research communications
κN1)nickel(II) fumarate
and Hirshfeld surface analysis of tetraaquabis(isonicotinamide-aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and bTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: igolenya@ua.fm
The reaction of NiCl2 with fumaric acid and isonicotinamide in a basic solution produces the title complex, [Ni(C6H6N2O)2(H2O)4](C4H2O4). The nickel(II) ion of the complex cation and the fumarate anion are each located on an inversion centre. The NiII ion is coordinated octahedrally by four water O atoms and two N atoms of isonicotinamide molecules. The fumarate anion is linked to neighbouring complex cations via Owater—H⋯Ofumarate hydrogen bonds. In the crystal, the complex cations are further linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supramolecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal and indicate that the most important contributions for the crystal packing are from H⋯O/O⋯H (41.8%), H⋯H (35.3%) and H⋯C/C⋯H (10.2%) interactions.
Keywords: crystal structure; fumaric acid; isonicotinamide; nickel(II); Hirshfeld surface.
CCDC reference: 1579677
1. Chemical context
Metal complexes of biologically important ligands are sometimes more effective than the free ligands. Many transition and heavy metal cations play an important role in the biological processes involved in the formation of vitamins and drug components. An important element for biological systems is nickel and nickel complexes have biological activities including antiepileptic, antimicrobial, antibacterial and anticancer activities (Bombicz et al., 2001). Dicarboxylic acid ligands have been utilized primarily in the synthesis of a range of metal complexes. Dicarboxylic acids such as fumaric acid and have been particularly useful in creating many supramolecular structures (Pavlishchuk et al., 2011; Ostrowska et al., 2016), in particular isonicotinamide with a variety of carboxylic acids (Vishweshwar et al., 2003; Aakeröy et al., 2002).
We have prepared a new NiII complex, tetraaquabis(isonicotinamide-κN1)nickel(II) fumarate, and determined its structure by single crystal X-ray diffraction. In addition, Hirshfeld surface analysis and fingerprint plots were used to understand the intermolecular interactions in the crystal structure.
2. Structural commentary
The molecular structure of the title complex is illustrated in Fig. 1. The nickel(II) ion is octahedrally coordinated to four water O atoms and two Npyridine atoms of isonicotinamide molecules. The values of the Ni—Owater and Ni—Npyridine bond lengths and the bond angles involving atom Ni1 (Table 1) are close to those reported for similar nickel(II) complexes (Krämer et al., 2002; Bora & Das, 2011; Moroz et al., 2012).
3. Supramolecular features
In the crystal, each O atom of the fumarate dianion is linked to a water H atom via O—H⋯O hydrogen bonds, forming chains along the c-axis direction (Table 2, Fig. 2).
The fumarate anions and complex cations are linked by O—H⋯O hydrogen bonds; the complex cations also interact with each other through O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supramolecular architecture.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, update of May 2018; Groom et al., 2016) revealed the structures of four similar tetraaquabis(isonicotinamide-κN1)nickel(II) complexes with different counter-anions viz. bis(4-formylbenzoate) dihydrate (HUCLAT; Hökelek et al., 2009), bis(3-hydroxybenzoate) tetrahydrate (GANZAY; Zaman et al., 2012), bis(thiophene-2,5-dicarboxylate) dihydrate (NETQIO; Liu et al., 2012) and naphthalene-1,5-disulfonate tetrahydrate (TESDEC; Lian, 2012). In all four complexes, the cation possesses inversion symmetry with the nickel ion being located on a centre of symmetry. The Ni—Owater bond lengths vary from 2.044 to 2.086 Å, while the Ni—Npyridine bond lengths vary from 2.075 to 2.098 Å. In the title complex, the cation also possesses inversion symmetry and the Ni—Owater bond lengths [2.0812 (15) and 2.0537 (16) Å] and the Ni—Npyridine bond length [2.1075 (18) Å] fall within these limits.
5. Hirshfeld surface analysis
Crystal Explorer17.5 (Turner et al., 2017) was used to investigate the Hirshfeld surfaces and to analyse the interactions in the crystal. The Hirshfeld surfaces mapped over dnorm, di and de are shown in Fig. 3. Red spots indicate the contacts involved in strong hydrogen bonds and interatomic contacts (Gümüş et al., 2018; Sen et al., 2018; Kansız & Dege, 2018); those in Fig. 3 correspond to the near-type H⋯O contacts resulting from C—H⋯O, O—H⋯O and N—H⋯O hydrogen bonds. The Hirshfeld surfaces were obtained using a standard surface (high) resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.701 (red) to 1.286 (blue) a.u. The red spots in Fig. 4 correspond to the near-type H⋯O contacts resulting from O—H⋯O and N—H⋯O hydrogen bonds. Fig. 5 shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. In Fig. 6a. the two symmetrical points at the top, bottom left and right with de + di = 1.7 Å indicate the presence of H⋯O/O⋯H (41.8%) contacts. Fig. 6b shows the two-dimensional fingerprint plot of the (di, de) points associated with hydrogen atoms and is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts (35.3%). Fig. 6c shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa (H⋯C/C⋯H) and has two symmetrical wings on the left and right sides (10.2%). C⋯C (4.2%), C⋯O/O⋯C (2.9%) and H⋯N/N⋯H (2.7%) contacts also contribute to the Hirshfeld surface.
6. Synthesis and crystallization
A solution of NaOH (52 mmol, 2.07 g) was added to an aqueous solution of fumaric acid (26 mmol, 3 g) under stirring. A solution of NiCl2·6H2O (25 mmol, 6.14 g) in methanol was then added. The mixture was heated at 353 K for 30 min. and then the blue mixture was filtered and left to dry at room temperature. The reaction mixture (0.88 mmol, 0.20 g) was dissolved in methanol and added to a ethanol solution of isonicotinamide (1.76 mmol, 0.21 g). The mixture was heated at 353 K for 60 min. under stirring and the resulting suspension was filtered and left to crystallize for three weeks at room temperature. The title compound was obtained as a blue solid and contained crystals suitable for X-ray diffraction analysis.
7. Refinement
Crystal data, data collection and structure . The water and NH2 hydrogen atoms were located from difference-Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1579677
https://doi.org/10.1107/S2056989018013580/qm2126sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018013580/qm2126Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Ni(C6H6N2O)2(H2O)4](C4H2O4) | F(000) = 508 |
Mr = 489.08 | Dx = 1.617 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6140 (8) Å | Cell parameters from 8294 reflections |
b = 9.9819 (9) Å | θ = 2.0–28.5° |
c = 11.3874 (10) Å | µ = 1.03 mm−1 |
β = 113.157 (7)° | T = 296 K |
V = 1004.76 (16) Å3 | Prism, blue |
Z = 2 | 0.58 × 0.50 × 0.39 mm |
STOE IPDS 2 diffractometer | 2075 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1777 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.045 |
rotation method scans | θmax = 26.5°, θmin = 2.8° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −12→10 |
Tmin = 0.527, Tmax = 0.593 | k = −12→12 |
5175 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.073P)2 + 0.0362P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2075 reflections | Δρmax = 0.39 e Å−3 |
171 parameters | Δρmin = −0.82 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.500000 | 0.500000 | 0.02691 (15) | |
O2 | 0.39639 (19) | 0.36038 (17) | 0.35626 (16) | 0.0352 (3) | |
O3 | 0.3976 (2) | 0.65707 (16) | 0.38085 (15) | 0.0345 (3) | |
O4 | 0.45031 (18) | 0.63766 (14) | 0.16741 (14) | 0.0399 (4) | |
O5 | 0.2761 (2) | 0.47778 (18) | 0.11437 (18) | 0.0473 (4) | |
O1 | 1.0888 (2) | 0.70001 (16) | 0.31656 (18) | 0.0506 (4) | |
N1 | 0.6822 (2) | 0.52490 (16) | 0.44312 (18) | 0.0315 (4) | |
C7 | 0.3828 (2) | 0.5393 (2) | 0.10101 (19) | 0.0328 (4) | |
C8 | 0.4341 (3) | 0.4863 (2) | 0.0015 (2) | 0.0357 (5) | |
N2 | 1.0342 (3) | 0.5042 (3) | 0.2095 (3) | 0.0605 (7) | |
C2 | 0.8968 (2) | 0.5673 (2) | 0.33931 (19) | 0.0344 (4) | |
C3 | 0.8503 (3) | 0.6699 (2) | 0.3963 (2) | 0.0402 (5) | |
H3 | 0.891089 | 0.755195 | 0.401464 | 0.048* | |
C4 | 0.7431 (3) | 0.6452 (2) | 0.4456 (2) | 0.0392 (5) | |
H4 | 0.711583 | 0.715976 | 0.482316 | 0.047* | |
C6 | 0.8353 (3) | 0.4416 (2) | 0.3374 (2) | 0.0423 (5) | |
H6 | 0.864249 | 0.369442 | 0.300562 | 0.051* | |
C1 | 1.0136 (3) | 0.5951 (2) | 0.2856 (2) | 0.0402 (5) | |
C5 | 0.7303 (3) | 0.4249 (2) | 0.3910 (2) | 0.0401 (5) | |
H5 | 0.691168 | 0.339653 | 0.390746 | 0.048* | |
H3B | 0.402 (3) | 0.655 (3) | 0.312 (3) | 0.048 (8)* | |
H3A | 0.318 (3) | 0.670 (3) | 0.369 (2) | 0.038 (7)* | |
H2B | 0.434 (4) | 0.297 (3) | 0.354 (3) | 0.051 (9)* | |
H2A | 0.364 (4) | 0.389 (3) | 0.287 (3) | 0.056 (9)* | |
H2C | 1.030 (6) | 0.554 (6) | 0.139 (5) | 0.133 (17)* | |
H2D | 0.989 (5) | 0.420 (5) | 0.199 (4) | 0.104 (14)* | |
H8 | 0.367 (3) | 0.424 (3) | −0.058 (3) | 0.053 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0289 (2) | 0.0249 (2) | 0.0340 (2) | 0.00018 (13) | 0.01994 (16) | −0.00068 (12) |
O2 | 0.0414 (9) | 0.0306 (8) | 0.0386 (8) | 0.0005 (7) | 0.0210 (7) | −0.0031 (6) |
O3 | 0.0366 (9) | 0.0352 (8) | 0.0389 (8) | 0.0044 (7) | 0.0226 (7) | 0.0032 (6) |
O4 | 0.0537 (10) | 0.0327 (8) | 0.0455 (8) | −0.0069 (7) | 0.0328 (7) | −0.0049 (6) |
O5 | 0.0479 (10) | 0.0543 (10) | 0.0529 (10) | −0.0138 (8) | 0.0341 (8) | −0.0076 (7) |
O1 | 0.0464 (10) | 0.0421 (9) | 0.0781 (12) | −0.0012 (7) | 0.0405 (9) | 0.0097 (8) |
N1 | 0.0330 (9) | 0.0291 (8) | 0.0412 (9) | −0.0003 (7) | 0.0241 (8) | 0.0002 (7) |
C7 | 0.0389 (11) | 0.0291 (9) | 0.0366 (9) | 0.0038 (9) | 0.0216 (9) | 0.0031 (8) |
C8 | 0.0425 (13) | 0.0329 (11) | 0.0393 (11) | −0.0024 (9) | 0.0244 (10) | −0.0040 (8) |
N2 | 0.0581 (16) | 0.0683 (18) | 0.0789 (18) | −0.0089 (12) | 0.0526 (15) | −0.0146 (12) |
C2 | 0.0274 (10) | 0.0407 (12) | 0.0397 (9) | 0.0013 (9) | 0.0182 (8) | 0.0042 (9) |
C3 | 0.0419 (12) | 0.0314 (10) | 0.0578 (12) | −0.0019 (9) | 0.0309 (11) | 0.0025 (9) |
C4 | 0.0429 (12) | 0.0305 (10) | 0.0544 (12) | −0.0005 (9) | 0.0302 (10) | −0.0024 (9) |
C6 | 0.0422 (13) | 0.0372 (12) | 0.0592 (13) | −0.0031 (10) | 0.0325 (11) | −0.0112 (10) |
C1 | 0.0333 (11) | 0.0469 (13) | 0.0485 (11) | 0.0040 (9) | 0.0245 (10) | 0.0086 (10) |
C5 | 0.0424 (12) | 0.0313 (11) | 0.0584 (12) | −0.0042 (9) | 0.0325 (11) | −0.0069 (9) |
Ni1—O3i | 2.0536 (15) | C7—C8 | 1.499 (3) |
Ni1—O3 | 2.0537 (16) | C8—C8ii | 1.309 (5) |
Ni1—O2 | 2.0812 (15) | C8—H8 | 0.95 (3) |
Ni1—O2i | 2.0812 (15) | N2—C1 | 1.322 (4) |
Ni1—N1 | 2.1075 (18) | N2—H2C | 0.93 (6) |
Ni1—N1i | 2.1075 (18) | N2—H2D | 0.93 (5) |
O2—H2B | 0.73 (3) | C2—C3 | 1.378 (3) |
O2—H2A | 0.78 (3) | C2—C6 | 1.384 (3) |
O3—H3B | 0.80 (3) | C2—C1 | 1.501 (3) |
O3—H3A | 0.73 (3) | C3—C4 | 1.376 (3) |
O4—C7 | 1.253 (3) | C3—H3 | 0.9300 |
O5—C7 | 1.255 (3) | C4—H4 | 0.9300 |
O1—C1 | 1.242 (3) | C6—C5 | 1.379 (3) |
N1—C4 | 1.332 (3) | C6—H6 | 0.9300 |
N1—C5 | 1.334 (3) | C5—H5 | 0.9300 |
O3i—Ni1—O3 | 180.0 | O5—C7—C8 | 116.5 (2) |
O3i—Ni1—O2 | 88.00 (7) | C8ii—C8—C7 | 123.7 (3) |
O3—Ni1—O2 | 92.00 (7) | C8ii—C8—H8 | 120.6 (17) |
O3i—Ni1—O2i | 92.00 (7) | C7—C8—H8 | 115.6 (16) |
O3—Ni1—O2i | 88.00 (7) | C1—N2—H2C | 104 (4) |
O2—Ni1—O2i | 180.0 | C1—N2—H2D | 121 (3) |
O3i—Ni1—N1 | 93.03 (7) | H2C—N2—H2D | 121 (4) |
O3—Ni1—N1 | 86.97 (7) | C3—C2—C6 | 117.72 (19) |
O2—Ni1—N1 | 92.05 (6) | C3—C2—C1 | 119.23 (19) |
O2i—Ni1—N1 | 87.95 (7) | C6—C2—C1 | 123.0 (2) |
O3i—Ni1—N1i | 86.97 (7) | C4—C3—C2 | 119.6 (2) |
O3—Ni1—N1i | 93.03 (7) | C4—C3—H3 | 120.2 |
O2—Ni1—N1i | 87.95 (7) | C2—C3—H3 | 120.2 |
O2i—Ni1—N1i | 92.05 (6) | N1—C4—C3 | 123.1 (2) |
N1—Ni1—N1i | 180.0 | N1—C4—H4 | 118.4 |
Ni1—O2—H2B | 121 (2) | C3—C4—H4 | 118.4 |
Ni1—O2—H2A | 115 (2) | C5—C6—C2 | 119.0 (2) |
H2B—O2—H2A | 107 (3) | C5—C6—H6 | 120.5 |
Ni1—O3—H3B | 116 (2) | C2—C6—H6 | 120.5 |
Ni1—O3—H3A | 117 (2) | O1—C1—N2 | 122.9 (2) |
H3B—O3—H3A | 106 (3) | O1—C1—C2 | 119.0 (2) |
C4—N1—C5 | 117.25 (18) | N2—C1—C2 | 118.0 (2) |
C4—N1—Ni1 | 120.76 (14) | N1—C5—C6 | 123.3 (2) |
C5—N1—Ni1 | 121.62 (14) | N1—C5—H5 | 118.4 |
O4—C7—O5 | 124.33 (18) | C6—C5—H5 | 118.4 |
O4—C7—C8 | 119.12 (18) | ||
O4—C7—C8—C8ii | 17.1 (4) | C1—C2—C6—C5 | 178.9 (2) |
O5—C7—C8—C8ii | −160.8 (3) | C3—C2—C1—O1 | 15.0 (3) |
C6—C2—C3—C4 | −1.7 (3) | C6—C2—C1—O1 | −163.2 (2) |
C1—C2—C3—C4 | 179.9 (2) | C3—C2—C1—N2 | −166.6 (3) |
C5—N1—C4—C3 | 0.6 (4) | C6—C2—C1—N2 | 15.1 (4) |
Ni1—N1—C4—C3 | −172.50 (19) | C4—N1—C5—C6 | −1.9 (4) |
C2—C3—C4—N1 | 1.2 (4) | Ni1—N1—C5—C6 | 171.21 (19) |
C3—C2—C6—C5 | 0.6 (3) | C2—C6—C5—N1 | 1.3 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O4 | 0.80 (3) | 1.89 (3) | 2.678 (2) | 169 (3) |
O2—H2A···O5 | 0.78 (3) | 2.01 (3) | 2.791 (3) | 175 (3) |
C6—H6···O1iii | 0.93 | 2.31 | 3.230 (3) | 172 |
N2—H2D···O1iii | 0.93 (5) | 2.31 (5) | 3.230 (3) | 172 (4) |
C5—H5···O4iv | 0.93 | 2.38 | 3.282 (3) | 165 |
O2—H2B···O4iv | 0.73 (3) | 2.02 (3) | 2.739 (2) | 172 (3) |
O3—H3A···O1v | 0.73 (3) | 2.07 (3) | 2.798 (3) | 175 (3) |
Symmetry codes: (iii) −x+2, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) x−1, y, z. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432. Web of Science PubMed Google Scholar
Bombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229–235. Google Scholar
Bora, S. J. & Das, B. K. (2011). J. Mol. Struct. 999, 83–88. Web of Science CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290. Google Scholar
Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1101–m1102. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51. Google Scholar
Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314. Google Scholar
Lian, Z. (2012). Z. Kristallogr. 227, 479-480. Google Scholar
Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026. Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332. Web of Science CrossRef CAS Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836. Web of Science CSD CrossRef Google Scholar
Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth. Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). Cryst. Eng. Comm. 3, 783–790. Google Scholar
Zaman, I. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m200–m201. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.