research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-iso­propyl-N-(phen­yl)phenyl­glyoxyl­amide

CROSSMARK_Color_square_no_text.svg

aDepartment of Liberal Arts (Sciences & Mathematics), National Institute of, Technology, Kurume College, Fukuoka 830-8555, Japan, bMaterial Engineering Advanced Course, National Institute of Technology, Kurume College, Fukuoka 830-8555, Japan, and cDepartment of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama 2-12-1-H62, Meguro-ku, Tokyo 152-8551, Japan
*Correspondence e-mail: h-miya@kurume-nct.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 20 August 2018; accepted 28 September 2018; online 12 October 2018)

The title compound [systematic name: 2-oxo-N,2-diphenyl-N-(propan-2-yl)acetamide], C17H17NO2, was synthesized and its photoreactive properties in the crystalline state were investigated. In the mol­ecule, the carbonyl group attached to the phenyl ring adopts an s-trans configuration with respect to the isopropyl group. Moreover, the distance between the C atom of the carbonyl group and the N-bound C atom of the isopropyl group is 3.845 (2) Å, which is much longer than 3.2 Å, the threshold for photoreactions to take place in the mol­ecule. As a result, the crystal did not photoreact upon UV light irradiation. In the crystal, the mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds, forming a layer structure parallel to the ab plane.

1. Chemical context

An achiral mol­ecule of N,N-diiso­propyl­aryl­glyoxyl­amide 1a having two isopropyl groups crystallizes in the chiral space group P212121 and is transformed to the optically active β-lactam derivative 2a upon UV light irradiation (Fig. 1[link]; Toda et al., 1987[Toda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413-1414.], 1993[Toda, F. & Miyamoto, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1129-1132.]; Sekine et al., 1989[Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697-699.]; Hashizume et al., 1995[Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1995). Acta Cryst. C51, 929-933.], 1996[Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 61-66.], 1998[Hashizume, D., Kogo, H., Ohashi, Y., Miyamoto, H. & Toda, F. (1998). Anal. Sci. 14, 1187-1188.]). Likewise, N-eth­yl-N-iso­propyl­phenyl­glyoxyl­amide 1b, having an ethyl group and an isopropyl group, forms a chiral crystal (P212121), and its photoirradiation in the solid state yields the optically active β-lactam derivative 2b (Fig. 1[link]; Toda et al., 1997[Toda, F., Miyamoto, H., Koshima, H. & Urbanczyk-Lipkowska, Z. (1997). J. Org. Chem. 62, 9261-9266.]). Therefore, we synthesized the title compound 1c having a phenyl group and an isopropyl group, and investigated whether an optically active β-lactam derivative could be obtained by photoreaction of its crystals. It was found that the photoreaction did not proceed in the solid state. In this paper, an explanation for the lack of photoreactivity is presented based on single crystal X-ray structural analysis.

[Figure 1]
Figure 1
Photoreaction of N-isopropyl-phenyl­glyoxyl­amide derivatives.

2. Structural commentary

In the mol­ecule of 1c, the carbonyl group (C7=O1) adopts an s-trans configuration with respect to the isopropyl group (Fig. 2[link]), in contrast to 1a and 1b, which have s-cis configurations. The torsion angles C7—C8—N1—C15 and O1—C7—C8—O2 are −179.43 (13) and −112.09 (19)°, respectively, in 1c. The corresponding torsion angles are −5.1 (4) and 88.0 (4)°, respectively, in 1a, and −10.4 (3) and 90.7 (2)°, respectively, in 1b; in the case of 1a, which has two isopropyl groups, the torsion angle including the reacting carbon atom was calculated.

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of the title compound 1c. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In order for the Norrish–Yang reaction to take place, the reacting atoms in the mol­ecular structure must be in close proximity. In the crystal structure of 1c, the distance between the γ-hydrogen atom H15 and the carbonyl oxygen atom O1 is 4.565 Å. This inter­atomic distance is much longer than the ideal value of up to about 2.7 Å, at which photoreaction can proceed in the crystal (Konieczny et al., 2018[Konieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299-311.]). Moreover, the distance between the reacting C7 and C15 carbon atoms is 3.845 (2) Å, which is outside the range of ideal values of up to about 3.2 Å. These inter­atomic distances in 1c are large enough to prevent the photoreaction from taking place. In contrast, the corresponding distances are 2.78 (4) and 2.871 (4) Å in 1a, and 2.81 (3) and 2.897 (3) Å in 1b. As those distances are close to the ideal values, the photoreaction could occur in the crystalline state.

3. Supra­molecular features

In the crystal of 1c, the mol­ecules are linked by weak inter­molecular C—H⋯O inter­actions (C10—H10⋯O1i and C13—H13⋯O2ii; symmetry codes as in Table 1[link]), forming a layer structure parallel to the ab plane (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.32 3.2140 (18) 157
C13—H13⋯O2ii 0.95 2.48 3.2895 (18) 143
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A packing diagram viewed along the c axis isfor the title compound 1c, showing C—H⋯O inter­actions as dotted blue lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) generates nine hits for compounds based on the N-iso­propyl­phenyl­glyoxyl­amide fragment shown in Fig. 1[link]. These results include five structural analogues including an isopropyl group (JAGLAE; Sekine et al., 1989[Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697-699.]), a methacryloyl group (NUKSOB; Sakamoto et al., 1997[Sakamoto, M., Takahashi, M., Fujita, T., Watanabe, S., Nishio, T., Iida, I. & Aoyama, H. (1997). J. Org. Chem. 62, 6298-6308.]), an ethyl group (POWMIX; Toda et al., 1997[Toda, F., Miyamoto, H., Koshima, H. & Urbanczyk-Lipkowska, Z. (1997). J. Org. Chem. 62, 9261-9266.]), a tigloyl group (WEPCID01; Sakamoto et al., 1997[Sakamoto, M., Takahashi, M., Fujita, T., Watanabe, S., Nishio, T., Iida, I. & Aoyama, H. (1997). J. Org. Chem. 62, 6298-6308.]) and a 2-tert-butyl­phenyl group (QUPWEE; Jesuraj & Sivaguru, 2010[Jesuraj, J. L. & Sivaguru, J. (2010). Chem. Commun. 46, 4791-4793.]). The last compound has a similar mol­ecular structure to that of 1c, with a corresponding torsion angle of 174.6 (1)°. Of the remaining compounds, three are co-crystals of N,N-diiso­prop­yl­aryl­glyoxyl­amide with other organic compounds (ZEDJOH and ZEDJUN; Hashizume et al., 1994[Hashizume, D., Uekusa, H., Ohashi, Y., Matsugawa, R., Miyamoto, H. & Toda, F. (1994). Bull. Chem. Soc. Jpn, 67, 985-993.]; POWMET; Toda et al., 1997[Toda, F., Miyamoto, H., Koshima, H. & Urbanczyk-Lipkowska, Z. (1997). J. Org. Chem. 62, 9261-9266.]).

5. Synthesis and crystallization

The title compound was prepared according to a reported method (Toda et al., 1987[Toda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413-1414.],1997[Toda, F., Miyamoto, H., Koshima, H. & Urbanczyk-Lipkowska, Z. (1997). J. Org. Chem. 62, 9261-9266.]; Sekine et al., 1989[Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697-699.]): chlorin­ation of the phenyl­glyoxylic acid with thionyl chloride followed by reaction with N-iso­propyl­aniline and tri­ethyl­amine. Thus, to an ice-cooled solution of N-iso­propyl­aniline (0.72 ml, 5 mmol) and tri­ethyl­amine (0.70 ml, 5 mmol) in dry diethyl ether (2 ml) was added a solution of benzoyl­formyl chloride (0.84 g, 5 mmol) in dry diethyl ether (2 ml), and the reaction mixture was stirred for 3 h in an ice bath. After filtration of tri­ethyl­ammonium chloride, the filtrate was washed with dilute HCl and aqueous NaHCO3 and dried over MgSO4. The crude product was recrystallized from benzene to give 1c as colourless prisms (0.5968 g, 22.4% yield, m.p. 397–401 K); IR (KBr): νmax 1643 and 1681 cm−1; 1H NMR (CDCl3): δH 1.21 (d, 6H, CHMe2), 5.10 (sep, 1H, N—CH), 7.07–7.80 (m, 10H, ArH). Single crystals of 1c suitable for X-ray diffraction were grown from a benzene solution.

6. Photoreaction in the solid state

1c (51.3 mg, 0.21 mmol) was pulverized in a mortar and irradiated with a 400 W high pressure mercury lamp for 20 h. No reaction took place, as determined by TLC, IR and NMR spectroscopy.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned in geometrically calculated positions (C—H = 0.95–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C17H17NO2
Mr 267.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 93
a, b, c (Å) 5.8354 (5), 16.5123 (14), 15.1330 (12)
β (°) 93.837 (2)
V3) 1454.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.18 × 0.14
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.642, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 13857, 3316, 2572
Rint 0.043
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.13
No. of reflections 3316
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.21
Computer programs: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-N,2-diphenyl-N-(propan-2-yl)acetamide top
Crystal data top
C17H17NO2F(000) = 568
Mr = 267.31Dx = 1.220 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 5.8354 (5) ÅCell parameters from 13857 reflections
b = 16.5123 (14) Åθ = 3.7–27.5°
c = 15.1330 (12) ŵ = 0.08 mm1
β = 93.837 (2)°T = 93 K
V = 1454.9 (2) Å3Block, colorless
Z = 40.25 × 0.18 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3316 independent reflections
Radiation source: rotating anode X-ray2572 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.043
ω–scanθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 76
Tmin = 0.642, Tmax = 0.989k = 2121
13857 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.1802P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3316 reflectionsΔρmax = 0.36 e Å3
183 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9019 (2)0.43953 (8)0.30276 (9)0.0606 (4)
O20.6189 (3)0.53493 (7)0.14588 (8)0.0580 (4)
N10.5441 (2)0.40017 (7)0.15732 (7)0.0296 (3)
C10.7452 (3)0.54690 (9)0.42792 (9)0.0349 (3)
H10.8903800.5218880.4404420.042*
C20.6582 (3)0.59840 (10)0.48934 (10)0.0419 (4)
H20.7428600.6087010.5440100.050*
C30.4469 (3)0.63490 (10)0.47073 (11)0.0444 (4)
H30.3865150.6704650.5127010.053*
C40.3231 (3)0.61973 (10)0.39107 (11)0.0416 (4)
H40.1783590.6450410.3786230.050*
C50.4093 (2)0.56796 (9)0.32967 (9)0.0324 (3)
H50.3235660.5574510.2752950.039*
C60.6215 (2)0.53134 (8)0.34761 (9)0.0270 (3)
C70.7246 (2)0.47610 (8)0.28442 (10)0.0328 (3)
C80.6187 (3)0.47218 (8)0.18929 (10)0.0341 (3)
C90.5209 (2)0.33160 (7)0.21501 (8)0.0244 (3)
C100.3298 (2)0.32551 (9)0.26361 (9)0.0306 (3)
H100.2162810.3668150.2600710.037*
C110.3046 (3)0.25880 (10)0.31762 (9)0.0424 (4)
H110.1733300.2542940.3511770.051*
C120.4701 (3)0.19876 (9)0.32281 (10)0.0463 (4)
H120.4517590.1528020.3594260.056*
C130.6617 (3)0.20564 (9)0.27481 (11)0.0444 (4)
H130.7764650.1647690.2792850.053*
C140.6880 (2)0.27157 (9)0.22024 (10)0.0345 (3)
H140.8191390.2758310.1865910.041*
C150.4431 (3)0.39643 (8)0.06438 (9)0.0357 (4)
H150.5090440.4425440.0315660.043*
C160.1885 (4)0.40866 (18)0.06136 (13)0.0788 (8)
H16A0.1281320.4138240.0003830.118*
H16B0.1540330.4580400.0938610.118*
H16C0.1165870.3621050.0886430.118*
C170.5082 (4)0.31954 (11)0.01865 (11)0.0496 (5)
H17A0.4545870.3221800.0440540.074*
H17B0.4367960.2731840.0464720.074*
H17C0.6755580.3132610.0237820.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0388 (7)0.0666 (9)0.0745 (9)0.0178 (6)0.0104 (6)0.0379 (7)
O20.1117 (11)0.0272 (6)0.0356 (6)0.0214 (6)0.0097 (7)0.0026 (5)
N10.0430 (7)0.0230 (6)0.0231 (5)0.0042 (5)0.0039 (5)0.0016 (4)
C10.0364 (8)0.0353 (7)0.0318 (7)0.0036 (6)0.0059 (6)0.0020 (6)
C20.0518 (9)0.0446 (9)0.0286 (7)0.0014 (7)0.0024 (7)0.0067 (6)
C30.0558 (10)0.0418 (9)0.0365 (8)0.0068 (7)0.0099 (7)0.0095 (7)
C40.0378 (8)0.0411 (8)0.0458 (9)0.0109 (6)0.0025 (7)0.0034 (7)
C50.0344 (7)0.0327 (7)0.0294 (7)0.0003 (6)0.0029 (6)0.0005 (5)
C60.0313 (7)0.0229 (6)0.0267 (6)0.0019 (5)0.0017 (6)0.0001 (5)
C70.0318 (7)0.0289 (7)0.0379 (8)0.0024 (5)0.0025 (6)0.0080 (6)
C80.0470 (9)0.0261 (7)0.0301 (7)0.0068 (6)0.0103 (6)0.0050 (5)
C90.0296 (7)0.0215 (6)0.0216 (6)0.0004 (5)0.0011 (5)0.0024 (5)
C100.0318 (7)0.0350 (7)0.0250 (6)0.0047 (5)0.0023 (6)0.0006 (5)
C110.0506 (9)0.0487 (9)0.0283 (7)0.0114 (7)0.0058 (7)0.0063 (7)
C120.0755 (12)0.0301 (8)0.0312 (8)0.0093 (7)0.0121 (8)0.0097 (6)
C130.0600 (11)0.0278 (7)0.0427 (8)0.0139 (7)0.0162 (8)0.0033 (6)
C140.0325 (7)0.0347 (7)0.0359 (7)0.0066 (6)0.0003 (6)0.0067 (6)
C150.0603 (10)0.0256 (7)0.0211 (6)0.0041 (6)0.0022 (6)0.0004 (5)
C160.0715 (14)0.128 (2)0.0338 (9)0.0442 (14)0.0149 (9)0.0091 (11)
C170.0712 (12)0.0450 (9)0.0318 (8)0.0037 (8)0.0030 (8)0.0123 (7)
Geometric parameters (Å, º) top
O1—C71.2141 (18)C9—C141.3890 (18)
O2—C81.2269 (18)C10—C111.385 (2)
N1—C81.3451 (17)C10—H100.9500
N1—C91.4417 (16)C11—C121.382 (2)
N1—C151.4893 (17)C11—H110.9500
C1—C21.381 (2)C12—C131.378 (3)
C1—C61.3952 (19)C12—H120.9500
C1—H10.9500C13—C141.381 (2)
C2—C31.385 (2)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—C41.386 (2)C15—C161.497 (3)
C3—H30.9500C15—C171.507 (2)
C4—C51.382 (2)C15—H151.0000
C4—H40.9500C16—H16A0.9800
C5—C61.3883 (19)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—C71.4781 (19)C17—H17A0.9800
C7—C81.529 (2)C17—H17B0.9800
C9—C101.3796 (19)C17—H17C0.9800
C8—N1—C9121.17 (11)C11—C10—H10120.2
C8—N1—C15118.33 (11)C12—C11—C10120.15 (15)
C9—N1—C15119.47 (10)C12—C11—H11119.9
C2—C1—C6120.50 (14)C10—C11—H11119.9
C2—C1—H1119.8C13—C12—C11119.95 (14)
C6—C1—H1119.8C13—C12—H12120.0
C1—C2—C3119.57 (14)C11—C12—H12120.0
C1—C2—H2120.2C12—C13—C14120.43 (14)
C3—C2—H2120.2C12—C13—H13119.8
C2—C3—C4120.23 (14)C14—C13—H13119.8
C2—C3—H3119.9C13—C14—C9119.41 (14)
C4—C3—H3119.9C13—C14—H14120.3
C5—C4—C3120.31 (14)C9—C14—H14120.3
C5—C4—H4119.8N1—C15—C16110.62 (13)
C3—C4—H4119.8N1—C15—C17111.89 (12)
C4—C5—C6119.86 (13)C16—C15—C17112.32 (16)
C4—C5—H5120.1N1—C15—H15107.2
C6—C5—H5120.1C16—C15—H15107.2
C5—C6—C1119.53 (13)C17—C15—H15107.2
C5—C6—C7122.58 (12)C15—C16—H16A109.5
C1—C6—C7117.90 (12)C15—C16—H16B109.5
O1—C7—C6122.44 (13)H16A—C16—H16B109.5
O1—C7—C8118.59 (13)C15—C16—H16C109.5
C6—C7—C8118.61 (12)H16A—C16—H16C109.5
O2—C8—N1124.45 (13)H16B—C16—H16C109.5
O2—C8—C7116.97 (12)C15—C17—H17A109.5
N1—C8—C7118.47 (12)C15—C17—H17B109.5
C10—C9—C14120.44 (13)H17A—C17—H17B109.5
C10—C9—N1119.48 (11)C15—C17—H17C109.5
C14—C9—N1120.07 (12)H17A—C17—H17C109.5
C9—C10—C11119.61 (13)H17B—C17—H17C109.5
C9—C10—H10120.2
C6—C1—C2—C30.2 (2)O1—C7—C8—N164.3 (2)
C1—C2—C3—C40.2 (3)C6—C7—C8—N1122.42 (15)
C2—C3—C4—C50.1 (3)C8—N1—C9—C1080.08 (17)
C3—C4—C5—C60.4 (2)C15—N1—C9—C1088.16 (15)
C4—C5—C6—C10.4 (2)C8—N1—C9—C14101.03 (16)
C4—C5—C6—C7179.31 (14)C15—N1—C9—C1490.73 (16)
C2—C1—C6—C50.1 (2)C14—C9—C10—C110.3 (2)
C2—C1—C6—C7179.61 (14)N1—C9—C10—C11178.59 (12)
C5—C6—C7—O1174.46 (15)C9—C10—C11—C120.1 (2)
C1—C6—C7—O15.9 (2)C10—C11—C12—C130.6 (2)
C5—C6—C7—C812.5 (2)C11—C12—C13—C141.1 (2)
C1—C6—C7—C8167.15 (13)C12—C13—C14—C90.9 (2)
C9—N1—C8—O2171.72 (15)C10—C9—C14—C130.2 (2)
C15—N1—C8—O23.3 (2)N1—C9—C14—C13179.05 (12)
C9—N1—C8—C712.2 (2)C8—N1—C15—C1691.50 (19)
C15—N1—C8—C7179.43 (13)C9—N1—C15—C1677.08 (19)
O1—C7—C8—O2112.09 (19)C8—N1—C15—C17142.45 (15)
C6—C7—C8—O261.20 (19)C9—N1—C15—C1748.97 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.323.2140 (18)157
C13—H13···O2ii0.952.483.2895 (18)143
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Funding information

A part of this work was supported by JSPS KAKENHI Grant Nos. JP17K05745 and JP18H04504.

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHashizume, D., Kogo, H., Ohashi, Y., Miyamoto, H. & Toda, F. (1998). Anal. Sci. 14, 1187–1188.  Web of Science CrossRef Google Scholar
First citationHashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1995). Acta Cryst. C51, 929–933.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 61–66.  CrossRef Web of Science Google Scholar
First citationHashizume, D., Uekusa, H., Ohashi, Y., Matsugawa, R., Miyamoto, H. & Toda, F. (1994). Bull. Chem. Soc. Jpn, 67, 985–993.  CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJesuraj, J. L. & Sivaguru, J. (2010). Chem. Commun. 46, 4791–4793.  Web of Science CrossRef Google Scholar
First citationKonieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299–311.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakamoto, M., Takahashi, M., Fujita, T., Watanabe, S., Nishio, T., Iida, I. & Aoyama, H. (1997). J. Org. Chem. 62, 6298–6308.  CrossRef Web of Science Google Scholar
First citationSekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697–699.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToda, F. & Miyamoto, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1129–1132.  CrossRef Web of Science Google Scholar
First citationToda, F., Miyamoto, H., Koshima, H. & Urbanczyk-Lipkowska, Z. (1997). J. Org. Chem. 62, 9261–9266.  Web of Science CrossRef Google Scholar
First citationToda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413–1414.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds