research communications
S,6R,6aS,7S)-2-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline-3a1,6a-dicarboxylate
and Hirshfeld surface analysis of dimethyl (3aaİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon, dNational Research Center "Kurchatov Institute", Moscow, Russian Federation, eOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan, and fState Economic University of Azerbaijan, Istiqlaliyyat st., 6., AZ1001, Baku, Azerbaijan
*Correspondence e-mail: toflavien@yahoo.fr
The title molecule, C18H16F3NO7, comprises a fused cyclic system containing four five-membered (two dihydrofuran and two tetrahydrofuran) rings and one six-membered (piperidine) ring. The five-membered dihydrofuran and tetrahydrofuran rings adopt envelope conformations, and the six-membered piperidine ring adopts a distorted chair conformation. Intramolecular O⋯F interactions help to stabilize the conformational arrangement. In the molecules are linked by weak C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional network. The Hirshfeld surface analysis confirms the dominant role of H⋯H contacts in establishing the packing.
Keywords: crystal structure; dihydrofuran ring; tetrahydrofuran ring; fused hexacyclic system; piperidine ring; Hiershfeld surface analysis.
CCDC reference: 1872524
1. Chemical context
Non-covalent interactions, such as hydrogen, aerogen, halogen, chalcogen, pnicogen, tetrel and icosagen bonds, as well as n–π*, π–π stacking, π–cation, π–anion and hydrophobic interactions, have an impact on the synthesis, catalysis and design of materials and on biological processes (Shikhaliyev et al., 2018; Hazra et al., 2018). These weak forces can also control or organize the aggregation, conformation, tertiary and of a molecule, and its stabilization or other particular properties (Legon, 2017; Mahmudov et al., 2017a,b). In comparison with well-established hydrogen and halogen bonds (Cavallo et al., 2016; Mahmoudi et al., 2018; Vandyshev et al., 2017), chalcogen, pnicogen, tetrel and icosagen bonds are much less explored (Mahmudov et al., 2017a; Scheiner, 2013; Mikherdov et al., 2016).
The title compound, C18H16F3NO7, has a 7-oxabicyclo[2.2.1]heptene scaffold, thus making it a potential tool for the design and synthesis of new organic materials with various useful properties such as electronic materials, molecular tweezers, etc (Borisova et al., 2018a,b). During the we noted rather unusual intramolecular O⋯F interactions. Here we report the synthesis, molecular and of this compound as well as a Hirshfeld surface analysis.
2. Structural commentary
The molecule of the title compound (Fig. 1) is made up from a fused cyclic system containing four five-membered rings (two dihydrofuran and two tetrahydrofuran) in the usual envelope conformations and a six-membered piperidine ring in a chair conformation. The latter is distorted because the environment of the N1 atom is intermediate between trigonal–planar and trigonal–pyramidal. The puckering parameters of the five-membered dihydrofuran [A (O1/C1/C2/C5/C6), B (O2/C1/C6/C7/C10)] and tetrahydrofuran [C (O1/C2–C5), D (O2/C7–C10)] rings are A: Q(2) = 0.5780 (15) Å, φ(2) = 359.75 (17)°; B: Q(2) = 0.5737 (16) Å, φ(2) = 4.53 (17)°; C: Q(2) = 0.5173 (15) Å, φ(2) = 179.60 (19)°; D: Q(2) = 0.5154 (16) Å, φ(2) = 178.2 (2)°. The puckering parameters of the six-membered piperidine ring (N1/C1/C2/C10–C12) are QT = 0.5312 (17) Å, θ = 9.58 (18)°, φ = 329.1 (11)°.
The molecular conformations are stabilized by weak intramolecular C—H⋯O and C—H⋯F interactions (Table 1) between methylene groups (C11; C12) and a methoxy group and the –CF3 group, respectively. A rather unusual intramolecular O⋯F interaction between one of the oxygen bridgehead atoms (O1) and one of the F atoms of the –CF3 group [C5—O1⋯F2 = 2.9336 (16) Å; C5—O1⋯F2 = 153.60 (9)°] might help to consolidate the conformational arrangement.
3. Supramolecular features
Intermolecular C—H⋯O interactions involving the O atoms of carbonyl groups, the oxygen bridgehead atoms and methoxy O atoms, as well as C—H⋯F hydrogen bonds define the crystal packing, which is shown in Fig. 2. These packing features lead to the formation of a three-dimensional network structure. C—H⋯π and π–π interactions are not observed, but H⋯H interactions dominate in the packing as detailed in the next section.
4. Hirshfeld surface analysis
Hirshfeld surface and fingerprint plots were generated using CrystalExplorer (McKinnon et al., 2007). Hirshfeld surfaces enable the visualization of intermolecular interactions by different colors and color intensity, representing short or long contacts and indicating the relative strength of the interactions. Fig. 3 shows the Hirshfeld surface of the title compound mapped over dnorm where it is evident from the bright-red spots appearing near the oxygen atoms that these atoms play a significant role in the molecular packing. The red spots represent closer contacts and negative dnorm values on the surface, corresponding to the C—H⋯O interactions. The percentage contributions of various contacts to the total Hirshfeld surface are given in Table 2 and are also shown as two-dimensional fingerprint plots in Fig. 4. The H⋯H interactions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 35.6% (Fig. 4b). The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O interactions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding interaction (28.5%; Fig. 4c). The contribution of the F⋯H/H⋯F intermolecular contacts to the Hirshfeld surfaces is 23.8% (Fig. 4d). The small percentage contributions from the remaining interatomic contacts are summarized in Table 2 and indicated by their fingerprint plots for C⋯H/H⋯C (Fig. 4e), F⋯F (Fig. 4f), F⋯O/O⋯F (Fig. 4g), O⋯O (Fig. 4h), N⋯H/H⋯N (Fig. 4i) and C⋯O/O⋯C (Fig. 4j). The large number of H⋯H, O⋯H/H⋯O and F⋯H/H⋯F interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
|
5. Database survey
A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016) for similar structures showed the two closest are those of 2-benzyl-6a,9b-bis(trifluoromethyl)-2,3,6a,9b-tetrahydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline (CSD refcode HENLAQ; Borisova et al., 2018c) and 2-benzyl-4,5-bis(trifluoromethyl)-2,3,6a,9b-tetrahydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline (HENLEU; Borisova et al., 2018d). In the crystal of HENLAQ, inversion-related pairs of molecules are linked into dimers by C—H⋯O hydrogen bonds. These dimers form sheets lying parallel to (100). C—H⋯π interactions are also observed in the of HENLAQ, together with intramolecular F⋯F contacts. The of HENLEU contains two molecules. In the crystal, molecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming columns along [010]. Likewise, C—H⋯π interactions and F⋯F intramolecular contacts are also present.
6. Synthesis and crystallization
The synthesis of the title compound and its characterization by 1H NMR, 13C NMR, IR and HRMS spectroscopy have previously been reported (Borisova et al., 2018a). Dimethyl acetylenedicarboxylate (DMAD, 1.84 ml, 0.015 mol) was added to a solution of 2,2,2-trifluoro-N,N-bis(furan-2-ylmethyl)acetamide (0.01 mol) in benzene (30 ml). The mixture was heated at reflux for 15.5–40 h at 353 K (GC–MS monitoring until disappearance of the starting material). The reaction mixture was cooled and left overnight at room temperature. The solvent was removed under reduced pressure. The residue (brown oil) was triturated with diethyl ether. The obtained crystals were filtered off and recrystallized from hexane/EtOAc (v:v = 2:1) to give the pure compound as a white powder (2.57 g, 6.2 mmol, yield 62%). Rf = 0.56 (EtOAc/hexane, 2:1, Sorbfil). M.p. 467.2–467.9 K (from hexane/EtOAc). 1H NMR (400 MHz, CDCl3): δ 6.74–6.71 (2H, m, H-4 and H-9), 6.46 (2H, dd, J = 2.3 and J = 5.5 Hz, H-5 and H-8), 5.14 (2H, br s, H-6 and H-7), 5.10 (1H, d, J = 14.9 Hz, H-1A), 4.43 (1H, br d, J = 14.9 Hz, H-3A), 4.08 (1H, d, J = 14.9 Hz, H-3B), 3.64 (6H, s, 2 × CO2Me), 3.59 (1H, d, J = 14.9, H-1B). 13C NMR (100 MHz, CDCl3): δ 170.1 (2 × CO2Me), 157.2 (q, J = 35.5 Hz, F3C—C), 141.2 (C-5 and C-8), 137.5 (C-4 and C-9), 116.4 (q, J = 288.1 Hz, CF3), 87.1 (C-3a and C-9a), 83.8 (C-6 and C-7), 71.4 and 68.8 (C-9 and C-6a), 52.4 (2 × CO2Me), 44.8 (q, J = 3.8 Hz, C-1), 42.4 (C-3). 19F NMR (282 MHz, CDCl3): δ −67.7 (s, CF3). IR νmax/cm−1 (KBr): 3109, 3055, 2956, 1713, 1688, 1197. HRMS (ESI–TOF): calculated for C18H16F3NO7 [M + H]+, 415.0879; found, 415.0889.
7. details
Crystal data, data collection and structure . All H atoms were fixed and allowed to ride on the parent atoms, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. Eight outliers [(101), (011), (01), (002), (110), (363), (03), (111)] were omitted in the final cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1872524
https://doi.org/10.1107/S2056989018014305/wm5463sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014305/wm5463Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C18H16F3NO7 | F(000) = 856 |
Mr = 415.32 | Dx = 1.601 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7661 (2) Å | Cell parameters from 3572 reflections |
b = 11.2908 (3) Å | θ = 3.0–25.9° |
c = 17.5089 (4) Å | µ = 0.14 mm−1 |
β = 96.021 (1)° | T = 150 K |
V = 1723.41 (7) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.32 × 0.30 mm |
Bruker APEXII CCD diffractometer | 2739 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 3.1° |
Tmin = 0.942, Tmax = 0.946 | h = −10→10 |
11170 measured reflections | k = −14→11 |
3496 independent reflections | l = −21→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0391P)2 + 0.8462P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3496 reflections | Δρmax = 0.30 e Å−3 |
264 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.39473 (17) | 0.49611 (14) | 0.67777 (9) | 0.0151 (3) | |
C2 | 0.34636 (17) | 0.36454 (14) | 0.65512 (9) | 0.0159 (3) | |
C3 | 0.17517 (18) | 0.35392 (15) | 0.66061 (10) | 0.0188 (4) | |
H3 | 0.125910 | 0.313775 | 0.698918 | 0.023* | |
C4 | 0.10926 (18) | 0.41275 (15) | 0.60044 (9) | 0.0190 (4) | |
H4 | 0.002414 | 0.423058 | 0.586488 | 0.023* | |
C5 | 0.23948 (17) | 0.46040 (14) | 0.55824 (9) | 0.0166 (3) | |
H5 | 0.211134 | 0.478143 | 0.502604 | 0.020* | |
C6 | 0.31682 (17) | 0.56580 (14) | 0.60653 (9) | 0.0156 (3) | |
C7 | 0.46580 (18) | 0.61837 (14) | 0.57545 (9) | 0.0181 (3) | |
H7 | 0.450625 | 0.648514 | 0.521478 | 0.022* | |
C8 | 0.53785 (19) | 0.70697 (16) | 0.63430 (10) | 0.0223 (4) | |
H8 | 0.534938 | 0.790901 | 0.630565 | 0.027* | |
C9 | 0.60537 (19) | 0.64310 (16) | 0.69172 (10) | 0.0215 (4) | |
H9 | 0.663054 | 0.671359 | 0.737022 | 0.026* | |
C10 | 0.57077 (18) | 0.51491 (15) | 0.66959 (9) | 0.0173 (3) | |
C11 | 0.67413 (18) | 0.41488 (15) | 0.70014 (9) | 0.0196 (4) | |
H11A | 0.777907 | 0.426465 | 0.683886 | 0.023* | |
H11B | 0.683028 | 0.415179 | 0.756980 | 0.023* | |
C12 | 0.45739 (18) | 0.27365 (15) | 0.69121 (9) | 0.0187 (3) | |
H12A | 0.456518 | 0.274715 | 0.747704 | 0.022* | |
H12B | 0.426248 | 0.193647 | 0.672394 | 0.022* | |
C13 | 0.68211 (18) | 0.24366 (16) | 0.61696 (10) | 0.0213 (4) | |
C14 | 0.61562 (19) | 0.12361 (17) | 0.58786 (11) | 0.0268 (4) | |
C15 | 0.34324 (19) | 0.52840 (15) | 0.75488 (9) | 0.0187 (4) | |
C16 | 0.4132 (2) | 0.54441 (18) | 0.88782 (9) | 0.0294 (4) | |
H16A | 0.502378 | 0.535376 | 0.926090 | 0.044* | |
H16B | 0.332265 | 0.489567 | 0.899623 | 0.044* | |
H16C | 0.375106 | 0.625921 | 0.888922 | 0.044* | |
C17 | 0.20610 (18) | 0.66654 (15) | 0.61749 (9) | 0.0171 (3) | |
C18 | −0.0373 (2) | 0.74427 (17) | 0.57152 (12) | 0.0332 (5) | |
H18A | −0.136339 | 0.716249 | 0.547019 | 0.050* | |
H18B | −0.001422 | 0.810491 | 0.541928 | 0.050* | |
H18C | −0.048909 | 0.770680 | 0.623910 | 0.050* | |
N1 | 0.61226 (15) | 0.30034 (12) | 0.67137 (8) | 0.0174 (3) | |
O1 | 0.35051 (12) | 0.36756 (10) | 0.57348 (6) | 0.0157 (2) | |
O2 | 0.57083 (12) | 0.52159 (10) | 0.58756 (6) | 0.0171 (3) | |
O3 | 0.79898 (15) | 0.27623 (13) | 0.59189 (8) | 0.0386 (4) | |
O4 | 0.45760 (13) | 0.51821 (11) | 0.81186 (6) | 0.0234 (3) | |
O5 | 0.21495 (14) | 0.55547 (12) | 0.76498 (7) | 0.0274 (3) | |
O6 | 0.07292 (13) | 0.64922 (10) | 0.57403 (7) | 0.0226 (3) | |
O7 | 0.23490 (14) | 0.75410 (11) | 0.65517 (7) | 0.0263 (3) | |
F1 | 0.60895 (14) | 0.04589 (10) | 0.64497 (7) | 0.0422 (3) | |
F2 | 0.47566 (12) | 0.13074 (10) | 0.55061 (6) | 0.0350 (3) | |
F3 | 0.70476 (14) | 0.07621 (12) | 0.53923 (8) | 0.0509 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0169 (8) | 0.0155 (8) | 0.0130 (8) | −0.0009 (6) | 0.0023 (6) | −0.0006 (6) |
C2 | 0.0181 (8) | 0.0163 (8) | 0.0139 (8) | −0.0018 (6) | 0.0051 (6) | −0.0002 (6) |
C3 | 0.0172 (8) | 0.0149 (8) | 0.0254 (9) | −0.0042 (6) | 0.0082 (7) | −0.0020 (7) |
C4 | 0.0163 (8) | 0.0167 (9) | 0.0244 (9) | −0.0025 (6) | 0.0033 (6) | −0.0048 (7) |
C5 | 0.0173 (8) | 0.0169 (8) | 0.0153 (8) | 0.0008 (6) | 0.0002 (6) | −0.0011 (7) |
C6 | 0.0185 (8) | 0.0150 (8) | 0.0134 (8) | −0.0012 (6) | 0.0022 (6) | −0.0005 (6) |
C7 | 0.0199 (8) | 0.0168 (9) | 0.0179 (8) | −0.0009 (6) | 0.0039 (6) | 0.0027 (7) |
C8 | 0.0226 (9) | 0.0184 (9) | 0.0268 (9) | −0.0068 (7) | 0.0060 (7) | −0.0007 (7) |
C9 | 0.0213 (8) | 0.0222 (9) | 0.0205 (9) | −0.0071 (7) | −0.0002 (7) | −0.0038 (7) |
C10 | 0.0191 (8) | 0.0184 (9) | 0.0144 (8) | −0.0048 (6) | 0.0024 (6) | −0.0019 (7) |
C11 | 0.0173 (8) | 0.0230 (9) | 0.0180 (8) | −0.0029 (7) | −0.0003 (6) | −0.0014 (7) |
C12 | 0.0181 (8) | 0.0198 (9) | 0.0193 (8) | −0.0011 (7) | 0.0064 (6) | 0.0027 (7) |
C13 | 0.0171 (8) | 0.0241 (10) | 0.0225 (9) | 0.0007 (7) | 0.0020 (7) | −0.0008 (7) |
C14 | 0.0226 (9) | 0.0268 (10) | 0.0315 (10) | 0.0019 (7) | 0.0048 (7) | −0.0048 (8) |
C15 | 0.0254 (9) | 0.0149 (8) | 0.0161 (8) | −0.0005 (7) | 0.0042 (7) | 0.0006 (7) |
C16 | 0.0470 (11) | 0.0304 (11) | 0.0114 (8) | 0.0037 (9) | 0.0057 (8) | −0.0025 (8) |
C17 | 0.0211 (8) | 0.0172 (9) | 0.0131 (8) | −0.0012 (6) | 0.0030 (6) | 0.0016 (7) |
C18 | 0.0299 (10) | 0.0263 (11) | 0.0409 (11) | 0.0115 (8) | −0.0074 (8) | −0.0080 (9) |
N1 | 0.0158 (7) | 0.0180 (7) | 0.0184 (7) | −0.0010 (5) | 0.0016 (5) | 0.0014 (6) |
O1 | 0.0176 (5) | 0.0157 (6) | 0.0141 (6) | −0.0001 (4) | 0.0034 (4) | −0.0016 (4) |
O2 | 0.0170 (6) | 0.0201 (6) | 0.0148 (6) | −0.0021 (5) | 0.0039 (4) | 0.0005 (5) |
O3 | 0.0259 (7) | 0.0424 (9) | 0.0509 (9) | −0.0105 (6) | 0.0205 (6) | −0.0156 (7) |
O4 | 0.0297 (7) | 0.0287 (7) | 0.0116 (6) | 0.0004 (5) | 0.0019 (5) | −0.0020 (5) |
O5 | 0.0296 (7) | 0.0322 (8) | 0.0215 (6) | 0.0095 (6) | 0.0086 (5) | −0.0015 (5) |
O6 | 0.0212 (6) | 0.0194 (6) | 0.0261 (6) | 0.0044 (5) | −0.0023 (5) | −0.0039 (5) |
O7 | 0.0296 (7) | 0.0210 (7) | 0.0272 (7) | 0.0035 (5) | −0.0020 (5) | −0.0069 (5) |
F1 | 0.0515 (7) | 0.0218 (6) | 0.0523 (8) | 0.0029 (5) | 0.0002 (6) | 0.0056 (5) |
F2 | 0.0279 (6) | 0.0320 (6) | 0.0427 (7) | −0.0024 (5) | −0.0073 (5) | −0.0102 (5) |
F3 | 0.0405 (7) | 0.0496 (8) | 0.0662 (9) | −0.0048 (6) | 0.0225 (6) | −0.0341 (7) |
C1—C15 | 1.512 (2) | C11—N1 | 1.471 (2) |
C1—C6 | 1.569 (2) | C11—H11A | 0.9900 |
C1—C10 | 1.579 (2) | C11—H11B | 0.9900 |
C1—C2 | 1.584 (2) | C12—N1 | 1.467 (2) |
C2—O1 | 1.4341 (19) | C12—H12A | 0.9900 |
C2—C12 | 1.507 (2) | C12—H12B | 0.9900 |
C2—C3 | 1.519 (2) | C13—O3 | 1.213 (2) |
C3—C4 | 1.326 (2) | C13—N1 | 1.347 (2) |
C3—H3 | 0.9500 | C13—C14 | 1.541 (3) |
C4—C5 | 1.522 (2) | C14—F3 | 1.327 (2) |
C4—H4 | 0.9500 | C14—F2 | 1.330 (2) |
C5—O1 | 1.4363 (19) | C14—F1 | 1.336 (2) |
C5—C6 | 1.572 (2) | C15—O5 | 1.196 (2) |
C5—H5 | 1.0000 | C15—O4 | 1.343 (2) |
C6—C17 | 1.520 (2) | C16—O4 | 1.455 (2) |
C6—C7 | 1.582 (2) | C16—H16A | 0.9800 |
C7—O2 | 1.4303 (19) | C16—H16B | 0.9800 |
C7—C8 | 1.525 (2) | C16—H16C | 0.9800 |
C7—H7 | 1.0000 | C17—O7 | 1.2006 (19) |
C8—C9 | 1.325 (2) | C17—O6 | 1.3393 (19) |
C8—H8 | 0.9500 | C18—O6 | 1.441 (2) |
C9—C10 | 1.521 (2) | C18—H18A | 0.9800 |
C9—H9 | 0.9500 | C18—H18B | 0.9800 |
C10—O2 | 1.4382 (19) | C18—H18C | 0.9800 |
C10—C11 | 1.510 (2) | ||
C15—C1—C6 | 116.28 (13) | C9—C10—C1 | 106.00 (13) |
C15—C1—C10 | 115.76 (13) | N1—C11—C10 | 110.50 (12) |
C6—C1—C10 | 102.03 (12) | N1—C11—H11A | 109.5 |
C15—C1—C2 | 110.64 (13) | C10—C11—H11A | 109.5 |
C6—C1—C2 | 100.86 (12) | N1—C11—H11B | 109.5 |
C10—C1—C2 | 109.99 (12) | C10—C11—H11B | 109.5 |
O1—C2—C12 | 110.57 (12) | H11A—C11—H11B | 108.1 |
O1—C2—C3 | 101.16 (12) | N1—C12—C2 | 109.50 (13) |
C12—C2—C3 | 121.25 (13) | N1—C12—H12A | 109.8 |
O1—C2—C1 | 101.14 (11) | C2—C12—H12A | 109.8 |
C12—C2—C1 | 112.92 (13) | N1—C12—H12B | 109.8 |
C3—C2—C1 | 107.37 (13) | C2—C12—H12B | 109.8 |
C4—C3—C2 | 105.15 (14) | H12A—C12—H12B | 108.2 |
C4—C3—H3 | 127.4 | O3—C13—N1 | 125.15 (16) |
C2—C3—H3 | 127.4 | O3—C13—C14 | 116.83 (15) |
C3—C4—C5 | 106.05 (14) | N1—C13—C14 | 117.88 (14) |
C3—C4—H4 | 127.0 | F3—C14—F2 | 106.54 (15) |
C5—C4—H4 | 127.0 | F3—C14—F1 | 106.87 (16) |
O1—C5—C4 | 100.37 (12) | F2—C14—F1 | 107.23 (14) |
O1—C5—C6 | 101.94 (12) | F3—C14—C13 | 109.82 (14) |
C4—C5—C6 | 108.05 (13) | F2—C14—C13 | 113.97 (15) |
O1—C5—H5 | 114.9 | F1—C14—C13 | 112.02 (15) |
C4—C5—H5 | 114.9 | O5—C15—O4 | 123.51 (15) |
C6—C5—H5 | 114.9 | O5—C15—C1 | 124.53 (15) |
C17—C6—C1 | 120.34 (13) | O4—C15—C1 | 111.90 (14) |
C17—C6—C5 | 112.90 (13) | O4—C16—H16A | 109.5 |
C1—C6—C5 | 100.09 (12) | O4—C16—H16B | 109.5 |
C17—C6—C7 | 108.88 (13) | H16A—C16—H16B | 109.5 |
C1—C6—C7 | 98.94 (12) | O4—C16—H16C | 109.5 |
C5—C6—C7 | 115.09 (13) | H16A—C16—H16C | 109.5 |
O2—C7—C8 | 100.74 (12) | H16B—C16—H16C | 109.5 |
O2—C7—C6 | 101.77 (12) | O7—C17—O6 | 123.57 (15) |
C8—C7—C6 | 108.18 (13) | O7—C17—C6 | 125.81 (15) |
O2—C7—H7 | 114.8 | O6—C17—C6 | 110.43 (13) |
C8—C7—H7 | 114.8 | O6—C18—H18A | 109.5 |
C6—C7—H7 | 114.8 | O6—C18—H18B | 109.5 |
C9—C8—C7 | 106.02 (15) | H18A—C18—H18B | 109.5 |
C9—C8—H8 | 127.0 | O6—C18—H18C | 109.5 |
C7—C8—H8 | 127.0 | H18A—C18—H18C | 109.5 |
C8—C9—C10 | 105.27 (14) | H18B—C18—H18C | 109.5 |
C8—C9—H9 | 127.4 | C13—N1—C12 | 124.77 (14) |
C10—C9—H9 | 127.4 | C13—N1—C11 | 118.78 (13) |
O2—C10—C11 | 109.26 (13) | C12—N1—C11 | 114.62 (13) |
O2—C10—C9 | 100.58 (13) | C2—O1—C5 | 96.60 (11) |
C11—C10—C9 | 121.69 (14) | C7—O2—C10 | 96.93 (11) |
O2—C10—C1 | 101.56 (11) | C15—O4—C16 | 114.29 (13) |
C11—C10—C1 | 115.03 (13) | C17—O6—C18 | 116.74 (13) |
C15—C1—C2—O1 | 158.98 (12) | C6—C1—C10—C9 | 73.08 (14) |
C6—C1—C2—O1 | 35.33 (13) | C2—C1—C10—C9 | 179.49 (12) |
C10—C1—C2—O1 | −71.87 (14) | O2—C10—C11—N1 | −65.07 (16) |
C15—C1—C2—C12 | −82.85 (16) | C9—C10—C11—N1 | 178.56 (14) |
C6—C1—C2—C12 | 153.50 (12) | C1—C10—C11—N1 | 48.35 (17) |
C10—C1—C2—C12 | 46.30 (16) | O1—C2—C12—N1 | 57.13 (17) |
C15—C1—C2—C3 | 53.42 (16) | C3—C2—C12—N1 | 175.15 (14) |
C6—C1—C2—C3 | −70.24 (14) | C1—C2—C12—N1 | −55.37 (17) |
C10—C1—C2—C3 | −177.43 (13) | O3—C13—C14—F3 | 0.8 (2) |
O1—C2—C3—C4 | −32.33 (16) | N1—C13—C14—F3 | −175.17 (15) |
C12—C2—C3—C4 | −154.93 (15) | O3—C13—C14—F2 | −118.68 (18) |
C1—C2—C3—C4 | 73.22 (16) | N1—C13—C14—F2 | 65.4 (2) |
C2—C3—C4—C5 | −0.44 (17) | O3—C13—C14—F1 | 119.35 (18) |
C3—C4—C5—O1 | 32.93 (16) | N1—C13—C14—F1 | −56.6 (2) |
C3—C4—C5—C6 | −73.38 (16) | C6—C1—C15—O5 | 35.8 (2) |
C15—C1—C6—C17 | 4.8 (2) | C10—C1—C15—O5 | 155.57 (16) |
C10—C1—C6—C17 | −122.10 (14) | C2—C1—C15—O5 | −78.4 (2) |
C2—C1—C6—C17 | 124.52 (14) | C6—C1—C15—O4 | −146.90 (14) |
C15—C1—C6—C5 | −119.37 (14) | C10—C1—C15—O4 | −27.14 (19) |
C10—C1—C6—C5 | 113.70 (12) | C2—C1—C15—O4 | 98.85 (15) |
C2—C1—C6—C5 | 0.31 (13) | C1—C6—C17—O7 | 58.2 (2) |
C15—C1—C6—C7 | 122.99 (14) | C5—C6—C17—O7 | 176.13 (15) |
C10—C1—C6—C7 | −3.95 (14) | C7—C6—C17—O7 | −54.7 (2) |
C2—C1—C6—C7 | −117.33 (12) | C1—C6—C17—O6 | −126.65 (15) |
O1—C5—C6—C17 | −165.16 (12) | C5—C6—C17—O6 | −8.77 (18) |
C4—C5—C6—C17 | −59.95 (17) | C7—C6—C17—O6 | 120.36 (14) |
O1—C5—C6—C1 | −35.94 (13) | O3—C13—N1—C12 | 167.96 (17) |
C4—C5—C6—C1 | 69.27 (14) | C14—C13—N1—C12 | −16.5 (2) |
O1—C5—C6—C7 | 68.99 (15) | O3—C13—N1—C11 | 4.3 (3) |
C4—C5—C6—C7 | 174.20 (13) | C14—C13—N1—C11 | 179.81 (14) |
C17—C6—C7—O2 | 165.38 (12) | C2—C12—N1—C13 | −101.78 (18) |
C1—C6—C7—O2 | 38.92 (14) | C2—C12—N1—C11 | 62.52 (17) |
C5—C6—C7—O2 | −66.71 (16) | C10—C11—N1—C13 | 106.74 (16) |
C17—C6—C7—C8 | 59.79 (16) | C10—C11—N1—C12 | −58.57 (17) |
C1—C6—C7—C8 | −66.68 (15) | C12—C2—O1—C5 | −178.88 (12) |
C5—C6—C7—C8 | −172.31 (13) | C3—C2—O1—C5 | 51.41 (13) |
O2—C7—C8—C9 | −31.04 (16) | C1—C2—O1—C5 | −59.02 (12) |
C6—C7—C8—C9 | 75.27 (16) | C4—C5—O1—C2 | −51.23 (13) |
C7—C8—C9—C10 | −1.76 (17) | C6—C5—O1—C2 | 59.90 (13) |
C8—C9—C10—O2 | 33.85 (16) | C8—C7—O2—C10 | 50.57 (13) |
C8—C9—C10—C11 | 154.49 (15) | C6—C7—O2—C10 | −60.77 (13) |
C8—C9—C10—C1 | −71.55 (16) | C11—C10—O2—C7 | 179.05 (12) |
C15—C1—C10—O2 | −158.88 (13) | C9—C10—O2—C7 | −51.80 (13) |
C6—C1—C10—O2 | −31.61 (14) | C1—C10—O2—C7 | 57.12 (13) |
C2—C1—C10—O2 | 74.81 (14) | O5—C15—O4—C16 | −0.7 (2) |
C15—C1—C10—C11 | 83.27 (17) | C1—C15—O4—C16 | −178.05 (14) |
C6—C1—C10—C11 | −149.45 (13) | O7—C17—O6—C18 | 2.2 (2) |
C2—C1—C10—C11 | −43.04 (17) | C6—C17—O6—C18 | −173.02 (14) |
C15—C1—C10—C9 | −54.19 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.95 | 2.44 | 3.116 (2) | 128 |
C5—H5···O2ii | 1.00 | 2.60 | 3.1960 (19) | 118 |
C7—H7···O1ii | 1.00 | 2.54 | 3.2091 (19) | 124 |
C11—H11B···O4 | 0.99 | 2.57 | 3.093 (2) | 113 |
C12—H12A···O7iii | 0.99 | 2.52 | 3.328 (2) | 138 |
C12—H12B···O5iii | 0.99 | 2.34 | 3.030 (2) | 127 |
C12—H12B···F1 | 0.99 | 2.40 | 3.043 (2) | 122 |
C12—H12B···F2 | 0.99 | 2.33 | 2.962 (2) | 121 |
C16—H16A···F3iv | 0.98 | 2.62 | 3.475 (2) | 146 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x+3/2, y+1/2, −z+3/2. |
Contact | Percentage contribution |
H···H | 35.6 |
O···H/H···O | 28.5 |
F···H/H···F | 23.8 |
C···H/H···C | 5.5 |
F···F | 2.7 |
F···O/O···F | 1.6 |
N···H/H···N | 1.1 |
O···O | 1.1 |
C···O/O···C | 0.2 |
Funding information
X-ray crystallographic studies using synchrotron radiation were performed at the scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007). This work was partially supported by Baku State University.
References
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. CrossRef PubMed Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. CrossRef Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018c). Private communication (refcode 1570123). CCDC, Cambridge, England. Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018d). Private communication (refcode 1570124). CCDC, Cambridge, England. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193–200. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Legon, A. C. (2017). Phys. Chem. Chem. Phys. 19, 14884–14896. CrossRef PubMed Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. CrossRef PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72. CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mikherdov, A. S., Kinzhalov, M. A., Novikov, A. S., Boyarskiy, V. P., Boyarskaya, I. A., Dar'in, D. V., Starova, G. L. & Kukushkin, V. Yu. (2016). J. Am. Chem. Soc. 138, 14129–14137. CrossRef Google Scholar
Scheiner, S. (2013). Acc. Chem. Res. 46, 280–288. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vandyshev, D. Yu., Shikhaliev, K. S., Potapov, A. Yu., Krysin, M. Yu., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561–2568. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.