research communications
Z)-4-chloro-N′-(4-oxothiazolidin-2-ylidene)benzenesulfonohydrazide monohydrate
and Hirshfeld surface analysis of (aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India
*Correspondence e-mail: gowdabt@yahoo.com
The 9H8ClN3O3S2·H2O, consists of two independent molecules and two water molecules. The central parts of the molecules are twisted as both the molecules are bent at both the S and N atoms. In the crystal, N—H⋯N, N—H⋯O, C—H⋯O and O—H⋯O hydrogen-bonding interactions connect the molecules, forming layers parallel to the ab plane. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from O⋯H/H⋯O (32.9%) and H⋯H (22.6%) interactions.
of the title thiazole derivative containing a sulfonylhydrazinic moiety, CCCDC reference: 1869597
1. Chemical context
et al., 2007). It has been reported that incorporation of hydrazine moieties increases the carbonic anhydrase inhibition activity (Winum et al., 2005). Along with the sulfonamide group, the presence of the 2-hydrazino-thiazole moiety enhances the pharmacological activities. The thiozoyl group is of interest because of its medicinal use in antitumor (Holla et al., 2003; Kappe et al., 2004), hyposensitive (Dash et al., 1980), anti-HIV (Patt et al., 1992), antimicrobial and anticancer agents (Frère et al., 2003). Sulfonylhydrazines and their derivatives can easily be prepared and are stable. We report herein the synthesis and structure of the title compound, which is a new thiazole compound containing a sulfonylhydrazinic moiety.
are of interest as this class of compounds exhibits a wide array of biological activities such as antitumor, antibacterial, diuretic and hypoglycaemic activities (Kamal2. Structural commentary
The ). The C8—O3 and C17—O6 bond lengths of 1.202 (5) Å, 1.218 (6) Å, respectively, are consistent with C=O double-bond character. Similarly, the values of the C7—N2 and C16—N5 bond lengths [1.285 (5) and 1.276 (5) Å, respectively] are close to that of a typical C=N double bond, while the longer C7—N3 and C16—N6 bond lengths of 1.370 (5) and 1.381 (5) Å, respectively, are consistent with the normal C—N single bonds, indicating that the compound exists in the Schiff base form. Further, the N1—N2 and N4—N5 bond lengths of 1.440 (5) and 1.442 (5) Å, respectively, and the S1—N1 and S3—N4 bond lengths of 1.644 (4) and 1.649 (4) Å, respectively, are in agreement with single-bond character.
of the title compound contains two independent molecules and two water molecules (Fig. 1The central parts of both molecules are twisted as they are bent at the S (S1 and S3) and N (N2 and N5) atoms as indicated by the C1—S1—N1—N2 and S1—N1—N2—C7 torsion angles of 57.0 (3) and 111.8 (3)°, respectively, and by the C10—S3—N4—N5 and S3—N4—N5—C16 torsion angles of 57.6 (3) and 109.7 (3)°, respectively. The sulfonylhydrazide bond exists in the synclinal conformation preferred by aromatic et al., 2017), with C—S—N—N torsion angles of 57.0 (3) and 57.6 (3)° in the two independent molecules. The geometrical parameters for the thiazole and benzene rings are within the expected ranges and comparable with those of other substituted thiazoles or benzenesulfonylhydrazide derivatives (Zaharia et al., 2010). The C7—S2—C9 and C16—S4—C18 angles in the two molecules have the same value of 91.4 (2)°, and it is similar to the angles typically observed in thiazole derivatives (Form et al., 1974). The thiazole rings are approximately planar (r.m.s. deviations of 0.011 and 0.029 Å for S2/N3/C7–C9 and S4/N6/C16–C18, respectively), and form dihedral angles of 26.18 (15) and 37.19 (12)° with the aromatic ring of the p-chlorophenylsulfonyl groups.
(Purandara3. Supramolecular features
In the crystal, the two independent molecules are linked into dimers by pairs of N—H⋯N hydrogen bonds, forming rings with an R22(8) graph-set motif. These dimers are connected by C—H⋯O hydrogen bonds involving the thiazole C—H and a sulfonyl O atom into chains running parallel to the a axis (Table 1, Fig. 2). The water molecules are involved both in the enforcement of the dimers through N—H⋯O and O—H⋯O hydrogen bonds, forming R33(9) rings, and in inter-chain O—H⋯O hydrogen-bonding interactions, forming layers parallel to the ab plane.
4. Database survey
Although a search in the Cambridge. Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) revealed several reports of the of and thiazole (Gowda et al., 2008, 2009), there are only a few reports on the crystal structures of sulfonylhydrazides functionalized by thiazole groups (Zaharia et al., 2010). Comparison of the structure of the title compound with that of N′-(5-acetyl-4-methyl-4,5-dihydrothiazol-2-yl)benzenesulfonohydrazide (Zaharia et al., 2010) indicates that the electron-withdrawing chloro group does not impart sufficient to reduce the electron density on the benzene ring, and that the ability of the aromatic C—H groups to participate in C—H⋯O interactions is very much reduced. Partial double-bond character is observed between the hydrazinyl N atom and the adjacent benzothiazole moiety in 2-[2-(3-nitrobenzenesulfonyl)hydrazinyl]-1,3-benzothiazole (Morscher et al., 2018). The orientation of the thiazole ring in the title compound is similar to that of (Z)-methyl 2-[(Z)-4-oxo-2-(2-tosylhydrazono)thiazolidin-5-ylidene]acetate and (Z)-methyl-2-[(Z)-2-(ethylimino)-4-oxo-3-(phenylamino)thiazolidin-5-ylidene]acetate (Hassan et al., 2016). The molecule of N′-{3-[3-(trifluoromethyl)phenyl]-1,3-thiazol-2(3H)-ylidene}benzenesulfonohydrazide (Chen et al., 2015) is observed to have a Schiff base conformation.
5. Hirshfeld Surface Analysis
In order to explore the role of weak intermolecular interactions in the crystal packing, Hirshfeld surfaces (dnorm) and related fingerprint plots were generated using CrystalExplorer17.5 (McKinnon et al., 2007; Spackman et al., 2008; Spackman & Jayatilaka, 2009; Wolff et al., 2012). The three-dimensional molecular Hirshfeld surfaces were generated using a high standard surface resolution over a colour scale of −0.6355 to 1.5137 a.u. for dnorm. To identify the normalized contacts, the dnorm function is used, which is expressed as; dnorm = (di − rivdw)/rivdw + (de − revdw)/revdw (Shit et al., 2016), where di and de are the distances from internal and external atoms to the Hirshfeld surface and rivdw and revdw are the van der Waals radii of the atoms inside and outside the surface. On the Hirshfeld surfaces mapped over dnorm (Fig. 3), strong N—H⋯N and S—O⋯H interactions are observed as red spots close to atoms N5, N6 and O6. Furthermore, the two-dimensional fingerprint plots indicate that the largest contributions are from O⋯H/H⋯O contacts, which contribute 32.9% to the Hirshfeld surface (Fig. 4a) with di + de ∼ 1.9 Å. The presence of water molecules in the provides the largest contribution to the stability of the crystal packing. The next largest contributor is from H⋯H interactions, which contribute 22.6%. A single sharp spike can be seen in the middle region of the plot, at di = de = 0.9 Å (Fig. 4b). The N⋯H contacts, which refer to N—H⋯N interactions, contribute 5.3% to the surface. Two sharp spikes having di + de = 1.8 Å (Fig. 4c) are observed. The C⋯H contacts contribute 5.9% to the Hirshfeld surface, featuring a wide region with di + de = 3.1 Å (Fig. 4d). The different interatomic contacts and percentage contributions to the Hirshfeld surface are Cl⋯H/H⋯Cl (8.3%), S⋯H/H⋯S (6.1%), Cl⋯O/O⋯Cl (3.0%), Cl⋯C/C⋯Cl (2.4%), S⋯O/O⋯S (1.7%), and C⋯O/O⋯C (1.6%) as depicted in the fingerprint plots (Fig. 5a–f).
6. Synthesis and crystallization
4-Chloro-N′-(4-oxo-4,5-dihydro-1,3-thiazol-2-yl)benzene-1-sulfonohydrazide was prepared by adding 4-chloro benzenesulfonyl chloride (0.02 mol) under stirring to a solution of thiosemicarbazide (0.02 mol) in 5% aqueous NaOH solution (20 ml). The reaction mixture was stirred at room temperature for 1 h, then diluted twofold with water and neutralized with glacial acetic acid. The solid 2-(4-chlorobenzene-1-sulfonyl)hydrazine-1-carbothioamide (A) obtained was crystallized from acetic acid. Monochloroacetic acid (0.01 mol) and anhydrous sodium acetate (0.04 mol) were added to A (0.01 mol) in glacial acetic acid. The reaction mixture was refluxed for 8–10 h and the completion of the reaction was checked by TLC. The reaction mixture was then poured into cold water. The resulted precipitate of the title compound was separated by vacuum filtration. Prismatic colourless single crystals of the title compound were grown from a mixture of acetonitrile-DMF (5:1 v/v) by slow evaporation of the solvent. The purity of the compound was checked by TLC and characterized by IR spectroscopy. The characteristic IR absorptions observed at 3095.9, 1639.5, 1458.7, 1343.2, 1139.4, and 1215.7 cm−1 correspond to N—H, C=O, C=N, S=O asymmetric and symmetric, and C—S absorptions, respectively. The 1H and 13C spectra of the title compound are as follows: 1H (400MHz, DMSO-d6); δ 3.45 (d, 2H, –CH2), 7.68–7.86 (m, 4H, Ar—H), 10.01 (s, 1H), 11.96 (s, 1H). 13C NMR (400 MHz, DMSO-d6); δ 36.8, 128.4, 129.1, 131.1,132.5, 133.9, 137.2, 165.4, 185.5.
7. Refinement
Crystal data, data collection and structure . H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene). The H atoms of the NH groups and the H atoms of the water molecules were located in a difference-Fourier map and later refined with the N—H and O—H bond lengths constrained to be 0.86 (2) and 0.82 (2) Å, respectively. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq of the parent atom.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1869597
https://doi.org/10.1107/S2056989018013658/rz5243sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018013658/rz5243Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018013658/rz5243Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C9H8ClN3O3S2·H2O | Z = 4 |
Mr = 323.77 | F(000) = 664 |
Triclinic, P1 | Dx = 1.592 Mg m−3 |
a = 7.6276 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.090 (1) Å | Cell parameters from 2682 reflections |
c = 17.116 (2) Å | θ = 2.8–27.8° |
α = 96.95 (1)° | µ = 0.60 mm−1 |
β = 99.49 (1)° | T = 293 K |
γ = 106.08 (1)° | Prism, colourless |
V = 1350.8 (2) Å3 | 0.42 × 0.20 × 0.06 mm |
Oxford Diffraction Xcalibur Single Crystal X-ray diffractometer with a Sapphire CCD detector | 3375 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.026 |
Rotation method data acquisition using ω scans | θmax = 25.4°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −9→5 |
Tmin = 0.785, Tmax = 0.965 | k = −13→13 |
8631 measured reflections | l = −20→20 |
4935 independent reflections |
Refinement on F2 | 8 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.161 | w = 1/[σ2(Fo2) + (0.0767P)2 + 1.1929P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4935 reflections | Δρmax = 0.52 e Å−3 |
367 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.33684 (17) | 0.77231 (13) | 0.00096 (7) | 0.0689 (4) | |
S1 | 0.23228 (14) | 1.01774 (10) | 0.33163 (6) | 0.0479 (3) | |
S2 | −0.21540 (16) | 0.96967 (12) | 0.42899 (7) | 0.0594 (3) | |
O1 | 0.3605 (4) | 1.1427 (3) | 0.35513 (19) | 0.0659 (9) | |
O2 | 0.2255 (4) | 0.9268 (3) | 0.38508 (18) | 0.0626 (8) | |
O3 | −0.6004 (5) | 0.6450 (3) | 0.3600 (2) | 0.0732 (10) | |
N1 | 0.0248 (5) | 1.0382 (3) | 0.3165 (2) | 0.0484 (8) | |
H1N | 0.024 (6) | 1.086 (4) | 0.282 (2) | 0.058* | |
N2 | −0.1246 (4) | 0.9225 (3) | 0.2827 (2) | 0.0471 (8) | |
N3 | −0.3702 (4) | 0.7765 (3) | 0.3134 (2) | 0.0460 (8) | |
H3N | −0.380 (6) | 0.721 (3) | 0.2726 (19) | 0.055* | |
C1 | 0.2676 (5) | 0.9482 (4) | 0.2392 (2) | 0.0421 (9) | |
C2 | 0.2102 (6) | 0.8168 (4) | 0.2167 (3) | 0.0515 (10) | |
H2 | 0.1557 | 0.7651 | 0.2505 | 0.062* | |
C3 | 0.2345 (6) | 0.7627 (4) | 0.1432 (3) | 0.0523 (11) | |
H3 | 0.1967 | 0.6747 | 0.1273 | 0.063* | |
C4 | 0.3146 (5) | 0.8409 (4) | 0.0946 (2) | 0.0475 (10) | |
C5 | 0.3755 (7) | 0.9718 (5) | 0.1168 (3) | 0.0617 (12) | |
H5 | 0.4315 | 1.0231 | 0.0831 | 0.074* | |
C6 | 0.3514 (7) | 1.0250 (4) | 0.1899 (3) | 0.0577 (12) | |
H6 | 0.3920 | 1.1131 | 0.2060 | 0.069* | |
C7 | −0.2275 (5) | 0.8889 (4) | 0.3335 (2) | 0.0419 (9) | |
C8 | −0.4741 (6) | 0.7422 (5) | 0.3700 (3) | 0.0522 (11) | |
C9 | −0.4074 (6) | 0.8429 (5) | 0.4445 (3) | 0.0600 (12) | |
H9A | −0.3669 | 0.8068 | 0.4905 | 0.072* | |
H9B | −0.5080 | 0.8761 | 0.4549 | 0.072* | |
Cl2 | 0.8418 (2) | 0.63805 (14) | 0.57661 (8) | 0.0805 (4) | |
S3 | 0.78365 (15) | 0.43436 (10) | 0.21411 (7) | 0.0511 (3) | |
S4 | 0.74715 (17) | 0.59857 (12) | 0.02143 (7) | 0.0603 (3) | |
O4 | 0.9602 (4) | 0.4892 (3) | 0.1948 (2) | 0.0670 (9) | |
O5 | 0.7003 (5) | 0.2980 (3) | 0.1978 (2) | 0.0691 (9) | |
O6 | 0.8569 (5) | 0.9655 (4) | 0.0519 (2) | 0.0762 (10) | |
N4 | 0.6297 (5) | 0.4853 (3) | 0.1590 (2) | 0.0501 (9) | |
H4N | 0.541 (5) | 0.458 (4) | 0.183 (3) | 0.060* | |
N5 | 0.6762 (5) | 0.6224 (3) | 0.1738 (2) | 0.0468 (8) | |
N6 | 0.7780 (5) | 0.8026 (3) | 0.12079 (19) | 0.0473 (8) | |
H6N | 0.804 (6) | 0.847 (4) | 0.1678 (15) | 0.057* | |
C10 | 0.8011 (5) | 0.4900 (4) | 0.3167 (3) | 0.0461 (10) | |
C11 | 0.9365 (6) | 0.6028 (4) | 0.3554 (3) | 0.0593 (12) | |
H11 | 1.0191 | 0.6482 | 0.3273 | 0.071* | |
C12 | 0.9484 (6) | 0.6473 (4) | 0.4349 (3) | 0.0605 (12) | |
H12 | 1.0383 | 0.7233 | 0.4607 | 0.073* | |
C13 | 0.8276 (6) | 0.5797 (4) | 0.4762 (3) | 0.0540 (11) | |
C14 | 0.6935 (6) | 0.4666 (5) | 0.4392 (3) | 0.0611 (12) | |
H14 | 0.6137 | 0.4207 | 0.4682 | 0.073* | |
C15 | 0.6792 (6) | 0.4226 (4) | 0.3595 (3) | 0.0566 (11) | |
H15 | 0.5875 | 0.3474 | 0.3339 | 0.068* | |
C16 | 0.7281 (5) | 0.6717 (4) | 0.1146 (2) | 0.0438 (9) | |
C17 | 0.8171 (6) | 0.8523 (5) | 0.0550 (3) | 0.0575 (12) | |
C18 | 0.8040 (7) | 0.7499 (5) | −0.0134 (3) | 0.0652 (13) | |
H18A | 0.9219 | 0.7657 | −0.0308 | 0.078* | |
H18B | 0.7080 | 0.7488 | −0.0586 | 0.078* | |
O7 | 0.9751 (5) | 0.1699 (4) | 0.1821 (3) | 0.0766 (10) | |
H71 | 0.880 (5) | 0.191 (6) | 0.182 (4) | 0.092* | |
H72 | 0.933 (8) | 0.112 (4) | 0.143 (3) | 0.092* | |
O8 | 0.3062 (6) | 0.4099 (6) | 0.2195 (4) | 0.1111 (16) | |
H81 | 0.195 (4) | 0.390 (7) | 0.199 (4) | 0.133* | |
H82 | 0.303 (12) | 0.472 (5) | 0.250 (4) | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0697 (8) | 0.0852 (9) | 0.0517 (7) | 0.0274 (7) | 0.0175 (6) | −0.0042 (6) |
S1 | 0.0486 (6) | 0.0477 (6) | 0.0378 (6) | 0.0020 (5) | 0.0078 (4) | 0.0023 (5) |
S2 | 0.0572 (7) | 0.0670 (8) | 0.0452 (6) | 0.0120 (6) | 0.0114 (5) | −0.0085 (5) |
O1 | 0.0601 (19) | 0.057 (2) | 0.059 (2) | −0.0078 (15) | 0.0119 (15) | −0.0071 (15) |
O2 | 0.070 (2) | 0.072 (2) | 0.0449 (18) | 0.0156 (17) | 0.0139 (15) | 0.0183 (16) |
O3 | 0.059 (2) | 0.068 (2) | 0.088 (3) | 0.0044 (18) | 0.0237 (18) | 0.0185 (19) |
N1 | 0.049 (2) | 0.039 (2) | 0.049 (2) | 0.0029 (16) | 0.0122 (17) | −0.0008 (15) |
N2 | 0.0460 (19) | 0.046 (2) | 0.0420 (19) | 0.0047 (16) | 0.0111 (16) | −0.0001 (15) |
N3 | 0.0411 (18) | 0.049 (2) | 0.042 (2) | 0.0083 (16) | 0.0061 (15) | 0.0010 (16) |
C1 | 0.039 (2) | 0.041 (2) | 0.044 (2) | 0.0106 (17) | 0.0078 (17) | 0.0082 (18) |
C2 | 0.057 (3) | 0.042 (2) | 0.053 (3) | 0.007 (2) | 0.015 (2) | 0.014 (2) |
C3 | 0.058 (3) | 0.041 (2) | 0.055 (3) | 0.011 (2) | 0.018 (2) | 0.002 (2) |
C4 | 0.046 (2) | 0.056 (3) | 0.043 (2) | 0.019 (2) | 0.0111 (18) | 0.002 (2) |
C5 | 0.079 (3) | 0.058 (3) | 0.052 (3) | 0.013 (2) | 0.030 (2) | 0.017 (2) |
C6 | 0.077 (3) | 0.037 (2) | 0.056 (3) | 0.006 (2) | 0.025 (2) | 0.010 (2) |
C7 | 0.038 (2) | 0.046 (2) | 0.039 (2) | 0.0147 (18) | 0.0014 (17) | 0.0022 (18) |
C8 | 0.044 (2) | 0.060 (3) | 0.057 (3) | 0.020 (2) | 0.011 (2) | 0.014 (2) |
C9 | 0.056 (3) | 0.080 (3) | 0.052 (3) | 0.027 (2) | 0.021 (2) | 0.013 (2) |
Cl2 | 0.0968 (10) | 0.0802 (10) | 0.0634 (8) | 0.0332 (8) | 0.0091 (7) | 0.0040 (7) |
S3 | 0.0483 (6) | 0.0431 (6) | 0.0643 (7) | 0.0136 (5) | 0.0182 (5) | 0.0104 (5) |
S4 | 0.0632 (7) | 0.0641 (8) | 0.0448 (6) | 0.0112 (6) | 0.0121 (5) | −0.0066 (5) |
O4 | 0.0518 (18) | 0.073 (2) | 0.084 (2) | 0.0203 (16) | 0.0285 (17) | 0.0204 (19) |
O5 | 0.084 (2) | 0.0379 (17) | 0.087 (3) | 0.0158 (16) | 0.0302 (19) | 0.0047 (16) |
O6 | 0.097 (3) | 0.066 (2) | 0.071 (2) | 0.021 (2) | 0.028 (2) | 0.0261 (19) |
N4 | 0.052 (2) | 0.041 (2) | 0.050 (2) | 0.0078 (17) | 0.0055 (16) | −0.0003 (16) |
N5 | 0.052 (2) | 0.044 (2) | 0.042 (2) | 0.0137 (16) | 0.0069 (16) | 0.0037 (16) |
N6 | 0.057 (2) | 0.051 (2) | 0.0315 (18) | 0.0168 (17) | 0.0033 (16) | 0.0056 (16) |
C10 | 0.038 (2) | 0.039 (2) | 0.058 (3) | 0.0082 (18) | 0.0031 (18) | 0.0137 (19) |
C11 | 0.056 (3) | 0.050 (3) | 0.061 (3) | −0.003 (2) | 0.008 (2) | 0.020 (2) |
C12 | 0.059 (3) | 0.039 (3) | 0.068 (3) | −0.001 (2) | −0.006 (2) | 0.013 (2) |
C13 | 0.057 (3) | 0.047 (3) | 0.058 (3) | 0.021 (2) | 0.001 (2) | 0.014 (2) |
C14 | 0.057 (3) | 0.059 (3) | 0.063 (3) | 0.007 (2) | 0.017 (2) | 0.015 (2) |
C15 | 0.043 (2) | 0.047 (3) | 0.072 (3) | 0.0000 (19) | 0.016 (2) | 0.006 (2) |
C16 | 0.038 (2) | 0.050 (3) | 0.040 (2) | 0.0146 (18) | 0.0011 (17) | 0.0015 (19) |
C17 | 0.052 (3) | 0.072 (3) | 0.047 (3) | 0.016 (2) | 0.010 (2) | 0.011 (2) |
C18 | 0.072 (3) | 0.073 (3) | 0.049 (3) | 0.016 (3) | 0.018 (2) | 0.011 (2) |
O7 | 0.077 (3) | 0.065 (2) | 0.093 (3) | 0.030 (2) | 0.013 (2) | 0.0167 (19) |
O8 | 0.056 (2) | 0.146 (5) | 0.131 (4) | 0.030 (3) | 0.029 (3) | 0.013 (3) |
Cl1—C4 | 1.744 (4) | S3—O5 | 1.441 (3) |
S1—O1 | 1.422 (3) | S3—N4 | 1.649 (4) |
S1—O2 | 1.438 (3) | S3—C10 | 1.759 (5) |
S1—N1 | 1.644 (4) | S4—C16 | 1.746 (4) |
S1—C1 | 1.770 (4) | S4—C18 | 1.812 (5) |
S2—C7 | 1.741 (4) | O6—C17 | 1.218 (6) |
S2—C9 | 1.808 (5) | N4—N5 | 1.442 (5) |
O3—C8 | 1.202 (5) | N4—H4N | 0.850 (19) |
N1—N2 | 1.440 (5) | N5—C16 | 1.276 (5) |
N1—H1N | 0.842 (19) | N6—C17 | 1.353 (6) |
N2—C7 | 1.285 (5) | N6—C16 | 1.381 (5) |
N3—C7 | 1.370 (5) | N6—H6N | 0.851 (19) |
N3—C8 | 1.374 (5) | C10—C11 | 1.389 (6) |
N3—H3N | 0.851 (19) | C10—C15 | 1.390 (6) |
C1—C6 | 1.377 (6) | C11—C12 | 1.369 (7) |
C1—C2 | 1.385 (6) | C11—H11 | 0.9300 |
C2—C3 | 1.389 (6) | C12—C13 | 1.368 (6) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.366 (6) | C13—C14 | 1.380 (6) |
C3—H3 | 0.9300 | C14—C15 | 1.368 (6) |
C4—C5 | 1.379 (6) | C14—H14 | 0.9300 |
C5—C6 | 1.381 (6) | C15—H15 | 0.9300 |
C5—H5 | 0.9300 | C17—C18 | 1.498 (7) |
C6—H6 | 0.9300 | C18—H18A | 0.9700 |
C8—C9 | 1.503 (6) | C18—H18B | 0.9700 |
C9—H9A | 0.9700 | O7—H71 | 0.82 (2) |
C9—H9B | 0.9700 | O7—H72 | 0.82 (2) |
Cl2—C13 | 1.737 (5) | O8—H81 | 0.82 (2) |
S3—O4 | 1.426 (3) | O8—H82 | 0.83 (2) |
O1—S1—O2 | 120.4 (2) | O4—S3—N4 | 107.3 (2) |
O1—S1—N1 | 105.18 (19) | O5—S3—N4 | 103.2 (2) |
O2—S1—N1 | 105.77 (19) | O4—S3—C10 | 107.8 (2) |
O1—S1—C1 | 108.45 (19) | O5—S3—C10 | 108.6 (2) |
O2—S1—C1 | 107.88 (19) | N4—S3—C10 | 109.61 (18) |
N1—S1—C1 | 108.64 (18) | C16—S4—C18 | 91.4 (2) |
C7—S2—C9 | 91.4 (2) | N5—N4—S3 | 112.3 (3) |
N2—N1—S1 | 113.6 (3) | N5—N4—H4N | 106 (3) |
N2—N1—H1N | 106 (3) | S3—N4—H4N | 97 (3) |
S1—N1—H1N | 107 (3) | C16—N5—N4 | 112.6 (3) |
C7—N2—N1 | 111.2 (3) | C17—N6—C16 | 117.8 (4) |
C7—N3—C8 | 117.6 (4) | C17—N6—H6N | 124 (3) |
C7—N3—H3N | 122 (3) | C16—N6—H6N | 117 (3) |
C8—N3—H3N | 119 (3) | C11—C10—C15 | 119.4 (4) |
C6—C1—C2 | 120.4 (4) | C11—C10—S3 | 120.0 (3) |
C6—C1—S1 | 119.8 (3) | C15—C10—S3 | 120.6 (3) |
C2—C1—S1 | 119.8 (3) | C12—C11—C10 | 120.1 (4) |
C1—C2—C3 | 119.6 (4) | C12—C11—H11 | 119.9 |
C1—C2—H2 | 120.2 | C10—C11—H11 | 119.9 |
C3—C2—H2 | 120.2 | C13—C12—C11 | 119.7 (4) |
C4—C3—C2 | 119.0 (4) | C13—C12—H12 | 120.1 |
C4—C3—H3 | 120.5 | C11—C12—H12 | 120.1 |
C2—C3—H3 | 120.5 | C12—C13—C14 | 121.2 (5) |
C3—C4—C5 | 122.1 (4) | C12—C13—Cl2 | 119.4 (4) |
C3—C4—Cl1 | 118.6 (3) | C14—C13—Cl2 | 119.4 (4) |
C5—C4—Cl1 | 119.2 (3) | C15—C14—C13 | 119.4 (4) |
C4—C5—C6 | 118.7 (4) | C15—C14—H14 | 120.3 |
C4—C5—H5 | 120.7 | C13—C14—H14 | 120.3 |
C6—C5—H5 | 120.7 | C14—C15—C10 | 120.3 (4) |
C1—C6—C5 | 120.2 (4) | C14—C15—H15 | 119.9 |
C1—C6—H6 | 119.9 | C10—C15—H15 | 119.9 |
C5—C6—H6 | 119.9 | N5—C16—N6 | 118.7 (4) |
N2—C7—N3 | 119.3 (4) | N5—C16—S4 | 129.9 (3) |
N2—C7—S2 | 128.6 (3) | N6—C16—S4 | 111.3 (3) |
N3—C7—S2 | 112.1 (3) | O6—C17—N6 | 124.2 (4) |
O3—C8—N3 | 123.9 (4) | O6—C17—C18 | 124.6 (4) |
O3—C8—C9 | 125.7 (4) | N6—C17—C18 | 111.2 (4) |
N3—C8—C9 | 110.4 (4) | C17—C18—S4 | 108.0 (3) |
C8—C9—S2 | 108.4 (3) | C17—C18—H18A | 110.1 |
C8—C9—H9A | 110.0 | S4—C18—H18A | 110.1 |
S2—C9—H9A | 110.0 | C17—C18—H18B | 110.1 |
C8—C9—H9B | 110.0 | S4—C18—H18B | 110.1 |
S2—C9—H9B | 110.0 | H18A—C18—H18B | 108.4 |
H9A—C9—H9B | 108.4 | H71—O7—H72 | 98 (6) |
O4—S3—O5 | 119.9 (2) | H81—O8—H82 | 94 (7) |
O1—S1—N1—N2 | 172.9 (3) | O4—S3—N4—N5 | −59.2 (3) |
O2—S1—N1—N2 | −58.6 (3) | O5—S3—N4—N5 | 173.2 (3) |
C1—S1—N1—N2 | 57.0 (3) | C10—S3—N4—N5 | 57.6 (3) |
S1—N1—N2—C7 | 111.8 (3) | S3—N4—N5—C16 | 109.7 (3) |
O1—S1—C1—C6 | −22.2 (4) | O4—S3—C10—C11 | 23.0 (4) |
O2—S1—C1—C6 | −154.2 (4) | O5—S3—C10—C11 | 154.4 (3) |
N1—S1—C1—C6 | 91.6 (4) | N4—S3—C10—C11 | −93.5 (4) |
O1—S1—C1—C2 | 158.0 (3) | O4—S3—C10—C15 | −157.6 (3) |
O2—S1—C1—C2 | 26.0 (4) | O5—S3—C10—C15 | −26.3 (4) |
N1—S1—C1—C2 | −88.2 (4) | N4—S3—C10—C15 | 85.8 (4) |
C6—C1—C2—C3 | −1.2 (6) | C15—C10—C11—C12 | −0.4 (7) |
S1—C1—C2—C3 | 178.6 (3) | S3—C10—C11—C12 | 179.0 (4) |
C1—C2—C3—C4 | −0.1 (6) | C10—C11—C12—C13 | 0.6 (7) |
C2—C3—C4—C5 | 1.2 (7) | C11—C12—C13—C14 | 0.2 (7) |
C2—C3—C4—Cl1 | −177.7 (3) | C11—C12—C13—Cl2 | −179.1 (3) |
C3—C4—C5—C6 | −1.1 (7) | C12—C13—C14—C15 | −1.2 (7) |
Cl1—C4—C5—C6 | 177.9 (4) | Cl2—C13—C14—C15 | 178.1 (4) |
C2—C1—C6—C5 | 1.4 (7) | C13—C14—C15—C10 | 1.3 (7) |
S1—C1—C6—C5 | −178.4 (4) | C11—C10—C15—C14 | −0.6 (7) |
C4—C5—C6—C1 | −0.3 (7) | S3—C10—C15—C14 | −179.9 (4) |
N1—N2—C7—N3 | −176.1 (3) | N4—N5—C16—N6 | −179.6 (3) |
N1—N2—C7—S2 | 5.0 (5) | N4—N5—C16—S4 | 0.8 (5) |
C8—N3—C7—N2 | 178.3 (4) | C17—N6—C16—N5 | −174.4 (4) |
C8—N3—C7—S2 | −2.6 (5) | C17—N6—C16—S4 | 5.3 (5) |
C9—S2—C7—N2 | −179.0 (4) | C18—S4—C16—N5 | 174.5 (4) |
C9—S2—C7—N3 | 2.0 (3) | C18—S4—C16—N6 | −5.1 (3) |
C7—N3—C8—O3 | −178.6 (4) | C16—N6—C17—O6 | 177.6 (4) |
C7—N3—C8—C9 | 1.6 (5) | C16—N6—C17—C18 | −2.1 (5) |
O3—C8—C9—S2 | −179.7 (4) | O6—C17—C18—S4 | 178.5 (4) |
N3—C8—C9—S2 | 0.0 (5) | N6—C17—C18—S4 | −1.8 (5) |
C7—S2—C9—C8 | −1.1 (3) | C16—S4—C18—C17 | 3.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O7i | 0.84 (2) | 2.07 (2) | 2.900 (6) | 168 (4) |
N3—H3N···N5ii | 0.85 (2) | 2.07 (2) | 2.895 (5) | 162 (4) |
C9—H9B···O2ii | 0.97 | 2.42 | 3.236 (6) | 141 |
N4—H4N···O8 | 0.85 (2) | 1.95 (2) | 2.788 (6) | 168 (4) |
N6—H6N···N2iii | 0.85 (2) | 1.97 (2) | 2.808 (5) | 170 (4) |
C15—H15···O1iv | 0.93 | 2.55 | 3.355 (5) | 145 |
O7—H71···O5 | 0.82 (2) | 2.08 (3) | 2.868 (5) | 162 (6) |
O7—H72···O6iv | 0.82 (2) | 1.99 (2) | 2.810 (5) | 174 (6) |
O8—H81···O4ii | 0.82 (2) | 2.35 (6) | 2.987 (6) | 136 (7) |
O8—H81···O7ii | 0.82 (2) | 2.50 (7) | 3.034 (7) | 124 (7) |
O8—H82···O3iii | 0.83 (2) | 2.37 (3) | 3.159 (7) | 159 (8) |
Symmetry codes: (i) x−1, y+1, z; (ii) x−1, y, z; (iii) x+1, y, z; (iv) x, y−1, z. |
Acknowledgements
The authors thank the SAIF, Panjab University, for use of the NMR facility.
Funding information
NP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.
References
Chen, W., Wang, H.-A., Wei, W., Li, Y.-X., Hua, X.-W., Song, H.-B., Yu, S.-J. & Li, Z.-M. (2015). Chin. J. Struct. Chem. 34, 503–509. Google Scholar
Dash, B., Patra, M. & Praharaj, S. (1980). Indian J. Chem. 19B, 894–897. Google Scholar
Form, G. R., Raper, E. S. & Downie, T. C. (1974). Acta Cryst. B30, 342–348. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Frère, S., Thiéry, V., Bailly, C. & Besson, T. (2003). Tetrahedron, 59, 773–779. Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassan, A. A., Mohamed, N. K., El-Shaieb, K. M. A., Tawfeek, H. N., Bräse, S. & Nieger, M. (2016). J. Heterocycl. Chem. 53, 46–50. Web of Science CrossRef Google Scholar
Holla, B. S., Malini, V. K., Rao, B. S., Sarojini, K. B. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313–318. Web of Science CrossRef PubMed Google Scholar
Kamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013. Web of Science CrossRef PubMed CAS Google Scholar
Kappe, O. C. (2004). Angew. Chem. Int. Ed. 43, 6250–6284. Web of Science CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Morscher, A., de Souza, M. V. N., Wardell, J. L. & Harrison, W. T. A. (2018). Acta Cryst. E74, 673–677. Web of Science CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England. Google Scholar
Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G. Jr, Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Oslon, S. C. (1992). J. Med. Chem. 35, 2562–2572. CrossRef PubMed Web of Science Google Scholar
Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683–1686. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slovenica, 63, 129–137. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winum, J. Y., Dogné, J. M., Casini, A., de Leval, X., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). J. Med. Chem. 48, 2121–2125. Web of Science CrossRef PubMed Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia. Google Scholar
Zaharia, V., Curticapenan, M., Palibroda, N., Vlasa, M. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 831–841. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.