research communications
Investigation of nitro–nitrito trans-bis(acetylacetonato-O,O′)(pyridine/4-methylpyridine/3-hydroxypridine)nitrocobalt(III)
crystal structures ofaResearch and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1 , Kohoku-ku, Yokohama 223-8521, Japan, bDepartment of Chemistry, Chiba Institute of Technology, Shibazono 2-1-1, Narashino, Chiba 275-0023, Japan, and cDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: ohba@a3.keio.jp
The reaction cavities of the nitro groups in the title compounds, trans-bis(acetylacetonato-κ2O,O′)(nitro)(pyridine-κN)cobalt(III), [Co(C5H7O2)2(NO2)(C5H5N)], (I), trans-bis(acetylacetonato-κ2O,O′)(4-methylpyridine-κN)(nitro)cobalt(III), [Co(C5H7O2)2(NO2)(C6H7N)], (II), and trans-bis(acetylacetonato-κ2O,O′)(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate, [Co(C5H7O2)2(NO2)(C5H5NO)]·H2O, (III), have been investigated to reveal that bifurcated intermolecular C(py)—H⋯O,O contacts in (III) are unfeasible for the nitro–nitrito photochemical linkage isomerization process. In each structure, the pyridine ring and the Co atom lie on a crystallographic mirror plane; in (I) and (II) the nitro group lies in the same plane, whereas in (III), which crystallizes as a monohydrate, the nitro group is disordered over three orientations in a 0.672 (16):0.164 (8):0.164 (8) ratio; the water molecule of crystallization is statistically disordered over two sites adjacent to the mirror plane. In the crystals of (I) and (II), the molecules are linked into [100] chains by C—H⋯O hydrogen bonds, whereas the extended structure of (III) features (010) layers linked by O—H⋯O and C—H⋯O hydrogen bonds. Compounds (I) and (II) were refined as inversion twins.
1. Chemical context
Solid-state reactions are restricted by the cage effect, which is helpful for stereo-selectivity, but it sometimes interrupts the reaction. The photochemical nitro–nitrito linkage isomerization in crystals was investigated for the salts of [Co(NH3)5(NO2)]+, and indicated that insufficient free space around the nitro ligand prevents the isomerization from occurring (Boldyreva, 2001). For the salts of trans-[Co(en)2(NO2)(NCS)]+, a certain geometry of the intermolecular N—H⋯O hydrogen bonds restricts the (Ohba et al., 2018). In the present study, we investigated another type of nitrocobalt complex, trans-[Co(acac)2(NO2)(X-py)], where acac stands for acetylacetonate ion, and X-py = pyridine (I) or pyridine derivative; 4-Me-py (II), 3-OH-py (III), and 3-Me-py (IV). The photoactivity of (I) in the solid state had been reported based on the infrared spectra while irradiated with a high-pressure mercury arc, a remarkable increase in absorption in the region 1000–1050 cm−1 being detected (Johnson & Martin, 1969). This is due to the symmetric N—O stretching mode of the nitrito form, and it corresponds to 1055 cm−1 for [Co(NH3)5ONO]Cl2 (Heyns & de Waal, 1989).
When the IR spectra were measured after irradiation for 30 min to the KBr disks containing each complex by a 150 W Xe lamp without filtering, those of py (I) and 4-Me-py (II) showed an apparent increase of an absorption peak at 1051 and 1025 cm−1, respectively (see the figure in the supporting information), and the spectra reverted to those before irradiation on standing at room temperature for ca 16 h. The changing color of the KBr disks by photoirradiation was ambiguous, which might be due to the dark-red color of the crystals. On the other hand, the 3-OH-py (III) and 3-Me-py (IV) complexes were photo-stable and did not show the change in IR spectra by irradiation. In the present study, the crystal structures of (I)–(III) have been determined to reveal the differences in the circumstances of the nitro ligand. The structure of (IV) was reported previously (Miyazaki et al., 1998).
2. Structural commentary
The molecular structures of (I)–(III) are shown in Figs. 1–3, respectively. In these crystals, the complex has crystallographic mirror symmetry, and the py/4-Me-py/3-OH-py ligands and the cobalt atom lie on a mirror plane. The nitro group also lies on the mirror plane in (I) and (II). However, in (III) the nitro group shows positional disorder, and the major component [O4—N8—O4i, 67.2 (16)%] is oriented perpendicular to the mirror plane. The minor component [O5A—N8—O5B, 16.4 (8)%] and the water molecule (O7) are disordered near the mirror. The Co—N(nitro) bond distances are 1.923 (9) Å in (I), 1.949 (10) Å in (II) and 1.915 (3) Å in (III). In each case, a distorted trans-CoN2O4 octahedral arises.
3. Supramolecular features
The crystal structures of (I)–(III) are shown in Figs. 4–6, respectively. In (I) and (II), the molecules are connected by C—H⋯O hydrogen bonds (Tables 1–3), forming chains propagating along the a-axis direction. In (III), the complex molecules are connected via O—H⋯O hydrogen bonds involving the water molecules, forming layers lying parallel to (010).
Slices of the reaction cavities around the nitro group near its plane in (I)–(IV) are compared in Fig. 7, where the radii of the neighboring atoms are assumed to be 1.0 Å greater than the corresponding van der Waals radii (Bondi, 1964) except for Co, its radius being set to 1.90 Å. The intermolecular contacts that define the shape of cavity of NO2− in its place in (I)–(IV) are shown in Figs. 8–11, respectively, where the C—H⋯O hydrogen bonds are shown as blue dashed lines (the O⋯H distances being in the range from 2.39 to 2.53 Å), and other O⋯H contacts of less than 2.8 Å are shown as green dashed lines. The cavities in the photo-stable crystals of (III) and (IV) are thinner than those in the photo-active ones (I) and (II), where it seems that there are no close contacts that prevents the linkage isomerization (Figs. 8 and 9). The narrow cavities in (III) and (IV) are due to the bifurcated intermolecular C—H(py)⋯O,O(nitro) contacts as seen in Figs. 10 and 11. On the extension of the Co–N(nitro) bond axis, there is a neighboring pyridine ring perpendicular to the nitro plane, suggesting that this ring will block the rotation of NO2− to become a nitrito form.
4. Database survey
There are two entries of trans-[Co(acac)2(NO2)(X-py)] in the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016), the pyridine derivative being 3-methylpyridine (Miyazaki et al., 1998), and 4,4,5,5-tetramethyl-2-(3-pyridyl)imidazolin-1-oxyl radical (Ogita et al., 2002). Entries for the other related compounds include trans-[Co(acac)2(NO2)(2-aminopyrimidine)] (Kistenmacher et al., 1978), trans-[Co(acac)2(NO2)(H2O)] (Englert & Strähle, 1987), and trans-[Co(acac)2(4-methylpyridine)2]PF6 (Tayyari et al., 2015), for which theoretical assignments of the IR bands were presented.
5. Synthesis and crystallization
The title compounds were prepared according to the method of Boucher & Bailar (1965) from Na[Co(acac)2(NO2)2] and the appropriate pyridine derivative. Dark-red plates of (I), dark-red prisms of (II) and dark-red needles of (III) were grown from acetonitrile, nitromethane and methanol solutions, respectively.
6. Refinement
Crystal data, data collection and structure . The H atoms bound to C were positioned geometrically, the methyl H atoms being introduced by an HFIX 137 command. They were refined as riding, with C—H = 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). (I): two reflections showing poor agreement with Iobs much smaller than Icalc were omitted from the final (II): one reflection showing poor agreement was omitted. The DELU instruction was applied to C15 and C18 to avoid the 10 s.u. of the Hirshfeld test difference. (III): six reflections showing poor agreement were omitted. The minor occupancy nitro atoms O5A and O5B were refined anisotropically with an ISOR instruction. The H atoms bound to O were positioned from difference density maps, and their positional parameters were refined with the geometry restrained and with Uiso(H) = 1.5Ueq(O). Compounds (I) and (II) were refined as inversion twins.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989018014731/hb7778sup1.cif
contains datablocks I, II, III, general. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014731/hb7778Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018014731/hb7778IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018014731/hb7778IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018014731/hb7778Isup5.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018014731/hb7778IIsup6.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018014731/hb7778IIIsup8.cdx
The IR spectra of py (I) and 4-Me-py (II) compounds before and after photoirradiation for 30 min by a 150 W Xe lamp to the KBr disks. DOI: https://doi.org/10.1107/S2056989018014731/hb7778sup9.tif
For all structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and CAVITY (Ohashi et al., 1981); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).[Co(C5H7O2)2(NO2)(C5H5N)] | F(000) = 396 |
Mr = 382.25 | Dx = 1.499 Mg m−3 |
Monoclinic, Cm | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1971 (14) Å | Cell parameters from 2813 reflections |
b = 13.942 (2) Å | θ = 2.8–27.4° |
c = 7.4148 (11) Å | µ = 1.05 mm−1 |
β = 91.588 (6)° | T = 301 K |
V = 847.1 (2) Å3 | Plate, dark red |
Z = 2 | 0.31 × 0.27 × 0.13 mm |
Bruker D8 VENTURE diffractometer | 1449 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.024 |
Absorption correction: integration (SADABS; Bruker, 2016) | θmax = 27.9°, θmin = 2.8° |
Tmin = 0.731, Tmax = 0.886 | h = −8→10 |
3958 measured reflections | k = −17→18 |
1529 independent reflections | l = −8→9 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0237P)2 + 1.1288P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.040 | (Δ/σ)max = 0.013 |
wR(F2) = 0.083 | Δρmax = 0.32 e Å−3 |
S = 1.12 | Δρmin = −0.34 e Å−3 |
1529 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
128 parameters | Extinction coefficient: 0.0076 (16) |
2 restraints | Absolute structure: Refined as an inversion twin |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.41 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.42186 (18) | 0.5000 | 0.42933 (17) | 0.0438 (3) | |
O2 | 0.3213 (6) | 0.5899 (5) | 0.5783 (6) | 0.0519 (15) | |
O3 | 0.5237 (6) | 0.5919 (5) | 0.2843 (6) | 0.0510 (15) | |
O4 | 0.1030 (10) | 0.5000 | 0.3107 (12) | 0.109 (4) | |
O5 | 0.2595 (11) | 0.5000 | 0.1013 (12) | 0.124 (4) | |
N6 | 0.2370 (11) | 0.5000 | 0.2638 (11) | 0.052 (2) | |
N7 | 0.6127 (10) | 0.5000 | 0.6056 (11) | 0.046 (2) | |
C8 | 0.2472 (10) | 0.7342 (6) | 0.7050 (8) | 0.068 (2) | |
H8A | 0.1347 | 0.7153 | 0.7085 | 0.103* | |
H8B | 0.2537 | 0.8018 | 0.6813 | 0.103* | |
H8C | 0.3003 | 0.7203 | 0.8191 | 0.103* | |
C9 | 0.3290 (9) | 0.6804 (7) | 0.5596 (9) | 0.050 (2) | |
C10 | 0.4051 (12) | 0.7261 (3) | 0.4179 (11) | 0.0578 (14) | |
H10 | 0.3946 | 0.7924 | 0.4090 | 0.069* | |
C11 | 0.4946 (9) | 0.6800 (7) | 0.2902 (9) | 0.0476 (19) | |
C12 | 0.5655 (11) | 0.7380 (7) | 0.1361 (9) | 0.072 (2) | |
H12A | 0.6120 | 0.6952 | 0.0502 | 0.107* | |
H12B | 0.6485 | 0.7803 | 0.1834 | 0.107* | |
H12C | 0.4803 | 0.7750 | 0.0780 | 0.107* | |
C13 | 0.7701 (12) | 0.5000 | 0.5474 (12) | 0.0441 (18) | |
H13 | 0.7884 | 0.5000 | 0.4242 | 0.053* | |
C14 | 0.8993 (9) | 0.5000 | 0.6648 (10) | 0.0560 (17) | |
H14 | 1.0050 | 0.5000 | 0.6224 | 0.067* | |
C15 | 0.8733 (10) | 0.5000 | 0.8481 (10) | 0.0607 (18) | |
H15 | 0.9607 | 0.5000 | 0.9308 | 0.073* | |
C16 | 0.7142 (10) | 0.5000 | 0.9055 (9) | 0.0577 (18) | |
H16 | 0.6931 | 0.5000 | 1.0281 | 0.069* | |
C17 | 0.5893 (11) | 0.5000 | 0.7818 (11) | 0.049 (2) | |
H17 | 0.4829 | 0.5000 | 0.8222 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0433 (4) | 0.0486 (4) | 0.0404 (4) | 0.000 | 0.0172 (3) | 0.000 |
O2 | 0.054 (4) | 0.058 (4) | 0.044 (3) | 0.006 (3) | 0.017 (3) | −0.001 (3) |
O3 | 0.056 (4) | 0.052 (4) | 0.046 (3) | −0.004 (3) | 0.021 (3) | 0.008 (3) |
O4 | 0.040 (4) | 0.212 (10) | 0.076 (5) | 0.000 | 0.012 (4) | 0.000 |
O5 | 0.075 (6) | 0.242 (12) | 0.056 (5) | 0.000 | −0.006 (4) | 0.000 |
N6 | 0.055 (6) | 0.066 (6) | 0.035 (4) | 0.000 | 0.017 (4) | 0.000 |
N7 | 0.043 (5) | 0.051 (5) | 0.045 (4) | 0.000 | 0.010 (3) | 0.000 |
C8 | 0.083 (5) | 0.072 (5) | 0.050 (4) | 0.021 (4) | −0.008 (3) | −0.020 (4) |
C9 | 0.040 (4) | 0.062 (5) | 0.047 (4) | 0.009 (3) | −0.006 (3) | −0.004 (3) |
C10 | 0.071 (4) | 0.048 (2) | 0.054 (3) | −0.002 (4) | −0.002 (3) | 0.005 (4) |
C11 | 0.051 (4) | 0.051 (4) | 0.040 (3) | −0.013 (3) | −0.005 (3) | 0.013 (3) |
C12 | 0.070 (5) | 0.083 (6) | 0.062 (4) | −0.020 (4) | 0.007 (4) | 0.019 (4) |
C13 | 0.048 (5) | 0.044 (4) | 0.041 (4) | 0.000 | 0.021 (3) | 0.000 |
C14 | 0.044 (4) | 0.064 (4) | 0.061 (4) | 0.000 | 0.012 (3) | 0.000 |
C15 | 0.065 (5) | 0.061 (4) | 0.055 (4) | 0.000 | −0.004 (4) | 0.000 |
C16 | 0.070 (5) | 0.068 (5) | 0.035 (3) | 0.000 | 0.009 (3) | 0.000 |
C17 | 0.055 (5) | 0.056 (4) | 0.039 (4) | 0.000 | 0.029 (4) | 0.000 |
Co1—O2i | 1.877 (5) | C9—C10 | 1.392 (11) |
Co1—O2 | 1.877 (5) | C10—C11 | 1.374 (12) |
Co1—O3 | 1.883 (6) | C10—H10 | 0.9300 |
Co1—O3i | 1.883 (6) | C11—C12 | 1.527 (9) |
Co1—N6 | 1.923 (9) | C12—H12A | 0.9600 |
Co1—N7 | 2.010 (8) | C12—H12B | 0.9600 |
O2—C9 | 1.270 (10) | C12—H12C | 0.9600 |
O3—C11 | 1.252 (10) | C13—C14 | 1.352 (12) |
O4—N6 | 1.162 (11) | C13—H13 | 0.9300 |
O5—N6 | 1.224 (12) | C14—C15 | 1.381 (10) |
N7—C17 | 1.325 (11) | C14—H14 | 0.9300 |
N7—C13 | 1.372 (12) | C15—C16 | 1.383 (10) |
C8—C9 | 1.489 (10) | C15—H15 | 0.9300 |
C8—H8A | 0.9600 | C16—C17 | 1.356 (12) |
C8—H8B | 0.9600 | C16—H16 | 0.9300 |
C8—H8C | 0.9600 | C17—H17 | 0.9300 |
O2i—Co1—O2 | 83.8 (4) | O2—C9—C8 | 113.4 (8) |
O2i—Co1—O3 | 178.7 (3) | C10—C9—C8 | 122.4 (9) |
O2—Co1—O3 | 95.18 (10) | C11—C10—C9 | 124.4 (4) |
O2i—Co1—O3i | 95.18 (10) | C11—C10—H10 | 117.8 |
O2—Co1—O3i | 178.7 (3) | C9—C10—H10 | 117.8 |
O3—Co1—O3i | 85.8 (4) | O3—C11—C10 | 126.1 (7) |
O2i—Co1—N6 | 91.4 (3) | O3—C11—C12 | 114.6 (8) |
O2—Co1—N6 | 91.4 (3) | C10—C11—C12 | 119.3 (8) |
O3—Co1—N6 | 89.4 (2) | C11—C12—H12A | 109.5 |
O3i—Co1—N6 | 89.4 (2) | C11—C12—H12B | 109.5 |
O2i—Co1—N7 | 87.9 (2) | H12A—C12—H12B | 109.5 |
O2—Co1—N7 | 87.9 (2) | C11—C12—H12C | 109.5 |
O3—Co1—N7 | 91.3 (3) | H12A—C12—H12C | 109.5 |
O3i—Co1—N7 | 91.3 (3) | H12B—C12—H12C | 109.5 |
N6—Co1—N7 | 179.1 (5) | C14—C13—N7 | 121.6 (8) |
C9—O2—Co1 | 125.1 (6) | C14—C13—H13 | 119.2 |
C11—O3—Co1 | 124.1 (6) | N7—C13—H13 | 119.2 |
O4—N6—O5 | 117.7 (10) | C13—C14—C15 | 119.6 (7) |
O4—N6—Co1 | 122.9 (8) | C13—C14—H14 | 120.2 |
O5—N6—Co1 | 119.4 (8) | C15—C14—H14 | 120.2 |
C17—N7—C13 | 118.2 (8) | C16—C15—C14 | 118.4 (7) |
C17—N7—Co1 | 120.7 (7) | C16—C15—H15 | 120.8 |
C13—N7—Co1 | 121.1 (7) | C14—C15—H15 | 120.8 |
C9—C8—H8A | 109.5 | C17—C16—C15 | 119.5 (6) |
C9—C8—H8B | 109.5 | C17—C16—H16 | 120.2 |
H8A—C8—H8B | 109.5 | C15—C16—H16 | 120.2 |
C9—C8—H8C | 109.5 | N7—C17—C16 | 122.7 (8) |
H8A—C8—H8C | 109.5 | N7—C17—H17 | 118.7 |
H8B—C8—H8C | 109.5 | C16—C17—H17 | 118.7 |
O2—C9—C10 | 124.2 (8) | ||
O2i—Co1—O2—C9 | −178.3 (4) | Co1—O3—C11—C10 | 10.4 (11) |
O3—Co1—O2—C9 | 2.5 (6) | Co1—O3—C11—C12 | −168.5 (5) |
N6—Co1—O2—C9 | −87.0 (6) | C9—C10—C11—O3 | −1.6 (15) |
N7—Co1—O2—C9 | 93.6 (6) | C9—C10—C11—C12 | 177.2 (7) |
O2—Co1—O3—C11 | −9.7 (6) | C17—N7—C13—C14 | 0.000 (2) |
O3i—Co1—O3—C11 | 171.1 (4) | Co1—N7—C13—C14 | 180.000 (1) |
N6—Co1—O3—C11 | 81.7 (6) | N7—C13—C14—C15 | 0.000 (2) |
N7—Co1—O3—C11 | −97.7 (6) | C13—C14—C15—C16 | 0.000 (2) |
Co1—O2—C9—C10 | 4.4 (10) | C14—C15—C16—C17 | 0.000 (2) |
Co1—O2—C9—C8 | −175.9 (4) | C13—N7—C17—C16 | 0.000 (2) |
O2—C9—C10—C11 | −6.6 (14) | Co1—N7—C17—C16 | 180.000 (2) |
C8—C9—C10—C11 | 173.8 (7) | C15—C16—C17—N7 | 0.000 (3) |
Symmetry code: (i) x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O4ii | 0.93 | 2.47 | 3.150 (11) | 130 |
Symmetry code: (ii) x+1, y, z. |
[Co(C5H7O2)2(NO2)(C6H7N)] | F(000) = 412 |
Mr = 396.28 | Dx = 1.454 Mg m−3 |
Monoclinic, Cm | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2459 (9) Å | Cell parameters from 4544 reflections |
b = 13.9603 (14) Å | θ = 2.5–27.8° |
c = 7.9222 (8) Å | µ = 0.98 mm−1 |
β = 96.997 (4)° | T = 301 K |
V = 905.17 (16) Å3 | Prism, dark red |
Z = 2 | 0.35 × 0.15 × 0.15 mm |
Bruker D8 VENTURE diffractometer | 1754 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.021 |
Absorption correction: integration (SADABS; Bruker, 2016) | θmax = 28.0°, θmin = 2.9° |
Tmin = 0.749, Tmax = 0.895 | h = −10→8 |
4495 measured reflections | k = −17→18 |
1810 independent reflections | l = −9→10 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0113P)2 + 1.2247P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.074 | (Δ/σ)max = 0.001 |
S = 1.13 | Δρmax = 0.35 e Å−3 |
1810 reflections | Δρmin = −0.37 e Å−3 |
134 parameters | Absolute structure: Refined as an inversion twin |
3 restraints | Absolute structure parameter: 0.37 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.42176 (19) | 0.5000 | 0.52127 (18) | 0.03463 (18) | |
O2 | 0.3036 (5) | 0.5901 (4) | 0.3806 (5) | 0.0400 (12) | |
O3 | 0.5407 (5) | 0.5913 (4) | 0.6616 (5) | 0.0439 (13) | |
O4 | 0.1207 (11) | 0.5000 | 0.6291 (11) | 0.125 (4) | |
O5 | 0.2965 (10) | 0.5000 | 0.8253 (10) | 0.125 (4) | |
N6 | 0.2587 (12) | 0.5000 | 0.6799 (11) | 0.048 (2) | |
N7 | 0.5891 (9) | 0.5000 | 0.3642 (10) | 0.0330 (18) | |
C8 | 0.2352 (11) | 0.7359 (5) | 0.2501 (9) | 0.065 (3) | |
H8A | 0.3087 | 0.7499 | 0.1683 | 0.097* | |
H8B | 0.1957 | 0.7946 | 0.2930 | 0.097* | |
H8C | 0.1447 | 0.6991 | 0.1968 | 0.097* | |
C9 | 0.3220 (9) | 0.6804 (6) | 0.3917 (9) | 0.043 (2) | |
C10 | 0.4208 (15) | 0.7268 (2) | 0.5206 (12) | 0.0577 (10) | |
H10 | 0.4215 | 0.7934 | 0.5206 | 0.069* | |
C11 | 0.5191 (9) | 0.6796 (6) | 0.6500 (9) | 0.046 (2) | |
C12 | 0.6150 (13) | 0.7373 (6) | 0.7949 (8) | 0.072 (3) | |
H12A | 0.5936 | 0.7117 | 0.9024 | 0.108* | |
H12B | 0.5813 | 0.8032 | 0.7868 | 0.108* | |
H12C | 0.7298 | 0.7331 | 0.7857 | 0.108* | |
C13 | 0.7505 (10) | 0.5000 | 0.4153 (10) | 0.0363 (16) | |
H13 | 0.7851 | 0.5000 | 0.5315 | 0.044* | |
C14 | 0.8686 (8) | 0.5000 | 0.3045 (8) | 0.0468 (14) | |
H14 | 0.9787 | 0.5000 | 0.3475 | 0.056* | |
C15 | 0.8232 (8) | 0.5000 | 0.1291 (8) | 0.0463 (14) | |
C16 | 0.6569 (8) | 0.5000 | 0.0745 (7) | 0.0450 (14) | |
H16 | 0.6209 | 0.5000 | −0.0414 | 0.054* | |
C17 | 0.5439 (10) | 0.5000 | 0.1900 (10) | 0.0393 (17) | |
H17 | 0.4333 | 0.5000 | 0.1491 | 0.047* | |
C18 | 0.9477 (16) | 0.5000 | 0.0121 (19) | 0.078 (3) | |
H18A | 0.9079 | 0.5349 | −0.0889 | 0.117* | 0.5 |
H18B | 0.9714 | 0.4352 | −0.0174 | 0.117* | 0.5 |
H18C | 1.0454 | 0.5299 | 0.0660 | 0.117* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0384 (4) | 0.0391 (3) | 0.0248 (3) | 0.000 | −0.0026 (2) | 0.000 |
O2 | 0.045 (3) | 0.041 (3) | 0.033 (3) | 0.005 (2) | −0.001 (2) | 0.001 (3) |
O3 | 0.047 (3) | 0.049 (3) | 0.032 (3) | −0.002 (3) | −0.010 (2) | −0.007 (3) |
O4 | 0.059 (5) | 0.261 (12) | 0.056 (5) | 0.000 | 0.015 (4) | 0.000 |
O5 | 0.066 (6) | 0.271 (12) | 0.039 (4) | 0.000 | 0.009 (4) | 0.000 |
N6 | 0.056 (6) | 0.057 (6) | 0.029 (5) | 0.000 | −0.002 (4) | 0.000 |
N7 | 0.021 (4) | 0.044 (4) | 0.033 (5) | 0.000 | −0.001 (3) | 0.000 |
C8 | 0.072 (6) | 0.053 (5) | 0.065 (5) | 0.009 (4) | −0.015 (5) | 0.013 (5) |
C9 | 0.052 (5) | 0.044 (5) | 0.034 (4) | 0.009 (3) | 0.005 (4) | 0.001 (3) |
C10 | 0.080 (3) | 0.0389 (17) | 0.051 (2) | −0.007 (6) | −0.0049 (18) | 0.005 (6) |
C11 | 0.053 (5) | 0.049 (5) | 0.037 (4) | −0.008 (3) | 0.008 (4) | −0.013 (3) |
C12 | 0.104 (7) | 0.068 (5) | 0.042 (5) | −0.021 (6) | 0.002 (5) | −0.023 (5) |
C13 | 0.026 (3) | 0.047 (3) | 0.031 (4) | 0.000 | −0.014 (3) | 0.000 |
C14 | 0.043 (4) | 0.050 (3) | 0.047 (4) | 0.000 | 0.002 (3) | 0.000 |
C15 | 0.055 (4) | 0.043 (3) | 0.041 (4) | 0.000 | 0.007 (3) | 0.000 |
C16 | 0.055 (4) | 0.055 (3) | 0.026 (3) | 0.000 | 0.004 (3) | 0.000 |
C17 | 0.040 (4) | 0.052 (4) | 0.024 (3) | 0.000 | −0.007 (3) | 0.000 |
C18 | 0.073 (8) | 0.098 (5) | 0.064 (5) | 0.000 | 0.012 (4) | 0.000 |
Co1—O2 | 1.874 (5) | C10—H10 | 0.9300 |
Co1—O2i | 1.874 (5) | C11—C12 | 1.539 (9) |
Co1—O3 | 1.886 (5) | C12—H12A | 0.9600 |
Co1—O3i | 1.886 (5) | C12—H12B | 0.9600 |
Co1—N6 | 1.949 (10) | C12—H12C | 0.9600 |
Co1—N7 | 1.968 (8) | C13—C14 | 1.388 (11) |
O2—C9 | 1.271 (8) | C13—H13 | 0.9300 |
O3—C11 | 1.248 (9) | C14—C15 | 1.394 (9) |
O4—N6 | 1.160 (12) | C14—H14 | 0.9300 |
O5—N6 | 1.156 (11) | C15—C16 | 1.387 (9) |
N7—C13 | 1.343 (10) | C15—C18 | 1.464 (14) |
N7—C17 | 1.385 (10) | C16—C17 | 1.383 (11) |
C8—C9 | 1.475 (10) | C16—H16 | 0.9300 |
C8—H8A | 0.9600 | C17—H17 | 0.9300 |
C8—H8B | 0.9600 | C18—H18A | 0.9600 |
C8—H8C | 0.9600 | C18—H18B | 0.9600 |
C9—C10 | 1.387 (11) | C18—H18C | 0.9600 |
C10—C11 | 1.392 (11) | ||
O2—Co1—O2i | 84.4 (3) | C9—C10—H10 | 118.0 |
O2—Co1—O3 | 95.28 (9) | C11—C10—H10 | 118.0 |
O2i—Co1—O3 | 179.6 (3) | O3—C11—C10 | 125.9 (7) |
O2—Co1—O3i | 179.6 (3) | O3—C11—C12 | 114.0 (7) |
O2i—Co1—O3i | 95.29 (9) | C10—C11—C12 | 120.1 (8) |
O3—Co1—O3i | 85.0 (3) | C11—C12—H12A | 109.5 |
O2—Co1—N6 | 91.9 (3) | C11—C12—H12B | 109.5 |
O2i—Co1—N6 | 91.9 (3) | H12A—C12—H12B | 109.5 |
O3—Co1—N6 | 88.3 (2) | C11—C12—H12C | 109.5 |
O3i—Co1—N6 | 88.3 (2) | H12A—C12—H12C | 109.5 |
O2—Co1—N7 | 88.7 (2) | H12B—C12—H12C | 109.5 |
O2i—Co1—N7 | 88.7 (2) | N7—C13—C14 | 123.7 (7) |
O3—Co1—N7 | 91.1 (2) | N7—C13—H13 | 118.1 |
O3i—Co1—N7 | 91.1 (2) | C14—C13—H13 | 118.1 |
N6—Co1—N7 | 179.1 (5) | C13—C14—C15 | 120.4 (6) |
C9—O2—Co1 | 125.1 (5) | C13—C14—H14 | 119.8 |
C11—O3—Co1 | 124.4 (5) | C15—C14—H14 | 119.8 |
O5—N6—O4 | 118.7 (11) | C16—C15—C14 | 116.5 (6) |
O5—N6—Co1 | 121.2 (9) | C16—C15—C18 | 123.1 (8) |
O4—N6—Co1 | 120.1 (8) | C14—C15—C18 | 120.5 (8) |
C13—N7—C17 | 115.9 (8) | C17—C16—C15 | 120.9 (6) |
C13—N7—Co1 | 123.7 (7) | C17—C16—H16 | 119.5 |
C17—N7—Co1 | 120.4 (6) | C15—C16—H16 | 119.5 |
C9—C8—H8A | 109.5 | C16—C17—N7 | 122.5 (7) |
C9—C8—H8B | 109.5 | C16—C17—H17 | 118.7 |
H8A—C8—H8B | 109.5 | N7—C17—H17 | 118.7 |
C9—C8—H8C | 109.5 | C15—C18—H18A | 109.5 |
H8A—C8—H8C | 109.5 | C15—C18—H18B | 109.5 |
H8B—C8—H8C | 109.5 | H18A—C18—H18B | 109.5 |
O2—C9—C10 | 124.7 (7) | C15—C18—H18C | 109.5 |
O2—C9—C8 | 115.1 (7) | H18A—C18—H18C | 109.5 |
C10—C9—C8 | 120.2 (7) | H18B—C18—H18C | 109.5 |
C9—C10—C11 | 123.9 (3) | ||
O2i—Co1—O2—C9 | −176.7 (5) | Co1—O3—C11—C12 | 172.0 (5) |
O3—Co1—O2—C9 | 3.1 (7) | C9—C10—C11—O3 | 5.3 (18) |
N6—Co1—O2—C9 | 91.5 (6) | C9—C10—C11—C12 | −175.5 (9) |
N7—Co1—O2—C9 | −87.9 (6) | C17—N7—C13—C14 | 0.000 (1) |
O2—Co1—O3—C11 | 4.5 (7) | Co1—N7—C13—C14 | 180.000 (1) |
O3i—Co1—O3—C11 | −175.7 (5) | N7—C13—C14—C15 | 0.000 (1) |
N6—Co1—O3—C11 | −87.3 (6) | C13—C14—C15—C16 | 0.000 (1) |
N7—Co1—O3—C11 | 93.3 (6) | C13—C14—C15—C18 | 180.000 (1) |
Co1—O2—C9—C10 | −6.9 (12) | C14—C15—C16—C17 | 0.000 (1) |
Co1—O2—C9—C8 | 170.3 (5) | C18—C15—C16—C17 | 180.000 (1) |
O2—C9—C10—C11 | 3.4 (18) | C15—C16—C17—N7 | 0.000 (1) |
C8—C9—C10—C11 | −173.6 (8) | C13—N7—C17—C16 | 0.000 (1) |
Co1—O3—C11—C10 | −8.8 (12) | Co1—N7—C17—C16 | 180.000 (1) |
Symmetry code: (i) x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O4ii | 0.93 | 2.39 | 3.104 (10) | 133 |
Symmetry code: (ii) x+1, y, z. |
[Co(C5H7O2)2(NO2)(C5H5NO)]·H2O | Dx = 1.493 Mg m−3 |
Mr = 416.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 9558 reflections |
a = 12.3811 (4) Å | θ = 2.4–27.9° |
b = 14.0483 (5) Å | µ = 0.97 mm−1 |
c = 10.6443 (3) Å | T = 301 K |
V = 1851.40 (10) Å3 | Needle, dark red |
Z = 4 | 0.35 × 0.11 × 0.08 mm |
F(000) = 864 |
Bruker D8 VENTURE diffractometer | 1887 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.032 |
Absorption correction: integration (SADABS; Bruker, 2016) | θmax = 28.0°, θmin = 2.5° |
Tmin = 0.780, Tmax = 0.938 | h = −16→15 |
19560 measured reflections | k = −18→17 |
2292 independent reflections | l = −14→14 |
Refinement on F2 | 16 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0204P)2 + 2.0145P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2292 reflections | Δρmax = 0.46 e Å−3 |
165 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.35185 (3) | 0.7500 | 0.39108 (4) | 0.03386 (13) | |
O2 | 0.44528 (12) | 0.66083 (11) | 0.31791 (14) | 0.0410 (3) | |
O3 | 0.25897 (12) | 0.66025 (12) | 0.46516 (14) | 0.0439 (4) | |
O4 | 0.2376 (4) | 0.6750 (2) | 0.1940 (3) | 0.076 (3) | 0.672 (16) |
O5A | 0.1771 (13) | 0.7215 (16) | 0.2462 (12) | 0.078 (12) | 0.164 (8) |
O5B | 0.3040 (13) | 0.7736 (15) | 0.1426 (10) | 0.076 (13) | 0.164 (8) |
O6 | 0.4018 (2) | 0.7500 | 0.8767 (2) | 0.0756 (10) | |
H6 | 0.446 (3) | 0.7500 | 0.936 (4) | 0.113* | |
O7 | 0.5265 (3) | 0.7776 (6) | 1.0691 (3) | 0.088 (4) | 0.5 |
H7A | 0.502 (5) | 0.784 (6) | 1.141 (3) | 0.132* | 0.5 |
H7B | 0.5927 (18) | 0.785 (6) | 1.068 (6) | 0.132* | 0.5 |
N8 | 0.2659 (2) | 0.7500 | 0.2415 (3) | 0.0440 (6) | |
N9 | 0.44358 (19) | 0.7500 | 0.5455 (2) | 0.0359 (5) | |
C10 | 0.5278 (2) | 0.5157 (2) | 0.2729 (3) | 0.0669 (8) | |
H10A | 0.5146 | 0.5128 | 0.1841 | 0.100* | |
H10B | 0.5295 | 0.4523 | 0.3067 | 0.100* | |
H10C | 0.5960 | 0.5462 | 0.2880 | 0.100* | |
C11 | 0.43951 (19) | 0.57141 (17) | 0.3353 (2) | 0.0454 (5) | |
C12 | 0.3602 (2) | 0.52607 (18) | 0.4046 (3) | 0.0581 (7) | |
H12 | 0.3649 | 0.4603 | 0.4123 | 0.070* | |
C13 | 0.2749 (2) | 0.57064 (18) | 0.4630 (2) | 0.0493 (6) | |
C14 | 0.1918 (3) | 0.5134 (2) | 0.5334 (3) | 0.0771 (9) | |
H14A | 0.2089 | 0.5138 | 0.6214 | 0.116* | |
H14B | 0.1920 | 0.4491 | 0.5030 | 0.116* | |
H14C | 0.1217 | 0.5409 | 0.5208 | 0.116* | |
C15 | 0.3987 (2) | 0.7500 | 0.6592 (3) | 0.0416 (7) | |
H15 | 0.3237 | 0.7500 | 0.6647 | 0.050* | |
C16 | 0.4571 (3) | 0.7500 | 0.7686 (3) | 0.0440 (7) | |
C17 | 0.5695 (3) | 0.7500 | 0.7601 (3) | 0.0449 (7) | |
H17 | 0.6122 | 0.7500 | 0.8320 | 0.054* | |
C18 | 0.6153 (3) | 0.7500 | 0.6424 (3) | 0.0449 (7) | |
H18 | 0.6901 | 0.7500 | 0.6343 | 0.054* | |
C19 | 0.5519 (2) | 0.7500 | 0.5370 (3) | 0.0404 (7) | |
H19 | 0.5843 | 0.7500 | 0.4581 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0317 (2) | 0.0381 (2) | 0.0318 (2) | 0.000 | 0.00176 (15) | 0.000 |
O2 | 0.0397 (8) | 0.0418 (8) | 0.0415 (8) | 0.0026 (7) | 0.0031 (6) | −0.0036 (7) |
O3 | 0.0383 (8) | 0.0528 (9) | 0.0407 (8) | −0.0074 (7) | 0.0028 (7) | 0.0044 (7) |
O4 | 0.106 (6) | 0.0559 (19) | 0.066 (4) | −0.003 (2) | −0.039 (4) | −0.0118 (16) |
O5A | 0.053 (7) | 0.15 (3) | 0.036 (5) | −0.045 (13) | −0.016 (5) | 0.009 (9) |
O5B | 0.069 (8) | 0.12 (4) | 0.035 (5) | −0.040 (15) | 0.009 (5) | 0.023 (9) |
O6 | 0.0423 (14) | 0.152 (3) | 0.0329 (13) | 0.000 | −0.0008 (11) | 0.000 |
O7 | 0.0508 (19) | 0.175 (12) | 0.0375 (16) | −0.014 (3) | −0.0008 (14) | −0.015 (3) |
N8 | 0.0380 (14) | 0.0506 (16) | 0.0434 (15) | 0.000 | −0.0011 (12) | 0.000 |
N9 | 0.0311 (12) | 0.0414 (13) | 0.0352 (13) | 0.000 | −0.0007 (10) | 0.000 |
C10 | 0.0668 (18) | 0.0595 (16) | 0.0743 (19) | 0.0186 (14) | −0.0060 (15) | −0.0180 (15) |
C11 | 0.0503 (13) | 0.0424 (12) | 0.0435 (12) | 0.0061 (10) | −0.0125 (10) | −0.0060 (10) |
C12 | 0.0725 (18) | 0.0372 (12) | 0.0645 (16) | −0.0016 (12) | −0.0020 (14) | 0.0066 (12) |
C13 | 0.0523 (14) | 0.0518 (14) | 0.0437 (12) | −0.0124 (11) | −0.0083 (11) | 0.0127 (11) |
C14 | 0.078 (2) | 0.079 (2) | 0.075 (2) | −0.0267 (17) | 0.0003 (17) | 0.0309 (17) |
C15 | 0.0322 (14) | 0.0586 (19) | 0.0339 (15) | 0.000 | 0.0036 (12) | 0.000 |
C16 | 0.0418 (17) | 0.060 (2) | 0.0299 (15) | 0.000 | 0.0006 (13) | 0.000 |
C17 | 0.0380 (16) | 0.0575 (19) | 0.0391 (16) | 0.000 | −0.0096 (13) | 0.000 |
C18 | 0.0296 (14) | 0.0544 (19) | 0.0507 (19) | 0.000 | −0.0025 (13) | 0.000 |
C19 | 0.0332 (15) | 0.0466 (17) | 0.0414 (16) | 0.000 | 0.0032 (13) | 0.000 |
Co1—O2i | 1.8745 (15) | C10—H10A | 0.9600 |
Co1—O2 | 1.8745 (15) | C10—H10B | 0.9600 |
Co1—O3 | 1.8799 (15) | C10—H10C | 0.9600 |
Co1—O3i | 1.8800 (15) | C11—C12 | 1.384 (4) |
Co1—N8 | 1.915 (3) | C12—C13 | 1.376 (4) |
Co1—N9 | 1.998 (2) | C12—H12 | 0.9300 |
O2—C11 | 1.272 (3) | C13—C14 | 1.505 (3) |
O3—C13 | 1.274 (3) | C14—H14A | 0.9600 |
O4—N8 | 1.220 (3) | C14—H14B | 0.9600 |
O5A—N8 | 1.172 (13) | C14—H14C | 0.9600 |
O5B—N8 | 1.200 (13) | C15—C16 | 1.371 (4) |
O6—C16 | 1.340 (4) | C15—H15 | 0.9300 |
O6—H6 | 0.84 (2) | C16—C17 | 1.394 (4) |
O7—H7A | 0.83 (2) | C17—C18 | 1.376 (5) |
O7—H7B | 0.83 (2) | C17—H17 | 0.9300 |
N8—O4i | 1.220 (3) | C18—C19 | 1.370 (4) |
N9—C15 | 1.332 (4) | C18—H18 | 0.9300 |
N9—C19 | 1.344 (4) | C19—H19 | 0.9300 |
C10—C11 | 1.500 (3) | ||
O2i—Co1—O2 | 83.87 (9) | H10A—C10—H10C | 109.5 |
O2i—Co1—O3 | 179.59 (7) | H10B—C10—H10C | 109.5 |
O2—Co1—O3 | 95.94 (7) | O2—C11—C12 | 124.9 (2) |
O2i—Co1—O3i | 95.94 (7) | O2—C11—C10 | 114.2 (2) |
O2—Co1—O3i | 179.59 (7) | C12—C11—C10 | 120.9 (2) |
O3—Co1—O3i | 84.24 (10) | C13—C12—C11 | 125.2 (2) |
O2i—Co1—N8 | 89.85 (8) | C13—C12—H12 | 117.4 |
O2—Co1—N8 | 89.85 (8) | C11—C12—H12 | 117.4 |
O3—Co1—N8 | 90.51 (8) | O3—C13—C12 | 125.2 (2) |
O3i—Co1—N8 | 90.51 (8) | O3—C13—C14 | 114.4 (3) |
O2i—Co1—N9 | 89.49 (7) | C12—C13—C14 | 120.4 (3) |
O2—Co1—N9 | 89.49 (7) | C13—C14—H14A | 109.5 |
O3—Co1—N9 | 90.14 (7) | C13—C14—H14B | 109.5 |
O3i—Co1—N9 | 90.14 (7) | H14A—C14—H14B | 109.5 |
N8—Co1—N9 | 179.12 (11) | C13—C14—H14C | 109.5 |
C11—O2—Co1 | 124.40 (16) | H14A—C14—H14C | 109.5 |
C13—O3—Co1 | 124.08 (16) | H14B—C14—H14C | 109.5 |
C16—O6—H6 | 108 (4) | N9—C15—C16 | 123.4 (3) |
H7A—O7—H7B | 111 (5) | N9—C15—H15 | 118.3 |
O5A—N8—O5B | 120.1 (9) | C16—C15—H15 | 118.3 |
O4—N8—O4i | 119.5 (4) | O6—C16—C15 | 117.4 (3) |
O5A—N8—Co1 | 119.1 (6) | O6—C16—C17 | 124.4 (3) |
O5B—N8—Co1 | 120.7 (7) | C15—C16—C17 | 118.2 (3) |
O4—N8—Co1 | 120.26 (19) | C18—C17—C16 | 118.1 (3) |
O4i—N8—Co1 | 120.26 (19) | C18—C17—H17 | 121.0 |
C15—N9—C19 | 118.6 (3) | C16—C17—H17 | 121.0 |
C15—N9—Co1 | 120.7 (2) | C19—C18—C17 | 120.6 (3) |
C19—N9—Co1 | 120.7 (2) | C19—C18—H18 | 119.7 |
C11—C10—H10A | 109.5 | C17—C18—H18 | 119.7 |
C11—C10—H10B | 109.5 | N9—C19—C18 | 121.1 (3) |
H10A—C10—H10B | 109.5 | N9—C19—H19 | 119.5 |
C11—C10—H10C | 109.5 | C18—C19—H19 | 119.5 |
O2i—Co1—O2—C11 | 173.79 (14) | Co1—O3—C13—C14 | 177.53 (16) |
O3—Co1—O2—C11 | −5.84 (18) | C11—C12—C13—O3 | −2.6 (4) |
N8—Co1—O2—C11 | −96.34 (18) | C11—C12—C13—C14 | 178.5 (2) |
N9—Co1—O2—C11 | 84.25 (18) | C19—N9—C15—C16 | 0.000 (1) |
O2—Co1—O3—C13 | 4.64 (19) | Co1—N9—C15—C16 | 180.000 (1) |
O3i—Co1—O3—C13 | −174.99 (15) | N9—C15—C16—O6 | 180.000 (1) |
N8—Co1—O3—C13 | 94.55 (19) | N9—C15—C16—C17 | 0.000 (1) |
N9—Co1—O3—C13 | −84.86 (18) | O6—C16—C17—C18 | 180.000 (1) |
Co1—O2—C11—C12 | 3.9 (3) | C15—C16—C17—C18 | 0.000 (1) |
Co1—O2—C11—C10 | −176.26 (16) | C16—C17—C18—C19 | 0.000 (1) |
O2—C11—C12—C13 | 1.3 (4) | C15—N9—C19—C18 | 0.000 (1) |
C10—C11—C12—C13 | −178.6 (2) | Co1—N9—C19—C18 | 180.000 (1) |
Co1—O3—C13—C12 | −1.4 (3) | C17—C18—C19—N9 | 0.000 (1) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···O7 | 0.84 (2) | 1.77 (2) | 2.593 (4) | 166 (3) |
O6—H6···O7i | 0.84 (2) | 1.77 (2) | 2.593 (4) | 166 (3) |
O7—H7A···O2ii | 0.83 (2) | 2.15 (3) | 2.962 (4) | 165 (8) |
O7—H7B···O3iii | 0.83 (2) | 2.23 (3) | 3.030 (5) | 164 (8) |
C10—H10C···O4iv | 0.96 | 2.53 | 3.446 (5) | 161 |
C19—H19···O5Aiv | 0.93 | 2.49 | 3.413 (11) | 171 |
C19—H19···O5Av | 0.93 | 2.49 | 3.413 (11) | 171 |
Symmetry codes: (i) x, −y+3/2, z; (ii) x, −y+3/2, z+1; (iii) x+1/2, −y+3/2, −z+3/2; (iv) x+1/2, y, −z+1/2; (v) x+1/2, −y+3/2, −z+1/2. |
Footnotes
‡Present Address: Nuclear Power Division, Shin Nippon Air Technologies Co., Ltd, Nakahara 1-1-34, Isogo-ku, Yokohama 235-0036, Japan.
Acknowledgements
The authors thank Dr Takashi Nemoto, Kyoto University, for making the program CAVITY available to the public.
References
Boldyreva, E. V. (2001). Russ. J. Coord. Chem. 27, 297–323. Web of Science CrossRef CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Boucher, L. J. & Bailar, J. C. Jr (1965). J. Inorg. Nucl. Chem. 27, 1093–1099. CrossRef Web of Science Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Englert, U. & Strähle, J. (1987). Z. Naturforsch. Teil B, 42, 959–966. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Heyns, A. M. & de Waal, D. (1989). Spectrochim. Acta A, 45, 905–909. CrossRef Web of Science Google Scholar
Johnson, D. A. & Martin, J. E. (1969). Inorg. Chem. 8, 2509–2510. CrossRef Web of Science Google Scholar
Kistenmacher, T. J., Sorrell, T., Rossi, M., Chiang, C. C. & Marzilli, L. G. (1978). Inorg. Chem. 17, 479–481. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miyazaki, H., Tsuchimoto, M. & Ohba, S. (1998). Acta Cryst. C54, 46–47. Web of Science CrossRef IUCr Journals Google Scholar
Ogita, M., Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2002). Eur. J. Inorg. Chem. pp. 886–894. CrossRef Google Scholar
Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805–5812. CSD CrossRef CAS Web of Science Google Scholar
Ohba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526–1531. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tayyari, S. F., Habibi, M. H., Shojaee, E., Jamialahmadi, M., Sammelson, R. E., Wada, K. & Suzuki, T. (2015). Spectrochim. Acta A,139, 94–101. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.