research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­bis­­{μ-2-meth­­oxy-6-[(methyl­imino)­meth­yl]phenolato}{2-meth­­oxy-6-[(methyl­imino)­meth­yl]phenolato}cadmium(II)cobalt(III) monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 7 September 2018; accepted 24 September 2018; online 2 October 2018)

The title compound, [CoCd(C9H10NO2)3Cl2]·H2O, is a solvatomorph of the corresponding hemihydrate recently published by us [Nesterova et al. (2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Cat. A, 560, 171-184.]). Appl. Cat. A, 560, 171–184]. The current structure reveals different cell parameters and space group compared with the published one while both are monoclinic with almost the same cell volume. The title compound is formed of discrete neutral dinuclear mol­ecules with no crystallographically imposed symmetry and water mol­ecules of crystallization. The overall geometry about the cobalt(III) ion is octa­hedral with an N3O3 environment; each ligand acts as a meridional ONO donor. The CdII coordination sphere approximates an irregular square pyramid with a chlorine atom at the apex. There is significant shortening of a Cd—O bond length to the oxygen atom of the methoxo group on one of the ligands [2.459 (3) Å] compared to the corresponding distance in the published structure [2.724 (7) Å], while other Cd—Cl/N/O bonds remain roughly the same. In the crystal lattice, the heterometallic mol­ecules, which are related by the crystallographic n-glide plane and inter­linked by weak hydrogen bonds to solvent water mol­ecules, form columns along [101]. Adjacent columns lie anti­parallel to each other.

1. Chemical context

The title compound, [CoCd(C9H10NO2)3Cl2]·H2O, (1) is a solvatomorph of the corresponding hemihydrate recently published by us (CSD refcode TEZKER; Nesterova et al., 2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Cat. A, 560, 171-184.]). We have studied the heterometallic hemihydrate [CoCdL3Cl2]·0.5H2O (2) with a Schiff base ligand {HL is 2-meth­oxy-6-[(methyl­imino)­meth­yl]phenol} and its related complex [CoL3]·DMF (DMF is N,N′-di­methyl­formamide) in alkanes oxidation reactions. Complexes of transition metals have proved to be efficient catalysts for a broad range of organic reactions, including direct C—H functionalization (Pototschnig et al., 2017[Pototschnig, G., Maulide, N. & Schnürch, M. (2017). Chem. Eur. J. 23, 9206-9232.]; Nesterov et al., 2018[Nesterov, D. S., Nesterova, O. V. & Pombeiro, A. J. L. (2018). Coord. Chem. Rev. 355, 199-222.]). At the same time, the catalytic properties of heterometallic compounds, and those combining catalytically active and non-active metals in particular, in stereospecific sp3 C—H oxidation with m-chloro­perbenzoic acid have received significantly less attention. A comparison of the catalytic behaviours of the hetero- and monometallic analogues provided further insight into the origin of stereoselectivity of the oxidation of C—H bonds (Nesterova et al., 2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Cat. A, 560, 171-184.]).

[Scheme 1]

While the hemihydrate (2) was prepared by direct synthesis (Kokozay et al., 2018[Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183-237. Amsterdam: Elsevier.]) employing Co powder and cadmium chloride as starting materials, for the synthesis of the title compound two metal acetate salts were reacted with the Schiff base formed in situ from the condensation between o-vanillin and CH3NH2·HCl in water/ethanol in a 1:1:3 molar ratio. Remarkably, the isolated plate-like crystals of (1) were brown–red, not brown–green, and appeared non-isostructural with the prismatic hemihydrate (2) while both are monoclinic with almost the same cell volume [2923.10 (10) Å3 in (1) and 2931.3 (7) Å3 in (2)]. The previously published structure was solved and refined in the standard setting P21/c whereas the current structure is in P21/n [a, b, c, β: 9.4036 (2), 21.1588 (4), 15.0319 (3) Å, 102.221 (2)°, respectively in (1) and 14.090 (2), 16.887 (2), 13.179 (2) Å, 110.84 (2)° in (2)]. Another striking difference is a significantly shorter Cd—O bond length to the oxygen atom of the methoxo group on one of the ligands [2.459 (3) Å] compared to the corresponding distance in (2) [2.724 (7) Å], while other Cd—Cl/N/O bonds remain roughly the same. The reason for such a discrepancy could be the incorporation of a whole water mol­ecule in (1) instead of a half-mol­ecule in (2), which slightly changes the hydrogen bonding and packing motifs in the former compound.

2. Structural commentary

The heterometallic complex (1) is built up from discrete CoCdL3Cl2 mol­ecules and water mol­ecules of crystallization. The mol­ecular structure of (1) closely resembles that of the hemihydrate (Nesterova et al., 2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Cat. A, 560, 171-184.]). The complex mol­ecule has no crystallographically imposed symmetry (Fig. 1[link]). The ligand moieties are deprotonated at the phenol O atom and octa­hedrally coordinate the CoIII ion through the three azomethine N and three phenolate O atoms in a mer configur­ation. The three crystallographically non-equivalent salicyl­aldimine ligands have Co—O and Co—N bond lengths in the ranges 1.871 (4)–1.932 (3) and 1.933 (4)–1.961 (5) Å, respectively, (Table 1[link]). Average Co—O and Co—N bond lengths in (1) and (2) are almost equal, being 1.905 and 1.945 Å, respectively, in the monohydrate and 1.900 and 1.945 Å in the hemihydrate. The trans angles at the cobalt atom vary from 173.23 (16) to 176.3 (2)° while the cis angles are in the range 82.67 (14)–93.70 (19)° (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Cd1—O11 2.235 (3) Co1—O11 1.913 (3)
Cd1—O31 2.286 (3) Co1—O31 1.932 (3)
Cd1—Cl1 2.4091 (14) Co1—N16 1.933 (4)
Cd1—Cl2 2.4222 (12) Co1—N26 1.942 (4)
Cd1—O12 2.459 (3) Co1—N36 1.961 (5)
Co1—O21 1.871 (4)    
       
O11—Cd1—O31 68.33 (12) O21—Co1—N16 92.19 (18)
O11—Cd1—Cl1 127.90 (10) O11—Co1—N16 92.91 (17)
O31—Cd1—Cl1 111.39 (9) O31—Co1—N16 174.93 (18)
O11—Cd1—Cl2 116.80 (10) O21—Co1—N26 92.72 (18)
O31—Cd1—Cl2 107.72 (9) O11—Co1—N26 91.78 (17)
Cl1—Cd1—Cl2 112.53 (5) O31—Co1—N26 88.21 (16)
O11—Cd1—O12 66.48 (12) N16—Co1—N26 89.43 (19)
O31—Cd1—O12 134.52 (12) O21—Co1—N36 85.17 (17)
Cl1—Cd1—O12 92.53 (9) O11—Co1—N36 90.06 (17)
Cl2—Cd1—O12 96.82 (9) O31—Co1—N36 88.82 (17)
O21—Co1—O11 173.23 (16) N16—Co1—N36 93.70 (19)
O21—Co1—O31 92.41 (15) N26—Co1—N36 176.3 (2)
O11—Co1—O31 82.67 (14)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids at the 30% probability level.

The nearest coordination geometry of the cadmium centre in (1) is strictly comparable to that for (2). The cadmium atom has two quite short bonds with the bridging phenolato oxygen atoms, O11 and O31 [2.235 (3), 2.286 (3) Å], of the two deprotonated Schiff bases and two longer bonding distances to the chlorine atoms [Cl1: 2.4091 (14), Cl2: 2.4222 (12) Å] in a distorted tetra­hedral geometry. The angles at the metal atom vary from 68.33 (12) to 127.90 (10)° (Table 1[link]). In addition, Cd1 is weakly bonded to the oxygen atom O12 at 2.459 (3) Å, which implies that the Cd1 coordination sphere approximates an irregular square pyramid with Cl1 atom at the apex. There is a marked decrease in the Cd—O12 bond length when (1) is compared to (2) [2.724 (7) Å] and the cobalt–cadmium separation [3.286 Å in (1) versus 3.315 Å in (2)], providing a rare structural example of variations in the metal coordination sphere to accommodate changes possibly caused by a different number of solvent mol­ecules in the crystal lattice.

3. Supra­molecular features

The heterometallic mol­ecules related by the crystallographic n-glide plane are stacked along [101] with adjacent columns lying anti­parallel to each other (Fig. 2[link]). The dinuclear units show no significant inter­molecular inter­actions in the solid state: the minimum Co⋯Cd separation between the neighbouring CoCdL3Cl2 mol­ecules within a column is 8.372 Å. There are weak hydrogen bonds between the solvent water mol­ecule and the oxygen atoms on one of the ligands (O21, O22) and also to the Cl1 atom of the mol­ecule related by the crystallographic n-glide plane (Fig. 2[link], Table 2[link]). Very weak C—H⋯Cl/O hydrogen-bonding inter­actions between the complex mol­ecules lead to a consolidation of the crystal packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C361—H361⋯Cl1i 0.95 2.76 3.509 (5) 137
C362—H36A⋯O32i 0.98 2.45 3.204 (7) 134
O1—H1AO⋯O21 0.84 (6) 2.45 (7) 3.140 (6) 139 (9)
O1—H1AO⋯O22 0.84 (6) 2.19 (5) 2.965 (7) 153 (9)
O1—H1BO⋯Cl1i 0.84 (6) 2.54 (7) 3.368 (6) 173 (9)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of (1) showing columns of CoCdL3Cl2 mol­ecules joined by hydrogen-bonding inter­actions through the solvent water mol­ecules along [101]. The symmetry code is as in Table 2[link]. Hydrogen bonds are shown as blue dashed lines. Only water H atoms are shown.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) via the WebCSD inter­face in September 2018 returned 43 hits for the crystal structures of metal complexes with HL and the ligand itself. Almost half of the complexes are hepta­nuclear homometallic assemblies (M = Mn, Co, Ni, Zn) with planar hexa­gonal disc-like cores and varying anions and solvent mol­ecules. The metal centres in the cores are in distorted octa­hedral geometries with the six μ3-bridging OH or MeO ions linking the central metal atom to the six peripheral ones; the metal-to-ligand ratio MII:L is 7:6. The ligand mol­ecules are singly deprotonated at the phenolate site and adopt a chelating bridging mode, forming five- and six-membered rings similar to those in (1). The rest of the complexes are mainly mononuclear compounds with mol­ecular (Mn, Co and Pt) or polymeric (Mn) arrangements in the crystal lattice and metal-to-ligand ratios MII/III:L of 1:2 and 1:3. There are also dimeric (Cu) and tetra­meric (Co, Mn) complexes with the teranuclear cores additionally supported by other bridging ligands. The heterometallic examples with HL are limited to the four Na/M (M = Fe, Ni) 1s–3d structures of 4 and 5 nuclearity and [CoCdL3Cl2]·0.5H2O (2) already mentioned.

5. Synthesis and crystallization

2-Hy­droxy-3-meth­oxy-benzaldehyde (0.23 g, 1.5 mmol) and methyl­amine hydro­chloride (0.10 g, 1.5 mmol) were added to ethanol (10 ml) and stirred magnetically for 10 min. Cd(CH3COO)2·2H2O (0.13 g, 0.5 mmol) and Co(CH3COO)2·4H2O (0.12 g, 0.5 mmol) both dissolved in 2 ml water were added to the light-yellow solution of the Schiff base formed in situ. The resultant red–brown solution was stirred at room temperature for an hour, then filtered and left to stand at room temperature. Brown–red plate-like crystals of (1) suitable for crystallographic characterization were formed over several days in a mixture with yellow flakes. They were collected by filter-suction, washed with ethanol and finally dried in air.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The P21/n setting is the obvious choice for (1) as this leads to a smaller β angle. The P21/c setting of the current structure can be determined by the transformation [1 0 0, 0 [\overline{1}] 0, [\overline{1}] 0 [\overline{1}]] to give the unit cell a = 9.404, b = 21.159, c = 15.954 Å, α = γ = 90, β = 112.95°. It is clear that the unit cells of (1) and (2) are different even if both are compared in the standard P21/c settings. The water mol­ecule hydrogen atoms in (1) were located and refined with geom­etries restrained to ideal values. All remaining hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3).

Table 3
Experimental details

Crystal data
Chemical formula [CoCd(C9H10NO2)3Cl2]·H2O
Mr 752.78
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.4036 (2), 21.1588 (4), 15.0319 (3)
β (°) 102.221 (2)
V3) 2923.10 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 12.38
Crystal size (mm) 0.29 × 0.07 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.216, 0.808
No. of measured, independent and observed [I > 2σ(I)] reflections 25774, 5222, 4362
Rint 0.060
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.02
No. of reflections 5222
No. of parameters 382
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.10, −0.76
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]). Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Dichloridobis{µ-2-methoxy-6-[(methylimino)methyl]phenolato}{2-methoxy-6-[(methylimino)methyl]phenolato}cadmium(II)cobalt(III) monohydrate top
Crystal data top
[CoCd(C9H10NO2)3Cl2]·H2OF(000) = 1520
Mr = 752.78Dx = 1.711 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 7300 reflections
a = 9.4036 (2) Åθ = 3.7–66.9°
b = 21.1588 (4) ŵ = 12.38 mm1
c = 15.0319 (3) ÅT = 100 K
β = 102.221 (2)°Plate, dark red
V = 2923.10 (10) Å30.29 × 0.07 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
5222 independent reflections
Radiation source: sealed X-ray tube4362 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.060
Detector resolution: 10.4738 pixels mm-1θmax = 67.3°, θmin = 3.7°
ω scansh = 711
Absorption correction: analytical
(CrysAlis Pro; Rigaku OD, 2015)
k = 2525
Tmin = 0.216, Tmax = 0.808l = 1717
25774 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0562P)2 + 8.2206P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5222 reflectionsΔρmax = 2.10 e Å3
382 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The water molecule hydrogen atoms were located and refined with geometries restrained to ideal values. The largest peak is 0.80 Angstroms from Cd1; the deepest hole is 0.73 Angstroms from Cd1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.83717 (3)0.66924 (2)0.43122 (2)0.02764 (12)
Co10.54906 (8)0.75790 (4)0.42739 (5)0.02739 (19)
Cl11.03803 (16)0.63906 (7)0.55162 (10)0.0487 (4)
Cl20.89886 (13)0.66652 (6)0.28277 (8)0.0347 (3)
O110.6005 (3)0.67029 (15)0.4340 (2)0.0288 (7)
C110.5129 (5)0.6209 (2)0.4128 (3)0.0292 (10)
C120.5785 (5)0.5615 (2)0.4072 (3)0.0304 (11)
O120.7279 (4)0.56332 (16)0.4243 (3)0.0344 (8)
C1210.8027 (7)0.5055 (3)0.4161 (4)0.0451 (14)
H12A0.78240.4750.46090.068*
H12B0.90760.51360.42720.068*
H12C0.76940.48840.35470.068*
C130.4944 (7)0.5080 (3)0.3858 (4)0.0397 (13)
H130.53970.46810.38270.048*
C140.3425 (7)0.5123 (3)0.3688 (4)0.0441 (15)
H140.28450.47560.35280.053*
C150.2777 (6)0.5695 (3)0.3751 (4)0.0420 (14)
H150.17470.57220.36440.05*
C160.3625 (6)0.6246 (3)0.3975 (4)0.0339 (11)
C1610.2874 (5)0.6845 (3)0.3990 (4)0.0388 (13)
H1610.18490.68230.39280.047*
N160.3433 (4)0.7399 (2)0.4076 (3)0.0361 (10)
C1620.2435 (6)0.7940 (3)0.4047 (5)0.0498 (16)
H16A0.14390.77840.39930.075*
H16B0.24830.82070.35210.075*
H16C0.2720.81880.46070.075*
C210.5855 (5)0.8855 (3)0.4726 (4)0.0344 (12)
O210.5157 (4)0.84486 (17)0.4129 (3)0.0351 (8)
C220.6147 (6)0.9468 (3)0.4418 (4)0.0360 (12)
O220.5648 (4)0.95460 (18)0.3497 (3)0.0402 (9)
C2210.5993 (7)1.0125 (3)0.3126 (4)0.0464 (14)
H22A0.56631.04760.34570.07*
H22B0.55071.01470.24820.07*
H22C0.70481.01540.31820.07*
C230.6830 (6)0.9915 (3)0.5003 (4)0.0447 (14)
H230.70121.0320.47780.054*
C240.7272 (7)0.9785 (3)0.5946 (4)0.0436 (14)
H240.77541.00980.63540.052*
C250.6993 (6)0.9197 (3)0.6259 (4)0.0416 (13)
H250.72750.91060.68910.05*
C260.6302 (6)0.8730 (3)0.5665 (4)0.0358 (12)
C2610.5976 (5)0.8127 (3)0.6033 (4)0.0351 (12)
H2610.60650.81040.66730.042*
N260.5577 (5)0.7616 (2)0.5575 (3)0.0326 (10)
C2620.5263 (7)0.7067 (3)0.6084 (4)0.0427 (13)
H26A0.60050.67420.6080.064*
H26B0.43030.68980.58010.064*
H26C0.52690.7190.67130.064*
O310.7577 (4)0.76899 (16)0.4532 (2)0.0288 (7)
C310.8156 (5)0.8150 (2)0.4098 (4)0.0296 (11)
C320.9275 (5)0.8534 (3)0.4572 (4)0.0328 (11)
O320.9740 (4)0.84021 (19)0.5477 (3)0.0418 (9)
C3211.0785 (7)0.8820 (3)0.6003 (4)0.0517 (16)
H32A1.16940.880.57840.078*
H32B1.09710.86930.66450.078*
H32C1.04080.92530.59430.078*
C330.9856 (6)0.9006 (3)0.4114 (4)0.0404 (13)
H331.05920.92750.44420.048*
C340.9374 (6)0.9089 (3)0.3184 (4)0.0405 (13)
H340.97930.94090.28770.049*
C350.8303 (6)0.8714 (3)0.2708 (4)0.0370 (12)
H350.79880.87670.20690.044*
C360.7665 (6)0.8248 (2)0.3164 (4)0.0317 (11)
C3610.6466 (6)0.7878 (2)0.2648 (4)0.0326 (11)
H3610.63910.78530.20080.039*
N360.5503 (5)0.7583 (2)0.2971 (3)0.0328 (9)
C3620.4337 (6)0.7279 (3)0.2312 (4)0.0405 (13)
H36A0.45170.73320.16970.061*
H36B0.34030.74730.23440.061*
H36C0.4310.68270.24530.061*
O10.3489 (6)0.8820 (3)0.2162 (4)0.0631 (13)
H1AO0.408 (9)0.892 (4)0.265 (4)0.095*
H1BO0.403 (9)0.878 (5)0.179 (5)0.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02341 (18)0.03144 (19)0.0287 (2)0.00034 (13)0.00698 (13)0.00319 (14)
Co10.0266 (4)0.0294 (4)0.0262 (4)0.0041 (3)0.0058 (3)0.0003 (3)
Cl10.0484 (8)0.0558 (9)0.0347 (7)0.0149 (7)0.0076 (6)0.0074 (6)
Cl20.0320 (6)0.0434 (7)0.0309 (6)0.0019 (5)0.0116 (5)0.0038 (5)
O110.0230 (16)0.0268 (17)0.038 (2)0.0002 (13)0.0100 (14)0.0007 (15)
C110.032 (3)0.033 (3)0.024 (3)0.002 (2)0.009 (2)0.004 (2)
C120.035 (3)0.033 (3)0.023 (2)0.004 (2)0.006 (2)0.001 (2)
O120.0344 (19)0.0258 (18)0.045 (2)0.0039 (14)0.0131 (16)0.0004 (16)
C1210.051 (3)0.035 (3)0.052 (4)0.013 (3)0.018 (3)0.005 (3)
C130.054 (3)0.034 (3)0.032 (3)0.006 (2)0.013 (3)0.001 (2)
C140.053 (4)0.048 (3)0.029 (3)0.025 (3)0.004 (2)0.001 (2)
C150.037 (3)0.060 (4)0.030 (3)0.016 (3)0.008 (2)0.006 (3)
C160.030 (3)0.045 (3)0.027 (3)0.005 (2)0.008 (2)0.003 (2)
C1610.016 (2)0.065 (4)0.037 (3)0.002 (2)0.008 (2)0.004 (3)
N160.023 (2)0.045 (3)0.039 (3)0.0044 (19)0.0065 (18)0.000 (2)
C1620.029 (3)0.050 (4)0.071 (4)0.013 (3)0.012 (3)0.002 (3)
C210.027 (2)0.039 (3)0.039 (3)0.007 (2)0.012 (2)0.006 (2)
O210.0331 (19)0.036 (2)0.034 (2)0.0036 (15)0.0034 (15)0.0030 (16)
C220.038 (3)0.031 (3)0.041 (3)0.002 (2)0.013 (2)0.003 (2)
O220.047 (2)0.036 (2)0.038 (2)0.0058 (17)0.0084 (17)0.0001 (17)
C2210.052 (4)0.042 (3)0.048 (4)0.011 (3)0.017 (3)0.007 (3)
C230.045 (3)0.042 (3)0.049 (4)0.003 (3)0.016 (3)0.008 (3)
C240.044 (3)0.045 (3)0.043 (3)0.007 (3)0.012 (3)0.013 (3)
C250.035 (3)0.054 (4)0.035 (3)0.001 (3)0.007 (2)0.008 (3)
C260.030 (3)0.045 (3)0.034 (3)0.004 (2)0.011 (2)0.006 (2)
C2610.030 (3)0.051 (3)0.026 (3)0.004 (2)0.011 (2)0.004 (2)
N260.031 (2)0.042 (3)0.025 (2)0.0081 (18)0.0093 (17)0.0019 (19)
C2620.047 (3)0.047 (3)0.036 (3)0.002 (3)0.013 (2)0.004 (3)
O310.0298 (17)0.0287 (17)0.0291 (18)0.0003 (14)0.0084 (14)0.0012 (14)
C310.023 (2)0.034 (3)0.034 (3)0.0031 (19)0.011 (2)0.002 (2)
C320.029 (3)0.034 (3)0.035 (3)0.002 (2)0.008 (2)0.004 (2)
O320.036 (2)0.051 (2)0.035 (2)0.0085 (17)0.0009 (16)0.0033 (18)
C3210.045 (3)0.065 (4)0.043 (4)0.016 (3)0.003 (3)0.001 (3)
C330.033 (3)0.038 (3)0.049 (4)0.000 (2)0.008 (2)0.000 (3)
C340.036 (3)0.039 (3)0.047 (3)0.002 (2)0.008 (2)0.011 (3)
C350.036 (3)0.038 (3)0.038 (3)0.007 (2)0.010 (2)0.006 (2)
C360.032 (3)0.032 (3)0.033 (3)0.006 (2)0.011 (2)0.003 (2)
C3610.038 (3)0.030 (3)0.031 (3)0.009 (2)0.008 (2)0.001 (2)
N360.037 (2)0.032 (2)0.028 (2)0.0012 (18)0.0016 (18)0.0008 (18)
C3620.046 (3)0.043 (3)0.031 (3)0.008 (3)0.004 (2)0.004 (2)
O10.058 (3)0.062 (3)0.063 (3)0.014 (2)0.004 (2)0.002 (3)
Geometric parameters (Å, º) top
Cd1—O112.235 (3)C221—H22B0.98
Cd1—O312.286 (3)C221—H22C0.98
Cd1—Cl12.4091 (14)C23—C241.417 (9)
Cd1—Cl22.4222 (12)C23—H230.95
Cd1—O122.459 (3)C24—C251.375 (9)
Co1—O211.871 (4)C24—H240.95
Co1—O111.913 (3)C25—C261.396 (8)
Co1—O311.932 (3)C25—H250.95
Co1—N161.933 (4)C26—C2611.450 (8)
Co1—N261.942 (4)C261—N261.293 (7)
Co1—N361.961 (5)C261—H2610.95
O11—C111.327 (6)N26—C2621.456 (7)
C11—C161.386 (7)C262—H26A0.98
C11—C121.409 (7)C262—H26B0.98
C12—O121.374 (6)C262—H26C0.98
C12—C131.381 (8)O31—C311.349 (6)
O12—C1211.429 (6)C31—C361.398 (8)
C121—H12A0.98C31—C321.399 (8)
C121—H12B0.98C32—O321.367 (7)
C121—H12C0.98C32—C331.389 (8)
C13—C141.400 (9)O32—C3211.430 (7)
C13—H130.95C321—H32A0.98
C14—C151.367 (9)C321—H32B0.98
C14—H140.95C321—H32C0.98
C15—C161.412 (8)C33—C341.387 (8)
C15—H150.95C33—H330.95
C16—C1611.454 (8)C34—C351.360 (8)
C161—N161.279 (8)C34—H340.95
C161—H1610.95C35—C361.405 (8)
N16—C1621.474 (7)C35—H350.95
C162—H16A0.98C36—C3611.455 (8)
C162—H16B0.98C361—N361.277 (7)
C162—H16C0.98C361—H3610.95
C21—O211.313 (7)N36—C3621.463 (7)
C21—C261.410 (8)C362—H36A0.98
C21—C221.422 (8)C362—H36B0.98
C22—C231.357 (8)C362—H36C0.98
C22—O221.374 (7)O1—H1AO0.84 (6)
O22—C2211.413 (7)O1—H1BO0.84 (6)
C221—H22A0.98
O11—Cd1—O3168.33 (12)O22—C22—C21112.9 (5)
O11—Cd1—Cl1127.90 (10)C22—O22—C221116.4 (5)
O31—Cd1—Cl1111.39 (9)O22—C221—H22A109.5
O11—Cd1—Cl2116.80 (10)O22—C221—H22B109.5
O31—Cd1—Cl2107.72 (9)H22A—C221—H22B109.5
Cl1—Cd1—Cl2112.53 (5)O22—C221—H22C109.5
O11—Cd1—O1266.48 (12)H22A—C221—H22C109.5
O31—Cd1—O12134.52 (12)H22B—C221—H22C109.5
Cl1—Cd1—O1292.53 (9)C22—C23—C24120.7 (6)
Cl2—Cd1—O1296.82 (9)C22—C23—H23119.6
O21—Co1—O11173.23 (16)C24—C23—H23119.6
O21—Co1—O3192.41 (15)C25—C24—C23118.8 (5)
O11—Co1—O3182.67 (14)C25—C24—H24120.6
O21—Co1—N1692.19 (18)C23—C24—H24120.6
O11—Co1—N1692.91 (17)C24—C25—C26121.2 (6)
O31—Co1—N16174.93 (18)C24—C25—H25119.4
O21—Co1—N2692.72 (18)C26—C25—H25119.4
O11—Co1—N2691.78 (17)C25—C26—C21120.5 (5)
O31—Co1—N2688.21 (16)C25—C26—C261119.1 (5)
N16—Co1—N2689.43 (19)C21—C26—C261120.3 (5)
O21—Co1—N3685.17 (17)N26—C261—C26126.4 (5)
O11—Co1—N3690.06 (17)N26—C261—H261116.8
O31—Co1—N3688.82 (17)C26—C261—H261116.8
N16—Co1—N3693.70 (19)C261—N26—C262117.1 (5)
N26—Co1—N36176.3 (2)C261—N26—Co1121.0 (4)
C11—O11—Co1127.9 (3)C262—N26—Co1121.8 (4)
C11—O11—Cd1123.9 (3)N26—C262—H26A109.5
Co1—O11—Cd1104.50 (14)N26—C262—H26B109.5
O11—C11—C16123.7 (5)H26A—C262—H26B109.5
O11—C11—C12117.3 (4)N26—C262—H26C109.5
C16—C11—C12119.0 (5)H26A—C262—H26C109.5
O12—C12—C13125.3 (5)H26B—C262—H26C109.5
O12—C12—C11114.1 (4)C31—O31—Co1119.2 (3)
C13—C12—C11120.6 (5)C31—O31—Cd1114.7 (3)
C12—O12—C121117.6 (4)Co1—O31—Cd1102.02 (14)
C12—O12—Cd1115.7 (3)O31—C31—C36120.8 (5)
C121—O12—Cd1125.1 (3)O31—C31—C32120.7 (5)
O12—C121—H12A109.5C36—C31—C32118.6 (5)
O12—C121—H12B109.5O32—C32—C33124.3 (5)
H12A—C121—H12B109.5O32—C32—C31115.8 (5)
O12—C121—H12C109.5C33—C32—C31119.9 (5)
H12A—C121—H12C109.5C32—O32—C321117.5 (5)
H12B—C121—H12C109.5O32—C321—H32A109.5
C12—C13—C14120.1 (5)O32—C321—H32B109.5
C12—C13—H13120H32A—C321—H32B109.5
C14—C13—H13120O32—C321—H32C109.5
C15—C14—C13119.8 (5)H32A—C321—H32C109.5
C15—C14—H14120.1H32B—C321—H32C109.5
C13—C14—H14120.1C34—C33—C32120.8 (5)
C14—C15—C16120.7 (5)C34—C33—H33119.6
C14—C15—H15119.7C32—C33—H33119.6
C16—C15—H15119.7C35—C34—C33120.2 (5)
C11—C16—C15119.8 (5)C35—C34—H34119.9
C11—C16—C161121.9 (5)C33—C34—H34119.9
C15—C16—C161118.2 (5)C34—C35—C36119.9 (5)
N16—C161—C16127.6 (5)C34—C35—H35120
N16—C161—H161116.2C36—C35—H35120
C16—C161—H161116.2C31—C36—C35120.6 (5)
C161—N16—C162117.6 (5)C31—C36—C361120.6 (5)
C161—N16—Co1124.9 (4)C35—C36—C361118.7 (5)
C162—N16—Co1117.5 (4)N36—C361—C36126.3 (5)
N16—C162—H16A109.5N36—C361—H361116.9
N16—C162—H16B109.5C36—C361—H361116.9
H16A—C162—H16B109.5C361—N36—C362116.6 (5)
N16—C162—H16C109.5C361—N36—Co1122.5 (4)
H16A—C162—H16C109.5C362—N36—Co1120.8 (4)
H16B—C162—H16C109.5N36—C362—H36A109.5
O21—C21—C26124.1 (5)N36—C362—H36B109.5
O21—C21—C22118.6 (5)H36A—C362—H36B109.5
C26—C21—C22117.3 (5)N36—C362—H36C109.5
C21—O21—Co1121.2 (3)H36A—C362—H36C109.5
C23—C22—O22125.6 (5)H36B—C362—H36C109.5
C23—C22—C21121.5 (6)H1AO—O1—H1BO103 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C361—H361···Cl1i0.952.763.509 (5)137
C362—H36A···O32i0.982.453.204 (7)134
O1—H1AO···O210.84 (6)2.45 (7)3.140 (6)139 (9)
O1—H1AO···O220.84 (6)2.19 (5)2.965 (7)153 (9)
O1—H1BO···Cl1i0.84 (6)2.54 (7)3.368 (6)173 (9)
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Cat. A, 560, 171–184.  Web of Science CrossRef Google Scholar
First citationNesterov, D. S., Nesterova, O. V. & Pombeiro, A. J. L. (2018). Coord. Chem. Rev. 355, 199–222.  Web of Science CrossRef Google Scholar
First citationPototschnig, G., Maulide, N. & Schnürch, M. (2017). Chem. Eur. J. 23, 9206–9232.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds