—Co1—O3—C13174.99 (15)N9—C15—C16—O6180.000 (1)
N8—Co1—O3—C1394.55 (19)N9—C15—C16—C170.000 (1)
N9—Co1—O3—C1384.86 (18)O6—C16—C17—C18180.000 (1)
Co1—O2—C11—C123.9 (3)C15—C16—C17—C180.000 (1)
Co1—O2—C11—C10176.26 (16)C16—C17—C18—C190.000 (1)
O2—C11—C12—C131.3 (4)C15—N9—C19—C180.000 (1)
C10—C11—C12—C13178.6 (2)Co1—N9—C19—C18180.000 (1)
Co1—O3—C13—C121.4 (3)C17—C18—C19—N90.000 (1)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O70.84 (2)1.77 (2)2.593 (4)166 (3)
O6—H6···O7i0.84 (2)1.77 (2)2.593 (4)166 (3)
O7—H7A···O2ii0.83 (2)2.15 (3)2.962 (4)165 (8)
O7—H7B···O3iii0.83 (2)2.23 (3)3.030 (5)164 (8)
C10—H10C···O4iv0.962.533.446 (5)161
C19—H19···O5Aiv0.932.493.413 (11)171
C19—H19···O5Av0.932.493.413 (11)171
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+3/2, z+1; (iii) x+1/2, y+3/2, z+3/2; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+3/2, z+1/2.
 

Footnotes

Present Address: Nuclear Power Division, Shin Nippon Air Technologies Co., Ltd, Nakahara 1-1-34, Isogo-ku, Yokohama 235-0036, Japan.

Acknowledgements

The authors thank Dr Takashi Nemoto, Kyoto University, for making the program CAVITY available to the public.

References

First citationBoldyreva, E. V. (2001). Russ. J. Coord. Chem. 27, 297–323.  Web of Science CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBoucher, L. J. & Bailar, J. C. Jr (1965). J. Inorg. Nucl. Chem. 27, 1093–1099.  CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnglert, U. & Strähle, J. (1987). Z. Naturforsch. Teil B, 42, 959–966.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeyns, A. M. & de Waal, D. (1989). Spectrochim. Acta A, 45, 905–909.  CrossRef Web of Science Google Scholar
First citationJohnson, D. A. & Martin, J. E. (1969). Inorg. Chem. 8, 2509–2510.  CrossRef Web of Science Google Scholar
First citationKistenmacher, T. J., Sorrell, T., Rossi, M., Chiang, C. C. & Marzilli, L. G. (1978). Inorg. Chem. 17, 479–481.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiyazaki, H., Tsuchimoto, M. & Ohba, S. (1998). Acta Cryst. C54, 46–47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOgita, M., Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2002). Eur. J. Inorg. Chem. pp. 886–894.  CrossRef Google Scholar
First citationOhashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805–5812.  CSD CrossRef CAS Web of Science Google Scholar
First citationOhba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526–1531.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTayyari, S. F., Habibi, M. H., Shojaee, E., Jamialahmadi, M., Sammelson, R. E., Wada, K. & Suzuki, T. (2015). Spectrochim. Acta A,139, 94–101.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds