research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The methanol sesquisolvate of sodium naproxen

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bPatheon Austria GmbH & Co KG, St.-Peter-Strasse 25, A-4020 Linz, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 October 2018; accepted 16 October 2018; online 19 October 2018)

The asymmetric unit of the methanol solvate of sodium naproxen, systematic name: sodium (2S)-2-(6-meth­oxy­naphthalen-2-yl)propano­ate methanol sesquisolvate, Na+·C14H13O3·1.5CH3OH, comprises two formula units of the mol­ecular salt and three methanol mol­ecules. One of the sodium cations exhibits a coordination number of six and is bonded to three carboxyl­ate O atoms and three methanol OH groups whereas the second sodium cation has a coordination number of seven, defined by five carboxyl­ate O atoms and two methanol OH groups. Both coordination polyhedra around the sodium cations are considerably distorted. The two types of cations are bridged into polymeric chains extending parallel to [010]. This arrangement is stabilized by intrachain O—H⋯O hydrogen bonds between methanol ligands as donor and carboxyl­ate O atoms as acceptor groups. The hydro­phobic 6-meth­oxy­naphthyl moieties flank the hydro­philic sodium oxygen chains into ribbons parallel to [010]. There are no noticeable inter­molecular inter­actions between these ribbons. One of the 6-meth­oxy­naphthyl moieties is disordered over two sets of sites in a 0.723 (3):0.277 (3) ratio.

1. Chemical context

Naproxen, or (S)-2-(6-meth­oxy­naphthalen-2-yl)propanoic acid, and in particular its better soluble sodium salt are non-steroidal anti-inflammatory drugs with pain-relieving and anti­pyretic properties. For a recent project on the crystallization of active pharmaceutical ingredients (APIs; Kovačič et al., 2012[Kovačič, B., Vrečer, F. & Planinšek, O. (2012). Acta Pharm. 62, 1-14.]), we used sodium naproxen as a model substance. During these investigations, we obtained the methanol sesquisolvate as a solvatomorph of sodium naproxen, [Na(C14H13O3)]·1.5CH3OH. Although a preliminary structure model of this compound has been reported as part of a PhD thesis (Chavez, 2009[Chavez, K. J. (2009). Crystallization of pseudopolymorphic forms of sodium naproxen in mixed solvent systems. Ph. D. Thesis, Georgia Institute of Technology, USA.]), it was never published or deposited in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). We report here the precise crystal structure determination of [Na(C14H13O3)]·1.5CH3OH, (I)[link], including disorder of one 6-meth­oxy­naphthyl moiety that was not modelled in the preliminary study (Chavez, 2009[Chavez, K. J. (2009). Crystallization of pseudopolymorphic forms of sodium naproxen in mixed solvent systems. Ph. D. Thesis, Georgia Institute of Technology, USA.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] is displayed in Fig. 1[link] and comprises two Na+ cations, two naproxate anions (one of which shows disorder of the 6-meth­oxy­naphthyl moiety) and three methanol mol­ecules (Z′ = 2). Na1 is bound to six oxygen atoms, three of them originating from methanol OH groups and three from monodentate carboxyl­ate groups (O2; O5; O4i; for symmetry codes, see: Table 1[link]). The Na1—O bond lengths are not uniformly distributed, revealing a distorted [5 + 1] coordination with five shorter bonds between 2.2355 (14) and 2.4403 (14) Å and one significantly longer bond of 2.856 (2) Å to the OH group of a methanol mol­ecule. In comparison, the coordination sphere of Na2 is enlarged to seven coordination partners, two of them from methanol OH groups, four from two chelating carboxyl­ate groups (O1i,O2i; O4i,O5i) and one from a monodentate carboxyl­ate group (O5). The Na2—O distances are somewhat more evenly distributed and range from 2.3418 (13) to 2.5983 (14) Å. Nevertheless, the resulting coordination polyhedron around Na2 is likewise distorted. Details of the Na—O coordination spheres are depicted in Fig. 2[link]. The bond-valence sums (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) of 1.24 and 1.17 valence units for Na1 and Na2, respectively, are higher than expected and point to some strain in the structure.

Table 1
Selected bond lengths (Å)

Na1—O2 2.2355 (14) Na2—O1S 2.3667 (15)
Na1—O3S 2.3003 (15) Na2—O4i 2.4635 (13)
Na1—O5 2.3604 (13) Na2—O2S 2.4748 (14)
Na1—O2S 2.3838 (14) Na2—O1i 2.5394 (14)
Na1—O4i 2.4403 (14) Na2—O2i 2.5459 (15)
Na1—O1Sii 2.856 (2) Na2—O5i 2.5983 (14)
Na2—O5 2.3418 (13)    
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with displacement ellipsoids drawn at the 30% probability level. The minor disordered part B of one 6-meth­oxy­naphthyl moiety is displayed with open bonds and without labelling of atoms.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link] emphasizing the coordination environments of the two Na+ cations. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes refer to Table 1[link].

The two sodium cations are bridged by the O1S and O2S methanol OH groups and by carboxyl­ate atoms O2, O4 and O5 into zigzag chains extending parallel to [010]. The third methanol mol­ecule is terminally bound to Na1. The hydro­phobic 6-meth­oxy­naphthyl moieties flank the hydro­philic [Na—O]n chains, leading to the formation of ribbons along the chain direction (Fig. 3[link]). The meth­oxy groups attached to the naphthyl rings are twisted slightly out of the aromatic plane, with dihedral angles of 6.42 (18)° for ring (C1–C10) and meth­oxy group O3–C14, and 5.2 (3)° for ring (C15A–C24A) and meth­oxy group O6A–C28A.

[Figure 3]
Figure 3
The crystal structure of (I)[link] in a projection along [001]. O—H⋯O hydrogen bonds within a ribbon are displayed in blue on the right hand side. For clarity, only the major part A of the disordered 6-meth­oxy­naphthyl moiety is shown.

3. Supra­molecular features

Intra­chain O—H⋯O hydrogen bonding inter­actions of medium strength [Table 2[link], Fig. 3[link](right)] between methanol mol­ecules and carboxyl­ate O atoms stabilize the arrangement within the ribbons. Oxygen atom O1, which is not a bridging atom in the [Na—O]n chain and which has a comparatively long Na—O bond, is the acceptor of two hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O4iii 0.84 (2) 1.90 (2) 2.6756 (18) 153 (3)
O2S—H2S⋯O1iii 0.83 (2) 2.06 (2) 2.8331 (18) 156 (3)
O3S—H3S⋯O1iii 0.79 (2) 1.94 (2) 2.7226 (19) 172 (3)
Symmetry code: (iii) x, y-1, z.

There are no notable inter­molecular inter­actions between adjacent ribbons involving the outer hydro­phobic parts. It seems that cohesion of the ribbons is dominated by van der Waals forces only.

4. Database survey

The crystal structure of naproxen, i.e. the free acid (±)2-(6-meth­oxy-2-naphth­yl)propionic acid, was reported by Ravikumar et al. (1985[Ravikumar, K., Rajan, S. S., Pattabhi, V. & Gabe, E. J. (1985). Acta Cryst. C41, 280-282.]). A search in the Cambridge Structural Database (CSD version 5.39, November 2017, update 3, May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the sodium salt and its hydrates revealed six entries: anhydrous sodium naproxen, [Na(C14H13O3)] (Kim et al., 2004[Kim, Y.-s., VanDerveer, D., Rousseau, R. W. & Wilkinson, A. P. (2004). Acta Cryst. E60, m419-m420.]), sodium naproxen monohydrate [Na(C14H13O3)]·H2O (Kim et al., 1990[Kim, Y. B., Park, I. Y. & Lah, W. R. (1990). Arch. Pharm. Res. 13, 166-173.]), two forms of sodium naproxen dihydrate [Na(C14H13O3)]·2H2O (Bond et al., 2014[Bond, A. D., Cornett, C., Larsen, F. H., Qu, H., Raijada, D. & Rantanen, J. (2014). IUCrJ, 1, 328-337.]), and sodium naproxen heminona­hydrate [Na(C14H13O3)]·4.5H2O (Burgess et al., 2012[Burgess, K. M. N., Perras, F. A., Lebrun, A., Messner-Henning, E., Korobkov, I. & Bryce, D. L. (2012). J. Pharm. Sci. 101, 2930-2940.]) that was subsequently re­inter­preted as a disordered tetra­hydrate [Na(C14H13O3)]·4H2O (Bond et al., 2013[Bond, A. D., Cornett, C., Larsen, F. H., Qu, H., Raijada, D. & Rantanen, J. (2013). Cryst. Growth Des. 13, 3665-3671.]). The structural motif of ribbons formed between sodium cations and oxygen atoms is likewise found in all anhydrous and hydrous sodium naproxen structures.

Only one methanol solvate of naproxen is deposited in the CSD. However, this is an Na salt of naproxen with an additional free acid mol­ecule, viz. sodium hydrogen bis­(naproxate) methanol disolvate, [Na(C14H13O3)(C14H14O3)]·2CH3OH (Perumalla & Sun, 2012[Perumalla, S. R. & Sun, C. C. (2012). CrystEngComm, 14, 3851-3853.]). A homologous series of alcohol solvates of sodium naproxen obtained as polycrystalline powders and without structure determinations was reported by Chavez et al. (2010[Chavez, K. J., Guevara, M. & Rousseau, R. W. (2010). Cryst. Growth Des. 10, 3372-3377.]). During these investigations, another methanol solvate of sodium naproxen was reported with only one methanol mol­ecule per formula unit (Chavez, 2009[Chavez, K. J. (2009). Crystallization of pseudopolymorphic forms of sodium naproxen in mixed solvent systems. Ph. D. Thesis, Georgia Institute of Technology, USA.]; Burgess et al., 2012[Burgess, K. M. N., Perras, F. A., Lebrun, A., Messner-Henning, E., Korobkov, I. & Bryce, D. L. (2012). J. Pharm. Sci. 101, 2930-2940.]).

5. Synthesis and crystallization

Crystals of sodium naproxen methanol sesquisolvate were grown by slow crystallization in methanol. Polycrystalline anhydrous sodium naproxen was dissolved in methanol to yield a solution 20% in weight of the salt. 0.5 ml of this solution were heated to 338 K and slowly cooled down to room temperature (298 K) over the course of 130 min (cooling rate 0.3 K min−1). Colourless parallelepipeds with edge lengths of up to 1 cm were obtained. A suitable fragment was broken from a larger specimen for the X-ray diffraction experiment.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The structure model obtained with SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) was very similar to the preliminary model of Chavez (2009[Chavez, K. J. (2009). Crystallization of pseudopolymorphic forms of sodium naproxen in mixed solvent systems. Ph. D. Thesis, Georgia Institute of Technology, USA.]) from 173 K data using Cu Kα radiation. After placing all atoms with full occupancy in the asymmetric unit, elongated displacement parameters of atoms of one of the 6-meth­oxy­naphthyl moieties and conspicuous electron density peaks in the vicinity of these atoms were found. This model converged with R[F2 > 2σ(F2)] = 0.08 and wR(F2) = 0.23. Consideration of disorder over two sets of sites for this fragment led to more spherical atoms and much better reliability factors (Table 3[link]). The refined occupancy ratio of the two disordered parts is 0.723 (3):0.277 (3) for major part A: minor part B. The positions of C-bound H atoms were calculated and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. H atoms bound to methanol O atoms were clearly discernible from difference maps. They were refined with distance restraints of 0.85±2 Å and free Uiso(H) values. The absolute structure was determined on the basis of the current data set (Table 3[link]), revealing that the usual (S) enanti­omer is present.

Table 3
Experimental details

Crystal data
Chemical formula Na+·C14H13O3·1.5CH3OH
Mr 300.30
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 12.6776 (9), 7.9675 (6), 15.1932 (11)
β (°) 95.7559 (19)
V3) 1526.91 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.45 × 0.45 × 0.35
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.675, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 32667, 11521, 10262
Rint 0.029
(sin θ/λ)max−1) 0.767
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.02
No. of reflections 11521
No. of parameters 508
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.24
Absolute structure Flack x determined using 4468 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.07 (8)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Reflections (100) and (001) were obstructed by the beam stop and were omitted from the refinement.

Lattice parameters refined from single-crystal room temperature X-ray data are a = 12.8458 (9), b = 8.0235 (6), c = 15.3012 (11) Å, β = 94.898 (2)°.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008), ATOMS (Dowty, 2006) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Sodium (2S)-2-(6-methoxynaphthalen-2-yl)propanoate methanol sesquisolvate top
Crystal data top
Na+·C14H13O3·1.5CH4OF(000) = 636
Mr = 300.30Dx = 1.306 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.6776 (9) ÅCell parameters from 9943 reflections
b = 7.9675 (6) Åθ = 2.5–38.0°
c = 15.1932 (11) ŵ = 0.12 mm1
β = 95.7559 (19)°T = 100 K
V = 1526.91 (19) Å3Block, colourless
Z = 40.45 × 0.45 × 0.35 mm
Data collection top
Bruker APEXII CCD
diffractometer
10262 reflections with I > 2σ(I)
ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 33.0°, θmin = 2.2°
Tmin = 0.675, Tmax = 0.747h = 1619
32667 measured reflectionsk = 1212
11521 independent reflectionsl = 2322
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2474P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.43 e Å3
11521 reflectionsΔρmin = 0.24 e Å3
508 parametersAbsolute structure: Flack x determined using 4468 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
4 restraintsAbsolute structure parameter: 0.07 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.35919 (5)0.41121 (8)0.55421 (5)0.01949 (13)
Na20.53085 (5)0.27034 (8)0.43935 (4)0.01651 (12)
O10.30172 (10)0.93243 (15)0.58392 (9)0.0234 (2)
O20.27973 (11)0.66163 (15)0.55460 (10)0.0259 (3)
O30.09118 (12)0.70972 (19)1.09131 (8)0.0282 (3)
O40.46523 (10)0.79820 (14)0.39887 (8)0.0209 (2)
O50.44988 (10)0.53419 (14)0.44218 (8)0.0194 (2)
C10.09928 (11)0.80698 (17)0.67179 (9)0.0141 (2)
C20.16031 (12)0.71291 (19)0.73342 (10)0.0167 (2)
H20.2187450.6515090.7155250.020*
C30.13817 (12)0.7053 (2)0.82309 (10)0.0177 (3)
C40.20276 (15)0.6122 (2)0.88774 (11)0.0245 (3)
H40.2597780.5467670.8703530.029*
C50.18346 (15)0.6161 (2)0.97496 (12)0.0255 (3)
H50.2272300.5534561.0174870.031*
C60.09883 (15)0.7127 (2)1.00203 (11)0.0228 (3)
C70.03229 (13)0.7995 (2)0.94124 (10)0.0205 (3)
H70.0258860.8608500.9596110.025*
C80.05126 (12)0.79659 (19)0.85034 (10)0.0173 (3)
C90.01335 (12)0.8878 (2)0.78550 (10)0.0187 (3)
H90.0734390.9469000.8019720.022*
C100.00991 (12)0.89198 (19)0.69887 (10)0.0171 (3)
H100.0349250.9531190.6564400.020*
C110.12458 (12)0.82248 (19)0.57623 (10)0.0164 (2)
H110.1043660.9384500.5557880.020*
C120.24397 (12)0.80296 (18)0.57028 (10)0.0161 (2)
C130.05919 (15)0.6995 (3)0.51580 (12)0.0306 (4)
H13A0.0778540.5841720.5336470.046*
H13B0.0742240.7171560.4544620.046*
H13C0.0164270.7182150.5205680.046*
C140.0128 (2)0.8144 (3)1.12363 (13)0.0371 (5)
H14A0.0256400.9313401.1078140.056*
H14B0.0162010.8040601.1881310.056*
H14C0.0576060.7799231.0972200.056*
C270.43419 (12)0.64886 (19)0.38570 (10)0.0168 (3)
C260.2643 (2)0.6973 (4)0.29275 (16)0.0477 (6)
H26A0.2758810.8188010.2907020.072*
H26B0.2288680.6692920.3452850.072*
H26C0.2197320.6619930.2395310.072*
C250.37115 (15)0.6064 (2)0.29702 (11)0.0256 (3)
H25A0.3573200.4828590.2954880.031*0.723 (3)
H25B0.3528750.4849630.3020900.031*0.277 (3)
C15A0.4275 (3)0.6512 (5)0.2181 (2)0.0216 (6)0.723 (3)
C16A0.5293 (2)0.5923 (4)0.21714 (16)0.0245 (5)0.723 (3)
H16A0.5610670.5322940.2669750.029*0.723 (3)
C17A0.5886 (2)0.6187 (3)0.14351 (18)0.0227 (5)0.723 (3)
C18A0.6929 (2)0.5558 (4)0.14182 (16)0.0274 (5)0.723 (3)
H18A0.7258460.4966070.1914470.033*0.723 (3)
C19A0.7463 (2)0.5801 (4)0.06897 (16)0.0265 (5)0.723 (3)
H19A0.8158410.5359760.0684270.032*0.723 (3)
C20A0.6998 (2)0.6698 (4)0.00588 (19)0.0205 (5)0.723 (3)
C21A0.59938 (19)0.7341 (3)0.00630 (14)0.0218 (5)0.723 (3)
H21A0.5685450.7955560.0559620.026*0.723 (3)
C22A0.5413 (3)0.7079 (5)0.0688 (2)0.0212 (6)0.723 (3)
C23A0.43633 (19)0.7676 (3)0.07052 (14)0.0231 (5)0.723 (3)
H23A0.4034190.8278330.0212200.028*0.723 (3)
C24A0.3816 (2)0.7395 (3)0.14262 (16)0.0241 (5)0.723 (3)
H24A0.3110580.7802560.1419840.029*0.723 (3)
C28A0.7197 (2)0.7553 (5)0.1545 (2)0.0315 (6)0.723 (3)
H28A0.6563660.6926410.1775360.047*0.723 (3)
H28B0.7721610.7518360.1976670.047*0.723 (3)
H28C0.7004490.8721250.1439100.047*0.723 (3)
O6A0.76404 (16)0.6807 (3)0.07288 (12)0.0237 (4)0.723 (3)
O1S0.50266 (14)0.08627 (18)0.31699 (10)0.0341 (3)
C1S0.55409 (18)0.0686 (3)0.24025 (14)0.0322 (4)
H1S10.5872600.1754090.2267160.048*
H1S20.5023880.0365870.1908010.048*
H1S30.6086480.0184960.2494730.048*
O2S0.34838 (10)0.17528 (15)0.45724 (8)0.0205 (2)
C2S0.25390 (17)0.1708 (3)0.39960 (16)0.0391 (5)
H2S10.1959930.1281430.4314750.059*
H2S20.2635230.0968970.3494730.059*
H2S30.2366030.2842940.3778430.059*
O3S0.24271 (15)0.24954 (18)0.62435 (13)0.0412 (4)
C3S0.16678 (18)0.2742 (3)0.68361 (15)0.0337 (4)
H3S10.2021440.2859940.7436720.051*
H3S20.1186460.1777520.6813020.051*
H3S30.1262650.3763350.6674520.051*
O6B0.7222 (7)0.7340 (10)0.1082 (7)0.050 (2)0.277 (3)
C15B0.4588 (7)0.6105 (10)0.2265 (5)0.0158 (13)0.277 (3)
C24B0.5534 (7)0.5183 (10)0.2415 (5)0.0313 (16)0.277 (3)
H24B0.5668780.4546010.2942470.038*0.277 (3)
C23B0.6268 (7)0.5193 (10)0.1806 (6)0.0365 (18)0.277 (3)
H23B0.6898930.4549860.1910460.044*0.277 (3)
C22B0.6085 (6)0.6161 (9)0.1022 (5)0.0292 (15)0.277 (3)
C21B0.6837 (7)0.6204 (10)0.0362 (6)0.0324 (17)0.277 (3)
H21B0.7471810.5564540.0437040.039*0.277 (3)
C20B0.6611 (8)0.7178 (12)0.0363 (6)0.0355 (19)0.277 (3)
C19B0.5698 (8)0.8163 (13)0.0498 (5)0.045 (2)0.277 (3)
H19B0.5589210.8873680.1000390.054*0.277 (3)
C18B0.4966 (7)0.8096 (12)0.0097 (5)0.0380 (18)0.277 (3)
H18B0.4328920.8724060.0010750.046*0.277 (3)
C16B0.4398 (6)0.7027 (8)0.1519 (4)0.0204 (11)0.277 (3)
H16B0.3753460.7638640.1423360.024*0.277 (3)
C17B0.5134 (9)0.7109 (14)0.0874 (7)0.027 (2)0.277 (3)
C28B0.7973 (8)0.6136 (14)0.1092 (8)0.049 (2)0.277 (3)
H28D0.8540490.6351460.0619430.073*0.277 (3)
H28E0.8265770.6147050.1665150.073*0.277 (3)
H28F0.7655400.5036210.0999740.073*0.277 (3)
H3S0.256 (3)0.155 (3)0.615 (2)0.049 (9)*
H1S0.478 (2)0.009 (3)0.3271 (18)0.033 (7)*
H2S0.350 (2)0.090 (3)0.4883 (18)0.039 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0218 (3)0.0118 (3)0.0264 (3)0.0010 (2)0.0102 (2)0.0011 (2)
Na20.0174 (3)0.0133 (3)0.0193 (3)0.0021 (2)0.0045 (2)0.0010 (2)
O10.0205 (5)0.0154 (5)0.0356 (7)0.0030 (4)0.0100 (5)0.0017 (4)
O20.0260 (6)0.0152 (5)0.0384 (7)0.0048 (4)0.0118 (5)0.0042 (5)
O30.0387 (7)0.0308 (6)0.0159 (5)0.0053 (6)0.0077 (5)0.0033 (5)
O40.0310 (6)0.0131 (4)0.0182 (5)0.0021 (4)0.0003 (4)0.0015 (4)
O50.0235 (5)0.0130 (4)0.0231 (5)0.0036 (4)0.0089 (4)0.0029 (4)
C10.0133 (6)0.0129 (5)0.0164 (6)0.0020 (4)0.0033 (4)0.0023 (5)
C20.0167 (6)0.0164 (6)0.0173 (6)0.0027 (5)0.0033 (5)0.0008 (5)
C30.0188 (6)0.0177 (6)0.0168 (6)0.0021 (5)0.0028 (5)0.0000 (5)
C40.0274 (8)0.0264 (8)0.0201 (7)0.0093 (6)0.0042 (6)0.0024 (6)
C50.0299 (9)0.0273 (8)0.0195 (7)0.0075 (7)0.0030 (6)0.0048 (6)
C60.0290 (8)0.0232 (7)0.0169 (6)0.0001 (6)0.0053 (6)0.0010 (6)
C70.0231 (7)0.0215 (7)0.0177 (6)0.0012 (5)0.0062 (5)0.0010 (5)
C80.0184 (6)0.0174 (6)0.0166 (6)0.0002 (5)0.0042 (5)0.0015 (5)
C90.0176 (6)0.0201 (6)0.0189 (6)0.0026 (5)0.0045 (5)0.0015 (5)
C100.0148 (6)0.0184 (6)0.0180 (6)0.0006 (5)0.0019 (5)0.0010 (5)
C110.0154 (6)0.0184 (6)0.0156 (6)0.0014 (5)0.0028 (5)0.0012 (5)
C120.0177 (6)0.0145 (6)0.0170 (6)0.0016 (5)0.0061 (5)0.0011 (5)
C130.0248 (8)0.0434 (10)0.0236 (8)0.0100 (8)0.0023 (6)0.0124 (7)
C140.0542 (13)0.0394 (11)0.0200 (8)0.0117 (10)0.0146 (8)0.0036 (7)
C270.0203 (7)0.0154 (6)0.0156 (6)0.0000 (5)0.0053 (5)0.0014 (5)
C260.0367 (12)0.0679 (17)0.0352 (11)0.0031 (12)0.0127 (9)0.0064 (11)
C250.0326 (9)0.0282 (8)0.0162 (7)0.0105 (7)0.0036 (6)0.0049 (6)
C15A0.0222 (16)0.0255 (15)0.0171 (11)0.0012 (11)0.0022 (10)0.0058 (11)
C16A0.0302 (14)0.0296 (13)0.0134 (9)0.0069 (10)0.0002 (8)0.0005 (9)
C17A0.0248 (11)0.0295 (12)0.0133 (10)0.0081 (9)0.0008 (8)0.0013 (8)
C18A0.0286 (12)0.0351 (13)0.0178 (10)0.0134 (10)0.0007 (8)0.0027 (9)
C19A0.0256 (12)0.0337 (13)0.0201 (10)0.0108 (10)0.0019 (9)0.0002 (9)
C20A0.0186 (11)0.0251 (11)0.0181 (11)0.0053 (9)0.0029 (9)0.0005 (9)
C21A0.0214 (10)0.0288 (11)0.0145 (9)0.0053 (8)0.0010 (8)0.0008 (8)
C22A0.0202 (15)0.0287 (13)0.0138 (14)0.0072 (12)0.0026 (10)0.0001 (11)
C23A0.0207 (10)0.0309 (11)0.0169 (9)0.0081 (9)0.0025 (7)0.0006 (8)
C24A0.0232 (12)0.0299 (12)0.0187 (9)0.0040 (10)0.0004 (8)0.0030 (8)
C28A0.0321 (14)0.0450 (16)0.0169 (10)0.0077 (11)0.0006 (10)0.0056 (11)
O6A0.0191 (8)0.0346 (10)0.0178 (8)0.0078 (7)0.0040 (6)0.0033 (7)
O1S0.0552 (9)0.0230 (6)0.0274 (6)0.0187 (6)0.0211 (6)0.0076 (5)
C1S0.0385 (11)0.0342 (10)0.0251 (8)0.0100 (8)0.0094 (7)0.0034 (7)
O2S0.0200 (5)0.0151 (5)0.0267 (6)0.0003 (4)0.0033 (4)0.0007 (4)
C2S0.0284 (10)0.0434 (12)0.0436 (11)0.0081 (9)0.0065 (8)0.0083 (10)
O3S0.0528 (10)0.0150 (6)0.0630 (11)0.0036 (6)0.0417 (8)0.0020 (6)
C3S0.0402 (10)0.0241 (8)0.0405 (10)0.0074 (8)0.0214 (8)0.0073 (8)
O6B0.051 (5)0.037 (4)0.064 (6)0.009 (3)0.025 (4)0.009 (4)
C15B0.018 (4)0.014 (3)0.016 (3)0.003 (2)0.006 (3)0.002 (2)
C24B0.037 (4)0.030 (3)0.029 (3)0.015 (3)0.012 (3)0.012 (3)
C23B0.037 (4)0.033 (4)0.043 (4)0.016 (3)0.021 (3)0.009 (3)
C22B0.045 (4)0.024 (3)0.022 (3)0.011 (3)0.017 (3)0.009 (2)
C21B0.039 (4)0.024 (3)0.036 (4)0.007 (3)0.015 (3)0.009 (3)
C20B0.044 (5)0.030 (4)0.035 (4)0.016 (4)0.016 (4)0.015 (3)
C19B0.056 (5)0.059 (6)0.019 (3)0.025 (5)0.001 (3)0.006 (3)
C18B0.044 (4)0.050 (5)0.020 (3)0.008 (4)0.001 (3)0.012 (3)
C16B0.023 (3)0.019 (2)0.018 (2)0.003 (2)0.006 (2)0.0044 (19)
C17B0.040 (6)0.022 (3)0.021 (4)0.009 (4)0.008 (3)0.004 (3)
C28B0.031 (4)0.051 (5)0.063 (6)0.006 (4)0.002 (4)0.013 (5)
Geometric parameters (Å, º) top
Na1—O22.2355 (14)C16A—C17A1.424 (4)
Na1—O3S2.3003 (15)C16A—H16A0.9500
Na1—O52.3604 (13)C17A—C18A1.417 (4)
Na1—O2S2.3838 (14)C17A—C22A1.420 (4)
Na1—O4i2.4403 (14)C18A—C19A1.368 (4)
Na1—O1Sii2.856 (2)C18A—H18A0.9500
Na2—O52.3418 (13)C19A—C20A1.420 (4)
Na2—O1S2.3667 (15)C19A—H19A0.9500
Na2—O4i2.4635 (13)C20A—O6A1.368 (3)
Na2—O2S2.4748 (14)C20A—C21A1.372 (3)
Na2—O1i2.5394 (14)C21A—C22A1.434 (4)
Na2—O2i2.5459 (15)C21A—H21A0.9500
Na2—O5i2.5983 (14)C22A—C23A1.416 (4)
O1—C121.2700 (19)C23A—C24A1.373 (3)
O2—C121.2457 (18)C23A—H23A0.9500
O3—C61.3698 (19)C24A—H24A0.9500
O3—C141.422 (3)C28A—O6A1.437 (3)
O4—C271.2629 (18)C28A—H28A0.9800
O5—C271.2555 (19)C28A—H28B0.9800
C1—C21.375 (2)C28A—H28C0.9800
C1—C101.416 (2)O1S—C1S1.399 (2)
C1—C111.523 (2)O1S—H1S0.84 (2)
C2—C31.420 (2)C1S—H1S10.9800
C2—H20.9500C1S—H1S20.9800
C3—C81.416 (2)C1S—H1S30.9800
C3—C41.423 (2)O2S—C2S1.411 (2)
C4—C51.372 (2)O2S—H2S0.83 (2)
C4—H40.9500C2S—H2S10.9800
C5—C61.415 (2)C2S—H2S20.9800
C5—H50.9500C2S—H2S30.9800
C6—C71.373 (2)O3S—C3S1.396 (2)
C7—C81.426 (2)O3S—H3S0.79 (2)
C7—H70.9500C3S—H3S10.9800
C8—C91.417 (2)C3S—H3S20.9800
C9—C101.378 (2)C3S—H3S30.9800
C9—H90.9500O6B—C28B1.352 (13)
C10—H100.9500O6B—C20B1.408 (11)
C11—C131.529 (2)C15B—C16B1.352 (10)
C11—C121.533 (2)C15B—C24B1.405 (11)
C11—H111.0000C24B—C23B1.376 (10)
C13—H13A0.9800C24B—H24B0.9500
C13—H13B0.9800C23B—C22B1.417 (11)
C13—H13C0.9800C23B—H23B0.9500
C14—H14A0.9800C22B—C17B1.421 (15)
C14—H14B0.9800C22B—C21B1.452 (11)
C14—H14C0.9800C21B—C20B1.355 (14)
C27—C251.534 (2)C21B—H21B0.9500
C26—C251.532 (3)C20B—C19B1.396 (16)
C26—H26A0.9800C19B—C18B1.359 (12)
C26—H26B0.9800C19B—H19B0.9500
C26—H26C0.9800C18B—C17B1.417 (13)
C25—C15A1.499 (4)C18B—H18B0.9500
C25—C15B1.620 (8)C16B—C17B1.421 (11)
C25—H25A1.0000C16B—H16B0.9500
C25—H25B1.0000C28B—H28D0.9800
C15A—C16A1.375 (4)C28B—H28E0.9800
C15A—C24A1.420 (4)C28B—H28F0.9800
O2—Na1—O3S100.84 (6)C26—C25—C15B128.7 (3)
O2—Na1—O583.32 (5)C27—C25—C15B104.2 (3)
O3S—Na1—O5161.49 (7)C15A—C25—H25A108.2
O2—Na1—O2S135.03 (6)C26—C25—H25A108.2
O3S—Na1—O2S81.08 (5)C27—C25—H25A108.2
O5—Na1—O2S83.32 (5)C26—C25—H25B104.5
O2—Na1—O4i136.61 (6)C27—C25—H25B104.5
O3S—Na1—O4i105.50 (6)C15B—C25—H25B104.5
O5—Na1—O4i82.41 (5)C16A—C15A—C24A118.0 (3)
O2S—Na1—O4i83.33 (4)C16A—C15A—C25116.8 (3)
O2—Na1—O1Sii78.92 (5)C24A—C15A—C25125.0 (3)
O3S—Na1—O1Sii109.52 (6)C15A—C16A—C17A121.9 (3)
O5—Na1—O1Sii88.96 (5)C15A—C16A—H16A119.1
O2S—Na1—O1Sii143.32 (5)C17A—C16A—H16A119.1
O4i—Na1—O1Sii60.08 (4)C18A—C17A—C22A118.8 (3)
O5—Na2—O1S122.60 (6)C18A—C17A—C16A121.9 (2)
O5—Na2—O4i82.29 (4)C22A—C17A—C16A119.2 (3)
O1S—Na2—O4i145.68 (5)C19A—C18A—C17A120.2 (2)
O5—Na2—O2S81.75 (4)C19A—C18A—H18A119.9
O1S—Na2—O2S80.06 (5)C17A—C18A—H18A119.9
O4i—Na2—O2S81.00 (5)C18A—C19A—C20A121.3 (2)
O5—Na2—O1i85.41 (4)C18A—C19A—H19A119.3
O1S—Na2—O1i105.56 (5)C20A—C19A—H19A119.3
O4i—Na2—O1i99.18 (5)O6A—C20A—C21A126.4 (3)
O2S—Na2—O1i167.02 (5)O6A—C20A—C19A113.4 (2)
O5—Na2—O2i135.92 (5)C21A—C20A—C19A120.1 (2)
O1S—Na2—O2i83.41 (6)C20A—C21A—C22A119.5 (3)
O4i—Na2—O2i94.01 (5)C20A—C21A—H21A120.3
O2S—Na2—O2i141.32 (5)C22A—C21A—H21A120.3
O1i—Na2—O2i51.64 (4)C23A—C22A—C17A118.4 (3)
O5—Na2—O5i130.41 (3)C23A—C22A—C21A121.6 (3)
O1S—Na2—O5i95.26 (5)C17A—C22A—C21A120.0 (3)
O4i—Na2—O5i51.90 (4)C24A—C23A—C22A120.8 (2)
O2S—Na2—O5i74.12 (4)C24A—C23A—H23A119.6
O1i—Na2—O5i116.29 (5)C22A—C23A—H23A119.6
O2i—Na2—O5i72.89 (4)C23A—C24A—C15A121.7 (3)
C12—O1—Na2ii92.32 (9)C23A—C24A—H24A119.1
C12—O2—Na1168.53 (13)C15A—C24A—H24A119.1
C12—O2—Na2ii92.62 (10)O6A—C28A—H28A109.5
Na1—O2—Na2ii83.11 (5)O6A—C28A—H28B109.5
C6—O3—C14116.94 (15)H28A—C28A—H28B109.5
C27—O4—Na1ii130.88 (11)O6A—C28A—H28C109.5
C27—O4—Na2ii92.75 (9)H28A—C28A—H28C109.5
Na1ii—O4—Na2ii79.35 (4)H28B—C28A—H28C109.5
C27—O5—Na2132.87 (10)C20A—O6A—C28A117.2 (2)
C27—O5—Na1137.71 (10)C1S—O1S—Na2132.12 (12)
Na2—O5—Na183.49 (4)C1S—O1S—Na1i102.53 (14)
C27—O5—Na2ii86.79 (9)Na2—O1S—Na1i74.36 (5)
Na2—O5—Na2ii130.68 (5)C1S—O1S—H1S105.9 (19)
Na1—O5—Na2ii79.62 (4)Na2—O1S—H1S116.5 (19)
C2—C1—C10118.34 (13)Na1i—O1S—H1S69.3 (19)
C2—C1—C11122.36 (13)O1S—C1S—H1S1109.5
C10—C1—C11119.30 (13)O1S—C1S—H1S2109.5
C1—C2—C3121.66 (13)H1S1—C1S—H1S2109.5
C1—C2—H2119.2O1S—C1S—H1S3109.5
C3—C2—H2119.2H1S1—C1S—H1S3109.5
C8—C3—C2119.54 (14)H1S2—C1S—H1S3109.5
C8—C3—C4118.47 (14)C2S—O2S—Na1113.32 (13)
C2—C3—C4121.97 (14)C2S—O2S—Na2133.15 (13)
C5—C4—C3120.60 (15)Na1—O2S—Na280.22 (4)
C5—C4—H4119.7C2S—O2S—H2S107 (2)
C3—C4—H4119.7Na1—O2S—H2S108 (2)
C4—C5—C6120.47 (16)Na2—O2S—H2S110 (2)
C4—C5—H5119.8O2S—C2S—H2S1109.5
C6—C5—H5119.8O2S—C2S—H2S2109.5
O3—C6—C7125.10 (16)H2S1—C2S—H2S2109.5
O3—C6—C5114.18 (15)O2S—C2S—H2S3109.5
C7—C6—C5120.73 (15)H2S1—C2S—H2S3109.5
C6—C7—C8119.44 (15)H2S2—C2S—H2S3109.5
C6—C7—H7120.3C3S—O3S—Na1137.38 (12)
C8—C7—H7120.3C3S—O3S—H3S115 (2)
C3—C8—C9118.21 (13)Na1—O3S—H3S108 (2)
C3—C8—C7120.21 (14)O3S—C3S—H3S1109.5
C9—C8—C7121.56 (14)O3S—C3S—H3S2109.5
C10—C9—C8120.81 (14)H3S1—C3S—H3S2109.5
C10—C9—H9119.6O3S—C3S—H3S3109.5
C8—C9—H9119.6H3S1—C3S—H3S3109.5
C9—C10—C1121.35 (14)H3S2—C3S—H3S3109.5
C9—C10—H10119.3C28B—O6B—C20B112.7 (10)
C1—C10—H10119.3C16B—C15B—C24B119.8 (7)
C1—C11—C13111.54 (13)C16B—C15B—C25119.3 (6)
C1—C11—C12110.58 (12)C24B—C15B—C25120.9 (6)
C13—C11—C12112.24 (13)C23B—C24B—C15B120.8 (7)
C1—C11—H11107.4C23B—C24B—H24B119.6
C13—C11—H11107.4C15B—C24B—H24B119.6
C12—C11—H11107.4C24B—C23B—C22B120.2 (7)
O2—C12—O1123.40 (14)C24B—C23B—H23B119.9
O2—C12—C11118.90 (14)C22B—C23B—H23B119.9
O1—C12—C11117.67 (13)C23B—C22B—C17B119.1 (7)
O2—C12—Na2ii61.83 (9)C23B—C22B—C21B122.0 (8)
O1—C12—Na2ii61.59 (8)C17B—C22B—C21B118.9 (8)
C11—C12—Na2ii179.19 (11)C20B—C21B—C22B118.4 (8)
C11—C13—H13A109.5C20B—C21B—H21B120.8
C11—C13—H13B109.5C22B—C21B—H21B120.8
H13A—C13—H13B109.5C21B—C20B—C19B123.1 (7)
C11—C13—H13C109.5C21B—C20B—O6B126.6 (10)
H13A—C13—H13C109.5C19B—C20B—O6B110.4 (9)
H13B—C13—H13C109.5C18B—C19B—C20B119.5 (8)
O3—C14—H14A109.5C18B—C19B—H19B120.3
O3—C14—H14B109.5C20B—C19B—H19B120.3
H14A—C14—H14B109.5C19B—C18B—C17B121.3 (10)
O3—C14—H14C109.5C19B—C18B—H18B119.3
H14A—C14—H14C109.5C17B—C18B—H18B119.3
H14B—C14—H14C109.5C15B—C16B—C17B121.9 (8)
O5—C27—O4123.49 (14)C15B—C16B—H16B119.0
O5—C27—C25118.22 (14)C17B—C16B—H16B119.0
O4—C27—C25118.26 (14)C18B—C17B—C16B123.1 (10)
C25—C26—H26A109.5C18B—C17B—C22B118.8 (9)
C25—C26—H26B109.5C16B—C17B—C22B118.1 (9)
H26A—C26—H26B109.5O6B—C28B—H28D109.5
C25—C26—H26C109.5O6B—C28B—H28E109.5
H26A—C26—H26C109.5H28D—C28B—H28E109.5
H26B—C26—H26C109.5O6B—C28B—H28F109.5
C15A—C25—C26110.1 (2)H28D—C28B—H28F109.5
C15A—C25—C27113.69 (18)H28E—C28B—H28F109.5
C26—C25—C27108.29 (15)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O4iii0.84 (2)1.90 (2)2.6756 (18)153 (3)
O2S—H2S···O1iii0.83 (2)2.06 (2)2.8331 (18)156 (3)
O3S—H3S···O1iii0.79 (2)1.94 (2)2.7226 (19)172 (3)
Symmetry code: (iii) x, y1, z.
 

References

First citationBond, A. D., Cornett, C., Larsen, F. H., Qu, H., Raijada, D. & Rantanen, J. (2013). Cryst. Growth Des. 13, 3665–3671.  Web of Science CSD CrossRef CAS Google Scholar
First citationBond, A. D., Cornett, C., Larsen, F. H., Qu, H., Raijada, D. & Rantanen, J. (2014). IUCrJ, 1, 328–337.  CrossRef PubMed IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurgess, K. M. N., Perras, F. A., Lebrun, A., Messner-Henning, E., Korobkov, I. & Bryce, D. L. (2012). J. Pharm. Sci. 101, 2930–2940.  CrossRef PubMed Google Scholar
First citationChavez, K. J. (2009). Crystallization of pseudopolymorphic forms of sodium naproxen in mixed solvent systems. Ph. D. Thesis, Georgia Institute of Technology, USA.  Google Scholar
First citationChavez, K. J., Guevara, M. & Rousseau, R. W. (2010). Cryst. Growth Des. 10, 3372–3377.  CrossRef Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y. B., Park, I. Y. & Lah, W. R. (1990). Arch. Pharm. Res. 13, 166–173.  CrossRef CAS Google Scholar
First citationKim, Y.-s., VanDerveer, D., Rousseau, R. W. & Wilkinson, A. P. (2004). Acta Cryst. E60, m419–m420.  CrossRef IUCr Journals Google Scholar
First citationKovačič, B., Vrečer, F. & Planinšek, O. (2012). Acta Pharm. 62, 1–14.  PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerumalla, S. R. & Sun, C. C. (2012). CrystEngComm, 14, 3851–3853.  CrossRef Google Scholar
First citationRavikumar, K., Rajan, S. S., Pattabhi, V. & Gabe, E. J. (1985). Acta Cryst. C41, 280–282.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds