research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surfaces of four meth­­oxy­benzaldehyde oxime derivatives, 2-MeO-XC6H3C=NOH (X = H and 2-, 3- and 4-MeO): different conformations and hydrogen-bonding patterns

CROSSMARK_Color_square_no_text.svg

aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, cInstituto de Tecnologia em Fármacos e Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, and dDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland
*Correspondence e-mail: jnlow111@gmail.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 1 October 2018; accepted 3 October 2018; online 9 October 2018)

The crystal structures of four (E)-meth­oxy­benzaldehyde oxime derivatives, namely (2-meth­oxy­benzaldehyde oxime, 1, 2,3-di­meth­oxy­benzaldehyde oxime, 2, 4-di­meth­oxy­benzaldehyde oxime, 3, and 2,5-di­meth­oxy­benzaldehyde oxime, 4, are discussed. The arrangements of the 2-meth­oxy group and the H atom of the oxime unit are s-cis in compounds 13, but in both independent mol­ecules of compound 4, the arrangements are s-trans. There is also a difference in the conformation of the two mol­ecules in 4, involving the orientations of the 2- and 5-meth­oxy groups. The primary inter­molecular O—H(oxime)⋯O(hy­droxy) hydrogen bonds generate C(3) chains in 1 and 2. In contrast, in compound 3, the O—H(oxime)⋯O(hy­droxy) hydrogen bonds generate symmetric R22(6) dimers. A more complex dimer is generated in 4 from the O—H(oxime)⋯O(hy­droxy) and C—H(2-meth­oxy)⋯O(hy­droxy) hydrogen bonds. In all cases, further inter­actions, C—H⋯O and C—H⋯π or ππ, generate three-dimensional arrays. Hirshfeld surface and fingerprint analyses are discussed.

1. Chemical context

In the plant kingdom, oximes play a vital role in metabolism (Sørensen et al., 2018[Sørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95-117.]). Aldoximes, RCH=NOH, are found in many biologically active compounds (Abele et al., 2008[Abele, E., Abele, R. & Lukevics, E. (2008). Chem. Heterocycl. Cmpds, 44, 769-792.]; Nikitjuka & Jirgensons, 2014[Nikitjuka, A. & Jirgensons, A. (2014). Chem. Heterocycl. Cmpd, 49, 1544-1559.]), having a diverse range of uses including as anti-tumour agents (Martínez-Pascual et al., 2017[Martínez-Pascual, R., Meza-Reyes, S., Vega-Baez, J. L., Merino-Montiel, P., Padrón, J. M., Mendoza, Á. & Montiel-Smith, S. (2017). Steroids, 122, 24-33.]; Qin et al., 2017[Qin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., Hussain, Z., Kazmi, S. N. & Bukhari, S. N. A. (2017). Chem. Biol. Drug Des. 90, 443-449.]; Canario et al., 2018[Canario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660-686.]; Huang et al., 2018[Huang, G., Zhao, H. R., Meng, Q. Q., Zhang, Q. J., Dong, J. Y., Zhu, B. Q. & Li, S. S. (2018). Eur. J. Med. Chem. 143, 166-181.]), acaricidal and insecticidal agents (Dai et al., 2017[Dai, H., Chen, J., Li, G., Ge, S. S., Shi, Y. J., Fang, Y. & Ling, Y. (2017). Bioorg. Med. Chem. Lett. 27, 950-953.]), thymidine phospho­rylase inhibitors (Zhao et al., 2018[Zhao, S. Y., Li, K., Jin, Y. & Lin, J. (2018). Eur. J. Med. Chem. 144, 41-51.]), anti-microbial agents (Yadav et al., 2017[Yadav, P., Lal, K., Rani, P., Mor, S., Kumar, A. & Kumar, A. (2017). Med. Chem. Res. 26, 1469-1480.]), bacteriocides (Kozlowska et al., 2017[Kozłowska, J., Potaniec, B., Żarowska, B. & Anioł, M. (2017). Molecules, 22, 1485.]), anti-inflammatory agents (Mohassab et al. 2017[Mohassab, M., Hassan, H. A., Abdelhamid, D., Abdel-Aziz, M., Dalby, K. N. & Kaoud, T. S. (2017). Bioorg. Chem. 75, 242-259.]), and in the treatment of nerve-gas poisoning (Lorke et al., 2008[Lorke, D. E., Kalasz, H., Petroianu, G. A. & Tekes, K. (2008). Curr. Med. Chem. 15, 743-753.]; Voicu et al., 2010[Voicu, V. A., Thiermann, H., Rădulescu, F. Ş., Mircioiu, C. & Miron, D. S. (2010). Basic Clin. Pharmacol. Toxicol. 106, 73-85.]; Katalinić et al., 2017[Katalinić, M., Zandona, A., Ramić, A., Zorbaz, T., Primožic, I. & Kovarik, Z. (2017). Molecules, 22, 1234.]; Radić et al., 2013[Radić, Z., Dale, T., Kovarik, Z., Berend, S., Garcia, E., Zhang, L., Amitai, G., Green, C., Radić, B., Duggan, B. M., Ajami, D., Rebek, J. Jr & Taylor, P. (2013). Biochem. J. 450, 231-242.]).

Benzaldehyde oximes, ArCH=NOH, with their –CH=N—OH functional group are ideally arranged for classical O—H⋯O and/or O—H⋯N hydrogen bonding. The last survey of the classical hydrogen-bonding patterns in benzaldehyde oximes reported in 2010 (Low et al., 2010[Low, J. N., Santos, L. M. N. B. F., Lima, C. F. R. A. C., Brandão, P. & Gomes, L. R. (2010). Eur. J. Chem. 1, 61-66.]) confirmed that the most frequently found arrangements, with the exception of salicylaldoxines, are [R_{2}^{2}](6) dimers and C(3) chains, Fig. 1[link]. Aakeröy et al. (2013[Aakeröy, C. B., Sinha, A. S., Epa, K. N., Chopade, P. D., Smith, M. M. & Desper, J. (2013). Cryst. Growth Des. 13, 2687-2695.]) reported the percentages of [R_{2}^{2}](6) dimers and C(3) chains found in non-salicylaldoxine to be ca 72 and 24%, respectively – similar percentages can be derived from a recent survey of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Hydrogen bonds are considered to be the strongest and most directional of inter­molecular inter­actions in mol­ecules (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) and thus play the major roles in determining the overall supra­molecular structures. However, the involvement of weaker inter­molecular inter­actions, such as C—H⋯O hydrogen bonds, ππ inter­actions and inter­actions involving the substituents, can have a significant influence on the supra­molecular arrays generated. In a continuation of recent studies on aldoximes (Low et al. 2018[Low, J. N., Wardell, J. L., Da Costa, C. F., Souza, M. V. N. & Gomes, L. R. (2018). Eur. J. Chem. 9, 151-160.]; Gomes et al., 2018[Gomes, L. R., de Souza, M. V. N., Da Costa, C. F., Wardell, J. L. & Low, J. N. (2018). Acta Cryst. E74, 1480-1485.]), we have determined the crystal structures of four meth­oxy­benzaldehyde derivatives, namely 2-MeO-X-C6H3CH=NOH where X = H in 1, X = 3-MeO in 2, X = 4-MeO in 3 and X = 5-MeO in 4. The aim of the study was to further investigate the occurrence of [R_{2}^{2}](6) dimers and C(3) chains in a series of related compounds.

[Scheme 1]
[Figure 1]
Figure 1
Illustrations of the C(3) chains and [R_{2}^{2}](6) dimers formed by oximes

2. Structural commentary

There are no unusual features in the mol­ecular structures. Compound 1 crystallizes in the ortho­rhom­bic space group Pna21 with one mol­ecule in the asymmetric unit (Fig. 2[link]), compound 2 crystallizes in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit (Fig. 3[link]), compound 3 crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit (Fig. 4[link]), and compound 4 crystallizes in the monoclinic space group, P21/c with two independent mol­ecules, Mol A and Mol B, in the asymmetric unit (Fig. 5[link]). The geometry about the oxime moiety in all mol­ecules is (E). In compounds 13, the 2-meth­oxy group and the hydrogen of the oxime moiety have an s-cis arrangement. In contrast, in both mol­ecules of compound 4, the 2-meth­oxy group and the hydrogen atom of the oxime moiety have an s-trans arrangement. The s-trans arrangement of the 2-alk­oxy group and hydrogen atom of the oxime units in compound 4 is very much rarer than the s-cis arrangement found in compounds 13 and other non-salicylaldoximes. A search of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that only salicyl­aldoximes and 2-alk­oxy­benzaldehyde oxime (E)-2-({2-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-p-tolyl­acryl­o­nitrile (LAQRIG; Suresh et al. 2012[Suresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, o570.]) had this s-trans arrangement. In contrast, the isomer 2-({2-[(hy­droxy­imino)meth­yl]phen­oxy}meth­yl)-3-(2-methyl­phen­yl)acrylo­nitrile (GARNEU; Govindan et al., 2012a[Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2012a). Acta Cryst. E68, o484.]) and some similar compounds such as (E)-2-({2-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-phenyl­acrylo­nitrile (LAQRUS; Govindan et al., 2012b[Govindan, S., Vijayakumar, S., Jayakumar, S., Mannickam, B. & Sanmargam, A. (2012b). Acta Cryst. E68, o596.]) had the s-cis arrangement.

[Figure 2]
Figure 2
Atom arrangements and numbering scheme for compound 1. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Atom arrangements and numbering system for compound 2. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
Atom arrangements and numbering system for compound 3. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5]
Figure 5
Atom arrangements and numbering system for the two independent mol­ecules, Mol A and Mol B, of compound 4. Displacement ellipsoids are drawn at the 50% probability level.

There is a conformational difference between the two independent mol­ecules Mol A and Mol B of compound 4. This difference is in the orientation of the two meth­oxy groups, see Fig. 5[link]: in Mol A the orientation is s-trans and in Mol B, it is s-cis. As expected for a 1,2,3-tris­ubstituted benzene derivative, compound 4 is the least planar of the four oxime derivatives, with the 2-meth­oxy substituent furthest out of the plane of the attached phenyl group, see Table 1[link].

Table 1
Distances (Å) of OMe C atoms and oxime N and O atoms from benzene ring mean plane in compounds 14

Atom 1 2 3 4 Mol A 4 Mol B
C21 0.086 (3) −1.140 (4) 0.195 (1) 0.121 (1) 0.059 (1)
C31 −0.011 (4)
C41 0.081 (1)
C51 0.033 (1) 0.061 (1)
N12 0.061 (2) 0.259 (3) −0.177 (1) 0.264 (1) −0.020 (1)
O13 −0.009 (2) −0.027 (3) 0.051 (1) 0.242 (1) 0.010 (1)

3. Supra­molecular features

3.1. Hydrogen bonding

In the crystal of 1, mol­ecules are primarily linked by strong O13—H13⋯N12i hydrogen bonds (Table 2[link]), forming C(3) chains, illustrated in Fig. 6[link]. Also present in compound 1 are two weaker hydrogen bonds, namely, C3—H3⋯O13ii and C21—H21C⋯O13iii, as well as a weak ππ stacking inter­action [CgCgiv = 4.025 (2) Å: slippage 2.105 Å: symmetry code; x, y, z − 1]. These three inter­actions generate the mol­ecular arrangement shown in Fig. 7[link]. The C3—H3⋯O13ii hydrogen bonds generate C7 chains in the c-axis direction, while the C21—H21C⋯O13iii hydrogen bonds form C(8) spiral chains along the a-axis direction: together these hydrogen bonds form R44(22) rings. The tilted ππ stacks propagate in the c-axis direction. The involvement of the weaker C3—H3⋯O13ii, C21—H21C⋯O13iii and ππ inter­actions, along with the stronger O13—H13 ⋯N12i hydrogen bonds, creates the three-dimensional structure for 1.

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N12i 0.84 1.93 2.764 (2) 170
C3—H3⋯O13ii 0.95 2.50 3.442 (2) 174
C21—H21C⋯O13iii 0.98 2.57 3.506 (3) 160
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 6]
Figure 6
Compound 1. Part of a C(3) chain formed by O13—H13⋯·N12 hydrogen bonds (dashed lines; see Table 2[link]).
[Figure 7]
Figure 7
Compound 1. Part of the arrangement generated from the combination of hydrogen bonds and ππ inter­actions (dashed lines; see Table 2[link]).

As in 1, mol­ecules of 2 are primarily linked by strong O13—H13 ⋯N12i hydrogen bonds (Table 3[link]), forming C(3) chains: as such chains are very similar to those in compound 1, see Fig. 6[link], an illustration has not been provided for the C(3) chain in compound 2. Other inter­molecular inter­actions in 2 are the weaker C21—H21B⋯O31iii and C31—H31B⋯O13iv hydrogen bonds and a C31—H31CCg1v inter­action involving the C1–C6 ring. These three inter­actions combine to form the arrangement illustrated in Fig. 8[link]. The C21—H21B⋯O31iii hydrogen bonds on their own generate C(6) chains, which propagate in the a-axis direction while the C31—H31B⋯O13iv hydrogen bonds generate spiral C(9) chains in the b-axis direction. Together these hydrogen bonds generate a network of R44(26) rings. The C31—H31CCg1v inter­actions lead to chains along the a-axis direction. The involvement of the weaker C21—H21B⋯O31iii, C31—H31B⋯O13iv C and C—H⋯π inter­actions, along with the stronger O13—H13 ⋯N12i hydrogen bonds, creates a three-dimensional structure for 2. C4—H4⋯O12ii hydrogen bonds also occur.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N12i 0.97 (4) 1.87 (5) 2.805 (4) 161 (4)
C4—H4⋯O21ii 0.95 2.63 3.284 (4) 126
C21—H21B⋯O31iii 0.98 2.54 3.323 (5) 136
C31—H31B⋯O13iv 0.98 2.51 3.448 (5) 161
C31—H31CCg1v 0.98 2.73 3.599 (5) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+1, y, z.
[Figure 8]
Figure 8
Compound 2. Part of the arrangement generated form C21—H21B⋯O31, C31—H31B⋯O13 and ππ inter­actions (dashed lines; see Table 3[link]).

In compound 3, [R_{2}^{2}](6) dimers are generated from strong O13—H13⋯N12i hydrogen bonds (Table 4[link]), as illustrated in Fig. 9[link]. Linkages of these [R_{2}^{2}](6) dimers by weaker C41—H41A(meth­oxy)⋯O13ii hydrogen bonds provide a two-mol­ecule-wide ribbon. Within the ribbons are R44 (22) rings as well as the [R_{2}^{2}](6) rings. An additional inter­action in 3 is the C41—H41CCg1iii inter­action, which generates a tilted ladder assembly, propagating in the a-axis direction, with the [R_{2}^{2}](6) rings acting as the rungs and the C41—H41CCg1iii inter­actions as the supports.

Table 4
Hydrogen-bond geometry (Å, °) for 3[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N12i 0.893 (18) 1.995 (19) 2.8124 (13) 151.5 (15)
C41—H41A⋯O13ii 0.98 2.63 3.0680 (15) 107
C41—H41CCg1iii 0.98 2.60 3.4479 (13) 144
Symmetry codes: (i) -x, -y, -z; (ii) x+2, y+1, z; (iii) x+1, y, z.
[Figure 9]
Figure 9
Compound 3. A two-mol­ecule-wide ribbon generated from linking the [R_{2}^{2}](6) dimers, formed by pairs of strong O13—H13—N12 hydrogen bonds and by weaker C41—H41A⋯O13 hydrogen bonds (dashed lines; see Table 4[link]).

In compound 4, each of the two independent mol­ecules forms symmetric dimers, see Fig. 10[link]. These are generated from combinations of O113—H113⋯N112i and O113—H113⋯O121i hydrogen bonds (Table 5[link]) for Mol A and O213—H213⋯N212ii and O213—H213⋯O221ii hydrogen bonds for Mol B. In each case, the dimers contain three rings, two R12(6) and one [R_{2}^{2}](6). There are short N⋯N distances across the [R_{2}^{2}](6) dimer rings, 2.8595 (12) Å for MolA and 2.8956 (12) Å for Mol B, each being less than the sum of the van der Waals radius (3.10 Å) for two N atoms.

Table 5
Hydrogen-bond geometry (Å, °) for 4[link]

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O113—H113⋯O121i 0.875 (16) 2.247 (15) 2.8944 (9) 130.7 (12)
O113—H113⋯N112i 0.875 (16) 1.965 (16) 2.7567 (10) 149.9 (13)
O213—H213⋯O221ii 0.877 (15) 2.204 (15) 2.8758 (9) 133.1 (12)
O213—H213⋯N212ii 0.877 (15) 2.034 (15) 2.8160 (10) 147.9 (13)
C111—H111⋯O251 0.95 2.46 3.2458 (11) 140
C121—H12C⋯N212iii 0.98 2.53 3.4400 (13) 155
C151—H15A⋯O113iv 0.98 2.50 3.3947 (11) 152
C14—H14⋯Cg2iii 0.95 2.98 3.6656 (9) 130
C151—H15BCg2 0.98 2.72 3.5973 (10) 149
C24—H24⋯Cg1v 0.95 2.67 3.4281 (10) 137
C211—H211⋯Cg1vi 0.95 2.78 3.6272 (9) 149
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 10]
Figure 10
Compound 4. Symmetric dimers of (a) Mol A and (b) Mol B. Hydrogen bonds (see Table 5[link]) are shown as dashed lines.

The links between the two different dimers of 4 are provided by a number of C—H⋯O and C—H⋯π inter­actions, listed in Table 5[link]. Fig. 11[link] restricts the contacts to just the C—H⋯O hydrogen bonds, namely C121—H12C⋯N212iii, C111—H111⋯O251 and C151—H15A⋯O113iv. To facilitate the viewing of the connection in Fig. 11[link], the two different dimers are drawn in different colours.

[Figure 11]
Figure 11
Compound 4. Symmetric dimers of Mol A (green) and Mol B (blue). Inter­molecular inter­actions (see Table 5[link]) are shown as dashed lines.

3.2. Hirshfeld surface analysis

Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]), provide complementary information concerning the inter­molecular inter­actions discussed above. The analyses were generated using Crystal Explorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm for 14 are illus­trated in Fig. 12[link]. The red areas on the surfaces correspond to close contacts. The fingerprint plots are shown in Fig. 13[link]. In all of the FP plots, the pair of spikes pointing south-west relate to the N—H contacts, which in compounds 1 and 2 are involved in the C(3) chains, while in compounds 3 and 4, they are responsible for the creation of the dimers. In compound 3, the fins ending at de, di = 1.9,1.1 Å are due to C(π)⋯H/C(π)⋯H contacts. The FP plots for Mol A and Mol B of compound 4 are asymmetric because of the different inter­actions of each mol­ecule. The double wings in the FP plot for Mol A in the second quadrant are complementary to those displayed in the fourth quadrant by MolB and relate to C⋯H close contacts connecting the two mol­ecules. The spike ending at di, de = 1.1 Å in Mol A is due to H⋯H contacts.

[Figure 12]
Figure 12
Hirshfeld surfaces for compounds 14. In each case, the inter­actions related to the red areas are designated.
[Figure 13]
Figure 13
Fingerprint plots for compounds 14.

The percentages of the various atom–atom contacts, derived from the fingerprint plots, for the four compounds are shown in Table 6[link]. The fact that compound 1 has only one meth­oxy group while the isomers, 24, have two is reflected in the greater percentages of contacts involving the oxygen close contacts. The C(3)-chain-forming compounds 1 and 2 show higher percentages of H⋯H and C⋯C contacts, but a lower percentage of H⋯C/C⋯H contacts, than the dimer-forming compounds 3 and 4.

Table 6
Percentages of atom–atom contacts for compounds 1, 2, 3 and 4 (Mol A and Mol B)

Compound 1 2 3 4 Mol A 4 Mol B
H⋯H 52.7 49.1 43.7 41.5 38.6
H⋯O/O⋯H 16.2 22.5 23.4 24.9 26.3
H⋯C/C⋯H 11.3 14.5 20.4 22.7 25.9
H⋯N/N⋯H 8.1 6.6 8.4 9.0 8.1
C⋯C 7.9 3.5 1.3 0.1 0.1
O⋯C/C⋯O 2.1 2.0 2.6 1.5 0.8
N⋯O/O⋯N
N⋯C/C⋯N 1.6 1.8
O⋯O 0.4 0.2

4. Database survey

A search of the Cambridge Structural Database survey (CSD Version 5.39, August 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed compounds similar to 2 and 3. The classical hydrogen bonds in 3,5-di­meth­oxy­benzene oxime generate C(3) chains (VUZJAC; Dong et al., 2010[Dong, B., Zhang, Y. & Chen, J.-Z. (2010). Acta Cryst. E66, o2719.]). No benzene oxime derivative with only meth­oxy substituents has been reported in the database to form an [R_{2}^{2}](6) or related dimer. The structure has been reported of 3,4,5-tri­meth­oxy­benzene oxime (MEQDAO; Chang, 2006[Chang, X.-H. (2006). Acta Cryst. E62, o5699-o5700.]) in which classical hydrogen bonds, formed between the oxime unit and the 4- and 5-meth­oxy moieties, but not the 2-meth­oxy group, result in the formation of a tetra­mer. The water mol­ecule in 3,4.5-tri­meth­oxy­benzene monohydrate (HESWUY; Priya et al., 2006[Priya, B. S., Basappa, S. N., Anandalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2006). Anal. Sci.:X-Ray Structures Online, 22, x161-x162.]) is strongly involved in the hydrogen-bonding arrangements.

There are 376 structures, (411 fragments) in the CSD database with oxime [R_{2}^{2}](6) dimers in which the N⋯N distance across the ring is less than or equal to 3.10 Å, the sum of two N-atom van der Waals radii. The H⋯O hydrogen-bond distance range was restricted to 1.739–2.285 Å to exclude improbable O⋯H distances based on a statistical analysis in Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]). The N⋯N distances range from 2.727 to 3.097 Å with a mean value of 2.987 Å. There are 27 structures within the range 2.838 to 2.909 Å in which our values of 2.8595 (12) Å for MolA and 2.8956 (12) Å for MolB of compound4 lie. Only single-crystal organic compounds were searched for with no limit on the R factor.

5. Synthesis and crystallization

The title compounds were prepared from hy­droxy­amine and the corresponding benzaldehyde in methanol in the presence of potassium carbonate and were recrystallized from methanol solutions, m.p. = 364–365 K for compound 1, 371–373 K for 2, 378–380 K for 3 and 370–371 K for 4.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. All hy­droxy hydrogen atoms were refined isotropically. C-bound H atoms were refined as riding with C—H = 0.95–0.98Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 7
Experimental details

  1 2 3 4
Crystal data
Chemical formula C8H9NO2 C9H11NO3 C9H11NO3 C9H11NO3
Mr 151.16 181.19 181.19 181.19
Crystal system, space group Orthorhombic, Pna21 Orthorhombic, P212121 Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100 100 100
a, b, c (Å) 11.1719 (2), 16.4260 (3), 4.0249 (1) 4.6775 (2), 13.0996 (5), 14.1984 (5) 4.9441 (2), 8.2188 (4), 12.1308 (3) 7.6480 (1), 21.3380 (4), 10.9421 (2)
α, β, γ (°) 90, 90, 90 90, 90, 90 108.849 (3), 92.288 (3), 106.273 (4) 90, 90.555 (2), 90
V3) 738.61 (3) 869.98 (6) 443.17 (3) 1785.59 (5)
Z 4 4 2 8
Radiation type Cu Kα Cu Kα Cu Kα Mo Kα
μ (mm−1) 0.82 0.87 0.86 0.10
Crystal size (mm) 0.05 × 0.05 × 0.03 0.30 × 0.05 × 0.02 0.20 × 0.10 × 0.05 0.20 × 0.15 × 0.13
 
Data collection
Diffractometer Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.848, 1.000 0.507, 1.000 0.802, 1.000 0.935, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12857, 1345, 1325 7835, 1596, 1371 7618, 1594, 1462 38753, 4082, 3761
Rint 0.038 0.095 0.033 0.020
(sin θ/λ)max−1) 0.602 0.602 0.602 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.08 0.058, 0.151, 1.04 0.035, 0.101, 0.88 0.031, 0.086, 1.06
No. of reflections 1345 1596 1594 4082
No. of parameters 102 124 124 247
No. of restraints 1 0 0 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.16 0.35, −0.20 0.20, −0.19 0.32, −0.19
Absolute structure Refined as a perfect inversion twin. Flack x determined using 474 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5 0.2 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: OSCAIL (McArdle et al., 2004) and SHELXT (Sheldrick, 2015a); program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL (Sheldrick, 2015b) and PLATON (Spek, 2009).

2-Methoxy-benzaldehyde oxime (1) top
Crystal data top
C8H9NO2Dx = 1.359 Mg m3
Mr = 151.16Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 7376 reflections
a = 11.1719 (2) Åθ = 2.7–70.0°
b = 16.4260 (3) ŵ = 0.82 mm1
c = 4.0249 (1) ÅT = 100 K
V = 738.61 (3) Å3Block, colourless
Z = 40.05 × 0.05 × 0.03 mm
F(000) = 320
Data collection top
Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
diffractometer
1345 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF1325 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.038
profile data from ω–scansθmax = 68.2°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
h = 1313
Tmin = 0.848, Tmax = 1.000k = 1919
12857 measured reflectionsl = 44
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1277P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.17 e Å3
1345 reflectionsΔρmin = 0.16 e Å3
102 parametersAbsolute structure: Refined as a perfect inversion twin.
1 restraintAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O130.45979 (12)0.42019 (8)0.4095 (4)0.0311 (4)
H130.4437920.4641230.5065950.047*
O210.69333 (12)0.21322 (8)0.0350 (4)0.0303 (4)
N120.56325 (15)0.43011 (9)0.2166 (5)0.0265 (4)
C10.72029 (18)0.35490 (12)0.0488 (5)0.0260 (5)
C20.76289 (18)0.27720 (11)0.1386 (6)0.0266 (5)
C30.86797 (18)0.26830 (12)0.3172 (6)0.0296 (5)
H30.8959870.2155710.3751320.036*
C40.93229 (19)0.33707 (13)0.4113 (6)0.0316 (5)
H41.0041940.3311840.5350450.038*
C50.89200 (18)0.41434 (12)0.3255 (6)0.0310 (5)
H50.9361690.4611410.3903550.037*
C60.78780 (18)0.42272 (12)0.1462 (6)0.0296 (5)
H60.7610620.4756740.0870810.035*
C110.61087 (18)0.36135 (11)0.1461 (6)0.0275 (5)
H110.5736090.3129510.2235530.033*
C210.7290 (2)0.13337 (11)0.1388 (7)0.0319 (5)
H21A0.6683560.0937250.0695000.048*
H21B0.7369390.1322170.3812310.048*
H21C0.8059630.1195700.0366700.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O130.0346 (7)0.0199 (6)0.0389 (9)0.0001 (6)0.0067 (6)0.0040 (6)
O210.0346 (7)0.0172 (7)0.0391 (9)0.0000 (5)0.0025 (7)0.0018 (6)
N120.0300 (8)0.0215 (8)0.0279 (9)0.0012 (6)0.0017 (7)0.0006 (7)
C10.0310 (10)0.0206 (9)0.0264 (11)0.0008 (7)0.0041 (9)0.0005 (8)
C20.0323 (9)0.0194 (9)0.0281 (11)0.0011 (7)0.0048 (9)0.0007 (8)
C30.0348 (10)0.0230 (9)0.0310 (11)0.0017 (8)0.0036 (9)0.0015 (9)
C40.0316 (10)0.0307 (11)0.0324 (12)0.0001 (8)0.0009 (9)0.0006 (9)
C50.0350 (11)0.0243 (10)0.0337 (12)0.0043 (7)0.0015 (9)0.0025 (10)
C60.0362 (11)0.0203 (9)0.0322 (11)0.0003 (8)0.0023 (9)0.0007 (9)
C110.0352 (11)0.0181 (8)0.0292 (11)0.0008 (7)0.0030 (9)0.0011 (8)
C210.0390 (11)0.0158 (9)0.0408 (12)0.0028 (7)0.0004 (10)0.0028 (9)
Geometric parameters (Å, º) top
O13—N121.402 (2)C3—H30.9500
O13—H130.8400C4—C51.390 (3)
O21—C21.372 (2)C4—H40.9500
O21—C211.433 (2)C5—C61.377 (3)
N12—C111.280 (3)C5—H50.9500
C1—C61.401 (3)C6—H60.9500
C1—C21.409 (3)C11—H110.9500
C1—C111.456 (3)C21—H21A0.9800
C2—C31.384 (3)C21—H21B0.9800
C3—C41.391 (3)C21—H21C0.9800
N12—O13—H13109.5C6—C5—C4119.69 (18)
C2—O21—C21117.07 (16)C6—C5—H5120.2
C11—N12—O13111.27 (15)C4—C5—H5120.2
C6—C1—C2117.80 (19)C5—C6—C1121.50 (18)
C6—C1—C11123.00 (17)C5—C6—H6119.3
C2—C1—C11119.18 (17)C1—C6—H6119.3
O21—C2—C3123.87 (17)N12—C11—C1122.16 (18)
O21—C2—C1115.11 (18)N12—C11—H11118.9
C3—C2—C1121.01 (17)C1—C11—H11118.9
C2—C3—C4119.58 (18)O21—C21—H21A109.5
C2—C3—H3120.2O21—C21—H21B109.5
C4—C3—H3120.2H21A—C21—H21B109.5
C5—C4—C3120.4 (2)O21—C21—H21C109.5
C5—C4—H4119.8H21A—C21—H21C109.5
C3—C4—H4119.8H21B—C21—H21C109.5
C21—O21—C2—C34.2 (3)C2—C3—C4—C50.4 (3)
C21—O21—C2—C1176.10 (18)C3—C4—C5—C60.0 (3)
C6—C1—C2—O21179.70 (18)C4—C5—C6—C10.4 (3)
C11—C1—C2—O211.2 (3)C2—C1—C6—C50.4 (3)
C6—C1—C2—C30.0 (3)C11—C1—C6—C5178.8 (2)
C11—C1—C2—C3178.5 (2)O13—N12—C11—C1179.25 (17)
O21—C2—C3—C4179.9 (2)C6—C1—C11—N126.4 (3)
C1—C2—C3—C40.4 (3)C2—C1—C11—N12175.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N12i0.841.932.764 (2)170
C3—H3···O13ii0.952.503.442 (2)174
C21—H21C···O13iii0.982.573.506 (3)160
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z.
2,3-Dimethoxy-benzaldehyde oxime (2) top
Crystal data top
C9H11NO3Dx = 1.383 Mg m3
Mr = 181.19Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 2093 reflections
a = 4.6775 (2) Åθ = 4.6–67.5°
b = 13.0996 (5) ŵ = 0.87 mm1
c = 14.1984 (5) ÅT = 100 K
V = 869.98 (6) Å3Needle, colourless
Z = 40.30 × 0.05 × 0.02 mm
F(000) = 384
Data collection top
Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
diffractometer
1596 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF1371 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.095
profile data from ω–scansθmax = 68.2°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
h = 55
Tmin = 0.507, Tmax = 1.000k = 1515
7835 measured reflectionsl = 1716
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.1064P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.35 e Å3
1596 reflectionsΔρmin = 0.20 e Å3
124 parametersAbsolute structure: Flack x determined using 474 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.2 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O130.3161 (6)0.81289 (19)0.42174 (19)0.0376 (7)
H130.382 (10)0.799 (3)0.485 (3)0.045 (12)*
O210.3629 (5)0.73710 (18)0.18056 (18)0.0331 (6)
O310.6683 (6)0.57595 (18)0.1198 (2)0.0370 (7)
N120.1250 (7)0.7305 (2)0.4137 (2)0.0328 (7)
C10.1671 (8)0.6379 (3)0.3072 (3)0.0311 (8)
C20.3440 (8)0.6450 (2)0.2283 (3)0.0309 (8)
C30.5135 (8)0.5622 (2)0.1997 (3)0.0315 (8)
C40.5069 (9)0.4725 (3)0.2525 (2)0.0331 (9)
H40.6206190.4157560.2344310.040*
C50.3334 (9)0.4664 (3)0.3318 (3)0.0344 (8)
H50.3325760.4054720.3680390.041*
C60.1631 (9)0.5468 (3)0.3588 (3)0.0338 (9)
H60.0428590.5404870.4124570.041*
C110.0229 (8)0.7232 (2)0.3309 (3)0.0332 (8)
H110.0696380.7728070.2845410.040*
C210.2048 (9)0.7399 (3)0.0942 (3)0.0374 (9)
H21A0.2303100.8065980.0640990.056*
H21B0.0015420.7288270.1074100.056*
H21C0.2744810.6861650.0520040.056*
C310.8511 (10)0.4933 (3)0.0919 (3)0.0390 (10)
H31A0.9522420.5118080.0338930.059*
H31B0.7355780.4320800.0807810.059*
H31C0.9902970.4796500.1419050.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O130.0411 (16)0.0292 (13)0.0423 (16)0.0088 (12)0.0053 (13)0.0027 (11)
O210.0339 (14)0.0250 (12)0.0405 (14)0.0027 (11)0.0009 (12)0.0020 (10)
O310.0340 (14)0.0291 (12)0.0478 (15)0.0042 (11)0.0072 (13)0.0015 (11)
N120.0294 (16)0.0244 (14)0.0446 (18)0.0025 (13)0.0001 (15)0.0001 (12)
C10.0277 (18)0.0277 (17)0.038 (2)0.0008 (15)0.0021 (17)0.0004 (14)
C20.0297 (17)0.0244 (17)0.0387 (19)0.0018 (15)0.0012 (17)0.0017 (14)
C30.0285 (18)0.0262 (16)0.040 (2)0.0016 (15)0.0002 (16)0.0029 (15)
C40.0315 (18)0.0236 (17)0.044 (2)0.0017 (16)0.0025 (17)0.0036 (14)
C50.036 (2)0.0286 (17)0.039 (2)0.0000 (16)0.0054 (18)0.0019 (15)
C60.034 (2)0.0298 (18)0.038 (2)0.0001 (17)0.0004 (17)0.0019 (15)
C110.0353 (19)0.0238 (16)0.040 (2)0.0010 (17)0.0001 (18)0.0007 (15)
C210.040 (2)0.0324 (18)0.040 (2)0.0016 (17)0.0010 (17)0.0037 (15)
C310.035 (2)0.0296 (18)0.052 (2)0.0034 (16)0.009 (2)0.0068 (16)
Geometric parameters (Å, º) top
O13—N121.405 (4)C4—C51.389 (5)
O13—H130.97 (4)C4—H40.9500
O21—C21.386 (4)C5—C61.375 (5)
O21—C211.432 (4)C5—H50.9500
O31—C31.357 (4)C6—H60.9500
O31—C311.435 (4)C11—H110.9500
N12—C111.273 (5)C21—H21A0.9800
C1—C21.396 (5)C21—H21B0.9800
C1—C61.401 (5)C21—H21C0.9800
C1—C111.467 (5)C31—H31A0.9800
C2—C31.404 (5)C31—H31B0.9800
C3—C41.394 (5)C31—H31C0.9800
N12—O13—H1397 (3)C5—C6—C1119.9 (4)
C2—O21—C21114.1 (3)C5—C6—H6120.1
C3—O31—C31116.6 (3)C1—C6—H6120.1
C11—N12—O13111.8 (3)N12—C11—C1119.7 (3)
C2—C1—C6119.0 (3)N12—C11—H11120.1
C2—C1—C11119.5 (3)C1—C11—H11120.1
C6—C1—C11121.4 (3)O21—C21—H21A109.5
O21—C2—C1119.2 (3)O21—C21—H21B109.5
O21—C2—C3119.7 (3)H21A—C21—H21B109.5
C1—C2—C3121.0 (3)O21—C21—H21C109.5
O31—C3—C4125.0 (3)H21A—C21—H21C109.5
O31—C3—C2116.1 (3)H21B—C21—H21C109.5
C4—C3—C2118.9 (3)O31—C31—H31A109.5
C5—C4—C3119.8 (3)O31—C31—H31B109.5
C5—C4—H4120.1H31A—C31—H31B109.5
C3—C4—H4120.1O31—C31—H31C109.5
C6—C5—C4121.4 (3)H31A—C31—H31C109.5
C6—C5—H5119.3H31B—C31—H31C109.5
C4—C5—H5119.3
C21—O21—C2—C1103.3 (4)C1—C2—C3—C41.2 (5)
C21—O21—C2—C380.0 (4)O31—C3—C4—C5178.1 (4)
C6—C1—C2—O21175.9 (3)C2—C3—C4—C50.2 (5)
C11—C1—C2—O217.9 (5)C3—C4—C5—C61.1 (6)
C6—C1—C2—C30.8 (5)C4—C5—C6—C11.4 (6)
C11—C1—C2—C3175.4 (4)C2—C1—C6—C50.5 (6)
C31—O31—C3—C44.0 (5)C11—C1—C6—C5176.6 (3)
C31—O31—C3—C2177.6 (4)O13—N12—C11—C1176.2 (3)
O21—C2—C3—O316.0 (5)C2—C1—C11—N12161.0 (3)
C1—C2—C3—O31177.3 (3)C6—C1—C11—N1222.8 (6)
O21—C2—C3—C4175.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O13—H13···N12i0.97 (4)1.87 (5)2.805 (4)161 (4)
C4—H4···O21ii0.952.633.284 (4)126
C21—H21B···O31iii0.982.543.323 (5)136
C31—H31B···O13iv0.982.513.448 (5)161
C31—H31C···Cg1v0.982.733.599 (5)148
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x, y1/2, z+1/2; (v) x+1, y, z.
2,4-Dimethoxybenzaldehyde oxime (3) top
Crystal data top
C9H11NO3Z = 2
Mr = 181.19F(000) = 192
Triclinic, P1Dx = 1.358 Mg m3
a = 4.9441 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.2188 (4) ÅCell parameters from 3758 reflections
c = 12.1308 (3) Åθ = 3.9–69.9°
α = 108.849 (3)°µ = 0.86 mm1
β = 92.288 (3)°T = 100 K
γ = 106.273 (4)°Block, colourless
V = 443.17 (3) Å30.20 × 0.10 × 0.05 mm
Data collection top
Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
diffractometer
1594 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF1462 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.033
profile data from ω–scansθmax = 68.2°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
h = 55
Tmin = 0.802, Tmax = 1.000k = 99
7618 measured reflectionsl = 1413
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.1273P]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
1594 reflectionsΔρmax = 0.20 e Å3
124 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O130.22417 (16)0.06653 (12)0.08642 (7)0.0311 (2)
O210.29524 (16)0.56560 (10)0.41358 (7)0.0261 (2)
O411.14895 (16)0.88605 (11)0.31075 (7)0.0273 (2)
N120.05891 (19)0.17759 (13)0.09919 (8)0.0255 (3)
C10.3951 (2)0.45758 (15)0.22073 (10)0.0231 (3)
C20.4791 (2)0.58860 (15)0.33490 (9)0.0228 (3)
C30.7331 (2)0.72870 (15)0.36234 (9)0.0237 (3)
H30.7890710.8151150.4398460.028*
C40.9063 (2)0.74213 (15)0.27541 (10)0.0238 (3)
C50.8276 (2)0.61490 (15)0.16177 (10)0.0247 (3)
H50.9453800.6240260.1026650.030*
C60.5741 (2)0.47475 (15)0.13657 (10)0.0245 (3)
H60.5207580.3874950.0592940.029*
C110.1194 (2)0.31641 (15)0.19252 (10)0.0242 (3)
H110.0173160.3286240.2449520.029*
C210.3513 (2)0.70704 (15)0.52560 (9)0.0281 (3)
H21A0.1965090.6790990.5710950.042*
H21B0.3645390.8216050.5142020.042*
H21C0.5313980.7173690.5682890.042*
C411.3260 (2)0.90933 (16)0.22272 (10)0.0278 (3)
H41A1.4903511.0181550.2577040.042*
H41B1.2163910.9220540.1585800.042*
H41C1.3921550.8036960.1916900.042*
H130.235 (4)0.031 (2)0.0244 (16)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O130.0234 (4)0.0320 (5)0.0287 (5)0.0008 (3)0.0076 (3)0.0062 (4)
O210.0251 (4)0.0298 (4)0.0202 (4)0.0037 (3)0.0072 (3)0.0081 (3)
O410.0227 (4)0.0309 (5)0.0241 (4)0.0022 (3)0.0068 (3)0.0089 (3)
N120.0212 (5)0.0278 (5)0.0252 (5)0.0032 (4)0.0044 (4)0.0100 (4)
C10.0229 (6)0.0248 (6)0.0230 (6)0.0079 (4)0.0033 (4)0.0099 (4)
C20.0222 (5)0.0285 (6)0.0216 (6)0.0092 (4)0.0060 (4)0.0123 (5)
C30.0235 (6)0.0279 (6)0.0196 (5)0.0072 (5)0.0034 (4)0.0086 (4)
C40.0198 (6)0.0269 (6)0.0257 (6)0.0063 (4)0.0029 (4)0.0114 (5)
C50.0236 (6)0.0306 (6)0.0229 (6)0.0100 (5)0.0077 (4)0.0113 (5)
C60.0252 (6)0.0271 (6)0.0208 (5)0.0083 (5)0.0036 (4)0.0077 (4)
C110.0242 (6)0.0288 (6)0.0221 (6)0.0080 (5)0.0058 (4)0.0118 (4)
C210.0295 (6)0.0324 (6)0.0195 (6)0.0065 (5)0.0077 (4)0.0075 (5)
C410.0250 (6)0.0333 (6)0.0258 (6)0.0059 (5)0.0085 (4)0.0131 (5)
Geometric parameters (Å, º) top
O13—N121.4112 (12)C3—H30.9500
O13—H130.893 (18)C4—C51.3939 (16)
O21—C21.3648 (13)C5—C61.3869 (16)
O21—C211.4294 (13)C5—H50.9500
O41—C41.3632 (13)C6—H60.9500
O41—C411.4339 (13)C11—H110.9500
N12—C111.2728 (15)C21—H21A0.9800
C1—C61.3931 (16)C21—H21B0.9800
C1—C21.4107 (15)C21—H21C0.9800
C1—C111.4634 (15)C41—H41A0.9800
C2—C31.3864 (16)C41—H41B0.9800
C3—C41.3971 (16)C41—H41C0.9800
N12—O13—H13103.5 (11)C1—C6—C5122.23 (10)
C2—O21—C21117.44 (8)C1—C6—H6118.9
C4—O41—C41116.82 (9)C5—C6—H6118.9
C11—N12—O13111.40 (9)N12—C11—C1121.37 (10)
C6—C1—C2117.84 (10)N12—C11—H11119.3
C6—C1—C11122.31 (10)C1—C11—H11119.3
C2—C1—C11119.74 (10)O21—C21—H21A109.5
O21—C2—C3123.79 (10)O21—C21—H21B109.5
O21—C2—C1115.34 (10)H21A—C21—H21B109.5
C3—C2—C1120.88 (10)O21—C21—H21C109.5
C2—C3—C4119.64 (10)H21A—C21—H21C109.5
C2—C3—H3120.2H21B—C21—H21C109.5
C4—C3—H3120.2O41—C41—H41A109.5
O41—C4—C3115.11 (10)O41—C41—H41B109.5
O41—C4—C5124.27 (10)H41A—C41—H41B109.5
C3—C4—C5120.62 (10)O41—C41—H41C109.5
C6—C5—C4118.78 (10)H41A—C41—H41C109.5
C6—C5—H5120.6H41B—C41—H41C109.5
C4—C5—H5120.6
C21—O21—C2—C38.36 (15)C2—C3—C4—O41179.03 (9)
C21—O21—C2—C1171.96 (9)C2—C3—C4—C50.70 (17)
C6—C1—C2—O21179.72 (9)O41—C4—C5—C6179.69 (9)
C11—C1—C2—O213.38 (15)C3—C4—C5—C60.01 (17)
C6—C1—C2—C30.59 (16)C2—C1—C6—C50.11 (17)
C11—C1—C2—C3176.93 (9)C11—C1—C6—C5176.12 (9)
O21—C2—C3—C4179.34 (9)C4—C5—C6—C10.40 (17)
C1—C2—C3—C41.00 (16)O13—N12—C11—C1175.95 (9)
C41—O41—C4—C3177.21 (9)C6—C1—C11—N1217.32 (17)
C41—O41—C4—C52.51 (16)C2—C1—C11—N12166.51 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O13—H13···N12i0.893 (18)1.995 (19)2.8124 (13)151.5 (15)
C41—H41A···O13ii0.982.633.0680 (15)107
C41—H41C···Cg1iii0.982.603.4479 (13)144
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z; (iii) x+1, y, z.
2,5-Dimethoxybenzaldehyde oxime (4) top
Crystal data top
C9H11NO3F(000) = 768
Mr = 181.19Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 7.6480 (1) ÅCell parameters from 21005 reflections
b = 21.3380 (4) Åθ = 2.1–32.1°
c = 10.9421 (2) ŵ = 0.10 mm1
β = 90.555 (2)°T = 100 K
V = 1785.59 (5) Å3Block, colourless
Z = 80.20 × 0.15 × 0.13 mm
Data collection top
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
diffractometer
4082 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+3761 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.020
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 1.9°
profile data from ω–scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
k = 2727
Tmin = 0.935, Tmax = 1.000l = 1414
38753 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.5056P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4082 reflectionsΔρmax = 0.32 e Å3
247 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1211.05737 (9)0.46081 (3)0.23188 (6)0.01640 (15)
O2210.33772 (9)0.09728 (3)0.32374 (6)0.01705 (15)
O1510.88735 (9)0.21358 (3)0.13343 (6)0.01629 (14)
O2130.63115 (9)0.03239 (3)0.60782 (6)0.01852 (15)
H2130.6028 (19)0.0064 (7)0.5898 (13)0.036 (4)*
O2510.47197 (9)0.34248 (3)0.46029 (6)0.01810 (15)
O1130.84907 (9)0.45697 (3)0.56752 (6)0.01890 (15)
H1130.905 (2)0.4914 (7)0.5868 (13)0.036 (4)*
N1120.92134 (10)0.44408 (4)0.45300 (7)0.01543 (16)
N2120.53640 (10)0.06589 (4)0.51894 (7)0.01507 (16)
C110.92057 (11)0.36690 (4)0.29191 (8)0.01265 (17)
C121.01564 (11)0.40037 (4)0.20387 (8)0.01345 (17)
C131.06269 (12)0.37068 (4)0.09534 (8)0.01520 (18)
H131.1257900.3932010.0352470.018*
C141.01792 (11)0.30839 (4)0.07452 (8)0.01529 (18)
H141.0519350.2885080.0007890.018*
C150.92359 (11)0.27498 (4)0.16103 (8)0.01354 (17)
C160.87441 (11)0.30442 (4)0.26854 (8)0.01321 (17)
H160.8084990.2818870.3271250.016*
C210.47308 (11)0.17198 (4)0.45403 (8)0.01312 (17)
C220.36691 (11)0.15892 (4)0.35049 (8)0.01327 (17)
C230.29914 (11)0.20820 (4)0.28236 (8)0.01541 (18)
H230.2294760.1994640.2120530.018*
C240.33136 (12)0.27053 (4)0.31516 (8)0.01597 (18)
H240.2842020.3037070.2672400.019*
C250.43233 (11)0.28369 (4)0.41782 (8)0.01448 (18)
C260.50301 (11)0.23437 (4)0.48551 (8)0.01430 (17)
H260.5736340.2435370.5551380.017*
C1110.86582 (11)0.39220 (4)0.40987 (8)0.01383 (17)
H1110.7847860.3687510.4566490.017*
C1211.16522 (14)0.49466 (5)0.14906 (9)0.0233 (2)
H12A1.1886990.5365660.1819700.035*
H12B1.1051180.4983880.0698910.035*
H12C1.2758960.4722470.1384640.035*
C1510.79088 (13)0.17920 (4)0.22231 (9)0.01864 (19)
H15A0.7692660.1366290.1921620.028*
H15B0.6790030.2001810.2368460.028*
H15C0.8582160.1772250.2988680.028*
C2110.55768 (11)0.12487 (4)0.53198 (8)0.01470 (18)
H2110.6327150.1390160.5959430.018*
C2210.24158 (15)0.08339 (5)0.21389 (9)0.0238 (2)
H22A0.2330900.0378650.2036790.036*
H22B0.3020420.1015300.1436980.036*
H22C0.1238970.1012960.2192230.036*
C2510.41248 (14)0.39453 (4)0.38939 (9)0.0225 (2)
H25A0.4538660.4335610.4269910.034*
H25B0.2843840.3945570.3861710.034*
H25C0.4583450.3912380.3063190.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1210.0203 (3)0.0116 (3)0.0174 (3)0.0029 (2)0.0052 (2)0.0001 (2)
O2210.0220 (3)0.0133 (3)0.0157 (3)0.0018 (2)0.0063 (2)0.0012 (2)
O1510.0188 (3)0.0128 (3)0.0173 (3)0.0015 (2)0.0015 (2)0.0033 (2)
O2130.0230 (3)0.0136 (3)0.0189 (3)0.0017 (3)0.0077 (3)0.0021 (2)
O2510.0208 (3)0.0111 (3)0.0223 (3)0.0006 (2)0.0048 (3)0.0004 (2)
O1130.0263 (4)0.0160 (3)0.0145 (3)0.0053 (3)0.0077 (3)0.0043 (2)
N1120.0186 (4)0.0148 (4)0.0129 (3)0.0001 (3)0.0039 (3)0.0015 (3)
N2120.0165 (4)0.0146 (4)0.0140 (4)0.0020 (3)0.0027 (3)0.0020 (3)
C110.0114 (4)0.0128 (4)0.0137 (4)0.0010 (3)0.0013 (3)0.0004 (3)
C120.0123 (4)0.0122 (4)0.0158 (4)0.0007 (3)0.0006 (3)0.0003 (3)
C130.0151 (4)0.0163 (4)0.0142 (4)0.0007 (3)0.0015 (3)0.0019 (3)
C140.0152 (4)0.0173 (4)0.0133 (4)0.0021 (3)0.0003 (3)0.0024 (3)
C150.0116 (4)0.0126 (4)0.0164 (4)0.0013 (3)0.0030 (3)0.0015 (3)
C160.0117 (4)0.0133 (4)0.0146 (4)0.0001 (3)0.0004 (3)0.0010 (3)
C210.0125 (4)0.0141 (4)0.0128 (4)0.0005 (3)0.0012 (3)0.0007 (3)
C220.0126 (4)0.0133 (4)0.0139 (4)0.0012 (3)0.0012 (3)0.0007 (3)
C230.0140 (4)0.0175 (4)0.0147 (4)0.0001 (3)0.0017 (3)0.0001 (3)
C240.0145 (4)0.0153 (4)0.0180 (4)0.0020 (3)0.0010 (3)0.0026 (3)
C250.0128 (4)0.0127 (4)0.0179 (4)0.0009 (3)0.0017 (3)0.0003 (3)
C260.0133 (4)0.0159 (4)0.0137 (4)0.0010 (3)0.0008 (3)0.0002 (3)
C1110.0139 (4)0.0135 (4)0.0141 (4)0.0004 (3)0.0016 (3)0.0010 (3)
C1210.0312 (5)0.0160 (4)0.0228 (5)0.0063 (4)0.0096 (4)0.0015 (4)
C1510.0245 (5)0.0131 (4)0.0183 (4)0.0024 (3)0.0002 (4)0.0005 (3)
C2110.0145 (4)0.0160 (4)0.0135 (4)0.0011 (3)0.0018 (3)0.0005 (3)
C2210.0321 (5)0.0188 (4)0.0204 (5)0.0043 (4)0.0119 (4)0.0020 (4)
C2510.0280 (5)0.0131 (4)0.0263 (5)0.0018 (4)0.0035 (4)0.0027 (4)
Geometric parameters (Å, º) top
O121—C121.3628 (10)C21—C261.3935 (12)
O121—C1211.4275 (11)C21—C221.4151 (12)
O221—C221.3653 (10)C21—C2111.4651 (12)
O221—C2211.4339 (11)C22—C231.3866 (12)
O151—C151.3721 (10)C23—C241.3988 (12)
O151—C1511.4291 (11)C23—H230.9500
O213—N2121.4029 (9)C24—C251.3858 (12)
O213—H2130.877 (15)C24—H240.9500
O251—C251.3706 (10)C25—C261.3929 (12)
O251—C2511.4268 (11)C26—H260.9500
O113—N1121.4017 (9)C111—H1110.9500
O113—H1130.875 (16)C121—H12A0.9800
N112—C1111.2747 (11)C121—H12B0.9800
N212—C2111.2767 (12)C121—H12C0.9800
C11—C161.4020 (12)C151—H15A0.9800
C11—C121.4072 (12)C151—H15B0.9800
C11—C1111.4639 (12)C151—H15C0.9800
C12—C131.3962 (12)C211—H2110.9500
C13—C141.3908 (12)C221—H22A0.9800
C13—H130.9500C221—H22B0.9800
C14—C151.3921 (12)C221—H22C0.9800
C14—H140.9500C251—H25A0.9800
C15—C161.3887 (12)C251—H25B0.9800
C16—H160.9500C251—H25C0.9800
C12—O121—C121118.13 (7)C23—C24—H24120.1
C22—O221—C221117.40 (7)O251—C25—C24125.45 (8)
C15—O151—C151116.42 (7)O251—C25—C26115.32 (8)
N212—O213—H213101.5 (10)C24—C25—C26119.23 (8)
C25—O251—C251117.38 (7)C25—C26—C21121.89 (8)
N112—O113—H113100.6 (10)C25—C26—H26119.1
C111—N112—O113111.63 (7)C21—C26—H26119.1
C211—N212—O213111.12 (7)N112—C111—C11123.34 (8)
C16—C11—C12119.24 (8)N112—C111—H111118.3
C16—C11—C111115.96 (8)C11—C111—H111118.3
C12—C11—C111124.79 (8)O121—C121—H12A109.5
O121—C12—C13123.99 (8)O121—C121—H12B109.5
O121—C12—C11116.60 (8)H12A—C121—H12B109.5
C13—C12—C11119.41 (8)O121—C121—H12C109.5
C14—C13—C12120.53 (8)H12A—C121—H12C109.5
C14—C13—H13119.7H12B—C121—H12C109.5
C12—C13—H13119.7O151—C151—H15A109.5
C13—C14—C15120.42 (8)O151—C151—H15B109.5
C13—C14—H14119.8H15A—C151—H15B109.5
C15—C14—H14119.8O151—C151—H15C109.5
O151—C15—C16124.23 (8)H15A—C151—H15C109.5
O151—C15—C14116.36 (8)H15B—C151—H15C109.5
C16—C15—C14119.40 (8)N212—C211—C21123.80 (8)
C15—C16—C11120.99 (8)N212—C211—H211118.1
C15—C16—H16119.5C21—C211—H211118.1
C11—C16—H16119.5O221—C221—H22A109.5
C26—C21—C22118.53 (8)O221—C221—H22B109.5
C26—C21—C211116.18 (8)H22A—C221—H22B109.5
C22—C21—C211125.29 (8)O221—C221—H22C109.5
O221—C22—C23123.76 (8)H22A—C221—H22C109.5
O221—C22—C21116.92 (8)H22B—C221—H22C109.5
C23—C22—C21119.32 (8)O251—C251—H25A109.5
C22—C23—C24121.27 (8)O251—C251—H25B109.5
C22—C23—H23119.4H25A—C251—H25B109.5
C24—C23—H23119.4O251—C251—H25C109.5
C25—C24—C23119.74 (8)H25A—C251—H25C109.5
C25—C24—H24120.1H25B—C251—H25C109.5
C121—O121—C12—C134.21 (13)C211—C21—C22—O2211.91 (13)
C121—O121—C12—C11175.24 (8)C26—C21—C22—C231.31 (12)
C16—C11—C12—O121179.74 (7)C211—C21—C22—C23177.99 (8)
C111—C11—C12—O1210.50 (13)O221—C22—C23—C24179.06 (8)
C16—C11—C12—C130.26 (13)C21—C22—C23—C241.05 (13)
C111—C11—C12—C13178.98 (8)C22—C23—C24—C250.22 (13)
O121—C12—C13—C14178.77 (8)C251—O251—C25—C243.63 (13)
C11—C12—C13—C140.67 (13)C251—O251—C25—C26175.86 (8)
C12—C13—C14—C150.80 (13)C23—C24—C25—O251179.32 (8)
C151—O151—C15—C160.74 (12)C23—C24—C25—C261.21 (13)
C151—O151—C15—C14179.85 (8)O251—C25—C26—C21179.53 (8)
C13—C14—C15—O151179.15 (8)C24—C25—C26—C210.94 (13)
C13—C14—C15—C160.01 (13)C22—C21—C26—C250.32 (13)
O151—C15—C16—C11178.13 (8)C211—C21—C26—C25179.03 (8)
C14—C15—C16—C110.95 (13)O113—N112—C111—C11179.60 (8)
C12—C11—C16—C151.08 (13)C16—C11—C111—N112168.18 (8)
C111—C11—C16—C15178.23 (8)C12—C11—C111—N11211.08 (14)
C221—O221—C22—C234.54 (13)O213—N212—C211—C21178.99 (8)
C221—O221—C22—C21175.35 (8)C26—C21—C211—N212176.46 (8)
C26—C21—C22—O221178.79 (8)C22—C21—C211—N2124.24 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O113—H113···O121i0.875 (16)2.247 (15)2.8944 (9)130.7 (12)
O113—H113···N112i0.875 (16)1.965 (16)2.7567 (10)149.9 (13)
O213—H213···O221ii0.877 (15)2.204 (15)2.8758 (9)133.1 (12)
O213—H213···N212ii0.877 (15)2.034 (15)2.8160 (10)147.9 (13)
C111—H111···O2510.952.463.2458 (11)140
C121—H12C···N212iii0.982.533.4400 (13)155
C151—H15A···O113iv0.982.503.3947 (11)152
C14—H14···Cg2iii0.952.983.6656 (9)130
C151—H15B···Cg20.982.723.5973 (10)149
C24—H24···Cg1v0.952.673.4281 (10)137
C211—H211···Cg1vi0.952.783.6272 (9)149
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z1/2; (iv) x, y+1/2, z1/2; (v) x1, y, z; (vi) x, y+1/2, z+1/2.
Distances (Å) of OMe C atoms and oxime N and O atoms from benzene ring mean plane top
AtomCompound 1Compound 2Compound 3Compound 4aCompound 4b
C210.086 (3)-1.140 (4)0.195 (1)0.121 (1)0.059 (1)
C31-0.011 (4)
C410.081 (1)
C510.033 (1)0.061 (1)
N120.061 (2)0.259 (3)-0.177 (1)0.264 (1)-0.020 (1)
O13-0.009 (2)-0.027 (3)0.051 (1)0.242 (1)0.010 (1)
Percentages of atom–atom contacts for compounds 1, 2, 3 and 4-MolA and 4-MolB top
Compound1234 MolA4 MolB
H···H52.749.143.741.538.6
H···O/O···H16.222.523.424.926.3
H···C/C···H11.314.520.422.725.9
H···N/N···H8.16.68.49.08.1
C···C7.93.51.30.10.1
O···C/C···O2.12.02.61.50.8
N···O/O···N
N···C/C···N1.61.8
O···O0.40.2
 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]).

References

First citationAakeröy, C. B., Sinha, A. S., Epa, K. N., Chopade, P. D., Smith, M. M. & Desper, J. (2013). Cryst. Growth Des. 13, 2687–2695.  Google Scholar
First citationAbele, E., Abele, R. & Lukevics, E. (2008). Chem. Heterocycl. Cmpds, 44, 769–792.  Web of Science CrossRef Google Scholar
First citationCanario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660–686.  Web of Science PubMed Google Scholar
First citationChang, X.-H. (2006). Acta Cryst. E62, o5699–o5700.  Web of Science CrossRef IUCr Journals Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationDai, H., Chen, J., Li, G., Ge, S. S., Shi, Y. J., Fang, Y. & Ling, Y. (2017). Bioorg. Med. Chem. Lett. 27, 950–953.  CrossRef PubMed Google Scholar
First citationDong, B., Zhang, Y. & Chen, J.-Z. (2010). Acta Cryst. E66, o2719.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGomes, L. R., de Souza, M. V. N., Da Costa, C. F., Wardell, J. L. & Low, J. N. (2018). Acta Cryst. E74, 1480–1485.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGovindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2012a). Acta Cryst. E68, o484.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGovindan, S., Vijayakumar, S., Jayakumar, S., Mannickam, B. & Sanmargam, A. (2012b). Acta Cryst. E68, o596.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, G., Zhao, H. R., Meng, Q. Q., Zhang, Q. J., Dong, J. Y., Zhu, B. Q. & Li, S. S. (2018). Eur. J. Med. Chem. 143, 166–181.  Web of Science CrossRef PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatalinić, M., Zandona, A., Ramić, A., Zorbaz, T., Primožic, I. & Kovarik, Z. (2017). Molecules, 22, 1234.  Google Scholar
First citationKozłowska, J., Potaniec, B., Żarowska, B. & Anioł, M. (2017). Molecules, 22, 1485.  Google Scholar
First citationLorke, D. E., Kalasz, H., Petroianu, G. A. & Tekes, K. (2008). Curr. Med. Chem. 15, 743–753.  Web of Science CrossRef PubMed Google Scholar
First citationLow, J. N., Santos, L. M. N. B. F., Lima, C. F. R. A. C., Brandão, P. & Gomes, L. R. (2010). Eur. J. Chem. 1, 61–66.  CrossRef Google Scholar
First citationLow, J. N., Wardell, J. L., Da Costa, C. F., Souza, M. V. N. & Gomes, L. R. (2018). Eur. J. Chem. 9, 151–160.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Pascual, R., Meza-Reyes, S., Vega-Baez, J. L., Merino-Montiel, P., Padrón, J. M., Mendoza, Á. & Montiel-Smith, S. (2017). Steroids, 122, 24–33.  Web of Science PubMed Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohassab, M., Hassan, H. A., Abdelhamid, D., Abdel-Aziz, M., Dalby, K. N. & Kaoud, T. S. (2017). Bioorg. Chem. 75, 242–259.  Web of Science CrossRef PubMed Google Scholar
First citationNikitjuka, A. & Jirgensons, A. (2014). Chem. Heterocycl. Cmpd, 49, 1544–1559.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPriya, B. S., Basappa, S. N., Anandalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2006). Anal. Sci.:X-Ray Structures Online, 22, x161–x162.  CrossRef Google Scholar
First citationQin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., Hussain, Z., Kazmi, S. N. & Bukhari, S. N. A. (2017). Chem. Biol. Drug Des. 90, 443–449.  Web of Science CrossRef PubMed Google Scholar
First citationRadić, Z., Dale, T., Kovarik, Z., Berend, S., Garcia, E., Zhang, L., Amitai, G., Green, C., Radić, B., Duggan, B. M., Ajami, D., Rebek, J. Jr & Taylor, P. (2013). Biochem. J. 450, 231–242.  Web of Science PubMed Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95–117.  Web of Science PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, o570.  CSD CrossRef IUCr Journals Google Scholar
First citationVoicu, V. A., Thiermann, H., Rădulescu, F. Ş., Mircioiu, C. & Miron, D. S. (2010). Basic Clin. Pharmacol. Toxicol. 106, 73–85.  Web of Science CrossRef PubMed Google Scholar
First citationWolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYadav, P., Lal, K., Rani, P., Mor, S., Kumar, A. & Kumar, A. (2017). Med. Chem. Res. 26, 1469–1480.  Web of Science CrossRef Google Scholar
First citationZhao, S. Y., Li, K., Jin, Y. & Lin, J. (2018). Eur. J. Med. Chem. 144, 41–51.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds