research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The first spontaneous resolution of a sulfoxide: Dianin's compound analogue, (R)-4-(4-hy­dr­oxy­phen­yl)-2,2,4-tri­methyl­thia­chroman-1-oxide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Joseph Black Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, Scotland, and bExperimental Techniques Centre, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, England
*Correspondence e-mail: chris.frampton@brunel.ac.uk

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 12 September 2018; accepted 11 October 2018; online 19 October 2018)

The title sulfoxide, C18H20O2S, was prepared by controlled oxidation of thia-Dianin's compound using hydrogen peroxide in glacial acetic acid. On recrystallization from glacial acetic acid, it was found to form unsolvated, spontaneously resolved crystals, the initial crystal structure analysis revealing the presence of both sulfoxide epimers in the crystal. On multiple recrystallization a single epimer was observed, with crystallization occurring in the unchanged ortho­rhom­bic space group P212121, with Z′ = 1. The mol­ecule possesses a distal conformation, referring to the juxtaposition of the p-hydoxyphenyl substituent with respect to its syn-related methyl group, with the sulfoxide oxygen atom anti to the aromatic substituent. The mol­ecular packing features O—H⋯O hydrogen bond chains running parallel to the b axis of the unit cell.

1. Chemical context

A significant body of work in the literature relates to specific­ally targeted structural modification of Dianin's compound, 4-(4-hy­droxy­phen­yl)-2,2,4-tri­methyl­chroman 2, (MacNicol, 1984[MacNicol, D. D. (1984). Inclusion Compounds, Vol. 2, edited by J. L. Atwood, J. E. D. Davies & D. D. MacNicol, ch. 1, pp. 12-32. New York: Academic Press.]; Finocchiaro & Failla, 1996[Finocchiaro, P. & Failla, S. (1996). In Comprehensive Supramolecular Chemistry, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, ch. 18, pp. 618-627. Oxford: Elsevier.]; Collet & Jacques, 1976[Collet, A. & Jacques, J. (1976). Isr. J. Chem. 15, 82-83.]; Frampton et al., 2017a[Frampton, C. S., Ketuly, K. K., Ali, H. B. M., Azizan, A. H. S., Gall, J. H. & MacNicol, D. D. (2017a). CrystEngComm, 19, 2653-2659.],b[Frampton, C. S., Gall, J. H. & MacNicol, D. D. (2017b). CrystEngComm, 19, 5703-5706.],c[Frampton, C. S., McKendrick, J. J. & MacNicol, D. D. (2017c). Acta Cryst. E73, 1662-1665.]). Crystallization of the new compounds has normally resulted in one of two outcomes: formation of clathrates in the space group R[\overline{3}] (or R3) or spontaneous resolution, also a subject of much current inter­est (Pérez-García & Amabilino, 2007[Pérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941-967.]), to form an unsolvated conglomerate in space group P212121, with Z′ = 1, in which the individual crystals are formed by supra­molecular assembly of a single enanti­omer. A notable departure from the above crystallization modes has, however, been found in the case of Dianin's sulfone 4, (Frampton et al., 1992[Frampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551-555.]), which crystallizes unsolvated in the polar monoclinic space group Cc, with Z′ = 1, and these crystals exhibited a significant SHG effect. The present work was undertaken to establish if the corresponding sulfoxide 1 would retain the clathrating ability of its immediate progenitor thia-Dianin's compound 3, or would undergo spontaneous resolution, alternative possibilities being the formation of a polar monoclinic crystal or crystallization in a more frequently encountered space group. Inter­estingly, the achiral bis-sulfoxide trans-(R,S)-α,α′-di-tert-butyl­sulfinyl-para-xylene undergoes conformational spontaneous resolution in the space group P212121: on dissolution, rapid conformational racemization occurs at room temperature; however, the authors make the point that at 173 K, from calculations, it could be possible to obtain one chiral conformation from a single crystal (Xu et al., 2014[Xu, Z., Liu, H., Mahmood, M. H. R., Cai, Y., Xu, X. & Tang, Y. (2014). CrystEngComm, 16, 3839-3842.]). Accordingly, the sulfoxide 1 was prepared by controlled oxidation of 3 as described in Section 5, and its crystal structure determined.

[Scheme 1]

2. Structural commentary

Initial attempts to determine the crystal structure of 1 revealed the presence of both sulfoxide epimers in the crystal in a ratio of approximately 90:10. It was found that multiple recrystallization of 1 from glacial acetic acid yielded a single epimer, the structure of which is presented here. The crystal structure of 1 is ortho­rhom­bic, space group P212121 with a single independent mol­ecule in the asymmetric unit, (Z′ = 1), Fig. 1[link]. The mol­ecule possesses a distal conformation, this referring to the juxtaposition of the p-hy­droxy­phenyl subs­tit­uent with respect to the syn-related methyl group. The C2—C3—C4—C11 torsion angle is 154.0 (2)°, the corresponding torsion angle for racemic Dianin's compound 2 has a magnitude of 80.67° (Lee et al., 2014[Lee, J. J., Sobolev, A. N., Turner, M. J., Fuller, R. O., Iversen, B. B., Koutsantonis, G. A. & Spackman, M. A. (2014). Cryst. Growth Des. 14, 1296-1306.]) and for 4-(4-hy­droxy­phen­yl)-2,2,4-tri­methyl­chroman-1,1-dioxide 4, it is 76.8° (Frampton et al., 1992[Frampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551-555.]). The expected torsional angle value for a distal conformation is 160° whereas that for a proximal conformation is 80°. The torsion angle S1—C2—C3—C4, defining the heterocyclic ring chirality, has a value of −67.3 (2)°. Fig. 2[link] shows an overlay of 1 (brown) with sulfone 4 (cyan). In this figure, the six aromatic atoms of the chroman unit for each structure have been overlaid using the standard mol­ecule overlay routine in Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), resulting in an r.m.s. displacement of 0.0147 Å, and this clearly demonstrates the difference between the distal and proximal conformations of 1 and 4, respectively. The absolute configuration of 1, was determined as being R at the chiral centre C4 by anomalous dispersion methods, (Parsons et al. 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), the Flack x parameter was determined as −0.002 (7) using 1246 quotients [(I+) − (I)]/[(I+) + (I)].

[Figure 1]
Figure 1
View of mol­ecule 1 with the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the structure overlay of 1 (brown) and 4 (cyan).

3. Supra­molecular features

The structure of 1 is isostructural with the enanti­omerically pure amine counterparts of Dianin's and thia-Dianin's compound, (R)-4-(4-amino­phen­yl)-2,2,4-tri­methyl­chroman and (S)-4-(4-amino­phen­yl)-2,2,4-tri­methyl­thia­chroman, both of which were obtained by spontaneous resolution (Frampton et al., 2011[Frampton, C. S., MacNicol, D. D. & Wilson, D. R. (2011). Acta Cryst. C67, o188-o191.]), and also surprisingly isostructural with the enanti­omerically pure forms of 4-(4-hy­droxy­phen­yl)-2,2,4-tri­methyl­chroman, 2 (Lloyd & Bredenkamp, 2005[Lloyd, G. O. & Bredenkamp, M. W. (2005). Acta Cryst. E61, o1512-o1514.]) and 4-(2,4-di­hydroxy­phen­yl)-2,2,4-tri­methyl­chroman, 5 (Beresford et al., 1999[Beresford, T. W., Frampton, C. S., Gall, J. H. & MacNicol, D. D. (1999). Zh. Strukt. Khim. 40, 872-882.]). The crystal packing is dominated by the formation of an extended linear hy­droxy –OH to sulfoxide O, hydrogen-bonded O—H⋯O chain along the [010] direction of the unit cell, Figs. 3[link] and 4[link], Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.77 (3) 1.92 (3) 2.685 (3) 169 (3)
Symmetry code: (i) x, y-1, z.
[Figure 3]
Figure 3
A partial view of the crystal packing down the a axis showing the hydrogen-bonded chain. The inter­molecular O—H⋯O hydrogen bond is shown as a dotted line.
[Figure 4]
Figure 4
View of the crystal packing of 1 down the b axis.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39 update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the thia-Dianin's framework, 3, yielded 15 hits, all of which were genuine examples of analogues of the material under investigation. Although there are no entries for the empty racemic R[\overline{3}] host of thia-Dianin's compound, there are seven entries for the following host–guest clathrates: ethanol (HPTHCR; MacNicol et al., 1969[MacNicol, D. D., Mills, H. H. & Wilson, F. B. (1969). J. Chem. Soc. D, pp. 1332-1333.]), 2,5,5-tri­methyl­hex-3-yn-2-ol (TCHHXO; MacNicol & Wilson, 1971[MacNicol, D. D. & Wilson, F. B. (1971). J. Chem. Soc. D, pp. 786-787.]), cyclo­pentane (METCCP; Hardy et al., 1979[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072-1077.]) and isopropanol at four different temperatures demonstrating three commensurate phase changes in the host lattice (VANFOI, 371 K, VANFOI01, 295 K, VANFOI02, 200 K and VANFUO, 90 K; Frampton et al., 2017a[Frampton, C. S., Ketuly, K. K., Ali, H. B. M., Azizan, A. H. S., Gall, J. H. & MacNicol, D. D. (2017a). CrystEngComm, 19, 2653-2659.]). Thia-Dianin's compound, 3, was also found in the 1:1 quasi-racemic R3 host with Dianin's compound, 2, in the following three entries: apohost (BIBNAD and BIBNAD01), CCl4/H2O host–guest clathrate (HIDQAO) (Frampton et al., 2013[Frampton, C. S., Ketuly, K. A., Hadi, A., Gall, J. H. & MacNicol, D. D. (2013). Chem. Commun. 49, 7198-7200.]). The structure and absolute stereochemistry determination of the resolved S-enantio­mer of thia-Dianin's compound used in the formation of the quasi-racemates above (BIBNEH: Frampton et al., 2013[Frampton, C. S., Ketuly, K. A., Hadi, A., Gall, J. H. & MacNicol, D. D. (2013). Chem. Commun. 49, 7198-7200.]). Four further examples demonstrating a slightly modified framework include the 6-methyl analogue (HPMTCM; Hardy et al., 1977[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1145-1147.]), the cyclo­ctane host–guest clathrate of the 8-methyl analogue (MSOCYO10; Hardy et al., 1979[Hardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072-1077.]), the oxidized sulfone, 4, (KUTDUY; Frampton et al., 1992[Frampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551-555.]) and 4-(4-hy­droxy­phen­yl)-2,2,4-trimethyl-7,8-benzo­thia­chroman 6, a fused-ring counterpart of thia-Dianin's compound (JELROK; Frampton et al., 2017c[Frampton, C. S., McKendrick, J. J. & MacNicol, D. D. (2017c). Acta Cryst. E73, 1662-1665.]).

5. Synthesis and crystallization

Preparation of 1: 4-(4-hy­droxy­phen­yl)-2,2,4-tri­methyl­thia­chroman 3 (MacNicol, 1969[MacNicol, D. D. (1969). J. Chem. Soc. D, p. 836.]) (0.25 g, 0.88 mmol) was dissolved in glacial acetic acid (10 mL) and a 50% excess of 30% hydrogen peroxide (0.15 mL, 1.32 mmol) added. After the reaction was left overnight at ca 278 K, the precipitated white solid was filtered off, washed several times with ether, and initially recrystallized from aqueous dimethyl sulfoxide yielding 0.168 g, (63%) of product. A further recrystallization from glacial acetic acid gave colourless crystals which were analysed by X-ray diffraction as described in the text. The crystals were obtained by spontaneous resolution on crystallization, yielding a 50:50 mixture of the pure enanti­omers. These crystals also incorporated both spontaneously resolved sulfoxide epimers, four further recrystallizations were performed giving a single epimer of purity greater than 99% [500 MHz 1H NMR, DMSO-d6 solution analysis gave 99.5 (2)% purity] and the very minor residual second epimer was undetectable in the subsequent X-ray analysis. These crystals melted over a wide range, ca 513–536 K, possibly arising from sulfoxide epimerization, along with decomposition, at high temperature. MS [EI+]: 300.1178, C18H20O2S, calculated 300.1184; 1H NMR (400 MHz, DMSO-d6) : δ 0.94 (s, 3H), 1.31 (s, 3H), 1.67 (s, 3H), 2.26 (q, 2H, δAB = 0.45 ppm, JAB = 15.1 Hz), 6.6–7.7 (aromatic, 8H), 9.27(s, 1H); FT–IR (νmax, ATR, cm−1): 3176 (br), 3197 (minor) [ν(O—H)]; 1017 [ν(S—O)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H20O2S
Mr 300.40
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 10.4311 (3), 11.0892 (3), 12.8868 (3)
V3) 1490.65 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.94
Crystal size (mm) 0.18 × 0.12 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.786, 0.844
No. of measured, independent and observed [I > 2σ(I)] reflections 5735, 3046, 2982
Rint 0.016
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.03
No. of reflections 3046
No. of parameters 197
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.29
Absolute structure Flack x determined using 1246 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.002 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXD2014/6 (Schneider & Sheldrick, 2002[Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772-1779.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The hydrogen atom of the OH group was localized in the difference-Fourier map and refined isotropically. The other hydrogen atoms were placed in calculated positions and refined within the riding model with C—H = 0.95–0.99 Å and fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for the other groups].

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXD2014/6 (Schneider & Sheldrick, 2002); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

(R)-4-(4-Hydroxyphenyl)-2,2,4-trimethyl-3H-1λ4-benzothiopyran-1-one top
Crystal data top
C18H20O2SDx = 1.339 Mg m3
Mr = 300.40Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3948 reflections
a = 10.4311 (3) Åθ = 5.3–74.2°
b = 11.0892 (3) ŵ = 1.94 mm1
c = 12.8868 (3) ÅT = 100 K
V = 1490.65 (7) Å3Block, colourless
Z = 40.18 × 0.12 × 0.10 mm
F(000) = 640
Data collection top
Rigaku Oxford Diffraction SuperNova, Dualflex, AtlasS2
diffractometer
3046 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2982 reflections with I > 2σ(I)
Detector resolution: 5.2921 pixels mm-1Rint = 0.016
ω scansθmax = 74.5°, θmin = 5.3°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
h = 1213
Tmin = 0.786, Tmax = 0.844k = 1213
5735 measured reflectionsl = 1613
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.434P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3046 reflectionsΔρmax = 0.27 e Å3
197 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack x determined using 1246 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17202 (5)0.62246 (5)0.63136 (4)0.01942 (13)
O10.10168 (17)0.05587 (16)0.74216 (15)0.0286 (4)
H10.120 (3)0.115 (3)0.713 (2)0.031 (8)*
O20.19457 (17)0.75661 (14)0.63392 (14)0.0290 (4)
C20.1359 (2)0.5775 (2)0.49805 (16)0.0213 (5)
C30.1350 (2)0.4390 (2)0.50523 (16)0.0203 (4)
H3A0.10080.40770.43880.024*
H3B0.07290.41640.56000.024*
C40.2625 (2)0.3703 (2)0.52807 (15)0.0183 (4)
C50.3535 (2)0.4405 (2)0.59971 (15)0.0191 (4)
C60.4737 (2)0.3919 (2)0.62341 (17)0.0229 (4)
H60.49470.31390.59810.027*
C70.5633 (2)0.4536 (2)0.68256 (18)0.0261 (5)
H70.64370.41750.69770.031*
C80.5354 (2)0.5688 (2)0.71980 (18)0.0246 (5)
H80.59730.61260.75850.030*
C90.4163 (2)0.6183 (2)0.69968 (15)0.0211 (4)
H90.39560.69620.72550.025*
C100.3267 (2)0.55413 (19)0.64149 (15)0.0190 (4)
C110.2254 (2)0.2522 (2)0.58256 (16)0.0178 (4)
C120.1659 (2)0.25810 (19)0.67999 (16)0.0195 (4)
H120.15190.33480.71090.023*
C130.1269 (2)0.1558 (2)0.73240 (16)0.0201 (4)
H130.08900.16290.79910.024*
C140.1431 (2)0.04203 (19)0.68765 (17)0.0206 (4)
C150.2012 (2)0.0339 (2)0.59057 (18)0.0224 (4)
H150.21270.04270.55890.027*
C160.2426 (2)0.1379 (2)0.53978 (16)0.0207 (4)
H160.28360.13060.47430.025*
C170.3331 (2)0.3456 (2)0.42483 (16)0.0237 (4)
H17A0.41100.29880.43860.036*
H17B0.35630.42240.39220.036*
H17C0.27690.30000.37820.036*
C180.2289 (2)0.6345 (2)0.42175 (17)0.0290 (5)
H18A0.22080.72250.42490.044*
H18B0.20910.60670.35140.044*
H18C0.31670.61120.43980.044*
C190.0004 (2)0.6226 (2)0.47748 (17)0.0261 (5)
H19A0.05950.58560.52730.039*
H19B0.02610.60060.40680.039*
H19C0.00300.71050.48510.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0224 (2)0.0180 (2)0.0179 (2)0.0006 (2)0.00050 (19)0.00088 (18)
O10.0335 (9)0.0175 (8)0.0347 (9)0.0018 (7)0.0080 (7)0.0026 (7)
O20.0354 (9)0.0181 (7)0.0335 (9)0.0019 (7)0.0041 (8)0.0025 (7)
C20.0268 (11)0.0212 (11)0.0159 (9)0.0007 (8)0.0021 (8)0.0008 (8)
C30.0235 (10)0.0205 (10)0.0169 (9)0.0001 (9)0.0028 (8)0.0003 (8)
C40.0214 (9)0.0186 (10)0.0150 (9)0.0011 (9)0.0001 (7)0.0018 (9)
C50.0210 (10)0.0217 (10)0.0146 (8)0.0036 (8)0.0026 (7)0.0013 (8)
C60.0229 (10)0.0221 (10)0.0238 (10)0.0015 (8)0.0011 (8)0.0022 (9)
C70.0215 (10)0.0308 (12)0.0261 (11)0.0015 (9)0.0001 (9)0.0005 (10)
C80.0215 (10)0.0292 (12)0.0231 (10)0.0053 (9)0.0024 (8)0.0021 (9)
C90.0263 (10)0.0194 (10)0.0177 (9)0.0020 (9)0.0006 (8)0.0000 (8)
C100.0200 (9)0.0218 (9)0.0151 (8)0.0032 (9)0.0014 (9)0.0028 (7)
C110.0183 (9)0.0186 (10)0.0166 (9)0.0001 (8)0.0020 (8)0.0009 (8)
C120.0202 (9)0.0188 (9)0.0194 (9)0.0016 (9)0.0008 (9)0.0034 (8)
C130.0199 (9)0.0217 (11)0.0188 (9)0.0009 (8)0.0019 (8)0.0003 (8)
C140.0187 (10)0.0184 (10)0.0247 (10)0.0017 (8)0.0017 (8)0.0023 (9)
C150.0258 (11)0.0168 (10)0.0246 (10)0.0005 (8)0.0016 (9)0.0039 (9)
C160.0236 (10)0.0193 (10)0.0191 (9)0.0006 (9)0.0001 (8)0.0016 (9)
C170.0296 (11)0.0253 (11)0.0161 (9)0.0002 (9)0.0033 (9)0.0008 (7)
C180.0387 (13)0.0280 (12)0.0204 (10)0.0003 (11)0.0040 (10)0.0048 (10)
C190.0291 (11)0.0270 (12)0.0220 (10)0.0052 (11)0.0055 (8)0.0010 (10)
Geometric parameters (Å, º) top
S1—O21.5064 (16)C9—C101.394 (3)
S1—C101.788 (2)C9—H90.9500
S1—C21.828 (2)C11—C161.394 (3)
O1—C141.363 (3)C11—C121.402 (3)
O1—H10.77 (3)C12—C131.381 (3)
C2—C181.519 (3)C12—H120.9500
C2—C191.530 (3)C13—C141.398 (3)
C2—C31.539 (3)C13—H130.9500
C3—C41.560 (3)C14—C151.393 (3)
C3—H3A0.9900C15—C161.395 (3)
C3—H3B0.9900C15—H150.9500
C4—C111.535 (3)C16—H160.9500
C4—C51.536 (3)C17—H17A0.9800
C4—C171.545 (3)C17—H17B0.9800
C5—C101.398 (3)C17—H17C0.9800
C5—C61.399 (3)C18—H18A0.9800
C6—C71.387 (3)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.395 (4)C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C8—C91.383 (3)C19—H19C0.9800
C8—H80.9500
O2—S1—C10106.02 (10)C9—C10—S1115.34 (17)
O2—S1—C2108.79 (10)C5—C10—S1122.27 (16)
C10—S1—C298.01 (10)C16—C11—C12117.0 (2)
C14—O1—H1110 (2)C16—C11—C4124.22 (19)
C18—C2—C19110.19 (19)C12—C11—C4118.76 (19)
C18—C2—C3117.26 (19)C13—C12—C11122.0 (2)
C19—C2—C3109.35 (18)C13—C12—H12119.0
C18—C2—S1111.29 (16)C11—C12—H12119.0
C19—C2—S1105.39 (15)C12—C13—C14120.26 (19)
C3—C2—S1102.53 (14)C12—C13—H13119.9
C2—C3—C4119.60 (18)C14—C13—H13119.9
C2—C3—H3A107.4O1—C14—C15123.3 (2)
C4—C3—H3A107.4O1—C14—C13117.9 (2)
C2—C3—H3B107.4C15—C14—C13118.8 (2)
C4—C3—H3B107.4C14—C15—C16120.2 (2)
H3A—C3—H3B107.0C14—C15—H15119.9
C11—C4—C5108.25 (16)C16—C15—H15119.9
C11—C4—C17111.28 (18)C11—C16—C15121.8 (2)
C5—C4—C17108.20 (17)C11—C16—H16119.1
C11—C4—C3106.76 (17)C15—C16—H16119.1
C5—C4—C3113.09 (18)C4—C17—H17A109.5
C17—C4—C3109.29 (17)C4—C17—H17B109.5
C10—C5—C6116.23 (19)H17A—C17—H17B109.5
C10—C5—C4124.4 (2)C4—C17—H17C109.5
C6—C5—C4119.3 (2)H17A—C17—H17C109.5
C7—C6—C5122.3 (2)H17B—C17—H17C109.5
C7—C6—H6118.9C2—C18—H18A109.5
C5—C6—H6118.9C2—C18—H18B109.5
C6—C7—C8120.0 (2)H18A—C18—H18B109.5
C6—C7—H7120.0C2—C18—H18C109.5
C8—C7—H7120.0H18A—C18—H18C109.5
C9—C8—C7119.2 (2)H18B—C18—H18C109.5
C9—C8—H8120.4C2—C19—H19A109.5
C7—C8—H8120.4C2—C19—H19B109.5
C8—C9—C10120.0 (2)H19A—C19—H19B109.5
C8—C9—H9120.0C2—C19—H19C109.5
C10—C9—H9120.0H19A—C19—H19C109.5
C9—C10—C5122.3 (2)H19B—C19—H19C109.5
O2—S1—C2—C1845.94 (19)C6—C5—C10—C92.8 (3)
C10—S1—C2—C1864.08 (18)C4—C5—C10—C9175.00 (19)
O2—S1—C2—C1973.49 (17)C6—C5—C10—S1172.93 (15)
C10—S1—C2—C19176.50 (15)C4—C5—C10—S19.3 (3)
O2—S1—C2—C3172.10 (14)O2—S1—C10—C931.70 (18)
C10—S1—C2—C362.09 (15)C2—S1—C10—C9143.96 (16)
C18—C2—C3—C454.9 (3)O2—S1—C10—C5152.32 (17)
C19—C2—C3—C4178.82 (18)C2—S1—C10—C540.06 (19)
S1—C2—C3—C467.3 (2)C5—C4—C11—C16124.3 (2)
C2—C3—C4—C11152.40 (17)C17—C4—C11—C165.6 (3)
C2—C3—C4—C533.5 (2)C3—C4—C11—C16113.6 (2)
C2—C3—C4—C1787.1 (2)C5—C4—C11—C1258.2 (2)
C11—C4—C5—C10117.8 (2)C17—C4—C11—C12176.96 (19)
C17—C4—C5—C10121.5 (2)C3—C4—C11—C1263.9 (2)
C3—C4—C5—C100.3 (3)C16—C11—C12—C130.7 (3)
C11—C4—C5—C664.5 (2)C4—C11—C12—C13178.3 (2)
C17—C4—C5—C656.2 (2)C11—C12—C13—C141.7 (3)
C3—C4—C5—C6177.41 (19)C12—C13—C14—O1179.3 (2)
C10—C5—C6—C71.7 (3)C12—C13—C14—C151.2 (3)
C4—C5—C6—C7176.2 (2)O1—C14—C15—C16179.3 (2)
C5—C6—C7—C80.6 (4)C13—C14—C15—C160.3 (3)
C6—C7—C8—C92.0 (4)C12—C11—C16—C150.8 (3)
C7—C8—C9—C101.0 (3)C4—C11—C16—C15176.7 (2)
C8—C9—C10—C51.5 (3)C14—C15—C16—C111.3 (3)
C8—C9—C10—S1174.49 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.77 (3)1.92 (3)2.685 (3)169 (3)
Symmetry code: (i) x, y1, z.
 

References

First citationBeresford, T. W., Frampton, C. S., Gall, J. H. & MacNicol, D. D. (1999). Zh. Strukt. Khim. 40, 872–882.  Google Scholar
First citationCollet, A. & Jacques, J. (1976). Isr. J. Chem. 15, 82–83.  CrossRef Google Scholar
First citationFinocchiaro, P. & Failla, S. (1996). In Comprehensive Supramolecular Chemistry, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, ch. 18, pp. 618–627. Oxford: Elsevier.  Google Scholar
First citationFrampton, C. S., Gall, J. H. & MacNicol, D. D. (2017b). CrystEngComm, 19, 5703–5706.  CrossRef Google Scholar
First citationFrampton, C. S., Ketuly, K. K., Ali, H. B. M., Azizan, A. H. S., Gall, J. H. & MacNicol, D. D. (2017a). CrystEngComm, 19, 2653–2659.  CrossRef CAS Google Scholar
First citationFrampton, C. S., Ketuly, K. A., Hadi, A., Gall, J. H. & MacNicol, D. D. (2013). Chem. Commun. 49, 7198–7200.  CrossRef Google Scholar
First citationFrampton, C. S., MacNicol, D. D., Mallinson, P. R. & White, J. D. (1992). J. Crystallogr. Spectrosc. Res. 22, 551–555.  CSD CrossRef CAS Web of Science Google Scholar
First citationFrampton, C. S., MacNicol, D. D. & Wilson, D. R. (2011). Acta Cryst. C67, o188–o191.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFrampton, C. S., McKendrick, J. J. & MacNicol, D. D. (2017c). Acta Cryst. E73, 1662–1665.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1145–1147.  CSD CrossRef Web of Science Google Scholar
First citationHardy, A. D. U., McKendrick, J. J. & MacNicol, D. D. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1072–1077.  CSD CrossRef Web of Science Google Scholar
First citationLee, J. J., Sobolev, A. N., Turner, M. J., Fuller, R. O., Iversen, B. B., Koutsantonis, G. A. & Spackman, M. A. (2014). Cryst. Growth Des. 14, 1296–1306.  Web of Science CSD CrossRef CAS Google Scholar
First citationLloyd, G. O. & Bredenkamp, M. W. (2005). Acta Cryst. E61, o1512–o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacNicol, D. D. (1969). J. Chem. Soc. D, p. 836.  Google Scholar
First citationMacNicol, D. D. (1984). Inclusion Compounds, Vol. 2, edited by J. L. Atwood, J. E. D. Davies & D. D. MacNicol, ch. 1, pp. 12–32. New York: Academic Press.  Google Scholar
First citationMacNicol, D. D., Mills, H. H. & Wilson, F. B. (1969). J. Chem. Soc. D, pp. 1332–1333.  Google Scholar
First citationMacNicol, D. D. & Wilson, F. B. (1971). J. Chem. Soc. D, pp. 786–787.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941–967.  PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772–1779.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z., Liu, H., Mahmood, M. H. R., Cai, Y., Xu, X. & Tang, Y. (2014). CrystEngComm, 16, 3839–3842.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds