research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-N′-benzyl­­idene-4-chloro­benzene­sulfono­hydrazide and of its (E)-4-chloro-N′-(ortho- and para-methyl­benzyl­­idene)benzene­sulfono­hydrazide derivatives

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 October 2018; accepted 14 October 2018; online 19 October 2018)

(E)-N′-Benzyl­idene-4-chloro­benzene­sulfono­hydrazide, C13H11ClN2O2S, (I), and its ortho- and para-methyl­substituted derivatives, C14H13ClN2O2S, namely (E)-4-chloro-N′-(2-methyl­benzyl­idene)benzene­sulfono­hydrazide, (II), and (E)-4-chloro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide, (III), have been synthesized, characterized spectroscopically and their crystal structures determined to investigate the effect of the substitution site of the benzyl­idene group on the structural and supra­molecular features in these compounds. Compounds (I) and (II) are isotypic while compound (III) is different. All three mol­ecules are bent at the S atom with C—S—N—N torsion angles of −66.0 (3), −66.0 (3) and −58.4 (2)° for (I), (II) and (III), respectively. The hydrazone portions of the mol­ecules, S—N—N=C, are slightly twisted from planarity, with a torsion angle of 166.5 (3)° in (I), 165.4 (3)° in (II) and 157.9 (2)° in (III). The two aromatic rings present in the compounds are inclined to each other by 78.4 (2), 74.8 (2) and 76.9 (1)° in (I), (II) and (III), respectively. In the crystal structure of the parent compound (I), and of the ortho-methyl derivative (II), an N—H⋯O hydrogen bond links the mol­ecules into chains along [001], which are inter­connected by weak inter­molecular C—H⋯O inter­actions, generating layers lying parallel to the bc plane. In the crystal of the para derivative (III), however, the packing is significantly different. Here mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are then linked by C—Cl⋯π inter­actions, forming ribbons propagating along [1[\overline{1}]0]. Hirshfeld surface analyses show that the van der Waals inter­actions constitute the major contribution to the inter­molecular inter­actions in the crystal structures of all three compounds. The fingerprint plots indicate that the H⋯H contacts make the largest contributions to the Hirshfeld surfaces.

1. Chemical context

Schiff bases are an important class of compounds in the field of coordination chemistry and catalysis (Mahfouz et al., 2015[Mahfouz, R. M., Demircioğlu, Z., Abbady, M. S. & Büyükgüngör, O. (2015). Acta Cryst. E71, 94-96.]). The photochromic and thermochromic properties of Schiff bases make their study inter­esting (Girisha et al., 2018[Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376-379.]). They form second-order NLO organic materials, which are being used in computers, optical communication and medical imaging (Zarei et al., 2015[Zarei, S. A., Piltan, M., Hassanzadeh, K., Akhtari, K. & Cinčić, D. (2015). J. Mol. Struct. 1083, 82-87.]). Hydrazones also play an important role in curing diseases effectively with less toxicity. Sulfonyl hydrazones are known for their good enzymatic modulation, analgesic, anti-Alzheimer's, anti­depressant and anti­diabetic activities (Cunha et al., 2016[Cunha, M. R., Tavares, M. T., Carvalho, C. F., Silva, N. A. T., Souza, A. D. F., Pereira, G. J. V., Ferreira, F. F. & Parise-Filho, R. (2016). ACS Sustainable Chem. Eng. 4, 1899-1905.]). To investigate the impact of substitution, and also the variation of the site of substituent, on the structural parameters and the hydrogen-bonding inter­actions, we report herein on the synthesis and crystal structures of (E)-N′-(benzyl­idene)-4-chloro­benzene­sulfono­hydrazide (I)[link] and its ortho- and para-methyl­substituted benzyl­idene derivatives, (II)[link] and (III)[link], respectively.

[Scheme 1]

2. Structural commentary

The title hydrazide (I)[link] and its derivatives, (II)[link] and (III)[link], crystallize in the monoclinic crystal system with space group P21/c for (I)[link] and (II)[link] and P21/n for (III)[link]. The mol­ecular structures of compounds (I)[link], (II)[link] and (III)[link] are illustrated in Figs. 1[link], 2[link] and 3[link], respectively. All three mol­ecules adopt an E configuration about the C=N bond of the central imine group. In the ortho-methyl-substituted derivative (II)[link], the N—H and C—H bonds in the hydrazide part are anti with respect to the methyl substituent. These parts of the mol­ecules, S—N—N=C, show similar bond lengths of 1.258 (5), 1.272 (5) and 1.273 (3) Å for C7=N2 and 1.394 (5), 1.407 (5) and 1.393 (2) Å for N1—N2 in compounds (I)[link], (II)[link] and (III)[link], respectively. These bond lengths are consistent with the C=N double-bond and N—N single-bond lengths, respectively. Furthermore, the S—N—N=C segments are slightly twisted from planarity, with torsion angles of 166.5 (3)° in (I)[link], 165.4 (3)° in (II)[link] and 157.9 (2)° in (III)[link]. All three compounds are bent at the S atom with C—S—N—N torsion angles of −66.0 (3), −66.0 (3) and −58.4 (2)° for (I)[link], (II)[link] and (III)[link], respectively. The two aromatic rings present in these compounds are inclined to each other by 78.4 (2), 74.8 (2) and 76.9 (1)° in (I)[link], (II)[link] and (III)[link], respectively. Hence the conformations of (I)[link] and (II)[link] are very similar while that of (III)[link] is slightly different.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of (III)[link], showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystals of all three compounds, an O atom of the sulfonyl group acts as an acceptor and the amino H atom of the hydrazide segment as a donor in N—H⋯O hydrogen-bonding inter­actions with neighbouring mol­ecules (Tables 1[link], 2[link] and 3[link]). The patterns of the hydrogen-bonding inter­actions in the crystal structures of (I)[link] and (II)[link] are very similar, and will be illustrated for compound (II)[link] only. The N—H⋯O hydrogen-bonding inter­actions result in a C(4) graph-set motif generating chains propagating along the c-axis direction (Fig. 4[link]). These chains are linked by weak C—H⋯O inter­actions involving an aromatic H atom of the benzyl­idenephenyl ring and a sulfonyl O atom, resulting in the formation of layers lying parallel to the bc plane (Tables 2[link] and 3[link], and Fig. 5[link]). On changing the position of the methyl substituent from ortho- to para- the crystal packing changes significantly. Mol­ecules are now linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing R22(8) loops (Fig. 6[link], Table 3[link]). The dimers are linked by a C—Cl⋯π inter­action, forming ribbons that propagate along the [1[\overline{1}]0] direction (Fig. 6[link], Table 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.14 (3) 2.897 (4) 152 (4)
C3—H3⋯O2ii 0.93 2.43 3.305 (5) 158
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.06 (2) 2.913 (4) 168 (4)
C5—H5⋯O1ii 0.93 2.44 3.303 (5) 155
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 is the centroid of ring C8-C13.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.09 (2) 2.935 (2) 177 (2)
C4—Cl1⋯Cg1ii 1.74 (1) 3.47 (1) 5.175 (3) 168 (1)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y+1, z.
[Figure 4]
Figure 4
A partial view along the b axis of the crystal packing of (II)[link], with hydrogen bonds shown as dashed lines. Only the H atoms involved in the intermolecular interactions have been included.
[Figure 5]
Figure 5
A view along the c axis of the crystal packing of (II)[link], with hydrogen bonds shown as dashed lines. Only the H atoms involved in the intermolecular interactions have been included.
[Figure 6]
Figure 6
A view along the b axis of the crystal packing of (III)[link], with hydrogen bonds shown as dashed lines. Only the H atoms involved in the intermolecular interactions have been included. The C—Cl⋯π interactions are indicated by blue arrows.

4. Hirshfeld Surface analysis

The nature of the inter­molecular contacts and their qu­anti­tative contributions to the crystal packing in all the three title compounds were analysed by Hirshfeld surface analysis and two-dimensional fingerprint plots, generated using CrystalExplorer3.1 (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia.]). The Hirshfeld surfaces of the three compounds mapped over dnorm are shown in Fig. 7[link]. The N—H⋯O inter­actions between the corresponding donor and acceptor atoms are visualized as bright-red spots and represent the short inter­atomic inter­actions in the crystal structures. The presence of two other light-red spots in (I)[link] and (II)[link] correspond to the C—H⋯O inter­actions, which are considered to be weak inter­actions.

[Figure 7]
Figure 7
Hirshfeld surface mapped over dnorm for (I)[link], (II)[link] and (III)[link].

The two-dimensional fingerprint plots for the contacts H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Cl⋯H/H⋯Cl, C⋯C and N⋯H/H⋯N are illustrated in Figs. 8[link] and 9[link], for (I)[link] and (III)[link], respectively. The fingerprint plots of various contacts and their percentage contribution to the Hirshfeld surfaces are similar in (I)[link] and (II)[link] but, as expected, different from those for (III)[link] (see Table 4[link]). H⋯H contacts are the major contributors to the Hirshfeld surface: 30.1% in (I)[link], 34.0% (II)[link] and 38.0% in (III)[link]. The C⋯H/H⋯C contacts make the second largest contribution, i.e. 22.7, 20.2 and 18.0% for (I)[link], (II)[link] and (III)[link], respectively. This is followed by O⋯H/H⋯O contacts arising from N—H⋯O and C—H⋯O inter­actions, contributing 16.1% in (I)[link] and (II)[link], and 15.7% in (III)[link]. N⋯H/H⋯N contacts arising from O—H⋯N hydrogen bonds contribute 6.3, 5.2 and 3.9%, respectively, in (I)[link], (II)[link] and (III)[link]. Cl⋯H/H⋯Cl inter­actions make a relatively significant contribution to the total Hirshfeld surfaces, comprising 12.1% in (I)[link], 12.3% in (II)[link] and 9.4% in (III)[link]. The C⋯C contacts representing ππ inter­actions contribute 5.2, 5.0 and 2.1% in (I)[link], (II)[link] and (III)[link], respectively. Cl⋯O/O⋯Cl contacts comprise 5.0% in (I)[link], 4.8% in (II)[link] and 2.3% in (III)[link]. Weak Cl⋯Cl, C⋯O/O⋯C and C⋯S/S⋯C inter­actions are also observed; however, they exhibit minimal respect contributions of 0.5, 1.0 and 0% in (I)[link], 0.5, 1.0, 0.1% in (II)[link] and 0, 2.6 and 0.1% in (III)[link], reflecting negligible or no effect on the mol­ecular packing.

Table 4
Hirshfeld contact inter­actions (%)

Contact type (I) (II) (III)
H⋯H 30.1 34.0 38.0
C⋯H/H⋯C 22.7 20.2 18.0
O⋯H/H⋯O 16.1 16.1 15.7
Cl⋯H/H⋯Cl 12.1 12.3 9.4
N⋯H/H⋯N 6.3 5.2 3.9
C⋯C 5.2 5.0 2.1
Cl⋯C/C⋯Cl 0 0 5.3
Cl⋯O/O⋯Cl 5.0 4.8 2.3
C⋯O/O⋯C 1.0 1.0 2.6
Cl⋯Cl 0.5 0.5 0
C⋯S/S⋯C 0 0.1 0.1
[Figure 8]
Figure 8
Two-dimensional fingerprint plots for (I)[link], showing the contributions of different types of inter­actions.
[Figure 9]
Figure 9
Two-dimensional fingerprint plots for (III)[link], showing the contributions of different types of inter­actions.

The most significant difference for compounds (I)[link] and (II)[link] compared to compound (III)[link] is the presence of a relatively strong Cl⋯C/C⋯Cl inter­action in (III)[link], in accordance with the C—Cl⋯π inter­action in the crystal (Table 3[link]), which makes a contribution of 5.3%, while for (I)[link] and (II)[link] this inter­action is not present.

5. Database survey

The crystal structures of (E)-N′-(4-chloro­benzyl­idene)-4-methyl­benzene­sulfono­hydrazide (IV) (Balaji et al., 2014[Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250-o1251.]) and N′-[(E)-4-methyl­benzyl­idene]4-methyl­benzene­sulfono­hydra­zide (V) (Tabatabaee et al., 2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.]) have been reported. They exhibit an E configuration with respect to the C=N bond and an almost perpendicular orientation of the two aromatic rings with dihedral angles of 81.9 (3)° in (IV) and 82.4 (1)° in (V), very similar to the values of 78.4 (2), 74.8 (2) and 76.9 (1)° in (I)[link], (II)[link] and (III)[link], respectively. In the structures of these related compounds (I)–(V) and also those of benzyl­idene, 3,3-di­phenyl­allyl­idene (Mehrabi & Kia, 2009[Mehrabi, H. & Kia, R. (2009). Acta Cryst. E65, o1056.]; Mehrabi et al., 2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]), 4-bromo/5-bromo-2-hy­droxy/5-chloro-2-hy­droxy (Kia et al., 2008a[Kia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341.],b[Kia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424.]) and 2-hy­droxy-5-iodo (Ghorbanloo & Notash, 2012[Ghorbanloo, M. & Notash, B. (2012). Acta Cryst. E68, o2760.]) derivatives of p-toluene­sulfono­hydrazide, the aryl­sulfono­hydrazide mol­ecules are directly connected to one another via significant N—H⋯O hydrogen-bonding inter­actions involving a sulfonyl oxygen atom and the amino hydrogen atom.

6. Synthesis and crystallization

Synthesis of 4-chloro­benzene­sulfono­hydrazide

To 4-chlro­benzene­sulfonyl chloride (0.01 mol) dissolved in propanol (30 ml), 99% hydrazine hydrate (5 ml) was added at 273 K under constant stirring. The stirring continued for 15 min at 273 K and then at 303 K for 3 h. After completion of the reaction (monitored by TLC), the reaction mixture was concentrated by evaporating the excess propanol. The solid product, 4-chloro­benzene­sulfono­hydrazide was washed with cold water and dried.

Synthesis of compounds (I)[link], (II)[link] and (III)

The parent, ortho- and para- substituted (E)-N′-(benzyl­idene)-4-chloro­benzene­sulfono­hydrazides (I)[link], (II)[link] and (III)[link], were synthesized by refluxing mixtures of 4-chloro­benzene­sulfono­hydrazide (0.01 mol) and benzaldehyde, 2-methyl-benzaldehyde or 4-methyl­benzaldehyde (0.01 mol), respect­ively, in ethanol (30 ml) and two drops of glacial acetic acid for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating the excess of solvent. The solid products (I)[link], (II)[link] and (III)[link] obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol to obtain the pure compounds. The purity of the compounds was checked by TLC. Single crystals of the hydrazides suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of their DMF solutions at room temperature. All three compounds were characterized by measuring their IR, 1H and 13C NMR spectra.

(E)-N-(benzyl­idene) 4-chloro­benzene­sulfono­hydrazide (I)[link]:

Plate-like colourless single crystals; m.p. 381–382 K; IR (cm−1): 3174.8 (N—H asym stretch), 1577.8 (C=N), 1323.2 (S=O asym stretch) and 1159.2 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 7.29–7.33 (m, 3H, Ar-H), 7.52 (t, 2H, Ar-H, J = 7.44), 7.53–7.56 (m, 3H, Ar-H), 7.94 (d, 1H, Ar-H, J = 8.4Hz), 7.93 (s, 1H), 11.54 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 125.46, 127.21, 127.72, 127.86, 128.63, 132.23, 136.52, 136.99, 146.11.

(E)-N-(2-methyl­benzyl­idene) 4-chloro­benzene­sulfono­hydrazide (II)[link]:

Rod-shaped colourless single crystals; m.p. 399–400 K; IR (cm−1): 3155.5 (N—H asym stretch), 1585.6 (C=N), 1325.1 (S=O asym stretch) and 1153.4 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 2.33 (s, 3H), 7.09–7.17 (m, 1H, Ar-H), 7.21–7.26 (m, 1H, Ar-H), 7.43–7.48 (m, 1H, Ar-H), 7.63 (d, 1H, Ar-H, J = 7.7 Hz), 7.86 (d, 2H, Ar-H, J = 8.6 Hz), 7.93 (d, 2H, Ar-H, J = 8.5 Hz), 8.08 (s, 1H), 11.67 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 19.77, 126.17, 127.27, 129.13, 129.31, 129.81, 130.23, 131.14, 136.88, 139.72, 140.26, 147.62.

(E)-N-(4-methyl­benzyl­idene) 4-chloro­benzene­sulfono­hydrazide (III)[link]:

Rod-shaped colourless single crystals; m.p. 425–426K; IR (cm−1): 3184.5 (N—H asym stretch), 1580.7 (C=N), 1326.5 (S=O asym stretch) and 1163.3 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 2.27 (s, 3H), 7.12 (d, 2H, Ar-H, J = 8.0 Hz), 7.41 (d, 2H, Ar-H, J = 8.0Hz), 7.52–7.57 (m, 2H, Ar-H), 7.86–7.90 (m, 2H, Ar-H), 7.92 (s, 1H), 11.40 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 20.96, 126.64, 128.95, 129.61, 130.75, 137.75, 139.41, 139.78, 145.66.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For all three compounds, the H atom of the NH group was located in difference-Fourier maps and later restrained to N—H = 0.86 (2) Å. C-bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C-aromatic, N) for other H atoms. The Uij components of C9, C10, C11 and C12 in (I)[link] and C10, C11, C12 and C13 in (II)[link] and (III)[link] were restrained to approximate isotropic behaviour.

Table 5
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C13H11ClN2O2S C14H13ClN2O2S C14H13ClN2O2S
Mr 294.75 308.77 308.77
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 293 293 293
a, b, c (Å) 14.949 (2), 10.020 (1), 9.641 (1) 15.034 (2), 10.180 (1), 9.8119 (9) 9.406 (1), 5.8353 (6), 26.930 (2)
β (°) 104.27 (1) 106.34 (1) 99.621 (9)
V3) 1399.6 (3) 1441.0 (3) 1457.3 (2)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.42 0.41 0.41
Crystal size (mm) 0.20 × 0.16 × 0.08 0.22 × 0.16 × 0.08 0.48 × 0.16 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.])
Tmin, Tmax 0.921, 0.967 0.915, 0.968 0.829, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 4831, 2547, 1034 5157, 2636, 1713 9653, 2652, 2106
Rint 0.075 0.038 0.027
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.113, 0.91 0.067, 0.195, 1.07 0.040, 0.095, 1.05
No. of reflections 2547 2636 2652
No. of parameters 175 185 185
No. of restraints 30 32 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.21 0.66, −0.32 0.21, −0.31
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009). Cell refinement: CrysAlis CCD (Oxford Diffraction, 2009) for (I); CrysAlis RED (Oxford Diffraction, 2009) for (II), (III). For all structures, data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) top
Crystal data top
C13H11ClN2O2SF(000) = 608
Mr = 294.75Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.949 (2) ÅCell parameters from 692 reflections
b = 10.020 (1) Åθ = 2.8–28.0°
c = 9.641 (1) ŵ = 0.42 mm1
β = 104.27 (1)°T = 293 K
V = 1399.6 (3) Å3Plate, colourless
Z = 40.20 × 0.16 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
1034 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.075
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1618
Tmin = 0.921, Tmax = 0.967k = 128
4831 measured reflectionsl = 811
2547 independent reflections
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
2547 reflectionsΔρmax = 0.23 e Å3
175 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1391 (3)0.4315 (4)0.0093 (5)0.0399 (11)
C20.0889 (3)0.4861 (5)0.1175 (5)0.0475 (12)
H20.06450.43130.19550.057*
C30.0749 (3)0.6222 (5)0.1283 (5)0.0506 (13)
H30.04000.65910.21290.061*
C40.1128 (3)0.7031 (4)0.0134 (5)0.0494 (13)
C50.1615 (3)0.6477 (5)0.1149 (5)0.0612 (15)
H50.18480.70230.19360.073*
C60.1751 (3)0.5130 (5)0.1255 (4)0.0572 (14)
H60.20870.47590.21100.069*
C70.4066 (4)0.3017 (4)0.0120 (5)0.0566 (14)
H70.40320.27450.08140.068*
C80.4945 (4)0.3538 (5)0.1000 (6)0.0631 (15)
C90.4990 (4)0.4207 (5)0.2256 (6)0.0806 (18)
H90.44550.43490.25620.097*
C100.5837 (5)0.4678 (5)0.3082 (7)0.0977 (18)
H100.58750.51220.39420.117*
C110.6607 (5)0.4463 (6)0.2579 (7)0.0966 (18)
H110.71710.47700.31270.116*
C120.6596 (5)0.3852 (6)0.1370 (7)0.0965 (18)
H120.71350.37500.10620.116*
C130.5748 (4)0.3354 (5)0.0552 (6)0.0836 (17)
H130.57280.28980.02950.100*
N10.2581 (3)0.2379 (4)0.0314 (3)0.0489 (10)
H1N0.254 (3)0.240 (4)0.119 (2)0.059*
N20.3361 (3)0.2933 (3)0.0607 (4)0.0484 (10)
O10.1806 (2)0.2192 (3)0.1656 (3)0.0587 (9)
O20.0928 (2)0.1919 (3)0.0868 (3)0.0574 (9)
Cl10.09997 (10)0.87458 (12)0.02899 (14)0.0712 (5)
S10.16184 (9)0.25981 (12)0.01912 (12)0.0476 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.046 (3)0.034 (3)0.000 (2)0.002 (2)0.001 (2)
C20.040 (3)0.051 (4)0.045 (3)0.001 (3)0.001 (2)0.001 (3)
C30.042 (3)0.058 (4)0.044 (3)0.002 (3)0.006 (2)0.007 (3)
C40.044 (3)0.053 (3)0.053 (3)0.004 (3)0.017 (3)0.001 (3)
C50.074 (4)0.058 (4)0.044 (3)0.007 (3)0.000 (3)0.010 (3)
C60.068 (4)0.051 (4)0.041 (3)0.006 (3)0.008 (3)0.004 (3)
C70.048 (4)0.054 (3)0.062 (3)0.001 (3)0.003 (3)0.003 (3)
C80.049 (4)0.046 (3)0.087 (4)0.002 (3)0.004 (3)0.013 (3)
C90.074 (4)0.065 (3)0.091 (3)0.013 (3)0.003 (3)0.001 (3)
C100.099 (4)0.083 (3)0.101 (3)0.016 (3)0.007 (3)0.002 (3)
C110.082 (3)0.081 (4)0.113 (3)0.014 (3)0.002 (3)0.017 (3)
C120.070 (3)0.093 (4)0.121 (4)0.004 (3)0.013 (3)0.016 (3)
C130.073 (4)0.068 (4)0.103 (4)0.004 (3)0.010 (3)0.015 (3)
N10.044 (2)0.060 (3)0.037 (2)0.001 (2)0.001 (2)0.006 (2)
N20.041 (3)0.046 (3)0.049 (2)0.003 (2)0.005 (2)0.0005 (19)
O10.073 (2)0.066 (2)0.0337 (17)0.0022 (18)0.0068 (15)0.0120 (16)
O20.057 (2)0.055 (2)0.0502 (19)0.0147 (17)0.0068 (17)0.0039 (15)
Cl10.0744 (11)0.0529 (9)0.0819 (10)0.0069 (8)0.0112 (8)0.0037 (7)
S10.0490 (8)0.0505 (8)0.0378 (7)0.0037 (7)0.0001 (6)0.0014 (7)
Geometric parameters (Å, º) top
C1—C21.380 (5)C8—C131.385 (7)
C1—C61.383 (5)C9—C101.400 (7)
C1—S11.752 (4)C9—H90.9300
C2—C31.379 (5)C10—C111.372 (7)
C2—H20.9300C10—H100.9300
C3—C41.377 (5)C11—C121.313 (7)
C3—H30.9300C11—H110.9300
C4—C51.387 (6)C12—C131.409 (7)
C4—Cl11.732 (5)C12—H120.9300
C5—C61.365 (6)C13—H130.9300
C5—H50.9300N1—N21.394 (5)
C6—H60.9300N1—S11.644 (4)
C7—N21.258 (5)N1—H1N0.831 (18)
C7—C81.473 (6)O1—S11.429 (3)
C7—H70.9300O2—S11.432 (3)
C8—C91.371 (6)
C2—C1—C6120.1 (4)C8—C9—H9119.7
C2—C1—S1119.5 (4)C10—C9—H9119.7
C6—C1—S1120.3 (4)C11—C10—C9117.7 (6)
C3—C2—C1119.8 (4)C11—C10—H10121.1
C3—C2—H2120.1C9—C10—H10121.1
C1—C2—H2120.1C12—C11—C10124.0 (7)
C4—C3—C2119.8 (4)C12—C11—H11118.0
C4—C3—H3120.1C10—C11—H11118.0
C2—C3—H3120.1C11—C12—C13118.3 (7)
C3—C4—C5120.3 (4)C11—C12—H12120.9
C3—C4—Cl1120.0 (4)C13—C12—H12120.9
C5—C4—Cl1119.8 (4)C8—C13—C12120.5 (6)
C6—C5—C4119.8 (4)C8—C13—H13119.7
C6—C5—H5120.1C12—C13—H13119.7
C4—C5—H5120.1N2—N1—S1114.5 (3)
C5—C6—C1120.1 (4)N2—N1—H1N118 (3)
C5—C6—H6119.9S1—N1—H1N117 (3)
C1—C6—H6119.9C7—N2—N1115.8 (4)
N2—C7—C8121.3 (5)O1—S1—O2120.03 (19)
N2—C7—H7119.4O1—S1—N1106.33 (18)
C8—C7—H7119.4O2—S1—N1104.79 (18)
C9—C8—C13118.9 (6)O1—S1—C1108.75 (19)
C9—C8—C7121.7 (5)O2—S1—C1109.4 (2)
C13—C8—C7119.5 (6)N1—S1—C1106.7 (2)
C8—C9—C10120.5 (6)
C6—C1—C2—C30.3 (7)C10—C11—C12—C131.6 (9)
S1—C1—C2—C3176.6 (3)C9—C8—C13—C120.4 (8)
C1—C2—C3—C41.4 (6)C7—C8—C13—C12179.5 (5)
C2—C3—C4—C52.8 (7)C11—C12—C13—C81.6 (9)
C2—C3—C4—Cl1177.1 (3)C8—C7—N2—N1177.8 (4)
C3—C4—C5—C62.7 (7)S1—N1—N2—C7166.5 (3)
Cl1—C4—C5—C6177.2 (4)N2—N1—S1—O149.9 (3)
C4—C5—C6—C11.1 (7)N2—N1—S1—O2178.0 (3)
C2—C1—C6—C50.4 (7)N2—N1—S1—C166.0 (3)
S1—C1—C6—C5176.4 (4)C2—C1—S1—O1157.4 (3)
N2—C7—C8—C913.9 (7)C6—C1—S1—O125.7 (4)
N2—C7—C8—C13166.2 (5)C2—C1—S1—O224.6 (4)
C13—C8—C9—C100.9 (8)C6—C1—S1—O2158.6 (3)
C7—C8—C9—C10179.2 (5)C2—C1—S1—N188.2 (4)
C8—C9—C10—C110.9 (8)C6—C1—S1—N188.6 (4)
C9—C10—C11—C120.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.14 (3)2.897 (4)152 (4)
C3—H3···O2ii0.932.433.305 (5)158
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z+1/2.
(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) top
Crystal data top
C14H13ClN2O2SF(000) = 640
Mr = 308.77Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.034 (2) ÅCell parameters from 1546 reflections
b = 10.180 (1) Åθ = 2.8–27.7°
c = 9.8119 (9) ŵ = 0.41 mm1
β = 106.34 (1)°T = 293 K
V = 1441.0 (3) Å3Rod, colourless
Z = 40.22 × 0.16 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
1713 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.038
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1318
Tmin = 0.915, Tmax = 0.968k = 912
5157 measured reflectionsl = 1111
2636 independent reflections
Refinement top
Refinement on F232 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0912P)2 + 1.1282P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2636 reflectionsΔρmax = 0.66 e Å3
185 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1380 (3)0.5693 (5)0.0113 (4)0.0511 (11)
C20.1696 (3)0.4872 (5)0.1299 (4)0.0603 (12)
H20.20010.52340.21760.072*
C30.1560 (3)0.3542 (5)0.1178 (5)0.0637 (13)
H30.17830.29950.19590.076*
C40.1083 (3)0.3027 (5)0.0130 (5)0.0592 (12)
C50.0748 (3)0.3818 (5)0.1302 (5)0.0604 (12)
H50.04240.34540.21680.072*
C60.0896 (3)0.5142 (5)0.1179 (4)0.0586 (12)
H60.06710.56790.19670.070*
C70.4065 (3)0.6873 (4)0.0171 (5)0.0568 (11)
H70.39900.71110.07700.068*
C80.4969 (3)0.6382 (5)0.0999 (6)0.0679 (11)
C90.5125 (4)0.5615 (5)0.2183 (6)0.0810 (12)
C100.6096 (4)0.5259 (6)0.2885 (7)0.0973 (16)
H100.62550.47560.37100.117*
C110.6757 (4)0.5696 (7)0.2276 (8)0.1023 (18)
H110.73700.54750.27240.123*
C120.6595 (5)0.6409 (7)0.1098 (9)0.109 (2)
H120.70780.66540.07330.130*
C130.5728 (4)0.6766 (6)0.0452 (7)0.0871 (15)
H130.56080.72740.03680.104*
C140.4420 (5)0.5137 (7)0.2741 (6)0.0985 (19)
H14A0.46870.45820.35430.148*
H14B0.39810.46420.20250.148*
H14C0.41100.58630.30360.148*
N10.2586 (2)0.7565 (4)0.0264 (3)0.0539 (9)
H1N0.245 (3)0.748 (4)0.118 (2)0.065*
N20.3375 (2)0.6990 (4)0.0672 (3)0.0539 (9)
O10.0942 (2)0.8064 (3)0.0839 (3)0.0690 (9)
O20.1843 (2)0.7771 (3)0.1677 (3)0.0685 (9)
Cl10.09551 (9)0.13260 (14)0.02983 (15)0.0787 (5)
S10.16318 (7)0.73763 (12)0.02214 (10)0.0551 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (2)0.075 (3)0.037 (2)0.000 (2)0.0101 (16)0.004 (2)
C20.060 (3)0.077 (4)0.041 (2)0.005 (2)0.0085 (19)0.000 (2)
C30.066 (3)0.072 (4)0.051 (3)0.002 (2)0.013 (2)0.006 (2)
C40.043 (2)0.081 (3)0.056 (3)0.004 (2)0.0170 (19)0.005 (2)
C50.046 (2)0.082 (4)0.047 (2)0.005 (2)0.0034 (19)0.007 (2)
C60.044 (2)0.085 (4)0.041 (2)0.006 (2)0.0023 (17)0.005 (2)
C70.058 (3)0.052 (3)0.058 (3)0.003 (2)0.013 (2)0.003 (2)
C80.062 (2)0.049 (3)0.087 (3)0.001 (2)0.012 (2)0.0128 (18)
C90.088 (2)0.062 (3)0.082 (3)0.006 (3)0.006 (2)0.011 (2)
C100.096 (3)0.084 (3)0.099 (3)0.020 (3)0.006 (2)0.001 (3)
C110.085 (2)0.095 (4)0.112 (4)0.007 (3)0.004 (3)0.012 (3)
C120.089 (4)0.104 (4)0.131 (4)0.001 (3)0.027 (3)0.018 (3)
C130.066 (3)0.083 (3)0.112 (3)0.000 (2)0.025 (2)0.016 (3)
C140.123 (5)0.087 (4)0.079 (4)0.020 (4)0.019 (4)0.012 (3)
N10.053 (2)0.066 (2)0.0376 (17)0.0006 (17)0.0055 (15)0.0026 (18)
N20.049 (2)0.061 (2)0.0474 (19)0.0036 (17)0.0057 (16)0.0021 (17)
O10.0607 (19)0.081 (2)0.0580 (18)0.0250 (17)0.0050 (15)0.0039 (17)
O20.080 (2)0.083 (2)0.0421 (16)0.0000 (17)0.0162 (15)0.0115 (15)
Cl10.0758 (9)0.0776 (9)0.0815 (9)0.0119 (7)0.0200 (7)0.0071 (7)
S10.0512 (6)0.0729 (8)0.0384 (6)0.0101 (5)0.0081 (4)0.0012 (5)
Geometric parameters (Å, º) top
C1—C61.390 (6)C9—C141.409 (8)
C1—C21.403 (6)C9—C101.474 (8)
C1—S11.751 (5)C10—C111.369 (9)
C2—C31.369 (7)C10—H100.9300
C2—H20.9300C11—C121.328 (9)
C3—C41.385 (6)C11—H110.9300
C3—H30.9300C12—C131.329 (8)
C4—C51.378 (6)C12—H120.9300
C4—Cl11.745 (5)C13—H130.9300
C5—C61.365 (7)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—N21.272 (5)N1—N21.407 (5)
C7—C81.461 (6)N1—S11.645 (4)
C7—H70.9300N1—H1N0.864 (19)
C8—C91.365 (7)O1—S11.428 (3)
C8—C131.446 (8)O2—S11.431 (3)
C6—C1—C2118.9 (5)C11—C10—H10121.3
C6—C1—S1119.9 (3)C9—C10—H10121.3
C2—C1—S1121.1 (3)C12—C11—C10125.4 (7)
C3—C2—C1120.7 (4)C12—C11—H11117.3
C3—C2—H2119.7C10—C11—H11117.3
C1—C2—H2119.7C13—C12—C11118.7 (7)
C2—C3—C4118.7 (5)C13—C12—H12120.7
C2—C3—H3120.6C11—C12—H12120.7
C4—C3—H3120.6C12—C13—C8121.3 (7)
C5—C4—C3121.6 (5)C12—C13—H13119.3
C5—C4—Cl1119.8 (4)C8—C13—H13119.3
C3—C4—Cl1118.6 (4)C9—C14—H14A109.5
C6—C5—C4119.4 (4)C9—C14—H14B109.5
C6—C5—H5120.3H14A—C14—H14B109.5
C4—C5—H5120.3C9—C14—H14C109.5
C5—C6—C1120.6 (4)H14A—C14—H14C109.5
C5—C6—H6119.7H14B—C14—H14C109.5
C1—C6—H6119.7N2—N1—S1114.0 (3)
N2—C7—C8123.3 (4)N2—N1—H1N123 (3)
N2—C7—H7118.3S1—N1—H1N108 (3)
C8—C7—H7118.3C7—N2—N1114.6 (4)
C9—C8—C13120.4 (5)O1—S1—O2120.1 (2)
C9—C8—C7125.4 (5)O1—S1—N1104.20 (19)
C13—C8—C7114.2 (5)O2—S1—N1106.83 (19)
C8—C9—C14124.1 (5)O1—S1—C1109.6 (2)
C8—C9—C10116.7 (6)O2—S1—C1108.58 (19)
C14—C9—C10119.2 (6)N1—S1—C1106.73 (19)
C11—C10—C9117.5 (6)
C6—C1—C2—C32.3 (6)C14—C9—C10—C11177.3 (6)
S1—C1—C2—C3174.8 (4)C9—C10—C11—C120.4 (10)
C1—C2—C3—C41.6 (7)C10—C11—C12—C131.5 (11)
C2—C3—C4—C50.1 (7)C11—C12—C13—C80.6 (10)
C2—C3—C4—Cl1177.3 (4)C9—C8—C13—C121.4 (8)
C3—C4—C5—C60.7 (7)C7—C8—C13—C12179.2 (5)
Cl1—C4—C5—C6176.4 (3)C8—C7—N2—N1175.8 (4)
C4—C5—C6—C10.0 (7)S1—N1—N2—C7165.4 (3)
C2—C1—C6—C51.5 (6)N2—N1—S1—O1178.1 (3)
S1—C1—C6—C5175.6 (3)N2—N1—S1—O250.0 (3)
N2—C7—C8—C922.4 (7)N2—N1—S1—C166.0 (3)
N2—C7—C8—C13158.3 (5)C6—C1—S1—O128.2 (4)
C13—C8—C9—C14176.4 (5)C2—C1—S1—O1154.8 (3)
C7—C8—C9—C142.9 (8)C6—C1—S1—O2161.1 (3)
C13—C8—C9—C102.4 (7)C2—C1—S1—O221.9 (4)
C7—C8—C9—C10178.3 (5)C6—C1—S1—N184.1 (3)
C8—C9—C10—C111.6 (8)C2—C1—S1—N192.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.06 (2)2.913 (4)168 (4)
C5—H5···O1ii0.932.443.303 (5)155
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z1/2.
(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) top
Crystal data top
C14H13ClN2O2SF(000) = 640
Mr = 308.77Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.406 (1) ÅCell parameters from 3029 reflections
b = 5.8353 (6) Åθ = 2.9–27.8°
c = 26.930 (2) ŵ = 0.41 mm1
β = 99.621 (9)°T = 293 K
V = 1457.3 (2) Å3Rod, colourless
Z = 40.48 × 0.16 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2106 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.027
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.829, Tmax = 0.945k = 77
9653 measured reflectionsl = 3132
2652 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.7905P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2652 reflectionsΔρmax = 0.21 e Å3
185 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.21023 (8)0.70656 (16)0.14097 (3)0.0843 (3)
S10.69509 (6)0.24496 (9)0.00160 (2)0.03860 (16)
O10.62933 (17)0.4035 (3)0.03599 (5)0.0493 (4)
O20.74225 (17)0.0275 (3)0.01324 (6)0.0501 (4)
N10.5723 (2)0.2120 (3)0.03686 (7)0.0445 (5)
H1N0.517 (2)0.326 (3)0.0367 (9)0.053*
N20.60598 (19)0.0841 (3)0.08093 (7)0.0434 (4)
C10.8426 (2)0.3768 (4)0.03983 (7)0.0361 (5)
C20.8228 (3)0.5883 (4)0.06121 (8)0.0464 (6)
H20.73360.66080.05460.056*
C30.9362 (3)0.6891 (4)0.09212 (9)0.0537 (6)
H30.92440.83050.10690.064*
C41.0678 (3)0.5796 (4)0.10118 (8)0.0511 (6)
C51.0885 (2)0.3719 (4)0.07935 (9)0.0523 (6)
H51.17830.30140.08530.063*
C60.9746 (2)0.2696 (4)0.04858 (8)0.0441 (5)
H60.98690.12860.03380.053*
C70.5267 (2)0.1280 (4)0.11369 (8)0.0457 (6)
H70.45910.24500.10700.055*
C80.5363 (2)0.0042 (4)0.16116 (8)0.0447 (5)
C90.6130 (3)0.1985 (4)0.17103 (10)0.0557 (7)
H90.66280.25910.14700.067*
C100.6159 (3)0.3103 (5)0.21616 (10)0.0654 (7)
H100.66900.44480.22230.078*
C110.5422 (3)0.2279 (5)0.25255 (10)0.0614 (7)
C120.4659 (3)0.0281 (5)0.24265 (10)0.0653 (8)
H120.41550.03080.26670.078*
C130.4623 (3)0.0876 (5)0.19761 (9)0.0572 (7)
H130.40960.22260.19180.069*
C140.5452 (4)0.3541 (7)0.30183 (11)0.0970 (11)
H14A0.45390.33690.31290.146*
H14B0.62010.29180.32680.146*
H14C0.56360.51380.29710.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0677 (5)0.1156 (7)0.0697 (5)0.0376 (5)0.0119 (4)0.0303 (5)
S10.0379 (3)0.0396 (3)0.0393 (3)0.0037 (3)0.0093 (2)0.0012 (3)
O10.0511 (9)0.0574 (10)0.0403 (8)0.0112 (8)0.0099 (7)0.0085 (8)
O20.0505 (9)0.0428 (9)0.0572 (10)0.0034 (7)0.0097 (7)0.0130 (8)
N10.0398 (10)0.0472 (12)0.0483 (10)0.0086 (9)0.0129 (8)0.0081 (10)
N20.0406 (10)0.0415 (10)0.0485 (10)0.0008 (8)0.0086 (9)0.0067 (9)
C10.0388 (12)0.0348 (11)0.0370 (11)0.0014 (9)0.0129 (9)0.0011 (9)
C20.0519 (14)0.0378 (12)0.0504 (13)0.0075 (11)0.0109 (11)0.0011 (11)
C30.0678 (17)0.0410 (13)0.0547 (14)0.0065 (12)0.0173 (13)0.0093 (12)
C40.0499 (14)0.0629 (16)0.0423 (12)0.0185 (12)0.0131 (11)0.0075 (12)
C50.0368 (13)0.0638 (16)0.0569 (14)0.0016 (12)0.0099 (11)0.0040 (13)
C60.0410 (12)0.0433 (13)0.0504 (13)0.0021 (11)0.0146 (10)0.0066 (11)
C70.0381 (12)0.0483 (14)0.0507 (13)0.0032 (11)0.0071 (10)0.0029 (11)
C80.0408 (12)0.0482 (13)0.0455 (13)0.0054 (11)0.0089 (10)0.0015 (11)
C90.0562 (15)0.0554 (16)0.0595 (15)0.0073 (12)0.0210 (12)0.0073 (13)
C100.0693 (18)0.0591 (17)0.0704 (17)0.0118 (14)0.0197 (14)0.0191 (14)
C110.0667 (17)0.0654 (17)0.0535 (15)0.0035 (14)0.0138 (13)0.0098 (14)
C120.079 (2)0.0709 (19)0.0507 (15)0.0037 (16)0.0239 (14)0.0005 (14)
C130.0621 (16)0.0549 (15)0.0565 (15)0.0074 (13)0.0156 (12)0.0029 (13)
C140.126 (3)0.105 (3)0.0663 (19)0.014 (2)0.0326 (19)0.032 (2)
Geometric parameters (Å, º) top
Cl1—C41.735 (2)C6—H60.9300
S1—O21.4232 (16)C7—C81.458 (3)
S1—O11.4330 (15)C7—H70.9300
S1—N11.6248 (18)C8—C131.383 (3)
S1—C11.761 (2)C8—C91.388 (3)
N1—N21.393 (2)C9—C101.376 (3)
N1—H1N0.845 (16)C9—H90.9300
N2—C71.273 (3)C10—C111.378 (4)
C1—C61.375 (3)C10—H100.9300
C1—C21.387 (3)C11—C121.372 (4)
C2—C31.371 (3)C11—C141.514 (4)
C2—H20.9300C12—C131.383 (3)
C3—C41.378 (3)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.375 (3)C14—H14A0.9600
C5—C61.376 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O2—S1—O1119.69 (9)N2—C7—C8123.4 (2)
O2—S1—N1110.11 (10)N2—C7—H7118.3
O1—S1—N1102.95 (9)C8—C7—H7118.3
O2—S1—C1107.55 (10)C13—C8—C9118.1 (2)
O1—S1—C1109.63 (10)C13—C8—C7118.9 (2)
N1—S1—C1106.13 (10)C9—C8—C7123.0 (2)
N2—N1—S1118.59 (14)C10—C9—C8120.4 (2)
N2—N1—H1N118.5 (16)C10—C9—H9119.8
S1—N1—H1N113.8 (17)C8—C9—H9119.8
C7—N2—N1113.99 (18)C9—C10—C11121.6 (3)
C6—C1—C2120.9 (2)C9—C10—H10119.2
C6—C1—S1120.14 (16)C11—C10—H10119.2
C2—C1—S1118.94 (17)C12—C11—C10117.9 (2)
C3—C2—C1119.3 (2)C12—C11—C14121.1 (3)
C3—C2—H2120.4C10—C11—C14121.0 (3)
C1—C2—H2120.4C11—C12—C13121.4 (3)
C2—C3—C4119.5 (2)C11—C12—H12119.3
C2—C3—H3120.2C13—C12—H12119.3
C4—C3—H3120.2C12—C13—C8120.6 (3)
C5—C4—C3121.3 (2)C12—C13—H13119.7
C5—C4—Cl1119.4 (2)C8—C13—H13119.7
C3—C4—Cl1119.3 (2)C11—C14—H14A109.5
C4—C5—C6119.3 (2)C11—C14—H14B109.5
C4—C5—H5120.4H14A—C14—H14B109.5
C6—C5—H5120.4C11—C14—H14C109.5
C1—C6—C5119.7 (2)H14A—C14—H14C109.5
C1—C6—H6120.2H14B—C14—H14C109.5
C5—C6—H6120.2
O2—S1—N1—N257.73 (19)C2—C1—C6—C50.6 (3)
O1—S1—N1—N2173.56 (16)S1—C1—C6—C5178.67 (17)
C1—S1—N1—N258.39 (18)C4—C5—C6—C10.5 (3)
S1—N1—N2—C7157.85 (17)N1—N2—C7—C8175.80 (19)
O2—S1—C1—C62.2 (2)N2—C7—C8—C13169.8 (2)
O1—S1—C1—C6129.39 (17)N2—C7—C8—C912.3 (4)
N1—S1—C1—C6120.07 (18)C13—C8—C9—C100.8 (4)
O2—S1—C1—C2177.10 (16)C7—C8—C9—C10178.7 (2)
O1—S1—C1—C251.28 (18)C8—C9—C10—C110.9 (4)
N1—S1—C1—C259.26 (18)C9—C10—C11—C120.6 (4)
C6—C1—C2—C31.1 (3)C9—C10—C11—C14179.4 (3)
S1—C1—C2—C3178.25 (17)C10—C11—C12—C130.2 (4)
C1—C2—C3—C40.4 (3)C14—C11—C12—C13179.8 (3)
C2—C3—C4—C50.8 (4)C11—C12—C13—C80.1 (4)
C2—C3—C4—Cl1179.19 (17)C9—C8—C13—C120.4 (4)
C3—C4—C5—C61.2 (4)C7—C8—C13—C12178.4 (2)
Cl1—C4—C5—C6178.76 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C8-C13.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.09 (2)2.935 (2)177 (2)
C4—Cl1···Cg1ii1.74 (1)3.47 (1)5.175 (3)168 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z.
Hirshfeld contact interactions (%) top
Contact type(I)(II)(III)
H···H30.134.038.0
C···H/H···C22.720.218.0
O···H/H···O16.116.115.7
Cl···H/H···Cl12.112.39.4
N···H/H···N6.35.23.9
C···C5.25.02.1
Cl···C/C···Cl005.3
Cl···O/O···Cl5.04.82.3
C···O/O···C1.01.02.6
Cl···Cl0.50.50
C···S/S···C00.10.1
 

Acknowledgements

The authors thank the SAIF, Panjab University, for extending the services of their NMR facility, and Mangalore University for providing all the facilities required.

Funding information

ARS thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its DST–PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.

References

First citationBalaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251.  CrossRef IUCr Journals Google Scholar
First citationCunha, M. R., Tavares, M. T., Carvalho, C. F., Silva, N. A. T., Souza, A. D. F., Pereira, G. J. V., Ferreira, F. F. & Parise-Filho, R. (2016). ACS Sustainable Chem. Eng. 4, 1899–1905.  CrossRef Google Scholar
First citationGhorbanloo, M. & Notash, B. (2012). Acta Cryst. E68, o2760.  CrossRef IUCr Journals Google Scholar
First citationGirisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376–379.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahfouz, R. M., Demircioğlu, Z., Abbady, M. S. & Büyükgüngör, O. (2015). Acta Cryst. E71, 94–96.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMehrabi, H. & Kia, R. (2009). Acta Cryst. E65, o1056.  CrossRef IUCr Journals Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia.  Google Scholar
First citationZarei, S. A., Piltan, M., Hassanzadeh, K., Akhtari, K. & Cinčić, D. (2015). J. Mol. Struct. 1083, 82–87.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds