research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and thermal properties of bis­­[μ-2-(meth­­oxy­carbonyl­hydrazinyl­­idene)acetato-κ3N1,O:O]bis­­[di­aqua­(thio­cyanato-κN)manganese(II)] tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, bThe University College, Sungkyunkwan University, Suwon 440-746, Republic of Korea, cDepartment of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea, and dDepartment of Chemistry, Howard University, Washington, DC 20059, USA
*Correspondence e-mail: thathanpremkumar@gmail.com, drsgovind@yahoo.co.in

Edited by J. Jasinsk, Keene State College, USA (Received 8 October 2018; accepted 20 October 2018; online 26 October 2018)

The title compound, [Mn2(C4H5N2O4)2(NCS)2(H2O)4]·4H2O (I), exists as a centrosymmetric dimer. Each dimeric unit consists of tridentate (O,O,N)-chelating Schiff bases with symmetry-maintained μ-O-bridged carboxyl­ate anions, terminally bound thio­cyanate anions, and ligated and solvated water mol­ecules. The complex exhibits a distorted octa­hedron geometry and the centrosymmetric μ-O-bridged carboxyl­ate anions connect the two manganese atoms to form an M2O2 ring. In the crystal, the mol­ecules are inter­linked via strong N—H⋯O and O—H⋯O hydrogen-bonding contacts and weak O—H⋯S inter­molecular inter­actions, forming a three-dimensional mol­ecular network.

1. Chemical context

Hydrazine, di­nitro­gen tetra­hydride (N2H4), is the simplest di­amine and parent of innumerable organic derivatives. Among them, carbaza­tes (esters of hydrazine­carb­oxy­lic acid, NH2-NH-COO-R, where R = CH3, C2H5, CH2C6H5 etc) are inter­esting as ligands in view of their variety of potential donor atoms such as oxygen and nitro­gen. Inter­estingly, these neutral mol­ecules can be expected to exhibit only one common coordination mode, i.e. N,O-chelating bidentate. This has been clearly observed in many metal complexes with a variety of anions such as formate (Srinivasan et al., 2011[Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2011). J. Coord. Chem. 64, 3541-3550.]), benzoate (Kathiresan et al., 2012[Kathiresan, A., Srinivasan, K., Brinda, S., Nethaji, M. & Govindarajan, S. (2012). Transition Met. Chem. 37, 393-397.]), thio­cyanate (Srinivasan et al., 2014a[Srinivasan, K., Kathiresan, A., Harrison, W. T. A. & Govindarajan, S. (2014a). J. Coord. Chem. 67, 3324-3334.],b[Srinivasan, K., Kathiresan, A., Govindarajan, S., Aughey, J. T. & Harrison, W. T. A. (2014b). J. Coord. Chem. 67, 857-869.]), nitrate (Zhang et al., 2005[Zhang, T. L., Song, J. C., Zhang, J. G., Ma, G. & Yu, K. (2005). Z. Naturforsch. Teil B, 60, 505-510.]; Srinivasan et al., 2007[Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m3028-m3029.],2008[Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2008). Acta Cryst. E64, m222-m223.]) and perchlorate (Chen et al., 2016[Chen, S., Guo, W. M. & Zhang, T. L. (2016). J. Coord. Chem. 69, 2610-2619.], Sitong et al., 2016[Sitong, C., Weiming, G., Bo, Z., Tonglai, Z. & Li, Y. (2016). Polyhedron, 117, 110-116.]). Apart from their coordination ability, alkyl carbaza­tes can also undergo condensation reactions; the hydrazinic part of the terminal amine group can react with the carbonyl group of aldehydes or ketones to form Schiff bases. In this regard, Schiff bases and their CoIII, NiII, PdII and FeII complexes based on (2-phenyl­phosphino)benzaldehyde with ethyl carbazate (Milenković et al., 2013a[Milenković, M., Bacchi, A., Cantoni, G., Radulović, S., Gligorijević, N., Aranđelović, S., Sladić, D., Vujčić, M., Mitić, D. & Anđelković, K. (2013a). Inorg. Chim. Acta, 395, 33-43.],b[Milenković, M., Bacchi, A., Cantoni, G., Vilipić, J., Sladić, D., Vujčić, M., Gligorijević, N., Jovanović, K., Radulović, S. & Anđelković, K. (2013b). Eur. J. Med. Chem. 68, 111-120.], 2014[Milenković, M., Cantoni, G., Bacchi, A., Spasojević, V., Milenković, M., Sladić, D., Krstić, N. & Anđelković, K. (2014). Polyhedron, 80, 47-52.]) have been reported. Recently, we have also reported Schiff bases generated from analogous benzyl carbazate with alkyl and heteroaryl ketones, and their metal complexes (Nithya et al., 2016[Nithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220-231.], 2017a[Nithya, P., Simpson, J. & Govindarajan, S. (2017a). Inorg. Chim. Acta, 467, 180-193.],b[Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017b). J. Therm. Anal. Calorim. 129, 1001-1019.], 2018a[Nithya, P., Rajamanikandan, R., Simpson, J., Ilanchelian, M. & Govindarajan, S. (2018a). Polyhedron, 145, 200-217.],b[Nithya, P., Simpson, J. & Govindarajan, S. (2018b). Polyhedron, 141, 5-16.]). However, no work involving Schiff base complexes of alkyl carbaza­tes with an aldehydic, or α-keto acid, has been reported so far, except from our own recent report of a Schiff base generated from methyl carbazate and α-ketoglutaric acid, and its silver(I) complex (Parveen et al., 2018[Parveen, S., Govindarajan, S., Puschmann, H. & Revathi, R. (2018). Inorg. Chim. Acta, 477, 66-74.]). In a continuation of our investigations, the title complex (I)[link] was prepared by a template method starting from manganese(II) nitrate with a Schiff base ligand. The product of condensation between methyl carbazate and glyoxylic acid, formed in situ in aqueous solution containing ammonium thio­cyanate.

[Scheme 1]

2. Structural commentary

2.1. General structural details

The manganese title compound crystallizes in the monoclinic space group P21/n and exists as a centrosymmetric dimer (Fig. 1[link]). The asymmetric unit consists of an Mn atom, a tridentate Schiff base ligand, an N-bounded thio­cyanate moiety, and two ligated and two solvated water mol­ecules. The manganese atom is surrounded in a distorted octa­hedral geometry by symmetry-related μ-O-bridged carboxyl­ate anions, one azomethine nitro­gen, an N-bounded NCS anion and two ligated water mol­ecules with an MnN2O4 core. The axial sites are occupied by one of the coordinated water mol­ecules (O2W) and the N-bonded NCS anion, whereas the μ-O-bridged carboxyl­ate anions, azomethine nitro­gen atom and a coordinated water mol­ecule (O1W) occupy the equatorial positions. The two manganese atoms are connected via centrosymmetrically related μ-O-bridged carboxyl­ate anions, forming a rhomboidal Mn2O2 unit about an inversion centre.

[Figure 1]
Figure 1
Mol­ecular structure of the title complex (I)[link], showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The mol­ecule is located about an inversion centre and the unlabelled atoms are generated by the symmetry operation (−x + 1, −y, −z + 1).

2.2. Specific structural details

The separation of the Mn atoms is 3.645 (3) Å. The Mn—N(iso­thio­cyanato) and Mn—N(azomethine) distances are 2.1289 (11) and 2.3388 (10) Å and the Mn—O distances involving the coordinated water mol­ecules and μ-O-bridged carboxyl­ate anions are 2.1448 (9), 2.1905 (9) and 2.2606 (8), 2.2985 (8) Å, respectively. The Mn—N—C—S torsion angle in the NCS moiety is 103.5 (4)° and the bond angles for the coordinated atoms vary from 68.99 (3)–132.57 (4)°, indicating a distorted geometry.

3. Supra­molecular features

The crystal structure of (I)[link] contains both coordinated and solvated water mol­ecules. Inter- and intra-mol­ecular hydrogen-bonding inter­actions (Table 1[link]) stabilize the supra­molecular three-dimensional network. The N2—H2N⋯O2v [2.7971 (13) Å] hydrogen bond between adjacent dimers forms chains extending along the ac diagonal. The weak O4W—H4W1⋯S1iv inter­action [3.3159 (12) Å] and O2W—H2W1⋯O4W hydrogen bond [2.7322 (14) Å] link the dimers, generating a two-dimensional network as shown in Fig. 2[link]. The ligated and solvated water mol­ecules O1W, O3W and O4W are involved in O—H⋯O hydrogen-bonding inter­actions [2.733 (14)–3.2158 (15) Å, Table 1[link]] that stack the complex mol­ecules along the b-axis direction. These contacts combine to generate several ring motifs (Fig. 3[link]) viz. R11(6), R23(10) and R44(14) that stabilize the three-dimensional supra­molecular network (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 0.83 (2) 1.92 (2) 2.7158 (13) 160 (2)
O1W—H1W2⋯O3W 0.80 (2) 2.07 (2) 2.8627 (15) 174 (2)
O2W—H2W1⋯O4W 0.79 (2) 1.94 (2) 2.7332 (14) 175 (2)
O2W—H2W2⋯O3ii 0.82 (3) 2.11 (3) 2.8852 (13) 159 (2)
O2W—H2W2⋯O1Wii 0.82 (3) 2.54 (2) 3.0865 (13) 125 (2)
O3W—H3W1⋯O4Wii 0.79 (2) 2.09 (3) 2.8264 (17) 155 (2)
O3W—H3W2⋯O4iii 0.80 (3) 2.54 (3) 3.2158 (15) 144 (2)
O4W—H4W1⋯S1iv 0.87 (3) 2.52 (3) 3.3159 (12) 153 (2)
O4W—H4W2⋯O3Wiv 0.81 (2) 1.97 (2) 2.7754 (16) 173 (2)
N2—H2N⋯O2v 0.83 (2) 1.97 (2) 2.7971 (13) 174 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of a two-dimensional array of (I)[link] showing N—H⋯O and O—H⋯O hydrogen bonds and weak O—H⋯S inter­molecular inter­actions (green lines) in a projection along the b axis.
[Figure 3]
Figure 3
View of hydrogen-bonding inter­actions (green lines) along the ac plane forming various ring motifs to further stabilize the three-dimensional network.
[Figure 4]
Figure 4
Overall packing view of the three-dimensional network for (I)[link], viewed along the b axis, showing N—H⋯O and O—H⋯O hydrogen bonds and weak O—H⋯S inter­molecular inter­actions (green lines) and the stacking of (I)[link] along the b axis.

4. Thermal properties

The thermal decomposition behaviour of the title complex was studied by simultaneous TG–DTG analyses recorded in a nitro­gen atmosphere in the temperature range 30–800°C, as shown in Fig. 5[link]. The TG curve displays the combined mass loss of 20.5% (calculated 21.8%) in the temperature range 30–140°C corresponding to dehydration of both the solvated and coordinated water mol­ecules. The anhydrous compound then shows continuous decomposition between 140 and 600°C to give manganese sulfide as the end product (mass loss observed 73.6%, calculated 72.50%). The DTG curve shows a doublet (40 and 80°C) for dehydration and a multiplet (150, 164, 255 and 321°C) for the decomposition of the anhydrous compound in accordance with TG mass loss.

[Figure 5]
Figure 5
Simultaneous TG/DTG (N2 atmosphere) analysis of the title complex (I)[link].

5. Database survey

There are a few structures of metal complexes in the crystallographic literature with simple hydrazones based on glyoxylic acid and salicyloyl hydrazine (Liu et al., 2010[Liu, F., Zhang, W. P. & He, S. Y. (2010). Russ. J. Coord. Chem. 36, 105-112.]) and thio­semicarbazide (Dodoff et al., 2006[Dodoff, N. I., Kovala-Demertzi, D., Kubiak, M., Kuduk-Jaworska, J., Kochel, A. & Gorneva, G. A. (2006). Z. Naturforsch. Teil B, 61, 1110-1122.]; Huseynova et al., 2018[Huseynova, M., Taslimi, P., Medjidov, A., Farzaliyev, V., Aliyeva, M., Gondolova, G., Şahin, O., Yalçın, B., Sujayev, A., Orman, E. B., Özkaya, A. R. & Gulçin,İ. (2018). Polyhedron, 155, 25-33.]). In the former salicyloyl hydrazone complex of cadmium, the Schiff base acts as a tetra­dentate (O,N,O,O) ligand with one of the carboxyl­ate oxygen atoms bridging the cadmium centers, leading to a dimer, whereas in the thio­semicarbazone complexes of Zn, Pd, Pt, Co, and Ni (Milenković et al., 2013a[Milenković, M., Bacchi, A., Cantoni, G., Radulović, S., Gligorijević, N., Aranđelović, S., Sladić, D., Vujčić, M., Mitić, D. & Anđelković, K. (2013a). Inorg. Chim. Acta, 395, 33-43.],b[Milenković, M., Bacchi, A., Cantoni, G., Vilipić, J., Sladić, D., Vujčić, M., Gligorijević, N., Jovanović, K., Radulović, S. & Anđelković, K. (2013b). Eur. J. Med. Chem. 68, 111-120.], 2014[Milenković, M., Cantoni, G., Bacchi, A., Spasojević, V., Milenković, M., Sladić, D., Krstić, N. & Anđelković, K. (2014). Polyhedron, 80, 47-52.]), the ligand adopts a tridentate (O,N,O) coordination mode. Recently, we have reported a silver(I) complex of 2-(meth­oxy­carbonyl­hydrazono)penta­nedioic acid in which the neutral as well as monoanionic Schiff base behaves as a tridentate (O,N,O) group, leading to an octa­hedral coordination of the silver atom (Parveen et al., 2018[Parveen, S., Govindarajan, S., Puschmann, H. & Revathi, R. (2018). Inorg. Chim. Acta, 477, 66-74.]).

6. Synthesis and crystallization

Elemental analyses for carbon, hydrogen and nitro­gen were recorded using a Vario-ELIII elemental analyzer. The IR spectrum was recorded using a JASCO-4100 spectrophotometer and KBr pellets in the range of 4000–400.00 cm−1. Simultaneous TG/DTG (TG/DTG) analyses were carried out using a TA instrument, SDT Q600 thermal analyzer, in a flowing nitro­gen atmosphere with a heating rate of 10°C min−1.

Stoichiometric qu­anti­ties of glyoxylic acid (0.184 g, 2 mmol), ethyl­carbazate (0.208 g, 2 mmol) and ammonium thio­cyanate (0.152 g, 2 mmol) were dissolved in 30 mL of double-distilled water. To this homogeneous solution, Mn(NO3)2·6H2O (0.287 g, 1 mmol) dissolved in 10.00 mL of double-distilled water was added dropwise, the pH of the resulting solution was noted as 3.45. The above clear solution was kept over a water-bath until the solution was reduced to ca 15 mL and allowed to stand at room temperature for slow crystallization. After two days, colourless rod-shaped crystals were obtained and filtered off, washed with ice-cold water and air dried. The product is soluble in water, methanol and ethanol and insoluble in diethyl ether. In the absence of ammonium thio­cyanate, the reaction did not yield any desired product. Yield: 64%. Analysis calculated for C10H26Mn2N6O16S2 (I)[link]: C, 29.25, H, 3.44, N, 13.57; found: C, 29.20; H, 3.49; N, 13.55. Metal (%): calculated 14.27 (found: 14.06), FT–IR (KBr, cm−1): 3520 (b) [ν(O—H)], 3206 (b) [ν(N—H)], 2096 (s) [ν(C≡N)], 1705 (s) [ν(C=O], 1627 (m) [νasym (C=O)], 1555 (s) [ν(C=N)], 1397 (s) [νsym(C=O)], 1067 (s) [ν(N—N)].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with carbon–hydrogen bond lengths of 0.95 Å for alkene C—H and 0.98 Å for CH3 groups, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and 1.2 for C—H groups, respectively. Positions and Uiso values of water and amine H atoms were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula [Mn2(C4H5N2O4)2(NCS)2(H2O)4]·4H2O
Mr 660.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 9.7060 (3), 8.3654 (3), 16.0082 (6)
β (°) 90.653 (2)
V3) 1299.69 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.21
Crystal size (mm) 0.46 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.658, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12223, 3915, 3408
Rint 0.024
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.05
No. of reflections 3915
No. of parameters 200
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011).

Bis[µ-2-(methoxycarbonylhydrazinylidene)acetato-κ3N1,O:O]bis[diaqua(thiocyanato-κN)manganese(II)] tetrahydrate top
Crystal data top
[Mn2(C4H5N2O4)2(NCS)2(H2O)4]·4H2OF(000) = 676
Mr = 660.37Dx = 1.687 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7060 (3) ÅCell parameters from 6980 reflections
b = 8.3654 (3) Åθ = 2.5–30.6°
c = 16.0082 (6) ŵ = 1.21 mm1
β = 90.653 (2)°T = 120 K
V = 1299.69 (8) Å3Rod, colourless
Z = 20.46 × 0.24 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
3915 independent reflections
Radiation source: fine focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and phi scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.658, Tmax = 0.746k = 1111
12223 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.5439P]
where P = (Fo2 + 2Fc2)/3
3915 reflections(Δ/σ)max = 0.003
200 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.59833 (2)0.18522 (2)0.50685 (2)0.00920 (5)
S10.95128 (4)0.10626 (4)0.66382 (2)0.02029 (8)
O10.55108 (9)0.03030 (10)0.42219 (5)0.01108 (16)
O20.60023 (10)0.15606 (10)0.30205 (5)0.01546 (18)
O30.74296 (10)0.44631 (11)0.48516 (5)0.01696 (18)
O40.87386 (10)0.57439 (11)0.38944 (6)0.0191 (2)
O1W0.57632 (11)0.34713 (11)0.61341 (6)0.01577 (18)
H1W10.528 (2)0.303 (3)0.6488 (14)0.046 (6)*
H1W20.646 (2)0.379 (3)0.6349 (14)0.041 (6)*
O2W0.42696 (10)0.30284 (11)0.44755 (6)0.01524 (18)
H2W10.414 (2)0.292 (2)0.3989 (13)0.028 (5)*
H2W20.396 (2)0.389 (3)0.4635 (15)0.055 (7)*
O3W0.82278 (12)0.48163 (13)0.68375 (7)0.0247 (2)
H3W10.787 (3)0.562 (3)0.6975 (15)0.053 (7)*
H3W20.887 (3)0.509 (3)0.6565 (16)0.062 (8)*
O4W0.38041 (13)0.28790 (14)0.27902 (7)0.0265 (2)
H4W10.426 (3)0.353 (3)0.2471 (15)0.057 (7)*
H4W20.370 (2)0.206 (3)0.2527 (14)0.044 (6)*
N10.70220 (10)0.21438 (11)0.37662 (6)0.01068 (19)
N20.77597 (11)0.34553 (12)0.35488 (6)0.0123 (2)
H2N0.8177 (18)0.349 (2)0.3097 (11)0.018 (4)*
N110.77393 (12)0.06901 (13)0.55969 (7)0.0184 (2)
C110.84668 (13)0.00547 (15)0.60238 (8)0.0140 (2)
C10.60689 (12)0.03982 (14)0.35114 (7)0.0107 (2)
C20.68949 (12)0.10135 (14)0.32384 (7)0.0117 (2)
H2A0.7301390.1063960.2701980.014*
C30.79375 (13)0.45612 (14)0.41613 (7)0.0125 (2)
C40.89246 (17)0.70729 (17)0.44739 (9)0.0256 (3)
H4A0.9470180.7912320.4207580.038*
H4B0.9406260.6696410.4977960.038*
H4C0.8022290.7503340.4625540.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01079 (9)0.00955 (9)0.00729 (8)0.00015 (6)0.00089 (6)0.00039 (6)
S10.01857 (16)0.02354 (17)0.01866 (15)0.00707 (12)0.00337 (12)0.00329 (13)
O10.0138 (4)0.0112 (4)0.0083 (4)0.0019 (3)0.0033 (3)0.0009 (3)
O20.0215 (5)0.0138 (4)0.0113 (4)0.0043 (3)0.0066 (3)0.0045 (3)
O30.0233 (5)0.0163 (4)0.0114 (4)0.0045 (4)0.0061 (3)0.0022 (3)
O40.0254 (5)0.0149 (4)0.0170 (4)0.0098 (4)0.0085 (4)0.0039 (3)
O1W0.0211 (5)0.0149 (4)0.0114 (4)0.0064 (4)0.0040 (4)0.0029 (3)
O2W0.0185 (5)0.0151 (4)0.0121 (4)0.0051 (3)0.0019 (3)0.0013 (3)
O3W0.0230 (6)0.0228 (5)0.0284 (5)0.0034 (4)0.0049 (4)0.0034 (4)
O4W0.0377 (6)0.0246 (5)0.0171 (5)0.0057 (5)0.0050 (4)0.0004 (4)
N10.0108 (5)0.0092 (4)0.0121 (4)0.0004 (3)0.0019 (3)0.0019 (4)
N20.0165 (5)0.0102 (4)0.0102 (4)0.0032 (4)0.0058 (4)0.0003 (4)
N110.0173 (6)0.0175 (5)0.0202 (5)0.0004 (4)0.0033 (4)0.0005 (4)
C110.0130 (6)0.0140 (5)0.0151 (5)0.0015 (4)0.0009 (4)0.0018 (4)
C10.0115 (5)0.0107 (5)0.0098 (5)0.0003 (4)0.0005 (4)0.0002 (4)
C20.0139 (6)0.0123 (5)0.0090 (5)0.0004 (4)0.0033 (4)0.0002 (4)
C30.0125 (6)0.0113 (5)0.0136 (5)0.0009 (4)0.0027 (4)0.0004 (4)
C40.0331 (8)0.0186 (6)0.0254 (7)0.0131 (6)0.0074 (6)0.0091 (5)
Geometric parameters (Å, º) top
Mn1—N112.1289 (11)O2W—H2W20.82 (3)
Mn1—O2W2.1448 (9)O3W—H3W10.79 (2)
Mn1—O1W2.1905 (9)O3W—H3W20.80 (3)
Mn1—O1i2.2606 (8)O4W—H4W10.87 (3)
Mn1—O12.2985 (8)O4W—H4W20.81 (2)
Mn1—N12.3388 (10)N1—C21.2731 (15)
Mn1—O32.6216 (9)N1—N21.3576 (14)
S1—C111.6390 (13)N2—C31.3577 (15)
O1—C11.2679 (13)N2—H2N0.833 (17)
O2—C11.2515 (14)N11—C111.1588 (17)
O3—C31.2177 (14)C1—C21.4955 (16)
O4—C31.3318 (14)C2—H2A0.9500
O4—C41.4578 (16)C4—H4A0.9800
O1W—H1W10.83 (2)C4—H4B0.9800
O1W—H1W20.80 (2)C4—H4C0.9800
O2W—H2W10.79 (2)
N11—Mn1—O2W177.02 (4)Mn1—O2W—H2W1119.7 (14)
N11—Mn1—O1W93.31 (4)Mn1—O2W—H2W2123.1 (17)
O2W—Mn1—O1W88.79 (4)H2W1—O2W—H2W2111 (2)
N11—Mn1—O1i93.09 (4)H3W1—O3W—H3W2105 (2)
O2W—Mn1—O1i89.24 (3)H4W1—O4W—H4W2106 (2)
O1W—Mn1—O1i83.93 (3)C2—N1—N2118.52 (10)
N11—Mn1—O191.69 (4)C2—N1—Mn1118.34 (8)
O2W—Mn1—O187.15 (3)N2—N1—Mn1123.15 (7)
O1W—Mn1—O1157.45 (3)N1—N2—C3115.37 (10)
O1i—Mn1—O173.84 (3)N1—N2—H2N120.8 (12)
N11—Mn1—N192.90 (4)C3—N2—H2N123.0 (12)
O2W—Mn1—N184.12 (4)C11—N11—Mn1163.64 (10)
O1W—Mn1—N1132.57 (4)N11—C11—S1178.43 (12)
O1i—Mn1—N1142.48 (3)O2—C1—O1126.34 (11)
O1—Mn1—N168.99 (3)O2—C1—C2117.00 (10)
N11—Mn1—O390.32 (4)O1—C1—C2116.65 (10)
O2W—Mn1—O388.45 (3)N1—C2—C1116.15 (10)
O1W—Mn1—O369.22 (3)N1—C2—H2A121.9
O1i—Mn1—O3153.09 (3)C1—C2—H2A121.9
O1—Mn1—O3132.76 (3)O3—C3—O4125.80 (11)
N1—Mn1—O363.78 (3)O3—C3—N2124.05 (11)
C1—O1—Mn1i134.25 (7)O4—C3—N2110.14 (10)
C1—O1—Mn1119.59 (7)O4—C4—H4A109.5
Mn1i—O1—Mn1106.16 (3)O4—C4—H4B109.5
C3—O3—Mn1113.53 (8)H4A—C4—H4B109.5
C3—O4—C4115.53 (10)O4—C4—H4C109.5
Mn1—O1W—H1W1108.5 (15)H4A—C4—H4C109.5
Mn1—O1W—H1W2116.8 (16)H4B—C4—H4C109.5
H1W1—O1W—H1W2110 (2)
C2—N1—N2—C3175.42 (11)O2—C1—C2—N1175.83 (11)
Mn1—N1—N2—C34.17 (14)O1—C1—C2—N13.73 (16)
Mn1i—O1—C1—O27.27 (19)Mn1—O3—C3—O4178.58 (10)
Mn1—O1—C1—O2173.28 (10)Mn1—O3—C3—N21.36 (16)
Mn1i—O1—C1—C2173.21 (8)C4—O4—C3—O34.53 (19)
Mn1—O1—C1—C26.24 (13)C4—O4—C3—N2175.52 (12)
N2—N1—C2—C1179.86 (10)N1—N2—C3—O33.54 (18)
Mn1—N1—C2—C10.53 (14)N1—N2—C3—O4176.40 (10)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.83 (2)1.92 (2)2.7158 (13)160 (2)
O1W—H1W2···O3W0.80 (2)2.07 (2)2.8627 (15)174 (2)
O2W—H2W1···O4W0.79 (2)1.94 (2)2.7332 (14)174.6 (19)
O2W—H2W2···O3ii0.82 (3)2.11 (3)2.8852 (13)159 (2)
O2W—H2W2···O1Wii0.82 (3)2.54 (2)3.0865 (13)125 (2)
O3W—H3W1···O4Wii0.79 (2)2.09 (3)2.8264 (17)155 (2)
O3W—H3W2···O4iii0.80 (3)2.54 (3)3.2158 (15)144 (2)
O4W—H4W1···S1iv0.87 (3)2.52 (3)3.3159 (12)153 (2)
O4W—H4W2···O3Wiv0.81 (2)1.97 (2)2.7754 (16)173 (2)
N2—H2N···O2v0.833 (17)1.967 (17)2.7971 (13)173.9 (17)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x1/2, y+1/2, z1/2; (v) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge the assistance of Dr Matthias Zeller with the X-ray data collection.

Funding information

The X-ray diffractometer used in this study was funded by NSF grant CHE 0087210, Ohio Board of Regents grant CAP-491, and by Youngstown State University. RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S., Guo, W. M. & Zhang, T. L. (2016). J. Coord. Chem. 69, 2610–2619.  Web of Science CrossRef Google Scholar
First citationDodoff, N. I., Kovala-Demertzi, D., Kubiak, M., Kuduk-Jaworska, J., Kochel, A. & Gorneva, G. A. (2006). Z. Naturforsch. Teil B, 61, 1110–1122.  CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuseynova, M., Taslimi, P., Medjidov, A., Farzaliyev, V., Aliyeva, M., Gondolova, G., Şahin, O., Yalçın, B., Sujayev, A., Orman, E. B., Özkaya, A. R. & Gulçin,İ. (2018). Polyhedron, 155, 25–33.  CrossRef Google Scholar
First citationKathiresan, A., Srinivasan, K., Brinda, S., Nethaji, M. & Govindarajan, S. (2012). Transition Met. Chem. 37, 393–397.  Web of Science CrossRef Google Scholar
First citationLiu, F., Zhang, W. P. & He, S. Y. (2010). Russ. J. Coord. Chem. 36, 105–112.  Web of Science CrossRef Google Scholar
First citationMilenković, M., Bacchi, A., Cantoni, G., Radulović, S., Gligorijević, N., Aranđelović, S., Sladić, D., Vujčić, M., Mitić, D. & Anđelković, K. (2013a). Inorg. Chim. Acta, 395, 33–43.  Google Scholar
First citationMilenković, M., Bacchi, A., Cantoni, G., Vilipić, J., Sladić, D., Vujčić, M., Gligorijević, N., Jovanović, K., Radulović, S. & Anđelković, K. (2013b). Eur. J. Med. Chem. 68, 111–120.  PubMed Google Scholar
First citationMilenković, M., Cantoni, G., Bacchi, A., Spasojević, V., Milenković, M., Sladić, D., Krstić, N. & Anđelković, K. (2014). Polyhedron, 80, 47–52.  Google Scholar
First citationNithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220–231.  Web of Science CrossRef PubMed Google Scholar
First citationNithya, P., Rajamanikandan, R., Simpson, J., Ilanchelian, M. & Govindarajan, S. (2018a). Polyhedron, 145, 200–217.  Web of Science CrossRef Google Scholar
First citationNithya, P., Simpson, J. & Govindarajan, S. (2017a). Inorg. Chim. Acta, 467, 180–193.  Web of Science CrossRef Google Scholar
First citationNithya, P., Simpson, J. & Govindarajan, S. (2018b). Polyhedron, 141, 5–16.  Web of Science CrossRef Google Scholar
First citationNithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017b). J. Therm. Anal. Calorim. 129, 1001–1019.  Web of Science CrossRef Google Scholar
First citationParveen, S., Govindarajan, S., Puschmann, H. & Revathi, R. (2018). Inorg. Chim. Acta, 477, 66–74.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSitong, C., Weiming, G., Bo, Z., Tonglai, Z. & Li, Y. (2016). Polyhedron, 117, 110–116.  Web of Science CrossRef Google Scholar
First citationSrinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m3028–m3029.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2008). Acta Cryst. E64, m222–m223.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2011). J. Coord. Chem. 64, 3541–3550.  Web of Science CrossRef Google Scholar
First citationSrinivasan, K., Kathiresan, A., Govindarajan, S., Aughey, J. T. & Harrison, W. T. A. (2014b). J. Coord. Chem. 67, 857–869.  Web of Science CrossRef Google Scholar
First citationSrinivasan, K., Kathiresan, A., Harrison, W. T. A. & Govindarajan, S. (2014a). J. Coord. Chem. 67, 3324–3334.  Web of Science CrossRef Google Scholar
First citationZhang, T. L., Song, J. C., Zhang, J. G., Ma, G. & Yu, K. (2005). Z. Naturforsch. Teil B, 60, 505–510.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds