research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of tetra­aqua­bis­­(isonicotinamide-κN1)nickel(II) fumarate

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and bTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: igolenya@ua.fm

Edited by P. McArdle, National University of Ireland, Ireland (Received 6 July 2018; accepted 24 September 2018; online 2 October 2018)

The reaction of NiCl2 with fumaric acid and isonicotinamide in a basic solution produces the title complex, [Ni(C6H6N2O)2(H2O)4](C4H2O4). The nickel(II) ion of the complex cation and the fumarate anion are each located on an inversion centre. The NiII ion is coordinated octa­hedrally by four water O atoms and two N atoms of isonicotinamide mol­ecules. The fumarate anion is linked to neighbouring complex cations via Owater—H⋯Ofumarate hydrogen bonds. In the crystal, the complex cations are further linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular inter­actions present in the crystal and indicate that the most important contributions for the crystal packing are from H⋯O/O⋯H (41.8%), H⋯H (35.3%) and H⋯C/C⋯H (10.2%) inter­actions.

1. Chemical context

Metal complexes of biologically important ligands are sometimes more effective than the free ligands. Many transition and heavy metal cations play an important role in the biological processes involved in the formation of vitamins and drug components. An important element for biological systems is nickel and nickel complexes have biological activities including anti­epileptic, anti­microbial, anti­bacterial and anti­cancer activities (Bombicz et al., 2001[Bombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229-235.]). Di­carb­oxy­lic acid ligands have been utilized primarily in the synthesis of a range of metal complexes. Di­carb­oxy­lic acids such as fumaric acid and amides have been particularly useful in creating many supra­molecular structures (Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Ostrowska et al., 2016[Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327-328, 304-332.]), in particular isonicotinamide with a variety of carb­oxy­lic acids (Vishweshwar et al., 2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). Cryst. Eng. Comm. 3, 783-790.]; Aakeröy et al., 2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]).

[Scheme 1]

We have prepared a new NiII complex, tetra­aqua­bis(isonicotinamide-κN1)nickel(II) fumarate, and determined its structure by single crystal X-ray diffraction. In addition, Hirshfeld surface analysis and fingerprint plots were used to understand the inter­molecular inter­actions in the crystal structure.

2. Structural commentary

The mol­ecular structure of the title complex is illustrated in Fig. 1[link]. The nickel(II) ion is octa­hedrally coordinated to four water O atoms and two Npyridine atoms of isonicotinamide mol­ecules. The values of the Ni—Owater and Ni—Npyridine bond lengths and the bond angles involving atom Ni1 (Table 1[link]) are close to those reported for similar nickel(II) complexes (Krämer et al., 2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]; Bora & Das, 2011[Bora, S. J. & Das, B. K. (2011). J. Mol. Struct. 999, 83-88.]; Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]).

Table 1
Selected geometric parameters (Å, °)

Ni1—O3 2.0537 (16) Ni1—N1 2.1075 (18)
Ni1—O2 2.0812 (15)    
       
O3—Ni1—O2 92.00 (7) O3—Ni1—N1 86.97 (7)
O3—Ni1—O2i 88.00 (7) O2—Ni1—N1 92.05 (6)
O3i—Ni1—N1 93.03 (7) O2i—Ni1—N1 87.95 (7)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z.]

3. Supra­molecular features

In the crystal, each O atom of the fumarate dianion is linked to a water H atom via O—H⋯O hydrogen bonds, forming chains along the c-axis direction (Table 2[link], Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O4 0.80 (3) 1.89 (3) 2.678 (2) 169 (3)
O2—H2A⋯O5 0.78 (3) 2.01 (3) 2.791 (3) 175 (3)
C6—H6⋯O1iii 0.93 2.31 3.230 (3) 172
N2—H2D⋯O1iii 0.93 (5) 2.31 (5) 3.230 (3) 172 (4)
C5—H5⋯O4iv 0.93 2.38 3.282 (3) 165
O2—H2B⋯O4iv 0.73 (3) 2.02 (3) 2.739 (2) 172 (3)
O3—H3A⋯O1v 0.73 (3) 2.07 (3) 2.798 (3) 175 (3)
Symmetry codes: (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z.
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Dashed lines indicate hydrogen bonds.

The fumarate anions and complex cations are linked by O—H⋯O hydrogen bonds; the complex cations also inter­act with each other through O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update of May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structures of four similar tetra­aqua­bis­(isonicotinamide-κN1)nickel(II) complexes with different counter-anions viz. bis­(4-formyl­benzoate) dihydrate (HUCLAT; Hökelek et al., 2009[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1101-m1102.]), bis­(3-hy­droxy­benzoate) tetra­hydrate (GANZAY; Zaman et al., 2012[Zaman, I. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m200-m201.]), bis­(thio­phene-2,5-di­carboxyl­ate) dihydrate (NETQIO; Liu et al., 2012[Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019-1026.]) and naphthalene-1,5-di­sulfonate tetra­hydrate (TESDEC; Lian, 2012[Lian, Z. (2012). Z. Kristallogr. 227, 479-480.]). In all four complexes, the cation possesses inversion symmetry with the nickel ion being located on a centre of symmetry. The Ni—Owater bond lengths vary from 2.044 to 2.086 Å, while the Ni—Npyridine bond lengths vary from 2.075 to 2.098 Å. In the title complex, the cation also possesses inversion symmetry and the Ni—Owater bond lengths [2.0812 (15) and 2.0537 (16) Å] and the Ni—Npyridine bond length [2.1075 (18) Å] fall within these limits.

5. Hirshfeld surface analysis

Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.]) was used to investigate the Hirshfeld surfaces and to analyse the inter­actions in the crystal. The Hirshfeld surfaces mapped over dnorm, di and de are shown in Fig. 3[link]. Red spots indicate the contacts involved in strong hydrogen bonds and inter­atomic contacts (Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]; Sen et al., 2018[Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994-997.]; Kansız & Dege, 2018[Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.]); those in Fig. 3[link] correspond to the near-type H⋯O contacts resulting from C—H⋯O, O—H⋯O and N—H⋯O hydrogen bonds. The Hirshfeld surfaces were obtained using a standard surface (high) resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.701 (red) to 1.286 (blue) a.u. The red spots in Fig. 4[link] correspond to the near-type H⋯O contacts resulting from O—H⋯O and N—H⋯O hydrogen bonds. Fig. 5[link] shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. In Fig. 6[link]a. the two symmetrical points at the top, bottom left and right with de + di = 1.7 Å indicate the presence of H⋯O/O⋯H (41.8%) contacts. Fig. 6[link]b shows the two-dimensional fingerprint plot of the (di, de) points associated with hydrogen atoms and is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts (35.3%). Fig. 6[link]c shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa (H⋯C/C⋯H) and has two symmetrical wings on the left and right sides (10.2%). C⋯C (4.2%), C⋯O/O⋯C (2.9%) and H⋯N/N⋯H (2.7%) contacts also contribute to the Hirshfeld surface.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
The Hirshfeld surface mapped over dnorm to visualize the intra­molecular and inter­molecular inter­actions in the title compound.
[Figure 5]
Figure 5
A fingerprint plot of the title compound.
[Figure 6]
Figure 6
(a) H⋯O/O⋯H, (b) H⋯H, (c) H⋯C/C⋯H, (d) C⋯C, (e) C⋯O/O⋯C and (f) H⋯N/N⋯H contacts in the title complex, showing their percentage contributions to the Hirshfeld surface.

6. Synthesis and crystallization

A solution of NaOH (52 mmol, 2.07 g) was added to an aqueous solution of fumaric acid (26 mmol, 3 g) under stirring. A solution of NiCl2·6H2O (25 mmol, 6.14 g) in methanol was then added. The mixture was heated at 353 K for 30 min. and then the blue mixture was filtered and left to dry at room temperature. The reaction mixture (0.88 mmol, 0.20 g) was dissolved in methanol and added to a ethanol solution of isonicotinamide (1.76 mmol, 0.21 g). The mixture was heated at 353 K for 60 min. under stirring and the resulting suspension was filtered and left to crystallize for three weeks at room temperature. The title compound was obtained as a blue solid and contained crystals suitable for X-ray diffraction analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The water and NH2 hydrogen atoms were located from difference-Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C6H6N2O)2(H2O)4](C4H2O4)
Mr 489.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.6140 (8), 9.9819 (9), 11.3874 (10)
β (°) 113.157 (7)
V3) 1004.76 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.03
Crystal size (mm) 0.58 × 0.50 × 0.39
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.527, 0.593
No. of measured, independent and observed [I > 2σ(I)] reflections 5175, 2075, 1777
Rint 0.045
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.05
No. of reflections 2075
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.83
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Tetraaquabis(isonicotinamide-κN1)nickel(II) fumarate top
Crystal data top
[Ni(C6H6N2O)2(H2O)4](C4H2O4)F(000) = 508
Mr = 489.08Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6140 (8) ÅCell parameters from 8294 reflections
b = 9.9819 (9) Åθ = 2.0–28.5°
c = 11.3874 (10) ŵ = 1.03 mm1
β = 113.157 (7)°T = 296 K
V = 1004.76 (16) Å3Prism, blue
Z = 20.58 × 0.50 × 0.39 mm
Data collection top
STOE IPDS 2
diffractometer
2075 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1777 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.045
rotation method scansθmax = 26.5°, θmin = 2.8°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1210
Tmin = 0.527, Tmax = 0.593k = 1212
5175 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.073P)2 + 0.0362P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2075 reflectionsΔρmax = 0.39 e Å3
171 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.02691 (15)
O20.39639 (19)0.36038 (17)0.35626 (16)0.0352 (3)
O30.3976 (2)0.65707 (16)0.38085 (15)0.0345 (3)
O40.45031 (18)0.63766 (14)0.16741 (14)0.0399 (4)
O50.2761 (2)0.47778 (18)0.11437 (18)0.0473 (4)
O11.0888 (2)0.70001 (16)0.31656 (18)0.0506 (4)
N10.6822 (2)0.52490 (16)0.44312 (18)0.0315 (4)
C70.3828 (2)0.5393 (2)0.10101 (19)0.0328 (4)
C80.4341 (3)0.4863 (2)0.0015 (2)0.0357 (5)
N21.0342 (3)0.5042 (3)0.2095 (3)0.0605 (7)
C20.8968 (2)0.5673 (2)0.33931 (19)0.0344 (4)
C30.8503 (3)0.6699 (2)0.3963 (2)0.0402 (5)
H30.8910890.7551950.4014640.048*
C40.7431 (3)0.6452 (2)0.4456 (2)0.0392 (5)
H40.7115830.7159760.4823160.047*
C60.8353 (3)0.4416 (2)0.3374 (2)0.0423 (5)
H60.8642490.3694420.3005620.051*
C11.0136 (3)0.5951 (2)0.2856 (2)0.0402 (5)
C50.7303 (3)0.4249 (2)0.3910 (2)0.0401 (5)
H50.6911680.3396530.3907460.048*
H3B0.402 (3)0.655 (3)0.312 (3)0.048 (8)*
H3A0.318 (3)0.670 (3)0.369 (2)0.038 (7)*
H2B0.434 (4)0.297 (3)0.354 (3)0.051 (9)*
H2A0.364 (4)0.389 (3)0.287 (3)0.056 (9)*
H2C1.030 (6)0.554 (6)0.139 (5)0.133 (17)*
H2D0.989 (5)0.420 (5)0.199 (4)0.104 (14)*
H80.367 (3)0.424 (3)0.058 (3)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0289 (2)0.0249 (2)0.0340 (2)0.00018 (13)0.01994 (16)0.00068 (12)
O20.0414 (9)0.0306 (8)0.0386 (8)0.0005 (7)0.0210 (7)0.0031 (6)
O30.0366 (9)0.0352 (8)0.0389 (8)0.0044 (7)0.0226 (7)0.0032 (6)
O40.0537 (10)0.0327 (8)0.0455 (8)0.0069 (7)0.0328 (7)0.0049 (6)
O50.0479 (10)0.0543 (10)0.0529 (10)0.0138 (8)0.0341 (8)0.0076 (7)
O10.0464 (10)0.0421 (9)0.0781 (12)0.0012 (7)0.0405 (9)0.0097 (8)
N10.0330 (9)0.0291 (8)0.0412 (9)0.0003 (7)0.0241 (8)0.0002 (7)
C70.0389 (11)0.0291 (9)0.0366 (9)0.0038 (9)0.0216 (9)0.0031 (8)
C80.0425 (13)0.0329 (11)0.0393 (11)0.0024 (9)0.0244 (10)0.0040 (8)
N20.0581 (16)0.0683 (18)0.0789 (18)0.0089 (12)0.0526 (15)0.0146 (12)
C20.0274 (10)0.0407 (12)0.0397 (9)0.0013 (9)0.0182 (8)0.0042 (9)
C30.0419 (12)0.0314 (10)0.0578 (12)0.0019 (9)0.0309 (11)0.0025 (9)
C40.0429 (12)0.0305 (10)0.0544 (12)0.0005 (9)0.0302 (10)0.0024 (9)
C60.0422 (13)0.0372 (12)0.0592 (13)0.0031 (10)0.0325 (11)0.0112 (10)
C10.0333 (11)0.0469 (13)0.0485 (11)0.0040 (9)0.0245 (10)0.0086 (10)
C50.0424 (12)0.0313 (11)0.0584 (12)0.0042 (9)0.0325 (11)0.0069 (9)
Geometric parameters (Å, º) top
Ni1—O3i2.0536 (15)C7—C81.499 (3)
Ni1—O32.0537 (16)C8—C8ii1.309 (5)
Ni1—O22.0812 (15)C8—H80.95 (3)
Ni1—O2i2.0812 (15)N2—C11.322 (4)
Ni1—N12.1075 (18)N2—H2C0.93 (6)
Ni1—N1i2.1075 (18)N2—H2D0.93 (5)
O2—H2B0.73 (3)C2—C31.378 (3)
O2—H2A0.78 (3)C2—C61.384 (3)
O3—H3B0.80 (3)C2—C11.501 (3)
O3—H3A0.73 (3)C3—C41.376 (3)
O4—C71.253 (3)C3—H30.9300
O5—C71.255 (3)C4—H40.9300
O1—C11.242 (3)C6—C51.379 (3)
N1—C41.332 (3)C6—H60.9300
N1—C51.334 (3)C5—H50.9300
O3i—Ni1—O3180.0O5—C7—C8116.5 (2)
O3i—Ni1—O288.00 (7)C8ii—C8—C7123.7 (3)
O3—Ni1—O292.00 (7)C8ii—C8—H8120.6 (17)
O3i—Ni1—O2i92.00 (7)C7—C8—H8115.6 (16)
O3—Ni1—O2i88.00 (7)C1—N2—H2C104 (4)
O2—Ni1—O2i180.0C1—N2—H2D121 (3)
O3i—Ni1—N193.03 (7)H2C—N2—H2D121 (4)
O3—Ni1—N186.97 (7)C3—C2—C6117.72 (19)
O2—Ni1—N192.05 (6)C3—C2—C1119.23 (19)
O2i—Ni1—N187.95 (7)C6—C2—C1123.0 (2)
O3i—Ni1—N1i86.97 (7)C4—C3—C2119.6 (2)
O3—Ni1—N1i93.03 (7)C4—C3—H3120.2
O2—Ni1—N1i87.95 (7)C2—C3—H3120.2
O2i—Ni1—N1i92.05 (6)N1—C4—C3123.1 (2)
N1—Ni1—N1i180.0N1—C4—H4118.4
Ni1—O2—H2B121 (2)C3—C4—H4118.4
Ni1—O2—H2A115 (2)C5—C6—C2119.0 (2)
H2B—O2—H2A107 (3)C5—C6—H6120.5
Ni1—O3—H3B116 (2)C2—C6—H6120.5
Ni1—O3—H3A117 (2)O1—C1—N2122.9 (2)
H3B—O3—H3A106 (3)O1—C1—C2119.0 (2)
C4—N1—C5117.25 (18)N2—C1—C2118.0 (2)
C4—N1—Ni1120.76 (14)N1—C5—C6123.3 (2)
C5—N1—Ni1121.62 (14)N1—C5—H5118.4
O4—C7—O5124.33 (18)C6—C5—H5118.4
O4—C7—C8119.12 (18)
O4—C7—C8—C8ii17.1 (4)C1—C2—C6—C5178.9 (2)
O5—C7—C8—C8ii160.8 (3)C3—C2—C1—O115.0 (3)
C6—C2—C3—C41.7 (3)C6—C2—C1—O1163.2 (2)
C1—C2—C3—C4179.9 (2)C3—C2—C1—N2166.6 (3)
C5—N1—C4—C30.6 (4)C6—C2—C1—N215.1 (4)
Ni1—N1—C4—C3172.50 (19)C4—N1—C5—C61.9 (4)
C2—C3—C4—N11.2 (4)Ni1—N1—C5—C6171.21 (19)
C3—C2—C6—C50.6 (3)C2—C6—C5—N11.3 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O40.80 (3)1.89 (3)2.678 (2)169 (3)
O2—H2A···O50.78 (3)2.01 (3)2.791 (3)175 (3)
C6—H6···O1iii0.932.313.230 (3)172
N2—H2D···O1iii0.93 (5)2.31 (5)3.230 (3)172 (4)
C5—H5···O4iv0.932.383.282 (3)165
O2—H2B···O4iv0.73 (3)2.02 (3)2.739 (2)172 (3)
O3—H3A···O1v0.73 (3)2.07 (3)2.798 (3)175 (3)
Symmetry codes: (iii) x+2, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science PubMed Google Scholar
First citationBombicz, P., Forizs, E., Madarász, J., Deák, A. & Kálmán, A. (2001). Inorg. Chim. Acta, 315, 229–235.  Google Scholar
First citationBora, S. J. & Das, B. K. (2011). J. Mol. Struct. 999, 83–88.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1101–m1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.  Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationLian, Z. (2012). Z. Kristallogr. 227, 479-480.  Google Scholar
First citationLiu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026.  Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOstrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.  Web of Science CrossRef CAS Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationSen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.  Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003). Cryst. Eng. Comm. 3, 783–790.  Google Scholar
First citationZaman, I. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m200–m201.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds