research communications
R*,7aS*)-2-(2,6-dioxopiperidin-3-yl)hexahydro-1H-isoindole-1,3(2H)-dione
of the thalidomide analog (3aaDepartment of Chemistry and Earth Sciences, Qatar University, Doha, Qatar, bDepartment of Chemistry, Richard Stockton College of New Jersey, Galloway, NJ 08205, USA, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene NH 03435, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C13H16N2O4, crystallizes in the monoclinic centrosymmetric P21/c, with four molecules in the thus there is no crystallographically imposed symmetry and it is a The structure consists of a six-membered unsaturated ring bound to a five-membered pyrrolidine-2,5-dione ring N-bound to a six-membered piperidine-2,6-dione ring and thus has the same basic skeleton as thalidomide, except for the six-membered unsaturated ring substituted for the aromatic ring. In the crystal, the molecules are linked into inversion dimers by R22(8) hydrogen bonding involving the N—H group. In addition, there are bifurcated C—H⋯O interactions involving one of the O atoms on the pyrrolidine-2,5-dione with graph-set notation R12(5). These interactions along with C—H⋯O interactions involving one of the O atoms on the piperidine-2,6-dione ring link the molecules into a complex three-dimensional array. There is present which results from a 180° rotation about the [100] direction and with a of 1 0 0 0 0 0 0 [BASF 0.044 (1)].
CCDC reference: 1872551
1. Chemical context
Thalidomide (1) is one of the most notorious drugs in pharmaceutical history because of the humanitarian disaster in the 1950s (Burley & Lenz, 1962; Stephans, 1988; Bartlett et al., 2004; Wu et al., 2005; Melchert & List, 2007). Thalidomide possesses a single stereogenic carbon in the glutarimide ring, and it is conceivable that the unexpected teratogenic side effects are ascribed to the (S)-enantiomer of 1 (Blaschke et al., 1979). However, this has been a matter of debate because considerable chiral inversion should take place during the incubation of enantiomerically pure 1 (Nishimura et al., 1994; Knoche & Blaschke, 1994; Wnendt et al., 1996). Despite the tragic disaster, the unique biological properties of 1 prompted its return to the market in the 21st century for the treatment of multiple myeloma and leprosy (Matthews & McCoy, 2003; Hashimoto et al., 2004; Franks et al., 2004; Brennen et al., 2004; Luzzio et al., 2004; Sleijfer et al., 2004; Kumar et al., 2004; Hashimoto, 2008; Knobloch & Rüther, 2008). Furthermore, a large number of papers on novel medical uses of 1 continue to appear in the biological and medicinal literature (Matthews & McCoy, 2003; Hashimoto et al., 2004; Franks et al., 2004; Brennen et al., 2004; Luzzio et al., 2004; Sleijfer et al., 2004; Kumar et al., 2004; Hashimoto, 2008; Knobloch & Rüther, 2008).
Thus, over the years, there has been increasing interest in thalidomide and its derivatives for the treatment of various hematologic malignancies (Singhal et al., 1999; Raje & Anderson, 1999), solid tumors (Kumar et al., 2002), and a variety of inflammatory and autoimmune diseases (Tseng et al., 1996). Recent studies have uncovered a variety of mechanisms of thalidomide action. It was reported in 1991 that thalidomide is a selective inhibitor of tumor necrosis factor-α (TNF-α) production in lipopolysaccharide (LPS) stimulated human monocytes (Moreira et al., 1993; Sampaio et al., 1991). TNF-a is a key pro-inflammatory cytokine, and elevated levels have been linked with the pathology of a number of inflammatory and autoimmune diseases including rheumatoid arthritis, Crohn's disease, aphthous ulcers, cachexia, graft versus host disease, asthma, ARDS and AIDS (Eigler et al., 1997). Taken together, the immunomodulatory properties of thalidomide, which are dependent on the type of immune cell activated as well as the type of stimulus that the cell receives, provide a rationale for the mechanism of thalidomide action in the context of autoimmune and inflammatory disease states. Other pharmacologic activities of thalidomide include its inhibition of angiogenesis (D'Amato et al., 1994) and its anti-cancer properties (Bartlett et al., 2004). In the late 1990′s it was reported that thalidomide is efficacious for the treatment of multiple myeloma (MM), a hematological cancer caused by growth of tumor cells derived from the plasma cells in the bone marrow (Singhal et al., 1999; Raje & Anderson, 1999).
A medicinal chemistry program to optimize the immunomodulatory properties of thalidomide and reduce its side-effects led to the discovery of lenalidomide (2), which is a potent immunomodulator that is ∼800 times more potent as an inhibitor of TNF-α in LPS-stimulated hPBMC (Muller et al., 1999; Zeldis et al., 2011). In the US, lenalidomide was approved by the FDA in 2005 for low- or intermediate-1-risk myelodysplastic
Structural optimization of thalidomide, 1 also led to the discovery of pomalidomide (3), which is tenfold more potent than lenalidomide as a TNF-a inhibitor and IL-2 stimulator (Muller et al., 1999; Zeldis et al., 2011). Pomalidomide is currently undergoing late-stage clinical development for the treatment of multiple myeloma and myeloproliferative neoplasm-associated myelofibrosis (Galustian & Dalgleish, 2011; Begna et al., 2012). In clinical trials for multiple myeloma, pomalidomide has been shown to be effective in overcoming resistance to lenalidomide and thalidomide, as well as the proteosome inhibitor bortezomib (Schey & Ramasamy, 2011).
These studies have shown the efficacy of a continued search for more pharmacologically active analogs of thalidomide and its derivatives. Focus has previously been on modifying the basic thalidomide skeleton by changing its substituents. However, there have been very few studies on related derivatives where the six-membered ring is changed from an aromatic to an unsaturated ring. In view of the wide interest in these types of compounds for their pharmacological activities, the structure of (3aR,7aS)-2-(2,6-dioxopiperidin-3-yl)hexahydro-1H-isoindole-1,3(2H)-dione, 4, is reported where the only change to thalidomide is the substitution of an unsaturated six-membered for the aromatic ring.
As a result of this interest in thalidomide, the , 1971; Reepmeyer et al., 1994; Allen & Trotter, 1971; Caira et al., 1994; Suzuki et al., 2010; Maeno et al., 2015). Two polymorphs of the racemic derivative have been determined crystallizing in the space groups P21/n (Allen & Trotter, 1971; Suzuki et al., 2010; Maeno et al., 2015) and P21/c (Lovell, 1970) or C2/c (Reepmeyer et al., 1994; Caira et al., 1994). The crystal packing in the C2/c structure is determined by intermolecular N–H⋯O hydrogen bonding that is more extensive than that reported for the racemate of thalidomide crystallizing in P21/n.
of this molecule in both the racemic and enantiomerically pure forms have been determined multiple times (Lovell, 19702. Structural commentary
The title compound, C13H16N2O4, 4 (Fig. 1), crystallizes in the monoclinic centrosymmetric P21/c, with four molecules in the thus there is no crystallographically imposed symmetry and it is a The structure consists of a six-membered unsaturated ring bound to a five-membered pyrrolidine-2,5-dione ring N-bound to a six-membered piperidine-2,6-dione ring and thus has the same basic skeleton as thalidomide, 1, except for the six-membered unsaturated ring substituted for the aromatic ring. In the five-membered pyrrolidine-2,5-dione ring, the atoms O1, C1, N1, C8 and O2 form a plane (r.m.s. deviation of fitted atoms = 0.0348 Å) with C2 and C7 deviating from this plane by −0.186 (7) and 0.219 (7) Å, respectively. The ring itself adopts a conformation in which it is twisted about the C2–C7 axis [P = 257.4 (5) and τ = 22.5 (2); Rao et al., 1981]. In the six-membered piperidine-2,6-dione ring, the group, O3, C10, N2, C11and O4 is also planar (r.m.s. deviation of fitted atoms = 0.0042 Å). The cyclohexane ring adopts a chair conformation [puckering parameters Q = 0.536 (3), θ = 157.7 (3)° and φ = 324.2 (8)°; Boeyens, 1978). Otherwise, the metrical parameters for all bonds are in the standard range for such structures.
3. Supramolecular features
Similarly to the hydrogen-bonding patterns found in both the enantiomerically pure form of thalidomide (Lovell, 1971; Maeno et al., 2015) and the racemic P21/n polymorph (Allen & Trotter, 1971; Suzuki et al., 2010; Maeno et al., 2015), the molecules of the title compound are linked into inversion dimers by R22(8) (Etter et al., 1990) hydrogen bonding (Table 1) involving the N—H group as shown in Fig. 2. In addition, there are bifurcated C—H⋯O interactions involving O2 with graph-set notation R21(5). These interactions, along with C—H⋯O interactions involving O4, link the molecules into a complex three-dimensional array.
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.39; Groom et al., 2016) using a skeleton containing the three rings as in thalidomide but without the ketone substituents gave 39 hits but not a single example where the six-membered aromatic ring in the isoindoline moiety is changed to an unsaturated six-membered ring.
5. Synthesis and crystallization
Some details of the synthesis have been previously reported (Benjamin & Hijji, 2017). cis-1,2-Cyclohexane dicarboxylic acid anhydride (0.10 g, 0.65 mmol), glutamic acid (0.095 g, 0.65 mmol), DMAP (0.02 g, 0.16 mmol), and ammonium chloride (NH4Cl) (0.040 g, 0.75 mmol) were mixed thoroughly in a CEM-sealed vial with a magnetic stirrer. The sample was heated for 6 min at 423 K in a CEM Discover microwave powered at 150 W. It was then cooled rapidly to 313 K and dissolved in 15 ml of (1:1) ethyl acetate:acetone. The organic layer was washed with 2× 10 ml of distilled water and dried over sodium sulfate (anhydrous). The organic layer was concentrated under vacuum and precipitated with hexanes (30 ml) affording a white solid. Crystals suitable for X-ray experiments were grown by slow evaporation of an ethyl acetate/acetone (1:1) solution. M.p. 463–465 K, (0.12 g, 70%). 1H NMR (400 MHz, DMSO-d6) δ 11.0 (s, 1 H, NH), 4.9 (dd, 1 H, 12.5, 5.5 Hz, CHCO), 3.0 (m, 1 H), 2.8 (m, 1 H), 2.8 (m, 1 H), 2.5 (m, 1 H), 1.9 (m, 1 H), 1.7 (m, 3 H),, 1.6 (m, 1 H), 1.4 (m, 4 H); 13C NMR (100 MHz, DMSO-d6) 178.8 (C=O), 178.7 (C=O), 172.7 (C=O), 169.4 (C=O), 48.7 (CH), 39.1 (CH), 38.8 (CH), 30.7 (CH2), 23.1 (CH2), 22.9 (CH2), 21.1 (CH2), 21.05 (CH2), 21.00 (CH2); MS 264 (M+); 236, 210, 179, 154, 112, 82, 67, 54, 41.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and treated as riding on their parent atoms and refined with C—H distances of 0.99–1.00 Å and Uiso(H) = 1.2Ueq(C). The H attached to N2 was refined isotropically. There is present, which results from a 180° rotation about the [100] direction and with a of 1 0 0 0 0 0 0 [BASF 0.044 (1)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 1872551
https://doi.org/10.1107/S2056989018014317/lh5881sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014317/lh5881Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018014317/lh5881Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2012); cell
CrysAlis PRO (Rigaku OD, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H16N2O4 | F(000) = 560 |
Mr = 264.28 | Dx = 1.398 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 11.4519 (3) Å | Cell parameters from 7629 reflections |
b = 9.2370 (3) Å | θ = 3.7–77.3° |
c = 11.8727 (4) Å | µ = 0.87 mm−1 |
β = 90.475 (3)° | T = 123 K |
V = 1255.87 (7) Å3 | Prism, colorless |
Z = 4 | 0.42 × 0.34 × 0.18 mm |
Rigaku Oxford Diffraction Xcalibur, Ruby, Gemini diffractometer | 2572 reflections with I > 2σ(I) |
Detector resolution: 10.5081 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 77.5°, θmin = 3.7° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2012) | h = −9→14 |
Tmin = 0.822, Tmax = 1.000 | k = −10→11 |
9733 measured reflections | l = −14→14 |
2626 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: mixed |
wR(F2) = 0.208 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.19 | w = 1/[σ2(Fo2) + (0.1179P)2 + 1.1244P] where P = (Fo2 + 2Fc2)/3 |
2626 reflections | (Δ/σ)max < 0.001 |
177 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin |
x | y | z | Uiso*/Ueq | ||
O1 | 0.66960 (17) | 0.4309 (2) | 0.56402 (17) | 0.0291 (4) | |
O2 | 0.67111 (18) | 0.8499 (2) | 0.76606 (18) | 0.0305 (5) | |
O3 | 0.58392 (17) | 0.8448 (2) | 0.51862 (17) | 0.0299 (5) | |
O4 | 0.21720 (17) | 0.9000 (2) | 0.64578 (19) | 0.0339 (5) | |
N1 | 0.64254 (19) | 0.6373 (2) | 0.66901 (18) | 0.0228 (5) | |
N2 | 0.4008 (2) | 0.8685 (2) | 0.58537 (19) | 0.0263 (5) | |
H2N | 0.393 (4) | 0.952 (5) | 0.550 (3) | 0.043 (10)* | |
C1 | 0.7100 (2) | 0.5317 (3) | 0.6160 (2) | 0.0233 (5) | |
C2 | 0.8368 (2) | 0.5762 (3) | 0.6283 (2) | 0.0240 (5) | |
H2A | 0.886927 | 0.491448 | 0.648892 | 0.029* | |
C3 | 0.8713 (2) | 0.6388 (3) | 0.5124 (2) | 0.0288 (6) | |
H3A | 0.893112 | 0.558146 | 0.461791 | 0.035* | |
H3B | 0.802837 | 0.688401 | 0.478581 | 0.035* | |
C4 | 0.9729 (2) | 0.7454 (3) | 0.5201 (2) | 0.0311 (6) | |
H4A | 1.043151 | 0.695475 | 0.549779 | 0.037* | |
H4B | 0.990952 | 0.783222 | 0.444218 | 0.037* | |
C5 | 0.9407 (2) | 0.8704 (3) | 0.5979 (2) | 0.0295 (6) | |
H5A | 1.003226 | 0.944367 | 0.597275 | 0.035* | |
H5B | 0.867389 | 0.916344 | 0.571200 | 0.035* | |
C6 | 0.9248 (2) | 0.8128 (3) | 0.7171 (2) | 0.0278 (6) | |
H6A | 0.899178 | 0.893048 | 0.766341 | 0.033* | |
H6B | 1.001037 | 0.777727 | 0.746054 | 0.033* | |
C7 | 0.8356 (2) | 0.6895 (3) | 0.7240 (2) | 0.0236 (5) | |
H7A | 0.850009 | 0.636936 | 0.796398 | 0.028* | |
C8 | 0.7103 (2) | 0.7412 (3) | 0.7241 (2) | 0.0235 (5) | |
C9 | 0.5186 (2) | 0.6584 (3) | 0.6460 (2) | 0.0236 (5) | |
H9A | 0.491323 | 0.576348 | 0.597625 | 0.028* | |
C10 | 0.5061 (2) | 0.7980 (3) | 0.5776 (2) | 0.0239 (5) | |
C11 | 0.3047 (2) | 0.8261 (3) | 0.6481 (2) | 0.0264 (5) | |
C12 | 0.3171 (2) | 0.6889 (3) | 0.7153 (2) | 0.0285 (6) | |
H12A | 0.288711 | 0.606388 | 0.669460 | 0.034* | |
H12B | 0.267804 | 0.695498 | 0.783153 | 0.034* | |
C13 | 0.4435 (2) | 0.6608 (3) | 0.7512 (2) | 0.0260 (5) | |
H13A | 0.470638 | 0.737979 | 0.802975 | 0.031* | |
H13B | 0.449314 | 0.566826 | 0.790999 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0298 (9) | 0.0199 (9) | 0.0374 (10) | −0.0011 (7) | −0.0051 (8) | −0.0043 (7) |
O2 | 0.0306 (10) | 0.0200 (9) | 0.0407 (11) | 0.0001 (7) | −0.0028 (8) | −0.0059 (7) |
O3 | 0.0280 (10) | 0.0269 (10) | 0.0347 (10) | 0.0042 (7) | 0.0006 (8) | 0.0055 (7) |
O4 | 0.0266 (9) | 0.0273 (10) | 0.0478 (12) | 0.0052 (8) | −0.0031 (8) | −0.0019 (9) |
N1 | 0.0226 (10) | 0.0164 (9) | 0.0294 (10) | 0.0004 (8) | −0.0062 (8) | 0.0003 (8) |
N2 | 0.0260 (11) | 0.0189 (10) | 0.0337 (11) | 0.0043 (8) | −0.0044 (9) | 0.0023 (9) |
C1 | 0.0265 (12) | 0.0173 (11) | 0.0259 (11) | 0.0017 (9) | −0.0049 (9) | 0.0024 (9) |
C2 | 0.0245 (11) | 0.0177 (11) | 0.0297 (12) | 0.0005 (9) | −0.0039 (9) | 0.0002 (9) |
C3 | 0.0297 (13) | 0.0276 (13) | 0.0291 (13) | −0.0027 (10) | −0.0008 (10) | −0.0019 (10) |
C4 | 0.0306 (13) | 0.0319 (14) | 0.0309 (13) | −0.0046 (11) | −0.0008 (10) | 0.0011 (10) |
C5 | 0.0286 (13) | 0.0252 (13) | 0.0345 (14) | −0.0050 (10) | −0.0035 (10) | 0.0027 (10) |
C6 | 0.0250 (12) | 0.0275 (12) | 0.0309 (13) | −0.0053 (10) | −0.0045 (10) | −0.0006 (10) |
C7 | 0.0240 (11) | 0.0216 (11) | 0.0253 (11) | −0.0020 (9) | −0.0039 (9) | 0.0014 (9) |
C8 | 0.0250 (11) | 0.0195 (11) | 0.0258 (11) | −0.0010 (9) | −0.0043 (9) | 0.0017 (9) |
C9 | 0.0219 (11) | 0.0170 (11) | 0.0319 (12) | 0.0015 (8) | −0.0070 (9) | −0.0005 (9) |
C10 | 0.0253 (11) | 0.0180 (11) | 0.0283 (11) | 0.0021 (9) | −0.0054 (9) | −0.0006 (9) |
C11 | 0.0242 (12) | 0.0213 (12) | 0.0336 (13) | 0.0007 (9) | −0.0054 (10) | −0.0053 (10) |
C12 | 0.0245 (12) | 0.0217 (12) | 0.0393 (14) | −0.0016 (9) | −0.0017 (10) | 0.0001 (10) |
C13 | 0.0239 (12) | 0.0218 (12) | 0.0322 (13) | −0.0007 (9) | −0.0034 (10) | 0.0030 (9) |
O1—C1 | 1.207 (3) | C4—H4B | 0.9900 |
O2—C8 | 1.208 (3) | C5—C6 | 1.525 (4) |
O3—C10 | 1.217 (3) | C5—H5A | 0.9900 |
O4—C11 | 1.213 (3) | C5—H5B | 0.9900 |
N1—C8 | 1.394 (3) | C6—C7 | 1.532 (3) |
N1—C1 | 1.397 (3) | C6—H6A | 0.9900 |
N1—C9 | 1.456 (3) | C6—H6B | 0.9900 |
N2—C10 | 1.374 (3) | C7—C8 | 1.513 (3) |
N2—C11 | 1.390 (4) | C7—H7A | 1.0000 |
N2—H2N | 0.88 (5) | C9—C13 | 1.522 (4) |
C1—C2 | 1.515 (3) | C9—C10 | 1.531 (3) |
C2—C7 | 1.544 (3) | C9—H9A | 1.0000 |
C2—C3 | 1.548 (4) | C11—C12 | 1.503 (4) |
C2—H2A | 1.0000 | C12—C13 | 1.528 (4) |
C3—C4 | 1.527 (4) | C12—H12A | 0.9900 |
C3—H3A | 0.9900 | C12—H12B | 0.9900 |
C3—H3B | 0.9900 | C13—H13A | 0.9900 |
C4—C5 | 1.525 (4) | C13—H13B | 0.9900 |
C4—H4A | 0.9900 | ||
C8—N1—C1 | 112.6 (2) | C5—C6—H6B | 108.9 |
C8—N1—C9 | 122.3 (2) | C7—C6—H6B | 108.9 |
C1—N1—C9 | 123.4 (2) | H6A—C6—H6B | 107.8 |
C10—N2—C11 | 127.0 (2) | C8—C7—C6 | 113.4 (2) |
C10—N2—H2N | 118 (3) | C8—C7—C2 | 103.24 (19) |
C11—N2—H2N | 115 (3) | C6—C7—C2 | 117.1 (2) |
O1—C1—N1 | 123.9 (2) | C8—C7—H7A | 107.5 |
O1—C1—C2 | 128.4 (2) | C6—C7—H7A | 107.5 |
N1—C1—C2 | 107.5 (2) | C2—C7—H7A | 107.5 |
C1—C2—C7 | 103.9 (2) | O2—C8—N1 | 123.9 (2) |
C1—C2—C3 | 105.49 (19) | O2—C8—C7 | 128.2 (2) |
C7—C2—C3 | 113.9 (2) | N1—C8—C7 | 107.8 (2) |
C1—C2—H2A | 111.1 | N1—C9—C13 | 113.9 (2) |
C7—C2—H2A | 111.1 | N1—C9—C10 | 107.4 (2) |
C3—C2—H2A | 111.1 | C13—C9—C10 | 111.9 (2) |
C4—C3—C2 | 112.8 (2) | N1—C9—H9A | 107.8 |
C4—C3—H3A | 109.0 | C13—C9—H9A | 107.8 |
C2—C3—H3A | 109.0 | C10—C9—H9A | 107.8 |
C4—C3—H3B | 109.0 | O3—C10—N2 | 121.2 (2) |
C2—C3—H3B | 109.0 | O3—C10—C9 | 122.6 (2) |
H3A—C3—H3B | 107.8 | N2—C10—C9 | 116.2 (2) |
C5—C4—C3 | 109.7 (2) | O4—C11—N2 | 119.1 (2) |
C5—C4—H4A | 109.7 | O4—C11—C12 | 124.1 (3) |
C3—C4—H4A | 109.7 | N2—C11—C12 | 116.8 (2) |
C5—C4—H4B | 109.7 | C11—C12—C13 | 112.1 (2) |
C3—C4—H4B | 109.7 | C11—C12—H12A | 109.2 |
H4A—C4—H4B | 108.2 | C13—C12—H12A | 109.2 |
C6—C5—C4 | 109.2 (2) | C11—C12—H12B | 109.2 |
C6—C5—H5A | 109.8 | C13—C12—H12B | 109.2 |
C4—C5—H5A | 109.8 | H12A—C12—H12B | 107.9 |
C6—C5—H5B | 109.8 | C9—C13—C12 | 108.3 (2) |
C4—C5—H5B | 109.8 | C9—C13—H13A | 110.0 |
H5A—C5—H5B | 108.3 | C12—C13—H13A | 110.0 |
C5—C6—C7 | 113.2 (2) | C9—C13—H13B | 110.0 |
C5—C6—H6A | 108.9 | C12—C13—H13B | 110.0 |
C7—C6—H6A | 108.9 | H13A—C13—H13B | 108.4 |
C8—N1—C1—O1 | 179.5 (2) | C9—N1—C8—C7 | −174.9 (2) |
C9—N1—C1—O1 | −15.2 (4) | C6—C7—C8—O2 | −34.8 (4) |
C8—N1—C1—C2 | −5.3 (3) | C2—C7—C8—O2 | −162.5 (3) |
C9—N1—C1—C2 | 160.0 (2) | C6—C7—C8—N1 | 147.1 (2) |
O1—C1—C2—C7 | −167.9 (2) | C2—C7—C8—N1 | 19.4 (3) |
N1—C1—C2—C7 | 17.2 (2) | C8—N1—C9—C13 | −67.6 (3) |
O1—C1—C2—C3 | 72.0 (3) | C1—N1—C9—C13 | 128.4 (2) |
N1—C1—C2—C3 | −102.9 (2) | C8—N1—C9—C10 | 56.9 (3) |
C1—C2—C3—C4 | 155.2 (2) | C1—N1—C9—C10 | −107.1 (3) |
C7—C2—C3—C4 | 41.9 (3) | C11—N2—C10—O3 | 179.1 (2) |
C2—C3—C4—C5 | −58.7 (3) | C11—N2—C10—C9 | −0.4 (4) |
C3—C4—C5—C6 | 64.9 (3) | N1—C9—C10—O3 | 25.9 (3) |
C4—C5—C6—C7 | −55.2 (3) | C13—C9—C10—O3 | 151.6 (2) |
C5—C6—C7—C8 | −80.1 (3) | N1—C9—C10—N2 | −154.6 (2) |
C5—C6—C7—C2 | 40.0 (3) | C13—C9—C10—N2 | −28.9 (3) |
C1—C2—C7—C8 | −21.7 (2) | C10—N2—C11—O4 | −179.6 (2) |
C3—C2—C7—C8 | 92.6 (2) | C10—N2—C11—C12 | 0.4 (4) |
C1—C2—C7—C6 | −147.1 (2) | O4—C11—C12—C13 | −151.1 (3) |
C3—C2—C7—C6 | −32.8 (3) | N2—C11—C12—C13 | 28.9 (3) |
C1—N1—C8—O2 | 172.5 (2) | N1—C9—C13—C12 | 178.0 (2) |
C9—N1—C8—O2 | 6.9 (4) | C10—C9—C13—C12 | 55.9 (3) |
C1—N1—C8—C7 | −9.4 (3) | C11—C12—C13—C9 | −56.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O3i | 0.88 (5) | 2.07 (5) | 2.928 (3) | 165 (4) |
C7—H7A···O4ii | 1.00 | 2.42 | 3.150 (3) | 129 |
C9—H9A···O1iii | 1.00 | 2.65 | 3.385 (3) | 130 |
C12—H12A···O2ii | 0.99 | 2.53 | 3.143 (3) | 120 |
C13—H13A···O2 | 0.99 | 2.56 | 3.142 (3) | 118 |
C13—H13B···O2ii | 0.99 | 2.52 | 3.163 (3) | 122 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, −y+1, −z+1. |
Funding information
This report was made possible by a NPRP award [NPRP-7-495-1-094] from Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors. RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitrogen. RJB also acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Allen, F. H. & Trotter, J. (1971). J. Chem. Soc. B, pp. 1073–1079. Google Scholar
Bartlett, J. B., Dredge, K. & Dalgleish, A. G. (2004). Nat. Rev. Cancer, 4, 314–322. Web of Science CrossRef PubMed CAS Google Scholar
Begna, K., Pardanani, A., Mesa, R., Litzow, M., Hogan, W., Hanson, C. & Tefferi, A. (2012). Am. J. Hematol. 87, 66–68. Web of Science CrossRef PubMed Google Scholar
Benjamin, E. & Hijji, Y. M. (2017). J. Chem. pp. 1–6. Web of Science CrossRef Google Scholar
Blaschke, G., Kraft, H. P., Fickentscher, K. & Köhler, F. (1979). Arzneim.-Forsch. 29, 1640–1642. Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Brennen, W. N., Cooper, C. R., Capitosti, S., Brown, M. L. & Sikes, R. A. (2004). Clin. Prostate Cancer, 3, 54–61. CrossRef PubMed Google Scholar
Burley, D. M. & Lenz, W. (1962). Lancet, 279, 271–272. CrossRef Google Scholar
Caira, M. R., Botha, S. A. & Flanagan, D. R. (1994). J. Chem. Crystallogr. 24, 95–99. CSD CrossRef CAS Web of Science Google Scholar
D'Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. (1994). Proc. Natl Acad. Sci. USA, 91, 4082–4085. PubMed Web of Science Google Scholar
Eigler, A., Sinha, B., Hartmann, G. & Endres, S. (1997). Immunol. Today, 18, 487–492. CrossRef PubMed Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Franks, M. E., Macpherson, G. R. & Figg, W. D. (2004). Lancet, 363, 1802–1811. Web of Science CrossRef PubMed Google Scholar
Galustian, C. & Dalgleish, A. (2011). Drugs Fut. 36, 741–750. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hashimoto, Y. (2008). Arch. Pharm. Chem. Life Sci. 341, 536–547. Web of Science CrossRef Google Scholar
Hashimoto, Y., Tanatani, A., Nagasawa, K. & Miyachi, H. (2004). Drugs Fut. 29, 383–391. Web of Science CrossRef Google Scholar
Knobloch, J. & Rüther, U. (2008). Cell Cycle, 7, 1121–1127. Web of Science CrossRef PubMed Google Scholar
Knoche, B. & Blaschke, G. (1994). J. Chromatogr. A, 666, 235–240. CrossRef Web of Science Google Scholar
Kumar, S., Witzig, T. E. & Rajkumar, S. V. (2002). J. Cell. Mol. Med. 6, 160–174. Web of Science CrossRef PubMed Google Scholar
Kumar, S., Witzig, T. E. & Rajkumar, S. V. (2004). J. Clin. Oncol. 22, 2477–2488. Web of Science CrossRef PubMed Google Scholar
Lovell, F. M. (1970). ACA Abstr. Papers (Winter), 30. Google Scholar
Lovell, F. M. (1971). ACA Abstr. Papers (Summer), 36. Google Scholar
Luzzio, F. A. & Figg, W. D. (2004). Expert Opin. Ther. Pat. 14, 215–229. CrossRef Google Scholar
Maeno, M., Tokunaga, E., Yamamoto, T., Suzuki, T., Ogino, Y., Ito, E., Shiro, M., Asahi, T. & Shibata, N. (2015). Chem. Sci. 6, 1043–1048. Web of Science CrossRef PubMed Google Scholar
Matthews, S. J. & McCoy, C. (2003). Clin. Ther. 25, 342–395. Web of Science CrossRef PubMed Google Scholar
Melchert, M. & List, A. (2007). Int. J. Biochem. Cell Biol. 39, 1489–1499. Web of Science CrossRef PubMed Google Scholar
Moreira, A. L., Sampaio, E. P., Zmuidzinas, Z., Frindt, P., Smith, K. A. & Kaplan, G. J. (1993). Exp. Med, 177, 1675–1680. CrossRef Web of Science Google Scholar
Muller, G., Chen, R., Huang, S.-Y., Corral, L., Wong, L., Patterson, R., Chen, Y., Kaplan, G. & Stirling, D. (1999). Bioorg. Med. Chem. Lett. 9, 1625–1630. Web of Science CrossRef PubMed Google Scholar
Nishimura, K., Hashimoto, Y. & Iwasaki, S. (1994). Chem. Pharm. Bull. 42, 1157–1159. CrossRef PubMed Google Scholar
Raje, N. & Anderson, K. (1999). N. Engl. J. Med. 341, 1606–1609. Web of Science CrossRef PubMed Google Scholar
Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425. CrossRef CAS IUCr Journals Web of Science Google Scholar
Reepmeyer, J. C., Rhodes, M. O., Cox, D. C. & Silverton, J. V. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2063–2067. CSD CrossRef Web of Science Google Scholar
Rigaku OD (2012). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A. & Kaplan, G. (1991). J. Exp. Med, 173, 699–703. CrossRef PubMed Web of Science Google Scholar
Schey, S. & Ramasamy, K. (2011). Expert Opin. Investig. Drugs, 20, 691–700. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singhal, S., Mehta, J., Desikan, R., Ayers, D., Roberson, P., Eddlemon, P., Munshi, N., Anaissie, E., Wilson, C., Dhodapkar, M., Zeldis, J., Siegel, D., Crowley, J. & Barlogie, B. (1999). N. Engl. J. Med. 341, 1565–1571. Web of Science CrossRef PubMed Google Scholar
Sleijfer, S., Kruit, W. H. J. & Stoter, G. (2004). Eur. J. Cancer, 40, 2377–2382. Web of Science CrossRef PubMed Google Scholar
Stephans, T. D. (1988). Teratology, 38, 229–239. PubMed Web of Science Google Scholar
Suzuki, T., Tanaka, M., Shiro, M., Shibata, N., Osaka, T. & Asahi, T. (2010). Phase Transit. 83, 223–234. Web of Science CrossRef Google Scholar
Tseng, S., Pak, G., Washenik, K., Pomeranz, M. K. & Shupack, J. L. (1996). J. Am. Acad. Dermatol. 35, 969–979. CrossRef PubMed Web of Science Google Scholar
Wnendt, S., Finkam, M., Winter, W., Ossig, J., Raabe, G. & Zwingenberger, K. (1996). Chirality, 8, 390–396. CrossRef PubMed Google Scholar
Wu, J. J., Huang, D. B., Pang, K. R., Hsu, S. & Tyring, S. K. (2005). Br. J. Dermatol. 153, 254–273. Web of Science CrossRef PubMed Google Scholar
Zeldis, J., Knight, R., Hussein, M., Chopra, R. & Muller, G. (2011). Ann. N. Y. Acad. Sci. 1222, 76–82. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.