research communications
E)-N′-benzylidene-4-chlorobenzenesulfonohydrazide and of its (E)-4-chloro-N′-(ortho- and para-methylbenzylidene)benzenesulfonohydrazide derivatives
and Hirshfeld surface analysis of (aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India
*Correspondence e-mail: gowdabt@yahoo.com
(E)-N′-Benzylidene-4-chlorobenzenesulfonohydrazide, C13H11ClN2O2S, (I), and its ortho- and para-methylsubstituted derivatives, C14H13ClN2O2S, namely (E)-4-chloro-N′-(2-methylbenzylidene)benzenesulfonohydrazide, (II), and (E)-4-chloro-N′-(4-methylbenzylidene)benzenesulfonohydrazide, (III), have been synthesized, characterized spectroscopically and their crystal structures determined to investigate the effect of the substitution site of the benzylidene group on the structural and supramolecular features in these compounds. Compounds (I) and (II) are isotypic while compound (III) is different. All three molecules are bent at the S atom with C—S—N—N torsion angles of −66.0 (3), −66.0 (3) and −58.4 (2)° for (I), (II) and (III), respectively. The hydrazone portions of the molecules, S—N—N=C, are slightly twisted from planarity, with a torsion angle of 166.5 (3)° in (I), 165.4 (3)° in (II) and 157.9 (2)° in (III). The two aromatic rings present in the compounds are inclined to each other by 78.4 (2), 74.8 (2) and 76.9 (1)° in (I), (II) and (III), respectively. In the of the parent compound (I), and of the ortho-methyl derivative (II), an N—H⋯O hydrogen bond links the molecules into chains along [001], which are interconnected by weak intermolecular C—H⋯O interactions, generating layers lying parallel to the bc plane. In the crystal of the para derivative (III), however, the packing is significantly different. Here molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are then linked by C—Cl⋯π interactions, forming ribbons propagating along [10]. Hirshfeld surface analyses show that the van der Waals interactions constitute the major contribution to the intermolecular interactions in the crystal structures of all three compounds. The fingerprint plots indicate that the H⋯H contacts make the largest contributions to the Hirshfeld surfaces.
1. Chemical context
et al., 2015). The photochromic and thermochromic properties of make their study interesting (Girisha et al., 2018). They form second-order NLO organic materials, which are being used in computers, optical communication and medical imaging (Zarei et al., 2015). also play an important role in curing diseases effectively with less toxicity. Sulfonyl are known for their good enzymatic modulation, analgesic, anti-Alzheimer's, antidepressant and antidiabetic activities (Cunha et al., 2016). To investigate the impact of substitution, and also the variation of the site of substituent, on the structural parameters and the hydrogen-bonding interactions, we report herein on the synthesis and crystal structures of (E)-N′-(benzylidene)-4-chlorobenzenesulfonohydrazide (I) and its ortho- and para-methylsubstituted benzylidene derivatives, (II) and (III), respectively.
are an important class of compounds in the field of coordination chemistry and catalysis (Mahfouz2. Structural commentary
The title hydrazide (I) and its derivatives, (II) and (III), crystallize in the monoclinic with P21/c for (I) and (II) and P21/n for (III). The molecular structures of compounds (I), (II) and (III) are illustrated in Figs. 1, 2 and 3, respectively. All three molecules adopt an E configuration about the C=N bond of the central imine group. In the ortho-methyl-substituted derivative (II), the N—H and C—H bonds in the hydrazide part are anti with respect to the methyl substituent. These parts of the molecules, S—N—N=C, show similar bond lengths of 1.258 (5), 1.272 (5) and 1.273 (3) Å for C7=N2 and 1.394 (5), 1.407 (5) and 1.393 (2) Å for N1—N2 in compounds (I), (II) and (III), respectively. These bond lengths are consistent with the C=N double-bond and N—N single-bond lengths, respectively. Furthermore, the S—N—N=C segments are slightly twisted from planarity, with torsion angles of 166.5 (3)° in (I), 165.4 (3)° in (II) and 157.9 (2)° in (III). All three compounds are bent at the S atom with C—S—N—N torsion angles of −66.0 (3), −66.0 (3) and −58.4 (2)° for (I), (II) and (III), respectively. The two aromatic rings present in these compounds are inclined to each other by 78.4 (2), 74.8 (2) and 76.9 (1)° in (I), (II) and (III), respectively. Hence the conformations of (I) and (II) are very similar while that of (III) is slightly different.
3. Supramolecular features
In the crystals of all three compounds, an O atom of the sulfonyl group acts as an acceptor and the amino H atom of the hydrazide segment as a donor in N—H⋯O hydrogen-bonding interactions with neighbouring molecules (Tables 1, 2 and 3). The patterns of the hydrogen-bonding interactions in the crystal structures of (I) and (II) are very similar, and will be illustrated for compound (II) only. The N—H⋯O hydrogen-bonding interactions result in a C(4) graph-set motif generating chains propagating along the c-axis direction (Fig. 4). These chains are linked by weak C—H⋯O interactions involving an aromatic H atom of the benzylidenephenyl ring and a sulfonyl O atom, resulting in the formation of layers lying parallel to the bc plane (Tables 2 and 3, and Fig. 5). On changing the position of the methyl substituent from ortho- to para- the crystal packing changes significantly. Molecules are now linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing R22(8) loops (Fig. 6, Table 3). The dimers are linked by a C—Cl⋯π interaction, forming ribbons that propagate along the [10] direction (Fig. 6, Table 3).
|
|
4. Hirshfeld Surface analysis
The nature of the intermolecular contacts and their quantitative contributions to the crystal packing in all the three title compounds were analysed by Hirshfeld surface analysis and two-dimensional fingerprint plots, generated using CrystalExplorer3.1 (McKinnon et al., 2004; Spackman & Jayatilaka, 2009; Wolff et al., 2012). The Hirshfeld surfaces of the three compounds mapped over dnorm are shown in Fig. 7. The N—H⋯O interactions between the corresponding donor and acceptor atoms are visualized as bright-red spots and represent the short interatomic interactions in the crystal structures. The presence of two other light-red spots in (I) and (II) correspond to the C—H⋯O interactions, which are considered to be weak interactions.
The two-dimensional fingerprint plots for the contacts H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Cl⋯H/H⋯Cl, C⋯C and N⋯H/H⋯N are illustrated in Figs. 8 and 9, for (I) and (III), respectively. The fingerprint plots of various contacts and their percentage contribution to the Hirshfeld surfaces are similar in (I) and (II) but, as expected, different from those for (III) (see Table 4). H⋯H contacts are the major contributors to the Hirshfeld surface: 30.1% in (I), 34.0% (II) and 38.0% in (III). The C⋯H/H⋯C contacts make the second largest contribution, i.e. 22.7, 20.2 and 18.0% for (I), (II) and (III), respectively. This is followed by O⋯H/H⋯O contacts arising from N—H⋯O and C—H⋯O interactions, contributing 16.1% in (I) and (II), and 15.7% in (III). N⋯H/H⋯N contacts arising from O—H⋯N hydrogen bonds contribute 6.3, 5.2 and 3.9%, respectively, in (I), (II) and (III). Cl⋯H/H⋯Cl interactions make a relatively significant contribution to the total Hirshfeld surfaces, comprising 12.1% in (I), 12.3% in (II) and 9.4% in (III). The C⋯C contacts representing π–π interactions contribute 5.2, 5.0 and 2.1% in (I), (II) and (III), respectively. Cl⋯O/O⋯Cl contacts comprise 5.0% in (I), 4.8% in (II) and 2.3% in (III). Weak Cl⋯Cl, C⋯O/O⋯C and C⋯S/S⋯C interactions are also observed; however, they exhibit minimal respect contributions of 0.5, 1.0 and 0% in (I), 0.5, 1.0, 0.1% in (II) and 0, 2.6 and 0.1% in (III), reflecting negligible or no effect on the molecular packing.
|
The most significant difference for compounds (I) and (II) compared to compound (III) is the presence of a relatively strong Cl⋯C/C⋯Cl interaction in (III), in accordance with the C—Cl⋯π interaction in the crystal (Table 3), which makes a contribution of 5.3%, while for (I) and (II) this interaction is not present.
5. Database survey
The crystal structures of (E)-N′-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (IV) (Balaji et al., 2014) and N′-[(E)-4-methylbenzylidene]4-methylbenzenesulfonohydrazide (V) (Tabatabaee et al., 2007) have been reported. They exhibit an E configuration with respect to the C=N bond and an almost perpendicular orientation of the two aromatic rings with dihedral angles of 81.9 (3)° in (IV) and 82.4 (1)° in (V), very similar to the values of 78.4 (2), 74.8 (2) and 76.9 (1)° in (I), (II) and (III), respectively. In the structures of these related compounds (I)–(V) and also those of benzylidene, 3,3-diphenylallylidene (Mehrabi & Kia, 2009; Mehrabi et al., 2008), 4-bromo/5-bromo-2-hydroxy/5-chloro-2-hydroxy (Kia et al., 2008a,b) and 2-hydroxy-5-iodo (Ghorbanloo & Notash, 2012) derivatives of p-toluenesulfonohydrazide, the arylsulfonohydrazide molecules are directly connected to one another via significant N—H⋯O hydrogen-bonding interactions involving a sulfonyl oxygen atom and the amino hydrogen atom.
6. Synthesis and crystallization
Synthesis of 4-chlorobenzenesulfonohydrazide
To 4-chlrobenzenesulfonyl chloride (0.01 mol) dissolved in propanol (30 ml), 99% hydrazine hydrate (5 ml) was added at 273 K under constant stirring. The stirring continued for 15 min at 273 K and then at 303 K for 3 h. After completion of the reaction (monitored by TLC), the reaction mixture was concentrated by evaporating the excess propanol. The solid product, 4-chlorobenzenesulfonohydrazide was washed with cold water and dried.
Synthesis of compounds (I), (II) and (III)
The parent, ortho- and para- substituted (E)-N′-(benzylidene)-4-chlorobenzenesulfonohydrazides (I), (II) and (III), were synthesized by refluxing mixtures of 4-chlorobenzenesulfonohydrazide (0.01 mol) and benzaldehyde, 2-methyl-benzaldehyde or 4-methylbenzaldehyde (0.01 mol), respectively, in ethanol (30 ml) and two drops of glacial acetic acid for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating the excess of solvent. The solid products (I), (II) and (III) obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol to obtain the pure compounds. The purity of the compounds was checked by TLC. Single crystals of the suitable for single crystal X-ray were obtained by slow evaporation of their DMF solutions at room temperature. All three compounds were characterized by measuring their IR, 1H and 13C NMR spectra.
(E)-N-(benzylidene) 4-chlorobenzenesulfonohydrazide (I):
Plate-like colourless single crystals; m.p. 381–382 K; IR (cm−1): 3174.8 (N—H asym stretch), 1577.8 (C=N), 1323.2 (S=O asym stretch) and 1159.2 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 7.29–7.33 (m, 3H, Ar-H), 7.52 (t, 2H, Ar-H, J = 7.44), 7.53–7.56 (m, 3H, Ar-H), 7.94 (d, 1H, Ar-H, J = 8.4Hz), 7.93 (s, 1H), 11.54 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 125.46, 127.21, 127.72, 127.86, 128.63, 132.23, 136.52, 136.99, 146.11.
(E)-N-(2-methylbenzylidene) 4-chlorobenzenesulfonohydrazide (II):
Rod-shaped colourless single crystals; m.p. 399–400 K; IR (cm−1): 3155.5 (N—H asym stretch), 1585.6 (C=N), 1325.1 (S=O asym stretch) and 1153.4 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 2.33 (s, 3H), 7.09–7.17 (m, 1H, Ar-H), 7.21–7.26 (m, 1H, Ar-H), 7.43–7.48 (m, 1H, Ar-H), 7.63 (d, 1H, Ar-H, J = 7.7 Hz), 7.86 (d, 2H, Ar-H, J = 8.6 Hz), 7.93 (d, 2H, Ar-H, J = 8.5 Hz), 8.08 (s, 1H), 11.67 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 19.77, 126.17, 127.27, 129.13, 129.31, 129.81, 130.23, 131.14, 136.88, 139.72, 140.26, 147.62.
(E)-N-(4-methylbenzylidene) 4-chlorobenzenesulfonohydrazide (III):
Rod-shaped colourless single crystals; m.p. 425–426K; IR (cm−1): 3184.5 (N—H asym stretch), 1580.7 (C=N), 1326.5 (S=O asym stretch) and 1163.3 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 2.27 (s, 3H), 7.12 (d, 2H, Ar-H, J = 8.0 Hz), 7.41 (d, 2H, Ar-H, J = 8.0Hz), 7.52–7.57 (m, 2H, Ar-H), 7.86–7.90 (m, 2H, Ar-H), 7.92 (s, 1H), 11.40 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 20.96, 126.64, 128.95, 129.61, 130.75, 137.75, 139.41, 139.78, 145.66.
7. Refinement
Crystal data, data collection and structure . For all three compounds, the H atom of the NH group was located in difference-Fourier maps and later restrained to N—H = 0.86 (2) Å. C-bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C-aromatic, N) for other H atoms. The Uij components of C9, C10, C11 and C12 in (I) and C10, C11, C12 and C13 in (II) and (III) were restrained to approximate isotropic behaviour.
details are summarized in Table 5Supporting information
https://doi.org/10.1107/S2056989018014500/su5455sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014500/su5455Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018014500/su5455IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018014500/su5455IIIsup4.hkl
For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009). Cell
CrysAlis CCD (Oxford Diffraction, 2009) for (I); CrysAlis RED (Oxford Diffraction, 2009) for (II), (III). For all structures, data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).C13H11ClN2O2S | F(000) = 608 |
Mr = 294.75 | Dx = 1.399 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.949 (2) Å | Cell parameters from 692 reflections |
b = 10.020 (1) Å | θ = 2.8–28.0° |
c = 9.641 (1) Å | µ = 0.42 mm−1 |
β = 104.27 (1)° | T = 293 K |
V = 1399.6 (3) Å3 | Plate, colourless |
Z = 4 | 0.20 × 0.16 × 0.08 mm |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 1034 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.075 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −16→18 |
Tmin = 0.921, Tmax = 0.967 | k = −12→8 |
4831 measured reflections | l = −8→11 |
2547 independent reflections |
Refinement on F2 | 30 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0368P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.91 | (Δ/σ)max < 0.001 |
2547 reflections | Δρmax = 0.23 e Å−3 |
175 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1391 (3) | −0.4315 (4) | −0.0093 (5) | 0.0399 (11) | |
C2 | −0.0889 (3) | −0.4861 (5) | 0.1175 (5) | 0.0475 (12) | |
H2 | −0.0645 | −0.4313 | 0.1955 | 0.057* | |
C3 | −0.0749 (3) | −0.6222 (5) | 0.1283 (5) | 0.0506 (13) | |
H3 | −0.0400 | −0.6591 | 0.2129 | 0.061* | |
C4 | −0.1128 (3) | −0.7031 (4) | 0.0134 (5) | 0.0494 (13) | |
C5 | −0.1615 (3) | −0.6477 (5) | −0.1149 (5) | 0.0612 (15) | |
H5 | −0.1848 | −0.7023 | −0.1936 | 0.073* | |
C6 | −0.1751 (3) | −0.5130 (5) | −0.1255 (4) | 0.0572 (14) | |
H6 | −0.2087 | −0.4759 | −0.2110 | 0.069* | |
C7 | −0.4066 (4) | −0.3017 (4) | −0.0120 (5) | 0.0566 (14) | |
H7 | −0.4032 | −0.2745 | 0.0814 | 0.068* | |
C8 | −0.4945 (4) | −0.3538 (5) | −0.1000 (6) | 0.0631 (15) | |
C9 | −0.4990 (4) | −0.4207 (5) | −0.2256 (6) | 0.0806 (18) | |
H9 | −0.4455 | −0.4349 | −0.2562 | 0.097* | |
C10 | −0.5837 (5) | −0.4678 (5) | −0.3082 (7) | 0.0977 (18) | |
H10 | −0.5875 | −0.5122 | −0.3942 | 0.117* | |
C11 | −0.6607 (5) | −0.4463 (6) | −0.2579 (7) | 0.0966 (18) | |
H11 | −0.7171 | −0.4770 | −0.3127 | 0.116* | |
C12 | −0.6596 (5) | −0.3852 (6) | −0.1370 (7) | 0.0965 (18) | |
H12 | −0.7135 | −0.3750 | −0.1062 | 0.116* | |
C13 | −0.5748 (4) | −0.3354 (5) | −0.0552 (6) | 0.0836 (17) | |
H13 | −0.5728 | −0.2898 | 0.0295 | 0.100* | |
N1 | −0.2581 (3) | −0.2379 (4) | 0.0314 (3) | 0.0489 (10) | |
H1N | −0.254 (3) | −0.240 (4) | 0.119 (2) | 0.059* | |
N2 | −0.3361 (3) | −0.2933 (3) | −0.0607 (4) | 0.0484 (10) | |
O1 | −0.1806 (2) | −0.2192 (3) | −0.1656 (3) | 0.0587 (9) | |
O2 | −0.0928 (2) | −0.1919 (3) | 0.0868 (3) | 0.0574 (9) | |
Cl1 | −0.09997 (10) | −0.87458 (12) | 0.02899 (14) | 0.0712 (5) | |
S1 | −0.16184 (9) | −0.25981 (12) | −0.01912 (12) | 0.0476 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.035 (3) | 0.046 (3) | 0.034 (3) | 0.000 (2) | 0.002 (2) | −0.001 (2) |
C2 | 0.040 (3) | 0.051 (4) | 0.045 (3) | −0.001 (3) | −0.001 (2) | −0.001 (3) |
C3 | 0.042 (3) | 0.058 (4) | 0.044 (3) | 0.002 (3) | −0.006 (2) | 0.007 (3) |
C4 | 0.044 (3) | 0.053 (3) | 0.053 (3) | 0.004 (3) | 0.017 (3) | 0.001 (3) |
C5 | 0.074 (4) | 0.058 (4) | 0.044 (3) | −0.007 (3) | 0.000 (3) | −0.010 (3) |
C6 | 0.068 (4) | 0.051 (4) | 0.041 (3) | 0.006 (3) | −0.008 (3) | 0.004 (3) |
C7 | 0.048 (4) | 0.054 (3) | 0.062 (3) | 0.001 (3) | 0.003 (3) | 0.003 (3) |
C8 | 0.049 (4) | 0.046 (3) | 0.087 (4) | 0.002 (3) | 0.004 (3) | 0.013 (3) |
C9 | 0.074 (4) | 0.065 (3) | 0.091 (3) | −0.013 (3) | −0.003 (3) | 0.001 (3) |
C10 | 0.099 (4) | 0.083 (3) | 0.101 (3) | −0.016 (3) | 0.007 (3) | −0.002 (3) |
C11 | 0.082 (3) | 0.081 (4) | 0.113 (3) | −0.014 (3) | −0.002 (3) | 0.017 (3) |
C12 | 0.070 (3) | 0.093 (4) | 0.121 (4) | −0.004 (3) | 0.013 (3) | 0.016 (3) |
C13 | 0.073 (4) | 0.068 (4) | 0.103 (4) | 0.004 (3) | 0.010 (3) | 0.015 (3) |
N1 | 0.044 (2) | 0.060 (3) | 0.037 (2) | −0.001 (2) | −0.001 (2) | −0.006 (2) |
N2 | 0.041 (3) | 0.046 (3) | 0.049 (2) | −0.003 (2) | −0.005 (2) | −0.0005 (19) |
O1 | 0.073 (2) | 0.066 (2) | 0.0337 (17) | −0.0022 (18) | 0.0068 (15) | 0.0120 (16) |
O2 | 0.057 (2) | 0.055 (2) | 0.0502 (19) | −0.0147 (17) | −0.0068 (17) | −0.0039 (15) |
Cl1 | 0.0744 (11) | 0.0529 (9) | 0.0819 (10) | 0.0069 (8) | 0.0112 (8) | 0.0037 (7) |
S1 | 0.0490 (8) | 0.0505 (8) | 0.0378 (7) | −0.0037 (7) | 0.0001 (6) | 0.0014 (7) |
C1—C2 | 1.380 (5) | C8—C13 | 1.385 (7) |
C1—C6 | 1.383 (5) | C9—C10 | 1.400 (7) |
C1—S1 | 1.752 (4) | C9—H9 | 0.9300 |
C2—C3 | 1.379 (5) | C10—C11 | 1.372 (7) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.377 (5) | C11—C12 | 1.313 (7) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.387 (6) | C12—C13 | 1.409 (7) |
C4—Cl1 | 1.732 (5) | C12—H12 | 0.9300 |
C5—C6 | 1.365 (6) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | N1—N2 | 1.394 (5) |
C6—H6 | 0.9300 | N1—S1 | 1.644 (4) |
C7—N2 | 1.258 (5) | N1—H1N | 0.831 (18) |
C7—C8 | 1.473 (6) | O1—S1 | 1.429 (3) |
C7—H7 | 0.9300 | O2—S1 | 1.432 (3) |
C8—C9 | 1.371 (6) | ||
C2—C1—C6 | 120.1 (4) | C8—C9—H9 | 119.7 |
C2—C1—S1 | 119.5 (4) | C10—C9—H9 | 119.7 |
C6—C1—S1 | 120.3 (4) | C11—C10—C9 | 117.7 (6) |
C3—C2—C1 | 119.8 (4) | C11—C10—H10 | 121.1 |
C3—C2—H2 | 120.1 | C9—C10—H10 | 121.1 |
C1—C2—H2 | 120.1 | C12—C11—C10 | 124.0 (7) |
C4—C3—C2 | 119.8 (4) | C12—C11—H11 | 118.0 |
C4—C3—H3 | 120.1 | C10—C11—H11 | 118.0 |
C2—C3—H3 | 120.1 | C11—C12—C13 | 118.3 (7) |
C3—C4—C5 | 120.3 (4) | C11—C12—H12 | 120.9 |
C3—C4—Cl1 | 120.0 (4) | C13—C12—H12 | 120.9 |
C5—C4—Cl1 | 119.8 (4) | C8—C13—C12 | 120.5 (6) |
C6—C5—C4 | 119.8 (4) | C8—C13—H13 | 119.7 |
C6—C5—H5 | 120.1 | C12—C13—H13 | 119.7 |
C4—C5—H5 | 120.1 | N2—N1—S1 | 114.5 (3) |
C5—C6—C1 | 120.1 (4) | N2—N1—H1N | 118 (3) |
C5—C6—H6 | 119.9 | S1—N1—H1N | 117 (3) |
C1—C6—H6 | 119.9 | C7—N2—N1 | 115.8 (4) |
N2—C7—C8 | 121.3 (5) | O1—S1—O2 | 120.03 (19) |
N2—C7—H7 | 119.4 | O1—S1—N1 | 106.33 (18) |
C8—C7—H7 | 119.4 | O2—S1—N1 | 104.79 (18) |
C9—C8—C13 | 118.9 (6) | O1—S1—C1 | 108.75 (19) |
C9—C8—C7 | 121.7 (5) | O2—S1—C1 | 109.4 (2) |
C13—C8—C7 | 119.5 (6) | N1—S1—C1 | 106.7 (2) |
C8—C9—C10 | 120.5 (6) | ||
C6—C1—C2—C3 | −0.3 (7) | C10—C11—C12—C13 | 1.6 (9) |
S1—C1—C2—C3 | 176.6 (3) | C9—C8—C13—C12 | 0.4 (8) |
C1—C2—C3—C4 | −1.4 (6) | C7—C8—C13—C12 | −179.5 (5) |
C2—C3—C4—C5 | 2.8 (7) | C11—C12—C13—C8 | −1.6 (9) |
C2—C3—C4—Cl1 | −177.1 (3) | C8—C7—N2—N1 | 177.8 (4) |
C3—C4—C5—C6 | −2.7 (7) | S1—N1—N2—C7 | 166.5 (3) |
Cl1—C4—C5—C6 | 177.2 (4) | N2—N1—S1—O1 | 49.9 (3) |
C4—C5—C6—C1 | 1.1 (7) | N2—N1—S1—O2 | 178.0 (3) |
C2—C1—C6—C5 | 0.4 (7) | N2—N1—S1—C1 | −66.0 (3) |
S1—C1—C6—C5 | −176.4 (4) | C2—C1—S1—O1 | 157.4 (3) |
N2—C7—C8—C9 | 13.9 (7) | C6—C1—S1—O1 | −25.7 (4) |
N2—C7—C8—C13 | −166.2 (5) | C2—C1—S1—O2 | 24.6 (4) |
C13—C8—C9—C10 | 0.9 (8) | C6—C1—S1—O2 | −158.6 (3) |
C7—C8—C9—C10 | −179.2 (5) | C2—C1—S1—N1 | −88.2 (4) |
C8—C9—C10—C11 | −0.9 (8) | C6—C1—S1—N1 | 88.6 (4) |
C9—C10—C11—C12 | −0.4 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.83 (2) | 2.14 (3) | 2.897 (4) | 152 (4) |
C3—H3···O2ii | 0.93 | 2.43 | 3.305 (5) | 158 |
Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) −x, y−1/2, −z+1/2. |
C14H13ClN2O2S | F(000) = 640 |
Mr = 308.77 | Dx = 1.423 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.034 (2) Å | Cell parameters from 1546 reflections |
b = 10.180 (1) Å | θ = 2.8–27.7° |
c = 9.8119 (9) Å | µ = 0.41 mm−1 |
β = 106.34 (1)° | T = 293 K |
V = 1441.0 (3) Å3 | Rod, colourless |
Z = 4 | 0.22 × 0.16 × 0.08 mm |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 1713 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.038 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −13→18 |
Tmin = 0.915, Tmax = 0.968 | k = −9→12 |
5157 measured reflections | l = −11→11 |
2636 independent reflections |
Refinement on F2 | 32 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.195 | w = 1/[σ2(Fo2) + (0.0912P)2 + 1.1282P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2636 reflections | Δρmax = 0.66 e Å−3 |
185 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1380 (3) | 0.5693 (5) | 0.0113 (4) | 0.0511 (11) | |
C2 | 0.1696 (3) | 0.4872 (5) | 0.1299 (4) | 0.0603 (12) | |
H2 | 0.2001 | 0.5234 | 0.2176 | 0.072* | |
C3 | 0.1560 (3) | 0.3542 (5) | 0.1178 (5) | 0.0637 (13) | |
H3 | 0.1783 | 0.2995 | 0.1959 | 0.076* | |
C4 | 0.1083 (3) | 0.3027 (5) | −0.0130 (5) | 0.0592 (12) | |
C5 | 0.0748 (3) | 0.3818 (5) | −0.1302 (5) | 0.0604 (12) | |
H5 | 0.0424 | 0.3454 | −0.2168 | 0.072* | |
C6 | 0.0896 (3) | 0.5142 (5) | −0.1179 (4) | 0.0586 (12) | |
H6 | 0.0671 | 0.5679 | −0.1967 | 0.070* | |
C7 | 0.4065 (3) | 0.6873 (4) | 0.0171 (5) | 0.0568 (11) | |
H7 | 0.3990 | 0.7111 | −0.0770 | 0.068* | |
C8 | 0.4969 (3) | 0.6382 (5) | 0.0999 (6) | 0.0679 (11) | |
C9 | 0.5125 (4) | 0.5615 (5) | 0.2183 (6) | 0.0810 (12) | |
C10 | 0.6096 (4) | 0.5259 (6) | 0.2885 (7) | 0.0973 (16) | |
H10 | 0.6255 | 0.4756 | 0.3710 | 0.117* | |
C11 | 0.6757 (4) | 0.5696 (7) | 0.2276 (8) | 0.1023 (18) | |
H11 | 0.7370 | 0.5475 | 0.2724 | 0.123* | |
C12 | 0.6595 (5) | 0.6409 (7) | 0.1098 (9) | 0.109 (2) | |
H12 | 0.7078 | 0.6654 | 0.0733 | 0.130* | |
C13 | 0.5728 (4) | 0.6766 (6) | 0.0452 (7) | 0.0871 (15) | |
H13 | 0.5608 | 0.7274 | −0.0368 | 0.104* | |
C14 | 0.4420 (5) | 0.5137 (7) | 0.2741 (6) | 0.0985 (19) | |
H14A | 0.4687 | 0.4582 | 0.3543 | 0.148* | |
H14B | 0.3981 | 0.4642 | 0.2025 | 0.148* | |
H14C | 0.4110 | 0.5863 | 0.3036 | 0.148* | |
N1 | 0.2586 (2) | 0.7565 (4) | −0.0264 (3) | 0.0539 (9) | |
H1N | 0.245 (3) | 0.748 (4) | −0.118 (2) | 0.065* | |
N2 | 0.3375 (2) | 0.6990 (4) | 0.0672 (3) | 0.0539 (9) | |
O1 | 0.0942 (2) | 0.8064 (3) | −0.0839 (3) | 0.0690 (9) | |
O2 | 0.1843 (2) | 0.7771 (3) | 0.1677 (3) | 0.0685 (9) | |
Cl1 | 0.09551 (9) | 0.13260 (14) | −0.02983 (15) | 0.0787 (5) | |
S1 | 0.16318 (7) | 0.73763 (12) | 0.02214 (10) | 0.0551 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.041 (2) | 0.075 (3) | 0.037 (2) | 0.000 (2) | 0.0101 (16) | −0.004 (2) |
C2 | 0.060 (3) | 0.077 (4) | 0.041 (2) | −0.005 (2) | 0.0085 (19) | 0.000 (2) |
C3 | 0.066 (3) | 0.072 (4) | 0.051 (3) | −0.002 (2) | 0.013 (2) | 0.006 (2) |
C4 | 0.043 (2) | 0.081 (3) | 0.056 (3) | −0.004 (2) | 0.0170 (19) | −0.005 (2) |
C5 | 0.046 (2) | 0.082 (4) | 0.047 (2) | −0.005 (2) | 0.0034 (19) | −0.007 (2) |
C6 | 0.044 (2) | 0.085 (4) | 0.041 (2) | 0.006 (2) | 0.0023 (17) | 0.005 (2) |
C7 | 0.058 (3) | 0.052 (3) | 0.058 (3) | 0.003 (2) | 0.013 (2) | 0.003 (2) |
C8 | 0.062 (2) | 0.049 (3) | 0.087 (3) | 0.001 (2) | 0.012 (2) | −0.0128 (18) |
C9 | 0.088 (2) | 0.062 (3) | 0.082 (3) | 0.006 (3) | 0.006 (2) | −0.011 (2) |
C10 | 0.096 (3) | 0.084 (3) | 0.099 (3) | 0.020 (3) | 0.006 (2) | 0.001 (3) |
C11 | 0.085 (2) | 0.095 (4) | 0.112 (4) | 0.007 (3) | 0.004 (3) | −0.012 (3) |
C12 | 0.089 (4) | 0.104 (4) | 0.131 (4) | −0.001 (3) | 0.027 (3) | −0.018 (3) |
C13 | 0.066 (3) | 0.083 (3) | 0.112 (3) | 0.000 (2) | 0.025 (2) | −0.016 (3) |
C14 | 0.123 (5) | 0.087 (4) | 0.079 (4) | 0.020 (4) | 0.019 (4) | 0.012 (3) |
N1 | 0.053 (2) | 0.066 (2) | 0.0376 (17) | 0.0006 (17) | 0.0055 (15) | 0.0026 (18) |
N2 | 0.049 (2) | 0.061 (2) | 0.0474 (19) | 0.0036 (17) | 0.0057 (16) | 0.0021 (17) |
O1 | 0.0607 (19) | 0.081 (2) | 0.0580 (18) | 0.0250 (17) | 0.0050 (15) | 0.0039 (17) |
O2 | 0.080 (2) | 0.083 (2) | 0.0421 (16) | 0.0000 (17) | 0.0162 (15) | −0.0115 (15) |
Cl1 | 0.0758 (9) | 0.0776 (9) | 0.0815 (9) | −0.0119 (7) | 0.0200 (7) | −0.0071 (7) |
S1 | 0.0512 (6) | 0.0729 (8) | 0.0384 (6) | 0.0101 (5) | 0.0081 (4) | −0.0012 (5) |
C1—C6 | 1.390 (6) | C9—C14 | 1.409 (8) |
C1—C2 | 1.403 (6) | C9—C10 | 1.474 (8) |
C1—S1 | 1.751 (5) | C10—C11 | 1.369 (9) |
C2—C3 | 1.369 (7) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | C11—C12 | 1.328 (9) |
C3—C4 | 1.385 (6) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.329 (8) |
C4—C5 | 1.378 (6) | C12—H12 | 0.9300 |
C4—Cl1 | 1.745 (5) | C13—H13 | 0.9300 |
C5—C6 | 1.365 (7) | C14—H14A | 0.9600 |
C5—H5 | 0.9300 | C14—H14B | 0.9600 |
C6—H6 | 0.9300 | C14—H14C | 0.9600 |
C7—N2 | 1.272 (5) | N1—N2 | 1.407 (5) |
C7—C8 | 1.461 (6) | N1—S1 | 1.645 (4) |
C7—H7 | 0.9300 | N1—H1N | 0.864 (19) |
C8—C9 | 1.365 (7) | O1—S1 | 1.428 (3) |
C8—C13 | 1.446 (8) | O2—S1 | 1.431 (3) |
C6—C1—C2 | 118.9 (5) | C11—C10—H10 | 121.3 |
C6—C1—S1 | 119.9 (3) | C9—C10—H10 | 121.3 |
C2—C1—S1 | 121.1 (3) | C12—C11—C10 | 125.4 (7) |
C3—C2—C1 | 120.7 (4) | C12—C11—H11 | 117.3 |
C3—C2—H2 | 119.7 | C10—C11—H11 | 117.3 |
C1—C2—H2 | 119.7 | C13—C12—C11 | 118.7 (7) |
C2—C3—C4 | 118.7 (5) | C13—C12—H12 | 120.7 |
C2—C3—H3 | 120.6 | C11—C12—H12 | 120.7 |
C4—C3—H3 | 120.6 | C12—C13—C8 | 121.3 (7) |
C5—C4—C3 | 121.6 (5) | C12—C13—H13 | 119.3 |
C5—C4—Cl1 | 119.8 (4) | C8—C13—H13 | 119.3 |
C3—C4—Cl1 | 118.6 (4) | C9—C14—H14A | 109.5 |
C6—C5—C4 | 119.4 (4) | C9—C14—H14B | 109.5 |
C6—C5—H5 | 120.3 | H14A—C14—H14B | 109.5 |
C4—C5—H5 | 120.3 | C9—C14—H14C | 109.5 |
C5—C6—C1 | 120.6 (4) | H14A—C14—H14C | 109.5 |
C5—C6—H6 | 119.7 | H14B—C14—H14C | 109.5 |
C1—C6—H6 | 119.7 | N2—N1—S1 | 114.0 (3) |
N2—C7—C8 | 123.3 (4) | N2—N1—H1N | 123 (3) |
N2—C7—H7 | 118.3 | S1—N1—H1N | 108 (3) |
C8—C7—H7 | 118.3 | C7—N2—N1 | 114.6 (4) |
C9—C8—C13 | 120.4 (5) | O1—S1—O2 | 120.1 (2) |
C9—C8—C7 | 125.4 (5) | O1—S1—N1 | 104.20 (19) |
C13—C8—C7 | 114.2 (5) | O2—S1—N1 | 106.83 (19) |
C8—C9—C14 | 124.1 (5) | O1—S1—C1 | 109.6 (2) |
C8—C9—C10 | 116.7 (6) | O2—S1—C1 | 108.58 (19) |
C14—C9—C10 | 119.2 (6) | N1—S1—C1 | 106.73 (19) |
C11—C10—C9 | 117.5 (6) | ||
C6—C1—C2—C3 | 2.3 (6) | C14—C9—C10—C11 | 177.3 (6) |
S1—C1—C2—C3 | −174.8 (4) | C9—C10—C11—C12 | −0.4 (10) |
C1—C2—C3—C4 | −1.6 (7) | C10—C11—C12—C13 | 1.5 (11) |
C2—C3—C4—C5 | 0.1 (7) | C11—C12—C13—C8 | −0.6 (10) |
C2—C3—C4—Cl1 | 177.3 (4) | C9—C8—C13—C12 | −1.4 (8) |
C3—C4—C5—C6 | 0.7 (7) | C7—C8—C13—C12 | 179.2 (5) |
Cl1—C4—C5—C6 | −176.4 (3) | C8—C7—N2—N1 | 175.8 (4) |
C4—C5—C6—C1 | 0.0 (7) | S1—N1—N2—C7 | 165.4 (3) |
C2—C1—C6—C5 | −1.5 (6) | N2—N1—S1—O1 | 178.1 (3) |
S1—C1—C6—C5 | 175.6 (3) | N2—N1—S1—O2 | 50.0 (3) |
N2—C7—C8—C9 | 22.4 (7) | N2—N1—S1—C1 | −66.0 (3) |
N2—C7—C8—C13 | −158.3 (5) | C6—C1—S1—O1 | 28.2 (4) |
C13—C8—C9—C14 | −176.4 (5) | C2—C1—S1—O1 | −154.8 (3) |
C7—C8—C9—C14 | 2.9 (8) | C6—C1—S1—O2 | 161.1 (3) |
C13—C8—C9—C10 | 2.4 (7) | C2—C1—S1—O2 | −21.9 (4) |
C7—C8—C9—C10 | −178.3 (5) | C6—C1—S1—N1 | −84.1 (3) |
C8—C9—C10—C11 | −1.6 (8) | C2—C1—S1—N1 | 92.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 (2) | 2.06 (2) | 2.913 (4) | 168 (4) |
C5—H5···O1ii | 0.93 | 2.44 | 3.303 (5) | 155 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y−1/2, −z−1/2. |
C14H13ClN2O2S | F(000) = 640 |
Mr = 308.77 | Dx = 1.407 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.406 (1) Å | Cell parameters from 3029 reflections |
b = 5.8353 (6) Å | θ = 2.9–27.8° |
c = 26.930 (2) Å | µ = 0.41 mm−1 |
β = 99.621 (9)° | T = 293 K |
V = 1457.3 (2) Å3 | Rod, colourless |
Z = 4 | 0.48 × 0.16 × 0.14 mm |
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector | 2106 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.027 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −11→11 |
Tmin = 0.829, Tmax = 0.945 | k = −7→7 |
9653 measured reflections | l = −31→32 |
2652 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0352P)2 + 0.7905P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2652 reflections | Δρmax = 0.21 e Å−3 |
185 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.21023 (8) | 0.70656 (16) | 0.14097 (3) | 0.0843 (3) | |
S1 | 0.69509 (6) | 0.24496 (9) | 0.00160 (2) | 0.03860 (16) | |
O1 | 0.62933 (17) | 0.4035 (3) | −0.03599 (5) | 0.0493 (4) | |
O2 | 0.74225 (17) | 0.0275 (3) | −0.01324 (6) | 0.0501 (4) | |
N1 | 0.5723 (2) | 0.2120 (3) | 0.03686 (7) | 0.0445 (5) | |
H1N | 0.517 (2) | 0.326 (3) | 0.0367 (9) | 0.053* | |
N2 | 0.60598 (19) | 0.0841 (3) | 0.08093 (7) | 0.0434 (4) | |
C1 | 0.8426 (2) | 0.3768 (4) | 0.03983 (7) | 0.0361 (5) | |
C2 | 0.8228 (3) | 0.5883 (4) | 0.06121 (8) | 0.0464 (6) | |
H2 | 0.7336 | 0.6608 | 0.0546 | 0.056* | |
C3 | 0.9362 (3) | 0.6891 (4) | 0.09212 (9) | 0.0537 (6) | |
H3 | 0.9244 | 0.8305 | 0.1069 | 0.064* | |
C4 | 1.0678 (3) | 0.5796 (4) | 0.10118 (8) | 0.0511 (6) | |
C5 | 1.0885 (2) | 0.3719 (4) | 0.07935 (9) | 0.0523 (6) | |
H5 | 1.1783 | 0.3014 | 0.0853 | 0.063* | |
C6 | 0.9746 (2) | 0.2696 (4) | 0.04858 (8) | 0.0441 (5) | |
H6 | 0.9869 | 0.1286 | 0.0338 | 0.053* | |
C7 | 0.5267 (2) | 0.1280 (4) | 0.11369 (8) | 0.0457 (6) | |
H7 | 0.4591 | 0.2450 | 0.1070 | 0.055* | |
C8 | 0.5363 (2) | 0.0042 (4) | 0.16116 (8) | 0.0447 (5) | |
C9 | 0.6130 (3) | −0.1985 (4) | 0.17103 (10) | 0.0557 (7) | |
H9 | 0.6628 | −0.2591 | 0.1470 | 0.067* | |
C10 | 0.6159 (3) | −0.3103 (5) | 0.21616 (10) | 0.0654 (7) | |
H10 | 0.6690 | −0.4448 | 0.2223 | 0.078* | |
C11 | 0.5422 (3) | −0.2279 (5) | 0.25255 (10) | 0.0614 (7) | |
C12 | 0.4659 (3) | −0.0281 (5) | 0.24265 (10) | 0.0653 (8) | |
H12 | 0.4155 | 0.0308 | 0.2667 | 0.078* | |
C13 | 0.4623 (3) | 0.0876 (5) | 0.19761 (9) | 0.0572 (7) | |
H13 | 0.4096 | 0.2226 | 0.1918 | 0.069* | |
C14 | 0.5452 (4) | −0.3541 (7) | 0.30183 (11) | 0.0970 (11) | |
H14A | 0.4539 | −0.3369 | 0.3129 | 0.146* | |
H14B | 0.6201 | −0.2918 | 0.3268 | 0.146* | |
H14C | 0.5636 | −0.5138 | 0.2971 | 0.146* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0677 (5) | 0.1156 (7) | 0.0697 (5) | −0.0376 (5) | 0.0119 (4) | −0.0303 (5) |
S1 | 0.0379 (3) | 0.0396 (3) | 0.0393 (3) | 0.0037 (3) | 0.0093 (2) | −0.0012 (3) |
O1 | 0.0511 (9) | 0.0574 (10) | 0.0403 (8) | 0.0112 (8) | 0.0099 (7) | 0.0085 (8) |
O2 | 0.0505 (9) | 0.0428 (9) | 0.0572 (10) | 0.0034 (7) | 0.0097 (7) | −0.0130 (8) |
N1 | 0.0398 (10) | 0.0472 (12) | 0.0483 (10) | 0.0086 (9) | 0.0129 (8) | 0.0081 (10) |
N2 | 0.0406 (10) | 0.0415 (10) | 0.0485 (10) | −0.0008 (8) | 0.0086 (9) | 0.0067 (9) |
C1 | 0.0388 (12) | 0.0348 (11) | 0.0370 (11) | 0.0014 (9) | 0.0129 (9) | 0.0011 (9) |
C2 | 0.0519 (14) | 0.0378 (12) | 0.0504 (13) | 0.0075 (11) | 0.0109 (11) | −0.0011 (11) |
C3 | 0.0678 (17) | 0.0410 (13) | 0.0547 (14) | −0.0065 (12) | 0.0173 (13) | −0.0093 (12) |
C4 | 0.0499 (14) | 0.0629 (16) | 0.0423 (12) | −0.0185 (12) | 0.0131 (11) | −0.0075 (12) |
C5 | 0.0368 (13) | 0.0638 (16) | 0.0569 (14) | 0.0016 (12) | 0.0099 (11) | −0.0040 (13) |
C6 | 0.0410 (12) | 0.0433 (13) | 0.0504 (13) | 0.0021 (11) | 0.0146 (10) | −0.0066 (11) |
C7 | 0.0381 (12) | 0.0483 (14) | 0.0507 (13) | 0.0032 (11) | 0.0071 (10) | 0.0029 (11) |
C8 | 0.0408 (12) | 0.0482 (13) | 0.0455 (13) | −0.0054 (11) | 0.0089 (10) | 0.0015 (11) |
C9 | 0.0562 (15) | 0.0554 (16) | 0.0595 (15) | 0.0073 (12) | 0.0210 (12) | 0.0073 (13) |
C10 | 0.0693 (18) | 0.0591 (17) | 0.0704 (17) | 0.0118 (14) | 0.0197 (14) | 0.0191 (14) |
C11 | 0.0667 (17) | 0.0654 (17) | 0.0535 (15) | −0.0035 (14) | 0.0138 (13) | 0.0098 (14) |
C12 | 0.079 (2) | 0.0709 (19) | 0.0507 (15) | 0.0037 (16) | 0.0239 (14) | −0.0005 (14) |
C13 | 0.0621 (16) | 0.0549 (15) | 0.0565 (15) | 0.0074 (13) | 0.0156 (12) | 0.0029 (13) |
C14 | 0.126 (3) | 0.105 (3) | 0.0663 (19) | 0.014 (2) | 0.0326 (19) | 0.032 (2) |
Cl1—C4 | 1.735 (2) | C6—H6 | 0.9300 |
S1—O2 | 1.4232 (16) | C7—C8 | 1.458 (3) |
S1—O1 | 1.4330 (15) | C7—H7 | 0.9300 |
S1—N1 | 1.6248 (18) | C8—C13 | 1.383 (3) |
S1—C1 | 1.761 (2) | C8—C9 | 1.388 (3) |
N1—N2 | 1.393 (2) | C9—C10 | 1.376 (3) |
N1—H1N | 0.845 (16) | C9—H9 | 0.9300 |
N2—C7 | 1.273 (3) | C10—C11 | 1.378 (4) |
C1—C6 | 1.375 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.387 (3) | C11—C12 | 1.372 (4) |
C2—C3 | 1.371 (3) | C11—C14 | 1.514 (4) |
C2—H2 | 0.9300 | C12—C13 | 1.383 (3) |
C3—C4 | 1.378 (3) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.375 (3) | C14—H14A | 0.9600 |
C5—C6 | 1.376 (3) | C14—H14B | 0.9600 |
C5—H5 | 0.9300 | C14—H14C | 0.9600 |
O2—S1—O1 | 119.69 (9) | N2—C7—C8 | 123.4 (2) |
O2—S1—N1 | 110.11 (10) | N2—C7—H7 | 118.3 |
O1—S1—N1 | 102.95 (9) | C8—C7—H7 | 118.3 |
O2—S1—C1 | 107.55 (10) | C13—C8—C9 | 118.1 (2) |
O1—S1—C1 | 109.63 (10) | C13—C8—C7 | 118.9 (2) |
N1—S1—C1 | 106.13 (10) | C9—C8—C7 | 123.0 (2) |
N2—N1—S1 | 118.59 (14) | C10—C9—C8 | 120.4 (2) |
N2—N1—H1N | 118.5 (16) | C10—C9—H9 | 119.8 |
S1—N1—H1N | 113.8 (17) | C8—C9—H9 | 119.8 |
C7—N2—N1 | 113.99 (18) | C9—C10—C11 | 121.6 (3) |
C6—C1—C2 | 120.9 (2) | C9—C10—H10 | 119.2 |
C6—C1—S1 | 120.14 (16) | C11—C10—H10 | 119.2 |
C2—C1—S1 | 118.94 (17) | C12—C11—C10 | 117.9 (2) |
C3—C2—C1 | 119.3 (2) | C12—C11—C14 | 121.1 (3) |
C3—C2—H2 | 120.4 | C10—C11—C14 | 121.0 (3) |
C1—C2—H2 | 120.4 | C11—C12—C13 | 121.4 (3) |
C2—C3—C4 | 119.5 (2) | C11—C12—H12 | 119.3 |
C2—C3—H3 | 120.2 | C13—C12—H12 | 119.3 |
C4—C3—H3 | 120.2 | C12—C13—C8 | 120.6 (3) |
C5—C4—C3 | 121.3 (2) | C12—C13—H13 | 119.7 |
C5—C4—Cl1 | 119.4 (2) | C8—C13—H13 | 119.7 |
C3—C4—Cl1 | 119.3 (2) | C11—C14—H14A | 109.5 |
C4—C5—C6 | 119.3 (2) | C11—C14—H14B | 109.5 |
C4—C5—H5 | 120.4 | H14A—C14—H14B | 109.5 |
C6—C5—H5 | 120.4 | C11—C14—H14C | 109.5 |
C1—C6—C5 | 119.7 (2) | H14A—C14—H14C | 109.5 |
C1—C6—H6 | 120.2 | H14B—C14—H14C | 109.5 |
C5—C6—H6 | 120.2 | ||
O2—S1—N1—N2 | 57.73 (19) | C2—C1—C6—C5 | 0.6 (3) |
O1—S1—N1—N2 | −173.56 (16) | S1—C1—C6—C5 | −178.67 (17) |
C1—S1—N1—N2 | −58.39 (18) | C4—C5—C6—C1 | 0.5 (3) |
S1—N1—N2—C7 | 157.85 (17) | N1—N2—C7—C8 | 175.80 (19) |
O2—S1—C1—C6 | 2.2 (2) | N2—C7—C8—C13 | 169.8 (2) |
O1—S1—C1—C6 | −129.39 (17) | N2—C7—C8—C9 | −12.3 (4) |
N1—S1—C1—C6 | 120.07 (18) | C13—C8—C9—C10 | −0.8 (4) |
O2—S1—C1—C2 | −177.10 (16) | C7—C8—C9—C10 | −178.7 (2) |
O1—S1—C1—C2 | 51.28 (18) | C8—C9—C10—C11 | 0.9 (4) |
N1—S1—C1—C2 | −59.26 (18) | C9—C10—C11—C12 | −0.6 (4) |
C6—C1—C2—C3 | −1.1 (3) | C9—C10—C11—C14 | 179.4 (3) |
S1—C1—C2—C3 | 178.25 (17) | C10—C11—C12—C13 | 0.2 (4) |
C1—C2—C3—C4 | 0.4 (3) | C14—C11—C12—C13 | −179.8 (3) |
C2—C3—C4—C5 | 0.8 (4) | C11—C12—C13—C8 | −0.1 (4) |
C2—C3—C4—Cl1 | −179.19 (17) | C9—C8—C13—C12 | 0.4 (4) |
C3—C4—C5—C6 | −1.2 (4) | C7—C8—C13—C12 | 178.4 (2) |
Cl1—C4—C5—C6 | 178.76 (18) |
Cg1 is the centroid of ring C8-C13. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.85 (2) | 2.09 (2) | 2.935 (2) | 177 (2) |
C4—Cl1···Cg1ii | 1.74 (1) | 3.47 (1) | 5.175 (3) | 168 (1) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y+1, z. |
Contact type | (I) | (II) | (III) |
H···H | 30.1 | 34.0 | 38.0 |
C···H/H···C | 22.7 | 20.2 | 18.0 |
O···H/H···O | 16.1 | 16.1 | 15.7 |
Cl···H/H···Cl | 12.1 | 12.3 | 9.4 |
N···H/H···N | 6.3 | 5.2 | 3.9 |
C···C | 5.2 | 5.0 | 2.1 |
Cl···C/C···Cl | 0 | 0 | 5.3 |
Cl···O/O···Cl | 5.0 | 4.8 | 2.3 |
C···O/O···C | 1.0 | 1.0 | 2.6 |
Cl···Cl | 0.5 | 0.5 | 0 |
C···S/S···C | 0 | 0.1 | 0.1 |
Acknowledgements
The authors thank the SAIF, Panjab University, for extending the services of their NMR facility, and Mangalore University for providing all the facilities required.
Funding information
ARS thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its DST–PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.
References
Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251. CrossRef IUCr Journals Google Scholar
Cunha, M. R., Tavares, M. T., Carvalho, C. F., Silva, N. A. T., Souza, A. D. F., Pereira, G. J. V., Ferreira, F. F. & Parise-Filho, R. (2016). ACS Sustainable Chem. Eng. 4, 1899–1905. CrossRef Google Scholar
Ghorbanloo, M. & Notash, B. (2012). Acta Cryst. E68, o2760. CrossRef IUCr Journals Google Scholar
Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376–379. Web of Science CrossRef IUCr Journals Google Scholar
Kia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahfouz, R. M., Demircioğlu, Z., Abbady, M. S. & Büyükgüngör, O. (2015). Acta Cryst. E71, 94–96. Web of Science CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mehrabi, H. & Kia, R. (2009). Acta Cryst. E65, o1056. CrossRef IUCr Journals Google Scholar
Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia. Google Scholar
Zarei, S. A., Piltan, M., Hassanzadeh, K., Akhtari, K. & Cinčić, D. (2015). J. Mol. Struct. 1083, 82–87. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.