research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three halide salts of L-asparagine: an isostructural series

CROSSMARK_Color_square_no_text.svg

aWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, UK
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 October 2018; accepted 16 October 2018; online 19 October 2018)

The structures of three monohydrated halide salt forms of L-asparagine are presented, viz.L-asparaginium chloride monohydrate, C4H9N2O3+·Cl·H2O, (I), L-asparaginium bromide monohydrate, C4H9N2O3+·Br·H2O, (II), and L-asparaginium iodide monohydrate, C4H9N2O3+·I·H2O, (III). These form an isomorphous and isostructural series. The C—C—C—C backbone of the amino acid adopts a gauche conformation in each case [torsion angles for (I), (II) and (III) = −55.4 (2), −55.6 (5) and −58.3 (7)°, respectively]. Each cation features an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring. The extended structures feature chains of cations that propagate parallel to the b-axis direction. These are formed by carb­oxy­lic acid/amide complimentary O—H⋯O + N—H⋯O hydrogen bonds, which generate R22(8) loops. These chains are linked by further hydrogen bonds mediated by the halide ions and water mol­ecules to give a layered structure with cation and anion layers parallel to the ab plane. Compound (III) was refined as an inversion twin.

1. Chemical context

Changing the salt form of an organic material is a well known way of altering the material's physical properties whilst retaining many of the chemical properties inherent to the organic fragment. Selection of the salt form with the most suitable properties is thus an important consideration in the development of pharmaceutical materials and indeed of other fine chemicals (Stahl & Wermuth, 2008[Stahl, P. H. & Wermuth, C. G. (2008). Handbook of Pharmaceutical Salts: Properties, Selection and Use. VHCA: Zurich.]; Bastin et al., 2000[Bastin, R. J., Bowker, M. J. & Slater, B. J. (2000). Org. Process Res. Dev. 4, 427-435.]; Kennedy et al., 2012[Kennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064-3069.]). Often, the main property of inter­est is solubility, but salt selection may also be used to alter properties such as crystal morphology, hygroscopicity or stability, as well as mechanical properties such as hardness and strength (Stahl & Wermuth, 2008[Stahl, P. H. & Wermuth, C. G. (2008). Handbook of Pharmaceutical Salts: Properties, Selection and Use. VHCA: Zurich.]; Sun & Grant, 2001[Sun, C. C. & Grant, D. J. W. (2001). Pharm. Res. 18, 281-286.]; Hao & Iqbal, 1997[Hao, Z. & Iqbal, A. (1997). Chem. Soc. Rev. 26, 203-213.]; de Moraes et al., 2017[Moraes, L. S. de, Edwards, D., Florence, A. J., Johnston, A., Johnston, B. F., Morrison, C. A. & Kennedy, A. R. (2017). Cryst. Growth Des. 17, 3277-3286.]). In short, any bulk property that depends in some way on the packing or on the inter­molecular forces within the crystalline array structure may be altered by changing the salt-forming counter-ion. Despite the common usage of salt selection strategies, our understanding of what effect on properties any particular change of counter-ion will have is extremely limited. This means, for example, that it is not currently possible to predict which salt form of an active pharmaceutical ingredient (API) will be the most soluble or have the best compaction properties. In this area, isostructural series of structures are especially inter­esting as they allow changes in properties to be related to changes in inter­molecular inter­action strength or type without the complication of changes to the overall gross structure (Galcera & Molins, 2009[Galcera, J. & Molins, E. (2009). Cryst. Growth Des. 9, 327-334.]; Allan et al., 2018[Allan, P., Arlin, J.-B., Kennedy, A. R. & Walls, A. (2018). Acta Cryst. C74, 131-138.]). Here we present the structures of three isostructural halide salts of L-asparagine, namely the monohydrates [HAsp][Cl]·H2O, (I)[link], [HAsp][Br]·H2O, (II)[link] and [HAsp][I]·H2O, (III)[link], (HAsp = C4H9N2O3 cation). L-aspara­gine is a non-essential amino acid, the bioavailability of which is associated with altered rates of breast cancer progression (Knott et al., 2018[Knott, S. R. V., Wagenblast, E., Khan, S., Kim, S. Y., Soto, M., Wagner, M., Turgeon, M. O., Fish, L., Erard, N., Gable, A. L., Maceli, A. R., Dickopf, S., Papachristou, E. K., D'Santos, C. S., Carey, L. A., Wilkinson, J. E., Harrell, J. C., Perou, C. M., Goodarzi, H., Poulogiannis, G. & Hannon, G. J. (2018). Nature, 554, 378-381.]).

[Scheme 1]

2. Structural commentary

The crystals isolated from all three reactions of L-asparagine with HX (X = Cl, Br, I) solutions were found to be hydrated compounds with the formula [HAsp][X]·H2O with protonation occurring at N1 as well as at the carb­oxy­lic acid. The starting material used was labelled L-asparagine and in all cases the refined Flack parameter confirmed that, as expected, this is S-asparagine.

Crystals (I)[link], (II)[link] and (III)[link] were found to adopt the same space group and to have similar unit-cell dimensions. They thus represent an isostructural series, with the unit-cell dimensions increasing as expected in line with increasing halide ion size. The HAsp cations are found to have near identical geometries. All equivalent bond lengths are statistically similar and all cations adopt the same general conformation with both C=O units syn with respect to the NH3 group, see Figs. 1[link]–3[link][link]. There are some small differences within this general conformation. The largest of these differences occurs between the iodide salt and the others, as indicated by the torsion angles involving the NH3 group [N1—C2—C1—O1 (acid C=O) = 24.6 (2), 20.2 (5) and 12.5 (8) and N1—C2—C4—O3 (amide) 27.1 (2), 27.73 (5) and 33.38 (8)°, for Cl, Br and I respectively].

[Figure 1]
Figure 1
View of the contents of the asymmetric unit of (I)[link]. Non-H atoms are drawn as 50% probability ellipsoids and H atoms as spheres of arbitrary size.
[Figure 2]
Figure 2
View of the contents of the asymmetric unit of (II)[link]. Non-H atoms are drawn as 50% probability ellipsoids and H atoms as spheres of arbitrary size.
[Figure 3]
Figure 3
View of the contents of the asymmetric unit of (III)[link]. Non-H atoms are drawn as 50% probability ellipsoids and H atoms as spheres of arbitrary size.

3. Supra­molecular features

Isostructurality is also indicated by examination of the hydrogen bonding, Tables 1[link]–3[link][link] and Fig. 4[link]. The three compounds all make the same number and type of hydrogen bonds, with the main difference being the increasing DA distances caused by the different anion sizes. Where A = X there is a 7.4 to 11.5% increase in DA distance from Cl to I, whereas where A = O there is a smaller 0.6 to 4.0% increase. The only exception is the sole intra­molecular inter­action. The DA distance of this NH3 to amide contact decreases by about 1.5% from Cl to I.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1H⋯O3i 0.88 (1) 1.66 (2) 2.533 (2) 172 (4)
N1—H1N⋯Cl1 0.91 (1) 2.27 (1) 3.1663 (17) 166 (2)
N1—H2N⋯Cl1ii 0.89 (1) 2.56 (2) 3.2909 (17) 140 (2)
N1—H2N⋯O3 0.89 (1) 2.19 (2) 2.809 (2) 126 (2)
N1—H3N⋯O1W 0.90 (1) 1.97 (1) 2.867 (2) 172 (2)
N2—H4N⋯Cl1iii 0.90 (1) 2.89 (2) 3.4056 (17) 118 (2)
N2—H4N⋯O1iv 0.90 (1) 2.21 (2) 3.051 (2) 156 (2)
N2—H5N⋯O1Wv 0.88 (1) 2.08 (1) 2.949 (2) 167 (2)
O1W—H1W⋯Cl1vi 0.87 (1) 2.41 (1) 3.2650 (18) 169 (2)
O1W—H2W⋯Cl1vii 0.87 (1) 2.40 (2) 3.2184 (17) 157 (2)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) x, y, z-1; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x-1, y, z-1; (vi) [-x+2, y-{\script{1\over 2}}, -z+2]; (vii) [-x+1, y-{\script{1\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1H⋯O3i 0.88 (1) 1.68 (2) 2.543 (4) 167 (6)
N1—H1N⋯Br1 0.90 (1) 2.46 (2) 3.314 (5) 159 (4)
N1—H2N⋯Br1ii 0.89 (1) 2.59 (3) 3.408 (5) 153 (4)
N1—H2N⋯O3 0.89 (1) 2.30 (5) 2.787 (6) 114 (4)
N1—H3N⋯O1W 0.90 (1) 1.99 (2) 2.886 (4) 173 (5)
N2—H4N⋯Br1iii 0.90 (1) 2.95 (4) 3.479 (4) 119 (4)
N2—H4N⋯O1iv 0.90 (1) 2.26 (3) 3.081 (5) 152 (4)
N2—H5N⋯O1Wv 0.90 (1) 2.07 (2) 2.959 (6) 170 (5)
O1W—H1W⋯Br1vi 0.88 (1) 2.51 (2) 3.362 (4) 167 (5)
O1W—H2W⋯Br1vii 0.88 (1) 2.61 (4) 3.323 (4) 138 (5)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) x, y, z-1; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x-1, y, z-1; (vi) [-x+2, y-{\script{1\over 2}}, -z+2]; (vii) [-x+1, y-{\script{1\over 2}}, -z+2].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1H⋯O3i 0.88 (1) 1.71 (3) 2.549 (6) 160 (9)
N1—H1N⋯I1 0.91 2.65 3.528 (7) 164
N1—H2N⋯I1ii 0.91 2.89 3.591 (8) 135
N1—H2N⋯O3 0.91 2.11 2.766 (8) 129
N1—H3N⋯O1W 0.91 2.03 2.905 (6) 160
N2—H4N⋯I1iii 0.90 (1) 3.07 (6) 3.659 (5) 125 (5)
N2—H4N⋯O1iv 0.90 (1) 2.37 (4) 3.171 (7) 149 (6)
N2—H5N⋯O1Wv 0.90 (1) 2.12 (3) 2.983 (9) 160 (7)
O1W—H1W⋯I1vi 0.88 (1) 2.68 (2) 3.526 (8) 164 (5)
O1W—H2W⋯I1vii 0.88 (1) 2.76 (4) 3.504 (7) 143 (6)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) x, y, z-1; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x-1, y, z-1; (vi) [-x+2, y-{\script{1\over 2}}, -z+2]; (vii) [-x+1, y-{\script{1\over 2}}, -z+2].
[Figure 4]
Figure 4
View of all the unique hydrogen-bonding contacts made by the contents of the asymmetric unit of (I)[link].

The only HAsp to HAsp hydrogen bonds form the classic carb­oxy­lic acid to amide O—H⋯O + N—H⋯O heterodimer motif [R(8)22]. With two such contacts per cation, this motif generates a one-dimensional hydrogen-bonded chain running parallel to the b-axis direction, see Fig. 5[link]. Additionally, each halide ion accepts five unique hydrogen bonds, two bonds from water mol­ecules, two from NH3 groups and one from NH2. The water mol­ecules donate two hydrogen bonds to the halide ions and accept two from the NH3 and NH2 groups. The water mol­ecules thus form fourfold nodes, as is typical for organic hydrates (Gillon et al., 2003[Gillon, A. L., Feeder, N., Davey, R. J. & Storey, R. (2003). Cryst. Growth Des. 3, 663-673.]; Briggs et al., 2012[Briggs, N. E. B., Kennedy, A. R. & Morrison, C. A. (2012). Acta Cryst. B68, 453-464.]). These inter­actions combine to give the structure shown in Fig. 6[link] with alternating layers of organic cations and halide anions lying parallel to the ab plane.

[Figure 5]
Figure 5
Chain of cations in (II)[link] propagating parallel to the b-axis direction via O—H⋯O and O—H⋯N carb­oxy­lic acid to amide hydrogen bonds.
[Figure 6]
Figure 6
Packing diagram of (III)[link] as viewed down the a-axis direction.

4. Database survey

The only other known structure of a simple salt of S-asparagine is that of the nitrate (Aarthy et al., 2005[Aarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042-o2044.]). Here both the cations in a Z′ = 2 structure adopt different conformations from that found for the halides: compare N—C—C—O(acid C=O) of −176.9 (6) and 173.2 (5)° and N—C—C—O(amide) of −123.2 (7) and 77.0 (4)° with the equivalent values given above. The structures of two simple salts of racemic asparagine have also been reported. These are the nitrate and the perchlorate forms (Moussa Slimane et al., 2009[Moussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180-o2181.]; Guenifa et al., 2009[Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264-o2265.]). All these literature forms are anhydrous, but despite this difference and further differences in anion type and cation geometry, all form the same R(8)22-based, one-dimensional hydrogen-bonded chain motif seen in the halide salts (I)[link], (II)[link] and (III)[link].

5. Synthesis and crystallization

Salt forms of L-asparagine were prepared by dissolving 29 mmol of the amino acid in 90 ml of distilled water. The solution was stirred and heated slightly until complete dissolution had occurred. The solution was then equally divided between three vials. To each vial was added 1 ml of concentrated acid, either hydro­chloric acid, hydro­bromic acid or hydro­iodic acid. The first crystals appeared after 24 h of sitting at room temperature. Crystals suitable for analyses [colourless prisms for (I)[link], colourless tablets for (II)[link] and colourless rods for (III)] were obtained directly from the mother liquors and were removed from these solutions just prior to data collection.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Structure solution for (III)[link] was by substitution from the Br equivalent. All H atoms bound to C were placed in calculated positions and refined in riding modes. C—H distances were 0.99 and 1.00 Å for CH2 and CH groups respectively, with U(H)iso = 1.2Ueq(C). With the exception noted below, all other H atoms were observed and positioned as found. For (I)[link] these were refined isotropically, but for (II)[link] restraints were required for the NH3 and OH2 atoms. For (III)[link] all H atoms required restraints to be applied. N—H distances were restrained to 0.90 (1) Å and O—H distances to 0.88 (1) Å. U(H)iso = 1.2Ueq of the parent atom. The exception was the NH3 group of (III)[link]. The best model involved treating this as a rigid tetra­hedral group and allowing only rotation around the C—N bond. For this group, Uiso(H) = 1.5Ueq(N). Compound (III)[link] was refined as an inversion twin.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C4H9N2O3+·Cl·H2O C4H9N2O3·Br+·H2O C4H9N2O3+·I·H2O
Mr 186.60 231.06 278.05
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21
Temperature (K) 123 123 123
a, b, c (Å) 5.0922 (1), 10.1450 (2), 8.1950 (2) 5.2167 (2), 10.2784 (5), 8.3063 (4) 5.3668 (5), 10.6744 (8), 8.4532 (6)
β (°) 103.834 (2) 103.606 (5) 102.772 (8)
V3) 411.08 (2) 432.88 (4) 472.28 (7)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.44 4.72 3.37
Crystal size (mm) 0.45 × 0.30 × 0.25 0.5 × 0.3 × 0.12 0.6 × 0.35 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E
Absorption correction Multi-scan [CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Analytical [CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.900, 1.000 0.205, 0.487 0.286, 0.612
No. of measured, independent and observed [I > 2σ(I)] reflections 4053, 2079, 2032 4320, 2232, 2118 5854, 2458, 2288
Rint 0.013 0.032 0.039
(sin θ/λ)max−1) 0.698 0.700 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.058, 1.07 0.028, 0.062, 1.03 0.029, 0.058, 1.02
No. of reflections 2079 2232 2458
No. of parameters 128 128 117
No. of restraints 9 9 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.20 0.60, −0.38 0.87, −0.65
Absolute structure Flack x determined using 897 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 908 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Refined as an inversion twin
Absolute structure parameter −0.02 (2) −0.022 (11) −0.07 (4)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I), (II); by substitution from Br equivalent for (III). For all structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

L-Asparaginium chloride monohydrate (I) top
Crystal data top
C4H9N2O3+·Cl·H2OF(000) = 196
Mr = 186.60Dx = 1.508 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.0922 (1) ÅCell parameters from 3444 reflections
b = 10.1450 (2) Åθ = 3.3–29.7°
c = 8.1950 (2) ŵ = 0.44 mm1
β = 103.834 (2)°T = 123 K
V = 411.08 (2) Å3Prism, colourless
Z = 20.45 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2032 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.013
ω scansθmax = 29.8°, θmin = 3.3°
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
h = 77
Tmin = 0.900, Tmax = 1.000k = 1413
4053 measured reflectionsl = 1010
2079 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0331P)2 + 0.0289P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.058Δρmax = 0.26 e Å3
S = 1.07Δρmin = 0.20 e Å3
2079 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parametersExtinction coefficient: 0.029 (8)
9 restraintsAbsolute structure: Flack x determined using 897 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36571 (8)0.90075 (4)0.92401 (5)0.02062 (13)
O11.1145 (3)0.51257 (16)0.77258 (18)0.0258 (3)
O20.8130 (3)0.48931 (15)0.52673 (18)0.0237 (3)
O30.8617 (3)0.83494 (16)0.56812 (17)0.0269 (3)
O1W1.1611 (3)0.58702 (15)1.1607 (2)0.0242 (3)
H1W1.275 (4)0.528 (2)1.142 (3)0.029*
H2W1.034 (4)0.532 (2)1.170 (3)0.029*
N10.8288 (3)0.71004 (16)0.8685 (2)0.0162 (3)
H1N0.699 (4)0.758 (2)0.902 (3)0.019*
H2N0.936 (4)0.764 (2)0.827 (3)0.019*
H3N0.927 (4)0.664 (2)0.957 (2)0.019*
N20.5625 (4)0.78473 (17)0.3247 (2)0.0218 (4)
C10.8969 (4)0.53507 (18)0.6792 (2)0.0153 (3)
C20.6864 (4)0.61977 (17)0.7318 (2)0.0140 (3)
H10.57030.55970.78130.017*
C30.5009 (4)0.69279 (18)0.5859 (2)0.0162 (3)
H20.39000.62780.50910.019*
H30.37650.74990.63040.019*
C40.6548 (4)0.77587 (19)0.4888 (2)0.0170 (4)
H1H0.936 (6)0.437 (3)0.503 (5)0.067 (11)*
H4N0.643 (4)0.8399 (19)0.266 (3)0.019 (6)*
H5N0.423 (4)0.736 (2)0.273 (3)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01624 (19)0.0241 (2)0.0209 (2)0.00077 (17)0.00325 (14)0.00539 (18)
O10.0182 (7)0.0346 (8)0.0224 (7)0.0096 (6)0.0008 (5)0.0059 (6)
O20.0211 (7)0.0281 (8)0.0204 (7)0.0067 (6)0.0020 (5)0.0079 (6)
O30.0222 (7)0.0359 (8)0.0199 (7)0.0128 (6)0.0000 (6)0.0078 (6)
O1W0.0252 (8)0.0200 (7)0.0270 (8)0.0019 (6)0.0051 (6)0.0003 (6)
N10.0150 (8)0.0182 (8)0.0156 (8)0.0008 (6)0.0040 (6)0.0019 (6)
N20.0265 (9)0.0217 (8)0.0163 (7)0.0029 (7)0.0034 (7)0.0011 (6)
C10.0149 (8)0.0149 (8)0.0168 (8)0.0014 (6)0.0052 (6)0.0014 (6)
C20.0123 (8)0.0149 (8)0.0152 (8)0.0006 (6)0.0039 (6)0.0007 (6)
C30.0129 (8)0.0186 (8)0.0166 (8)0.0004 (7)0.0026 (6)0.0023 (7)
C40.0168 (8)0.0163 (8)0.0183 (8)0.0023 (6)0.0046 (7)0.0023 (6)
Geometric parameters (Å, º) top
O1—C11.209 (2)N2—C41.317 (2)
O2—C11.305 (2)N2—H4N0.897 (12)
O2—H1H0.876 (13)N2—H5N0.882 (13)
O3—C41.251 (2)C1—C21.515 (2)
O1W—H1W0.869 (13)C2—C31.527 (2)
O1W—H2W0.868 (13)C2—H11.0000
N1—C21.493 (2)C3—C41.502 (3)
N1—H1N0.913 (13)C3—H20.9900
N1—H2N0.891 (13)C3—H30.9900
N1—H3N0.901 (12)
C1—O2—H1H110 (3)N1—C2—C3112.85 (15)
H1W—O1W—H2W97 (3)C1—C2—C3113.57 (15)
C2—N1—H1N107.3 (15)N1—C2—H1107.3
C2—N1—H2N108.8 (17)C1—C2—H1107.3
H1N—N1—H2N110 (2)C3—C2—H1107.3
C2—N1—H3N111.2 (16)C4—C3—C2112.56 (15)
H1N—N1—H3N109 (2)C4—C3—H2109.1
H2N—N1—H3N110 (2)C2—C3—H2109.1
C4—N2—H4N119.5 (15)C4—C3—H3109.1
C4—N2—H5N119.9 (17)C2—C3—H3109.1
H4N—N2—H5N121 (2)H2—C3—H3107.8
O1—C1—O2125.44 (17)O3—C4—N2123.25 (18)
O1—C1—C2122.06 (16)O3—C4—C3118.34 (16)
O2—C1—C2112.48 (15)N2—C4—C3118.40 (17)
N1—C2—C1108.17 (14)
O1—C1—C2—N124.6 (2)N1—C2—C3—C468.1 (2)
O2—C1—C2—N1156.61 (16)C1—C2—C3—C455.4 (2)
O1—C1—C2—C3150.72 (17)C2—C3—C4—O337.7 (2)
O2—C1—C2—C330.5 (2)C2—C3—C4—N2143.49 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1H···O3i0.88 (1)1.66 (2)2.533 (2)172 (4)
N1—H1N···Cl10.91 (1)2.27 (1)3.1663 (17)166 (2)
N1—H2N···Cl1ii0.89 (1)2.56 (2)3.2909 (17)140 (2)
N1—H2N···O30.89 (1)2.19 (2)2.809 (2)126 (2)
N1—H3N···O1W0.90 (1)1.97 (1)2.867 (2)172 (2)
N2—H4N···Cl1iii0.90 (1)2.89 (2)3.4056 (17)118 (2)
N2—H4N···O1iv0.90 (1)2.21 (2)3.051 (2)156 (2)
N2—H5N···O1Wv0.88 (1)2.08 (1)2.949 (2)167 (2)
O1W—H1W···Cl1vi0.87 (1)2.41 (1)3.2650 (18)169 (2)
O1W—H2W···Cl1vii0.87 (1)2.40 (2)3.2184 (17)157 (2)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+2, y+1/2, z+1; (v) x1, y, z1; (vi) x+2, y1/2, z+2; (vii) x+1, y1/2, z+2.
L-Asparaginium bromide monohydrate (II) top
Crystal data top
C4H9N2O3·Br+·H2OF(000) = 232
Mr = 231.06Dx = 1.773 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.2167 (2) ÅCell parameters from 3145 reflections
b = 10.2784 (5) Åθ = 3.2–29.8°
c = 8.3063 (4) ŵ = 4.72 mm1
β = 103.606 (5)°T = 123 K
V = 432.88 (4) Å3Tablet, colourless
Z = 20.5 × 0.3 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2232 independent reflections
Radiation source: fine-focus sealed tube2118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 29.8°, θmin = 3.2°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
h = 76
Tmin = 0.205, Tmax = 0.487k = 1414
4320 measured reflectionsl = 1111
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0274P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.062Δρmax = 0.60 e Å3
S = 1.03Δρmin = 0.38 e Å3
2232 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parametersExtinction coefficient: 0.019 (3)
9 restraintsAbsolute structure: Flack x determined using 908 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (11)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36490 (6)0.90306 (8)0.92345 (4)0.01479 (13)
O11.1176 (6)0.5163 (3)0.7609 (4)0.0196 (7)
O20.8106 (6)0.4779 (3)0.5270 (4)0.0187 (7)
O30.8665 (6)0.8262 (3)0.5653 (4)0.0226 (7)
O1W1.1602 (8)0.5964 (4)1.1565 (6)0.0196 (9)
H1W1.274 (8)0.536 (4)1.147 (7)0.024*
H2W1.059 (10)0.541 (5)1.193 (7)0.024*
N10.8287 (9)0.7034 (5)0.8580 (6)0.0124 (9)
H1N0.716 (8)0.749 (4)0.903 (6)0.015*
H2N0.951 (8)0.757 (4)0.836 (6)0.015*
H3N0.932 (8)0.663 (5)0.947 (4)0.015*
N20.5699 (7)0.7822 (4)0.3244 (4)0.0169 (8)
C10.8998 (8)0.5314 (4)0.6731 (5)0.0124 (8)
C20.6900 (8)0.6143 (4)0.7242 (5)0.0109 (8)
H10.57650.55490.77290.013*
C30.5124 (8)0.6858 (4)0.5811 (5)0.0130 (8)
H20.40710.62150.50440.016*
H30.38840.74110.62430.016*
C40.6627 (8)0.7697 (4)0.4866 (5)0.0132 (8)
H1H0.938 (9)0.428 (5)0.509 (8)0.046 (18)*
H4N0.645 (9)0.837 (4)0.265 (5)0.016 (12)*
H5N0.431 (7)0.733 (4)0.276 (6)0.016 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01205 (18)0.01658 (19)0.01513 (18)0.0006 (2)0.00197 (12)0.0034 (2)
O10.0120 (15)0.0263 (18)0.0185 (16)0.0072 (13)0.0002 (13)0.0061 (13)
O20.0148 (14)0.0238 (17)0.0159 (15)0.0046 (13)0.0003 (12)0.0062 (13)
O30.0176 (16)0.0309 (19)0.0159 (15)0.0127 (13)0.0031 (13)0.0076 (14)
O1W0.015 (2)0.018 (2)0.025 (2)0.0018 (17)0.0022 (16)0.0001 (17)
N10.013 (2)0.012 (2)0.012 (2)0.0026 (18)0.0035 (17)0.0018 (17)
N20.0205 (19)0.0169 (18)0.0123 (17)0.0031 (16)0.0013 (15)0.0014 (14)
C10.014 (2)0.0102 (18)0.0142 (19)0.0021 (15)0.0056 (16)0.0019 (15)
C20.0072 (18)0.0129 (19)0.0124 (18)0.0021 (15)0.0020 (15)0.0005 (15)
C30.0092 (18)0.014 (2)0.016 (2)0.0008 (16)0.0018 (16)0.0003 (16)
C40.0135 (19)0.0099 (19)0.0158 (19)0.0025 (16)0.0024 (16)0.0017 (15)
Geometric parameters (Å, º) top
O1—C11.207 (5)N2—C41.326 (5)
O2—C11.314 (5)N2—H4N0.898 (14)
O2—H1H0.879 (14)N2—H5N0.897 (14)
O3—C41.252 (5)C1—C21.524 (6)
O1W—H1W0.875 (14)C2—C31.515 (6)
O1W—H2W0.879 (14)C2—H11.0000
N1—C21.490 (6)C3—C41.504 (6)
N1—H1N0.900 (14)C3—H20.9900
N1—H2N0.894 (14)C3—H30.9900
N1—H3N0.904 (14)
C1—O2—H1H106 (4)N1—C2—C1107.3 (3)
H1W—O1W—H2W93 (5)C3—C2—C1113.5 (3)
C2—N1—H1N112 (3)N1—C2—H1107.7
C2—N1—H2N118 (3)C3—C2—H1107.7
H1N—N1—H2N109 (5)C1—C2—H1107.7
C2—N1—H3N115 (4)C4—C3—C2113.0 (3)
H1N—N1—H3N102 (4)C4—C3—H2109.0
H2N—N1—H3N98 (5)C2—C3—H2109.0
C4—N2—H4N121 (3)C4—C3—H3109.0
C4—N2—H5N118 (3)C2—C3—H3109.0
H4N—N2—H5N121 (5)H2—C3—H3107.8
O1—C1—O2125.7 (4)O3—C4—N2123.2 (4)
O1—C1—C2122.6 (4)O3—C4—C3118.4 (4)
O2—C1—C2111.7 (4)N2—C4—C3118.4 (4)
N1—C2—C3112.8 (3)
O1—C1—C2—N120.2 (5)N1—C2—C3—C466.7 (5)
O2—C1—C2—N1161.4 (4)C1—C2—C3—C455.6 (5)
O1—C1—C2—C3145.4 (4)C2—C3—C4—O335.7 (5)
O2—C1—C2—C336.1 (5)C2—C3—C4—N2145.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1H···O3i0.88 (1)1.68 (2)2.543 (4)167 (6)
N1—H1N···Br10.90 (1)2.46 (2)3.314 (5)159 (4)
N1—H2N···Br1ii0.89 (1)2.59 (3)3.408 (5)153 (4)
N1—H2N···O30.89 (1)2.30 (5)2.787 (6)114 (4)
N1—H3N···O1W0.90 (1)1.99 (2)2.886 (4)173 (5)
N2—H4N···Br1iii0.90 (1)2.95 (4)3.479 (4)119 (4)
N2—H4N···O1iv0.90 (1)2.26 (3)3.081 (5)152 (4)
N2—H5N···O1Wv0.90 (1)2.07 (2)2.959 (6)170 (5)
O1W—H1W···Br1vi0.88 (1)2.51 (2)3.362 (4)167 (5)
O1W—H2W···Br1vii0.88 (1)2.61 (4)3.323 (4)138 (5)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+2, y+1/2, z+1; (v) x1, y, z1; (vi) x+2, y1/2, z+2; (vii) x+1, y1/2, z+2.
L-Asparaginium iodide monohydrate (III) top
Crystal data top
C4H9N2O3+·I·H2OF(000) = 268
Mr = 278.05Dx = 1.955 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.3668 (5) ÅCell parameters from 4015 reflections
b = 10.6744 (8) Åθ = 3.8–29.9°
c = 8.4532 (6) ŵ = 3.37 mm1
β = 102.772 (8)°T = 123 K
V = 472.28 (7) Å3Fragment cut from long rod, colourless
Z = 20.6 × 0.35 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2288 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.039
ω scansθmax = 29.9°, θmin = 3.8°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
h = 77
Tmin = 0.286, Tmax = 0.612k = 1414
5854 measured reflectionsl = 1111
2458 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0215P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.87 e Å3
2458 reflectionsΔρmin = 0.65 e Å3
117 parametersAbsolute structure: Refined as an inversion twin
7 restraintsAbsolute structure parameter: 0.07 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.36921 (6)0.90844 (10)0.91430 (3)0.01907 (10)
O11.1192 (8)0.5186 (4)0.7440 (5)0.0243 (10)
O20.8070 (8)0.4561 (4)0.5384 (5)0.0258 (11)
H1H0.936 (10)0.415 (8)0.516 (7)0.031*
O30.8904 (9)0.7986 (4)0.5464 (5)0.0282 (11)
O1W1.1491 (15)0.6160 (6)1.1460 (9)0.0274 (16)
H1W1.253 (10)0.553 (4)1.143 (9)0.033*
H2W1.029 (9)0.575 (5)1.181 (8)0.033*
N10.8348 (14)0.6975 (7)0.8380 (8)0.0165 (16)
H3N0.93720.65460.92050.025*
H1N0.71720.74200.87730.025*
H2N0.93150.75080.79260.025*
N20.5817 (11)0.7743 (5)0.3201 (6)0.0224 (12)
H5N0.428 (7)0.740 (6)0.277 (8)0.027*
H4N0.636 (13)0.835 (5)0.262 (7)0.027*
C10.9010 (11)0.5232 (5)0.6669 (7)0.0161 (12)
C20.7013 (12)0.6073 (5)0.7127 (7)0.0155 (12)
H20.58820.55370.76400.019*
C30.5321 (12)0.6737 (6)0.5676 (7)0.0177 (12)
H3A0.43490.61000.49370.021*
H3B0.40740.72710.60670.021*
C40.6816 (11)0.7537 (6)0.4743 (7)0.0181 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01668 (17)0.01986 (16)0.01982 (16)0.0013 (3)0.00223 (11)0.0036 (2)
O10.018 (2)0.029 (2)0.024 (2)0.009 (2)0.0010 (17)0.006 (2)
O20.016 (2)0.031 (2)0.029 (2)0.0061 (18)0.0031 (18)0.0140 (18)
O30.023 (3)0.034 (3)0.024 (2)0.011 (2)0.0023 (18)0.011 (2)
O1W0.025 (4)0.022 (4)0.034 (3)0.006 (3)0.003 (3)0.001 (3)
N10.013 (4)0.019 (4)0.018 (3)0.007 (3)0.005 (2)0.001 (3)
N20.025 (3)0.022 (3)0.019 (3)0.003 (2)0.002 (2)0.002 (2)
C10.017 (3)0.013 (3)0.018 (3)0.001 (2)0.004 (2)0.003 (2)
C20.015 (3)0.015 (3)0.016 (2)0.002 (2)0.003 (2)0.001 (2)
C30.014 (3)0.018 (3)0.020 (3)0.002 (3)0.002 (2)0.001 (2)
C40.016 (3)0.016 (3)0.022 (3)0.002 (2)0.004 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C11.209 (7)N2—C41.314 (7)
O2—C11.305 (7)N2—H5N0.900 (14)
O2—H1H0.876 (14)N2—H4N0.896 (14)
O3—C41.247 (7)C1—C21.513 (8)
O1W—H2W0.880 (14)C2—C31.529 (8)
O1W—H1W0.877 (14)C2—H21.0000
N1—C21.492 (9)C3—C41.509 (9)
N1—H3N0.9100C3—H3A0.9900
N1—H1N0.9100C3—H3B0.9900
N1—H2N0.9100
C1—O2—H1H106 (5)N1—C2—C3112.1 (5)
H1W—O1W—H2W98 (3)C1—C2—C3113.5 (5)
C2—N1—H3N109.5N1—C2—H2107.7
C2—N1—H1N109.5C1—C2—H2107.7
H3N—N1—H1N109.5C3—C2—H2107.7
C2—N1—H2N109.5C4—C3—C2113.1 (5)
H3N—N1—H2N109.5C4—C3—H3A109.0
H1N—N1—H2N109.5C2—C3—H3A109.0
C4—N2—H5N118 (5)C4—C3—H3B109.0
C4—N2—H4N124 (5)C2—C3—H3B109.0
H4N—N2—H5N117 (7)H3A—C3—H3B107.8
O1—C1—O2125.2 (6)O3—C4—N2123.1 (6)
O1—C1—C2122.9 (5)O3—C4—C3119.1 (5)
O2—C1—C2111.9 (5)N2—C4—C3117.8 (5)
N1—C2—C1107.9 (5)
O1—C1—C2—N112.5 (8)N1—C2—C3—C464.3 (7)
O2—C1—C2—N1168.8 (5)C1—C2—C3—C458.3 (7)
O1—C1—C2—C3137.5 (6)C2—C3—C4—O327.3 (8)
O2—C1—C2—C343.9 (7)C2—C3—C4—N2153.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1H···O3i0.88 (1)1.71 (3)2.549 (6)160 (9)
N1—H1N···I10.912.653.528 (7)164
N1—H2N···I1ii0.912.893.591 (8)135
N1—H2N···O30.912.112.766 (8)129
N1—H3N···O1W0.912.032.905 (6)160
N2—H4N···I1iii0.90 (1)3.07 (6)3.659 (5)125 (5)
N2—H4N···O1iv0.90 (1)2.37 (4)3.171 (7)149 (6)
N2—H5N···O1Wv0.90 (1)2.12 (3)2.983 (9)160 (7)
O1W—H1W···I1vi0.88 (1)2.68 (2)3.526 (8)164 (5)
O1W—H2W···I1vii0.88 (1)2.76 (4)3.504 (7)143 (6)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x+2, y+1/2, z+1; (v) x1, y, z1; (vi) x+2, y1/2, z+2; (vii) x+1, y1/2, z+2.
 

References

First citationAarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042–o2044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllan, P., Arlin, J.-B., Kennedy, A. R. & Walls, A. (2018). Acta Cryst. C74, 131–138.  CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBastin, R. J., Bowker, M. J. & Slater, B. J. (2000). Org. Process Res. Dev. 4, 427–435.  Web of Science CrossRef CAS Google Scholar
First citationBriggs, N. E. B., Kennedy, A. R. & Morrison, C. A. (2012). Acta Cryst. B68, 453–464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalcera, J. & Molins, E. (2009). Cryst. Growth Des. 9, 327–334.  Web of Science CSD CrossRef CAS Google Scholar
First citationGillon, A. L., Feeder, N., Davey, R. J. & Storey, R. (2003). Cryst. Growth Des. 3, 663–673.  Web of Science CrossRef CAS Google Scholar
First citationGuenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, Z. & Iqbal, A. (1997). Chem. Soc. Rev. 26, 203–213.  CrossRef CAS Web of Science Google Scholar
First citationKennedy, A. R., Stewart, H., Eremin, K. & Stenger, J. (2012). Chem. Eur. J. 18, 3064–3069.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnott, S. R. V., Wagenblast, E., Khan, S., Kim, S. Y., Soto, M., Wagner, M., Turgeon, M. O., Fish, L., Erard, N., Gable, A. L., Maceli, A. R., Dickopf, S., Papachristou, E. K., D'Santos, C. S., Carey, L. A., Wilkinson, J. E., Harrell, J. C., Perou, C. M., Goodarzi, H., Poulogiannis, G. & Hannon, G. J. (2018). Nature, 554, 378–381.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoraes, L. S. de, Edwards, D., Florence, A. J., Johnston, A., Johnston, B. F., Morrison, C. A. & Kennedy, A. R. (2017). Cryst. Growth Des. 17, 3277–3286.  Google Scholar
First citationMoussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180–o2181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStahl, P. H. & Wermuth, C. G. (2008). Handbook of Pharmaceutical Salts: Properties, Selection and Use. VHCA: Zurich.  Google Scholar
First citationSun, C. C. & Grant, D. J. W. (2001). Pharm. Res. 18, 281–286.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds