research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-4-chloro-N′-(4-oxo­thia­zol­idin-2-yl­­idene)benzene­sulfono­hydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 11 September 2018; accepted 25 September 2018; online 12 October 2018)

The asymmetric unit of the title thia­zole derivative containing a sulfonyl­hydrazinic moiety, C9H8ClN3O3S2·H2O, consists of two independent mol­ecules and two water mol­ecules. The central parts of the mol­ecules are twisted as both the mol­ecules are bent at both the S and N atoms. In the crystal, N—H⋯N, N—H⋯O, C—H⋯O and O—H⋯O hydrogen-bonding inter­actions connect the mol­ecules, forming layers parallel to the ab plane. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from O⋯H/H⋯O (32.9%) and H⋯H (22.6%) inter­actions.

1. Chemical context

Sulfonamides are of inter­est as this class of compounds exhib­its a wide array of biological activities such as anti­tumor, anti­bacterial, diuretic and hypoglycaemic activities (Kamal et al., 2007[Kamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004-1013.]). It has been reported that incorporation of hydrazine moieties increases the carbonic anhydrase inhibition activity (Winum et al., 2005[Winum, J. Y., Dogné, J. M., Casini, A., de Leval, X., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). J. Med. Chem. 48, 2121-2125.]). Along with the sulfonamide group, the presence of the 2-hydrazino-thia­zole moiety enhances the pharmacological activities. The thiozoyl group is of inter­est because of its medicinal use in anti­tumor (Holla et al., 2003[Holla, B. S., Malini, V. K., Rao, B. S., Sarojini, K. B. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313-318.]; Kappe et al., 2004[Kappe, O. C. (2004). Angew. Chem. Int. Ed. 43, 6250-6284.]), hyposensitive (Dash et al., 1980[Dash, B., Patra, M. & Praharaj, S. (1980). Indian J. Chem. 19B, 894-897.]), anti-HIV (Patt et al., 1992[Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G. Jr, Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Oslon, S. C. (1992). J. Med. Chem. 35, 2562-2572.]), anti­microbial and anti­cancer agents (Frère et al., 2003[Frère, S., Thiéry, V., Bailly, C. & Besson, T. (2003). Tetrahedron, 59, 773-779.]). Sulfonyl­hydrazines and their derivatives can easily be prepared and are stable. We report herein the synthesis and structure of the title compound, which is a new thia­zole compound containing a sulfonyl­hydrazinic moiety.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two independent mol­ecules and two water mol­ecules (Fig. 1[link]). The C8—O3 and C17—O6 bond lengths of 1.202 (5) Å, 1.218 (6) Å, respectively, are consistent with C=O double-bond character. Similarly, the values of the C7—N2 and C16—N5 bond lengths [1.285 (5) and 1.276 (5) Å, respectively] are close to that of a typical C=N double bond, while the longer C7—N3 and C16—N6 bond lengths of 1.370 (5) and 1.381 (5) Å, respect­ively, are consistent with the normal C—N single bonds, indicating that the compound exists in the Schiff base form. Further, the N1—N2 and N4—N5 bond lengths of 1.440 (5) and 1.442 (5) Å, respectively, and the S1—N1 and S3—N4 bond lengths of 1.644 (4) and 1.649 (4) Å, respectively, are in agreement with single-bond character.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

The central parts of both mol­ecules are twisted as they are bent at the S (S1 and S3) and N (N2 and N5) atoms as indicated by the C1—S1—N1—N2 and S1—N1—N2—C7 torsion angles of 57.0 (3) and 111.8 (3)°, respectively, and by the C10—S3—N4—N5 and S3—N4—N5—C16 torsion angles of 57.6 (3) and 109.7 (3)°, respectively. The sulfonyl­hydrazide bond exists in the synclinal conformation preferred by aromatic sulfonamides (Purandara et al., 2017[Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683-1686.]), with C—S—N—N torsion angles of 57.0 (3) and 57.6 (3)° in the two independent mol­ecules. The geometrical parameters for the thia­zole and benzene rings are within the expected ranges and comparable with those of other substituted thia­zoles or benzene­sulfonyl­hydrazide derivatives (Zaharia et al., 2010[Zaharia, V., Curticapenan, M., Palibroda, N., Vlasa, M. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 831-841.]). The C7—S2—C9 and C16—S4—C18 angles in the two mol­ecules have the same value of 91.4 (2)°, and it is similar to the angles typically observed in thia­zole derivatives (Form et al., 1974[Form, G. R., Raper, E. S. & Downie, T. C. (1974). Acta Cryst. B30, 342-348.]). The thia­zole rings are approximately planar (r.m.s. deviations of 0.011 and 0.029 Å for S2/N3/C7–C9 and S4/N6/C16–C18, respectively), and form dihedral angles of 26.18 (15) and 37.19 (12)° with the aromatic ring of the p-chloro­phenyl­sulfonyl groups.

3. Supra­molecular features

In the crystal, the two independent mol­ecules are linked into dimers by pairs of N—H⋯N hydrogen bonds, forming rings with an R22(8) graph-set motif. These dimers are connected by C—H⋯O hydrogen bonds involving the thia­zole C—H and a sulfonyl O atom into chains running parallel to the a axis (Table 1[link], Fig. 2[link]). The water mol­ecules are involved both in the enforcement of the dimers through N—H⋯O and O—H⋯O hydrogen bonds, forming R33(9) rings, and in inter-chain O—H⋯O hydrogen-bonding inter­actions, forming layers parallel to the ab plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O7i 0.84 (2) 2.07 (2) 2.900 (6) 168 (4)
N3—H3N⋯N5ii 0.85 (2) 2.07 (2) 2.895 (5) 162 (4)
C9—H9B⋯O2ii 0.97 2.42 3.236 (6) 141
N4—H4N⋯O8 0.85 (2) 1.95 (2) 2.788 (6) 168 (4)
N6—H6N⋯N2iii 0.85 (2) 1.97 (2) 2.808 (5) 170 (4)
C15—H15⋯O1iv 0.93 2.55 3.355 (5) 145
O7—H71⋯O5 0.82 (2) 2.08 (3) 2.868 (5) 162 (6)
O7—H72⋯O6iv 0.82 (2) 1.99 (2) 2.810 (5) 174 (6)
O8—H81⋯O4ii 0.82 (2) 2.35 (6) 2.987 (6) 136 (7)
O8—H81⋯O7ii 0.82 (2) 2.50 (7) 3.034 (7) 124 (7)
O8—H82⋯O3iii 0.83 (2) 2.37 (3) 3.159 (7) 159 (8)
Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x, y-1, z.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, with hydrogen bonds (Table 1[link]) shown as dashed lines.

4. Database survey

Although a search in the Cambridge. Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed several reports of the crystal structure of sulfonamides and thia­zole (Gowda et al., 2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763.]), there are only a few reports on the crystal structures of sulfonyl­hydrazides functionalized by thia­zole groups (Zaharia et al., 2010[Zaharia, V., Curticapenan, M., Palibroda, N., Vlasa, M. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 831-841.]). Comparison of the structure of the title compound with that of N′-(5-acetyl-4-methyl-4,5-di­hydro­thia­zol-2-yl)benz­ene­sulfono­hydrazide (Zaharia et al., 2010[Zaharia, V., Curticapenan, M., Palibroda, N., Vlasa, M. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 831-841.]) indicates that the electron-withdrawing chloro group does not impart sufficient inductive effect to reduce the electron density on the benzene ring, and that the ability of the aromatic C—H groups to participate in C—H⋯O inter­actions is very much reduced. Partial double-bond character is observed between the hydrazinyl N atom and the adjacent benzo­thia­zole moiety in 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zole (Morscher et al., 2018[Morscher, A., de Souza, M. V. N., Wardell, J. L. & Harrison, W. T. A. (2018). Acta Cryst. E74, 673-677.]). The orientation of the thia­zole ring in the title compound is similar to that of (Z)-methyl 2-[(Z)-4-oxo-2-(2-tosyl­hydrazono)thia­zolidin-5-yl­idene]acetate and (Z)-methyl-2-[(Z)-2-(ethyl­imino)-4-oxo-3-(phenyl­amino)­thia­zolidin-5-yl­idene]acetate (Hassan et al., 2016[Hassan, A. A., Mohamed, N. K., El-Shaieb, K. M. A., Tawfeek, H. N., Bräse, S. & Nieger, M. (2016). J. Heterocycl. Chem. 53, 46-50.]). The mol­ecule of N′-{3-[3-(tri­fluoro­meth­yl)phen­yl]-1,3-thia­zol-2(3H)-yl­idene}benzene­sulfono­hydrazide (Chen et al., 2015[Chen, W., Wang, H.-A., Wei, W., Li, Y.-X., Hua, X.-W., Song, H.-B., Yu, S.-J. & Li, Z.-M. (2015). Chin. J. Struct. Chem. 34, 503-509.]) is observed to have a Schiff base conformation.

5. Hirshfeld Surface Analysis

In order to explore the role of weak inter­molecular inter­actions in the crystal packing, Hirshfeld surfaces (dnorm) and related fingerprint plots were generated using CrystalExplorer17.5 (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia.]). The three-dimensional mol­ecular Hirshfeld surfaces were generated using a high standard surface resolution over a colour scale of −0.6355 to 1.5137 a.u. for dnorm. To identify the normalized contacts, the dnorm function is used, which is expressed as; dnorm = (di − rivdw)/rivdw + (de − revdw)/revdw (Shit et al., 2016[Shit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slovenica, 63, 129-137.]), where di and de are the distances from inter­nal and external atoms to the Hirshfeld surface and rivdw and revdw are the van der Waals radii of the atoms inside and outside the surface. On the Hirshfeld surfaces mapped over dnorm (Fig. 3[link]), strong N—H⋯N and S—O⋯H inter­actions are observed as red spots close to atoms N5, N6 and O6. Furthermore, the two-dimensional fingerprint plots indicate that the largest contributions are from O⋯H/H⋯O contacts, which contribute 32.9% to the Hirshfeld surface (Fig. 4[link]a) with di + de ∼ 1.9 Å. The presence of water mol­ecules in the unit cell provides the largest contribution to the stability of the crystal packing. The next largest contrib­utor is from H⋯H inter­actions, which contribute 22.6%. A single sharp spike can be seen in the middle region of the plot, at di = de = 0.9 Å (Fig. 4[link]b). The N⋯H contacts, which refer to N—H⋯N inter­actions, contribute 5.3% to the surface. Two sharp spikes having di + de = 1.8 Å (Fig. 4[link]c) are observed. The C⋯H contacts contribute 5.9% to the Hirshfeld surface, featuring a wide region with di + de = 3.1 Å (Fig. 4[link]d). The different inter­atomic contacts and percentage contributions to the Hirshfeld surface are Cl⋯H/H⋯Cl (8.3%), S⋯H/H⋯S (6.1%), Cl⋯O/O⋯Cl (3.0%), Cl⋯C/C⋯Cl (2.4%), S⋯O/O⋯S (1.7%), and C⋯O/O⋯C (1.6%) as depicted in the fingerprint plots (Fig. 5[link]af).

[Figure 3]
Figure 3
View of the Hirshfeld surface mapped over dnorm.
[Figure 4]
Figure 4
The two dimensional fingerprint (FP) plot for the title compound, delineated into (a) O⋯H/H⋯O, (b) H⋯H, (c) N⋯H/H⋯N and (d) C⋯H/H⋯C inter­actions. dnorm surfaces for each plot indicating the relevant surface patches associated with the specific contacts are shown on the left.
[Figure 5]
Figure 5
Fingerprint plots of inter­actions, listing their percentage contributions: (a) Cl⋯H/H⋯Cl, (b) S⋯H/H⋯S, (c) Cl⋯O/O⋯Cl, (d) Cl⋯C/C⋯Cl, (e) S⋯O/O⋯S and (f) C⋯O/O⋯C.

6. Synthesis and crystallization

4-Chloro-N′-(4-oxo-4,5-di­hydro-1,3-thia­zol-2-yl)benzene-1-sulfono­hydrazide was prepared by adding 4-chloro benzene­sulfonyl chloride (0.02 mol) under stirring to a solution of thio­semicarbazide (0.02 mol) in 5% aqueous NaOH solution (20 ml). The reaction mixture was stirred at room temperature for 1 h, then diluted twofold with water and neutralized with glacial acetic acid. The solid 2-(4-chloro­benzene-1-sulfon­yl)hydrazine-1-carbo­thio­amide (A) obtained was crystallized from acetic acid. Mono­chloro­acetic acid (0.01 mol) and anhydrous sodium acetate (0.04 mol) were added to A (0.01 mol) in glacial acetic acid. The reaction mixture was refluxed for 8–10 h and the completion of the reaction was checked by TLC. The reaction mixture was then poured into cold water. The resulted precipitate of the title compound was separated by vacuum filtration. Prismatic colourless single crystals of the title compound were grown from a mixture of aceto­nitrile-DMF (5:1 v/v) by slow evaporation of the solvent. The purity of the compound was checked by TLC and characterized by IR spectroscopy. The characteristic IR absorptions observed at 3095.9, 1639.5, 1458.7, 1343.2, 1139.4, and 1215.7 cm−1 correspond to N—H, C=O, C=N, S=O asymmetric and symmetric, and C—S absorptions, respectively. The 1H and 13C spectra of the title compound are as follows: 1H (400MHz, DMSO-d6); δ 3.45 (d, 2H, –CH2), 7.68–7.86 (m, 4H, Ar—H), 10.01 (s, 1H), 11.96 (s, 1H). 13C NMR (400 MHz, DMSO-d6); δ 36.8, 128.4, 129.1, 131.1,132.5, 133.9, 137.2, 165.4, 185.5.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic) or 0.97 Å (methyl­ene). The H atoms of the NH groups and the H atoms of the water mol­ecules were located in a difference-Fourier map and later refined with the N—H and O—H bond lengths constrained to be 0.86 (2) and 0.82 (2) Å, respectively. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C9H8ClN3O3S2·H2O
Mr 323.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.6276 (6), 11.090 (1), 17.116 (2)
α, β, γ (°) 96.95 (1), 99.49 (1), 106.08 (1)
V3) 1350.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.42 × 0.20 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Single Crystal X-ray diffractometer with a Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.])
Tmin, Tmax 0.785, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 8631, 4935, 3375
Rint 0.026
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.161, 1.05
No. of reflections 4935
No. of parameters 367
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.25
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(Z)-4-Chloro-N'-(4-oxothiazolidin-2-ylidene)benzenesulfonohydrazide monohydrate top
Crystal data top
C9H8ClN3O3S2·H2OZ = 4
Mr = 323.77F(000) = 664
Triclinic, P1Dx = 1.592 Mg m3
a = 7.6276 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.090 (1) ÅCell parameters from 2682 reflections
c = 17.116 (2) Åθ = 2.8–27.8°
α = 96.95 (1)°µ = 0.60 mm1
β = 99.49 (1)°T = 293 K
γ = 106.08 (1)°Prism, colourless
V = 1350.8 (2) Å30.42 × 0.20 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur Single Crystal X-ray
diffractometer with a Sapphire CCD detector
3375 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.026
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 95
Tmin = 0.785, Tmax = 0.965k = 1313
8631 measured reflectionsl = 2020
4935 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0767P)2 + 1.1929P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4935 reflectionsΔρmax = 0.52 e Å3
367 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33684 (17)0.77231 (13)0.00096 (7)0.0689 (4)
S10.23228 (14)1.01774 (10)0.33163 (6)0.0479 (3)
S20.21540 (16)0.96967 (12)0.42899 (7)0.0594 (3)
O10.3605 (4)1.1427 (3)0.35513 (19)0.0659 (9)
O20.2255 (4)0.9268 (3)0.38508 (18)0.0626 (8)
O30.6004 (5)0.6450 (3)0.3600 (2)0.0732 (10)
N10.0248 (5)1.0382 (3)0.3165 (2)0.0484 (8)
H1N0.024 (6)1.086 (4)0.282 (2)0.058*
N20.1246 (4)0.9225 (3)0.2827 (2)0.0471 (8)
N30.3702 (4)0.7765 (3)0.3134 (2)0.0460 (8)
H3N0.380 (6)0.721 (3)0.2726 (19)0.055*
C10.2676 (5)0.9482 (4)0.2392 (2)0.0421 (9)
C20.2102 (6)0.8168 (4)0.2167 (3)0.0515 (10)
H20.15570.76510.25050.062*
C30.2345 (6)0.7627 (4)0.1432 (3)0.0523 (11)
H30.19670.67470.12730.063*
C40.3146 (5)0.8409 (4)0.0946 (2)0.0475 (10)
C50.3755 (7)0.9718 (5)0.1168 (3)0.0617 (12)
H50.43151.02310.08310.074*
C60.3514 (7)1.0250 (4)0.1899 (3)0.0577 (12)
H60.39201.11310.20600.069*
C70.2275 (5)0.8889 (4)0.3335 (2)0.0419 (9)
C80.4741 (6)0.7422 (5)0.3700 (3)0.0522 (11)
C90.4074 (6)0.8429 (5)0.4445 (3)0.0600 (12)
H9A0.36690.80680.49050.072*
H9B0.50800.87610.45490.072*
Cl20.8418 (2)0.63805 (14)0.57661 (8)0.0805 (4)
S30.78365 (15)0.43436 (10)0.21411 (7)0.0511 (3)
S40.74715 (17)0.59857 (12)0.02143 (7)0.0603 (3)
O40.9602 (4)0.4892 (3)0.1948 (2)0.0670 (9)
O50.7003 (5)0.2980 (3)0.1978 (2)0.0691 (9)
O60.8569 (5)0.9655 (4)0.0519 (2)0.0762 (10)
N40.6297 (5)0.4853 (3)0.1590 (2)0.0501 (9)
H4N0.541 (5)0.458 (4)0.183 (3)0.060*
N50.6762 (5)0.6224 (3)0.1738 (2)0.0468 (8)
N60.7780 (5)0.8026 (3)0.12079 (19)0.0473 (8)
H6N0.804 (6)0.847 (4)0.1678 (15)0.057*
C100.8011 (5)0.4900 (4)0.3167 (3)0.0461 (10)
C110.9365 (6)0.6028 (4)0.3554 (3)0.0593 (12)
H111.01910.64820.32730.071*
C120.9484 (6)0.6473 (4)0.4349 (3)0.0605 (12)
H121.03830.72330.46070.073*
C130.8276 (6)0.5797 (4)0.4762 (3)0.0540 (11)
C140.6935 (6)0.4666 (5)0.4392 (3)0.0611 (12)
H140.61370.42070.46820.073*
C150.6792 (6)0.4226 (4)0.3595 (3)0.0566 (11)
H150.58750.34740.33390.068*
C160.7281 (5)0.6717 (4)0.1146 (2)0.0438 (9)
C170.8171 (6)0.8523 (5)0.0550 (3)0.0575 (12)
C180.8040 (7)0.7499 (5)0.0134 (3)0.0652 (13)
H18A0.92190.76570.03080.078*
H18B0.70800.74880.05860.078*
O70.9751 (5)0.1699 (4)0.1821 (3)0.0766 (10)
H710.880 (5)0.191 (6)0.182 (4)0.092*
H720.933 (8)0.112 (4)0.143 (3)0.092*
O80.3062 (6)0.4099 (6)0.2195 (4)0.1111 (16)
H810.195 (4)0.390 (7)0.199 (4)0.133*
H820.303 (12)0.472 (5)0.250 (4)0.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0697 (8)0.0852 (9)0.0517 (7)0.0274 (7)0.0175 (6)0.0042 (6)
S10.0486 (6)0.0477 (6)0.0378 (6)0.0020 (5)0.0078 (4)0.0023 (5)
S20.0572 (7)0.0670 (8)0.0452 (6)0.0120 (6)0.0114 (5)0.0085 (5)
O10.0601 (19)0.057 (2)0.059 (2)0.0078 (15)0.0119 (15)0.0071 (15)
O20.070 (2)0.072 (2)0.0449 (18)0.0156 (17)0.0139 (15)0.0183 (16)
O30.059 (2)0.068 (2)0.088 (3)0.0044 (18)0.0237 (18)0.0185 (19)
N10.049 (2)0.039 (2)0.049 (2)0.0029 (16)0.0122 (17)0.0008 (15)
N20.0460 (19)0.046 (2)0.0420 (19)0.0047 (16)0.0111 (16)0.0001 (15)
N30.0411 (18)0.049 (2)0.042 (2)0.0083 (16)0.0061 (15)0.0010 (16)
C10.039 (2)0.041 (2)0.044 (2)0.0106 (17)0.0078 (17)0.0082 (18)
C20.057 (3)0.042 (2)0.053 (3)0.007 (2)0.015 (2)0.014 (2)
C30.058 (3)0.041 (2)0.055 (3)0.011 (2)0.018 (2)0.002 (2)
C40.046 (2)0.056 (3)0.043 (2)0.019 (2)0.0111 (18)0.002 (2)
C50.079 (3)0.058 (3)0.052 (3)0.013 (2)0.030 (2)0.017 (2)
C60.077 (3)0.037 (2)0.056 (3)0.006 (2)0.025 (2)0.010 (2)
C70.038 (2)0.046 (2)0.039 (2)0.0147 (18)0.0014 (17)0.0022 (18)
C80.044 (2)0.060 (3)0.057 (3)0.020 (2)0.011 (2)0.014 (2)
C90.056 (3)0.080 (3)0.052 (3)0.027 (2)0.021 (2)0.013 (2)
Cl20.0968 (10)0.0802 (10)0.0634 (8)0.0332 (8)0.0091 (7)0.0040 (7)
S30.0483 (6)0.0431 (6)0.0643 (7)0.0136 (5)0.0182 (5)0.0104 (5)
S40.0632 (7)0.0641 (8)0.0448 (6)0.0112 (6)0.0121 (5)0.0066 (5)
O40.0518 (18)0.073 (2)0.084 (2)0.0203 (16)0.0285 (17)0.0204 (19)
O50.084 (2)0.0379 (17)0.087 (3)0.0158 (16)0.0302 (19)0.0047 (16)
O60.097 (3)0.066 (2)0.071 (2)0.021 (2)0.028 (2)0.0261 (19)
N40.052 (2)0.041 (2)0.050 (2)0.0078 (17)0.0055 (16)0.0003 (16)
N50.052 (2)0.044 (2)0.042 (2)0.0137 (16)0.0069 (16)0.0037 (16)
N60.057 (2)0.051 (2)0.0315 (18)0.0168 (17)0.0033 (16)0.0056 (16)
C100.038 (2)0.039 (2)0.058 (3)0.0082 (18)0.0031 (18)0.0137 (19)
C110.056 (3)0.050 (3)0.061 (3)0.003 (2)0.008 (2)0.020 (2)
C120.059 (3)0.039 (3)0.068 (3)0.001 (2)0.006 (2)0.013 (2)
C130.057 (3)0.047 (3)0.058 (3)0.021 (2)0.001 (2)0.014 (2)
C140.057 (3)0.059 (3)0.063 (3)0.007 (2)0.017 (2)0.015 (2)
C150.043 (2)0.047 (3)0.072 (3)0.0000 (19)0.016 (2)0.006 (2)
C160.038 (2)0.050 (3)0.040 (2)0.0146 (18)0.0011 (17)0.0015 (19)
C170.052 (3)0.072 (3)0.047 (3)0.016 (2)0.010 (2)0.011 (2)
C180.072 (3)0.073 (3)0.049 (3)0.016 (3)0.018 (2)0.011 (2)
O70.077 (3)0.065 (2)0.093 (3)0.030 (2)0.013 (2)0.0167 (19)
O80.056 (2)0.146 (5)0.131 (4)0.030 (3)0.029 (3)0.013 (3)
Geometric parameters (Å, º) top
Cl1—C41.744 (4)S3—O51.441 (3)
S1—O11.422 (3)S3—N41.649 (4)
S1—O21.438 (3)S3—C101.759 (5)
S1—N11.644 (4)S4—C161.746 (4)
S1—C11.770 (4)S4—C181.812 (5)
S2—C71.741 (4)O6—C171.218 (6)
S2—C91.808 (5)N4—N51.442 (5)
O3—C81.202 (5)N4—H4N0.850 (19)
N1—N21.440 (5)N5—C161.276 (5)
N1—H1N0.842 (19)N6—C171.353 (6)
N2—C71.285 (5)N6—C161.381 (5)
N3—C71.370 (5)N6—H6N0.851 (19)
N3—C81.374 (5)C10—C111.389 (6)
N3—H3N0.851 (19)C10—C151.390 (6)
C1—C61.377 (6)C11—C121.369 (7)
C1—C21.385 (6)C11—H110.9300
C2—C31.389 (6)C12—C131.368 (6)
C2—H20.9300C12—H120.9300
C3—C41.366 (6)C13—C141.380 (6)
C3—H30.9300C14—C151.368 (6)
C4—C51.379 (6)C14—H140.9300
C5—C61.381 (6)C15—H150.9300
C5—H50.9300C17—C181.498 (7)
C6—H60.9300C18—H18A0.9700
C8—C91.503 (6)C18—H18B0.9700
C9—H9A0.9700O7—H710.82 (2)
C9—H9B0.9700O7—H720.82 (2)
Cl2—C131.737 (5)O8—H810.82 (2)
S3—O41.426 (3)O8—H820.83 (2)
O1—S1—O2120.4 (2)O4—S3—N4107.3 (2)
O1—S1—N1105.18 (19)O5—S3—N4103.2 (2)
O2—S1—N1105.77 (19)O4—S3—C10107.8 (2)
O1—S1—C1108.45 (19)O5—S3—C10108.6 (2)
O2—S1—C1107.88 (19)N4—S3—C10109.61 (18)
N1—S1—C1108.64 (18)C16—S4—C1891.4 (2)
C7—S2—C991.4 (2)N5—N4—S3112.3 (3)
N2—N1—S1113.6 (3)N5—N4—H4N106 (3)
N2—N1—H1N106 (3)S3—N4—H4N97 (3)
S1—N1—H1N107 (3)C16—N5—N4112.6 (3)
C7—N2—N1111.2 (3)C17—N6—C16117.8 (4)
C7—N3—C8117.6 (4)C17—N6—H6N124 (3)
C7—N3—H3N122 (3)C16—N6—H6N117 (3)
C8—N3—H3N119 (3)C11—C10—C15119.4 (4)
C6—C1—C2120.4 (4)C11—C10—S3120.0 (3)
C6—C1—S1119.8 (3)C15—C10—S3120.6 (3)
C2—C1—S1119.8 (3)C12—C11—C10120.1 (4)
C1—C2—C3119.6 (4)C12—C11—H11119.9
C1—C2—H2120.2C10—C11—H11119.9
C3—C2—H2120.2C13—C12—C11119.7 (4)
C4—C3—C2119.0 (4)C13—C12—H12120.1
C4—C3—H3120.5C11—C12—H12120.1
C2—C3—H3120.5C12—C13—C14121.2 (5)
C3—C4—C5122.1 (4)C12—C13—Cl2119.4 (4)
C3—C4—Cl1118.6 (3)C14—C13—Cl2119.4 (4)
C5—C4—Cl1119.2 (3)C15—C14—C13119.4 (4)
C4—C5—C6118.7 (4)C15—C14—H14120.3
C4—C5—H5120.7C13—C14—H14120.3
C6—C5—H5120.7C14—C15—C10120.3 (4)
C1—C6—C5120.2 (4)C14—C15—H15119.9
C1—C6—H6119.9C10—C15—H15119.9
C5—C6—H6119.9N5—C16—N6118.7 (4)
N2—C7—N3119.3 (4)N5—C16—S4129.9 (3)
N2—C7—S2128.6 (3)N6—C16—S4111.3 (3)
N3—C7—S2112.1 (3)O6—C17—N6124.2 (4)
O3—C8—N3123.9 (4)O6—C17—C18124.6 (4)
O3—C8—C9125.7 (4)N6—C17—C18111.2 (4)
N3—C8—C9110.4 (4)C17—C18—S4108.0 (3)
C8—C9—S2108.4 (3)C17—C18—H18A110.1
C8—C9—H9A110.0S4—C18—H18A110.1
S2—C9—H9A110.0C17—C18—H18B110.1
C8—C9—H9B110.0S4—C18—H18B110.1
S2—C9—H9B110.0H18A—C18—H18B108.4
H9A—C9—H9B108.4H71—O7—H7298 (6)
O4—S3—O5119.9 (2)H81—O8—H8294 (7)
O1—S1—N1—N2172.9 (3)O4—S3—N4—N559.2 (3)
O2—S1—N1—N258.6 (3)O5—S3—N4—N5173.2 (3)
C1—S1—N1—N257.0 (3)C10—S3—N4—N557.6 (3)
S1—N1—N2—C7111.8 (3)S3—N4—N5—C16109.7 (3)
O1—S1—C1—C622.2 (4)O4—S3—C10—C1123.0 (4)
O2—S1—C1—C6154.2 (4)O5—S3—C10—C11154.4 (3)
N1—S1—C1—C691.6 (4)N4—S3—C10—C1193.5 (4)
O1—S1—C1—C2158.0 (3)O4—S3—C10—C15157.6 (3)
O2—S1—C1—C226.0 (4)O5—S3—C10—C1526.3 (4)
N1—S1—C1—C288.2 (4)N4—S3—C10—C1585.8 (4)
C6—C1—C2—C31.2 (6)C15—C10—C11—C120.4 (7)
S1—C1—C2—C3178.6 (3)S3—C10—C11—C12179.0 (4)
C1—C2—C3—C40.1 (6)C10—C11—C12—C130.6 (7)
C2—C3—C4—C51.2 (7)C11—C12—C13—C140.2 (7)
C2—C3—C4—Cl1177.7 (3)C11—C12—C13—Cl2179.1 (3)
C3—C4—C5—C61.1 (7)C12—C13—C14—C151.2 (7)
Cl1—C4—C5—C6177.9 (4)Cl2—C13—C14—C15178.1 (4)
C2—C1—C6—C51.4 (7)C13—C14—C15—C101.3 (7)
S1—C1—C6—C5178.4 (4)C11—C10—C15—C140.6 (7)
C4—C5—C6—C10.3 (7)S3—C10—C15—C14179.9 (4)
N1—N2—C7—N3176.1 (3)N4—N5—C16—N6179.6 (3)
N1—N2—C7—S25.0 (5)N4—N5—C16—S40.8 (5)
C8—N3—C7—N2178.3 (4)C17—N6—C16—N5174.4 (4)
C8—N3—C7—S22.6 (5)C17—N6—C16—S45.3 (5)
C9—S2—C7—N2179.0 (4)C18—S4—C16—N5174.5 (4)
C9—S2—C7—N32.0 (3)C18—S4—C16—N65.1 (3)
C7—N3—C8—O3178.6 (4)C16—N6—C17—O6177.6 (4)
C7—N3—C8—C91.6 (5)C16—N6—C17—C182.1 (5)
O3—C8—C9—S2179.7 (4)O6—C17—C18—S4178.5 (4)
N3—C8—C9—S20.0 (5)N6—C17—C18—S41.8 (5)
C7—S2—C9—C81.1 (3)C16—S4—C18—C173.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7i0.84 (2)2.07 (2)2.900 (6)168 (4)
N3—H3N···N5ii0.85 (2)2.07 (2)2.895 (5)162 (4)
C9—H9B···O2ii0.972.423.236 (6)141
N4—H4N···O80.85 (2)1.95 (2)2.788 (6)168 (4)
N6—H6N···N2iii0.85 (2)1.97 (2)2.808 (5)170 (4)
C15—H15···O1iv0.932.553.355 (5)145
O7—H71···O50.82 (2)2.08 (3)2.868 (5)162 (6)
O7—H72···O6iv0.82 (2)1.99 (2)2.810 (5)174 (6)
O8—H81···O4ii0.82 (2)2.35 (6)2.987 (6)136 (7)
O8—H81···O7ii0.82 (2)2.50 (7)3.034 (7)124 (7)
O8—H82···O3iii0.83 (2)2.37 (3)3.159 (7)159 (8)
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y1, z.
 

Acknowledgements

The authors thank the SAIF, Panjab University, for use of the NMR facility.

Funding information

NP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.

References

First citationChen, W., Wang, H.-A., Wei, W., Li, Y.-X., Hua, X.-W., Song, H.-B., Yu, S.-J. & Li, Z.-M. (2015). Chin. J. Struct. Chem. 34, 503–509.  Google Scholar
First citationDash, B., Patra, M. & Praharaj, S. (1980). Indian J. Chem. 19B, 894–897.  Google Scholar
First citationForm, G. R., Raper, E. S. & Downie, T. C. (1974). Acta Cryst. B30, 342–348.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFrère, S., Thiéry, V., Bailly, C. & Besson, T. (2003). Tetrahedron, 59, 773–779.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, A. A., Mohamed, N. K., El-Shaieb, K. M. A., Tawfeek, H. N., Bräse, S. & Nieger, M. (2016). J. Heterocycl. Chem. 53, 46–50.  Web of Science CrossRef Google Scholar
First citationHolla, B. S., Malini, V. K., Rao, B. S., Sarojini, K. B. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313–318.  Web of Science CrossRef PubMed Google Scholar
First citationKamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKappe, O. C. (2004). Angew. Chem. Int. Ed. 43, 6250–6284.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMorscher, A., de Souza, M. V. N., Wardell, J. L. & Harrison, W. T. A. (2018). Acta Cryst. E74, 673–677.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationPatt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G. Jr, Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Oslon, S. C. (1992). J. Med. Chem. 35, 2562–2572.  CrossRef PubMed Web of Science Google Scholar
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683–1686.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slovenica, 63, 129–137.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinum, J. Y., Dogné, J. M., Casini, A., de Leval, X., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). J. Med. Chem. 48, 2121–2125.  Web of Science CrossRef PubMed Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia.  Google Scholar
First citationZaharia, V., Curticapenan, M., Palibroda, N., Vlasa, M. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 831–841.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds