research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­methyl (3aS,6R,6aS,7S)-2-(2,2,2-tri­fluoro­acet­yl)-2,3-di­hydro-1H,6H,7H-3a,6:7,9a-di­ep­oxy­benzo[de]iso­quinoline-3a1,6a-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon, dNational Research Center "Kurchatov Institute", Moscow, Russian Federation, eOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan, and fState Economic University of Azerbaijan, Istiqlaliyyat st., 6., AZ1001, Baku, Azerbaijan
*Correspondence e-mail: toflavien@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 August 2018; accepted 10 October 2018; online 19 October 2018)

The title mol­ecule, C18H16F3NO7, comprises a fused cyclic system containing four five-membered (two di­hydro­furan and two tetra­hydro­furan) rings and one six-membered (piperidine) ring. The five-membered di­hydro­furan and tetra­hydro­furan rings adopt envelope conformations, and the six-membered piperidine ring adopts a distorted chair conformation. Intra­molecular OF inter­actions help to stabilize the conformational arrangement. In the crystal structure, mol­ecules are linked by weak C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional network. The Hirshfeld surface analysis confirms the dominant role of H⋯H contacts in establishing the packing.

1. Chemical context

Non-covalent inter­actions, such as hydrogen, aerogen, halogen, chalcogen, pnicogen, tetrel and icosa­gen bonds, as well as nπ*, ππ stacking, π–cation, π–anion and hydro­phobic inter­actions, have an impact on the synthesis, catalysis and design of materials and on biological processes (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]; Hazra et al., 2018[Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193-200.]). These weak forces can also control or organize the aggregation, conformation, tertiary and quaternary structure of a mol­ecule, and its stabilization or other particular properties (Legon, 2017[Legon, A. C. (2017). Phys. Chem. Chem. Phys. 19, 14884-14896.]; Mahmudov et al., 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121-10138.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54-72.]). In comparison with well-established hydrogen and halogen bonds (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Mahmoudi et al., 2018[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959-4971.]; Vandyshev et al., 2017[Vandyshev, D. Yu., Shikhaliev, K. S., Potapov, A. Yu., Krysin, M. Yu., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561-2568.]), chalcogen, pnicogen, tetrel and icosa­gen bonds are much less explored (Mahmudov et al., 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121-10138.]; Scheiner, 2013[Scheiner, S. (2013). Acc. Chem. Res. 46, 280-288.]; Mikherdov et al., 2016[Mikherdov, A. S., Kinzhalov, M. A., Novikov, A. S., Boyarskiy, V. P., Boyarskaya, I. A., Dar'in, D. V., Starova, G. L. & Kukushkin, V. Yu. (2016). J. Am. Chem. Soc. 138, 14129-14137.]).

The title compound, C18H16F3NO7, has a 7-oxabi­cyclo[2.2.1]heptene scaffold, thus making it a potential tool for the design and synthesis of new organic materials with various useful properties such as electronic materials, molecular tweezers, etc (Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.],b[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850-2853.]). During the structure determination, we noted rather unusual intra­molecular O⋯F inter­actions. Here we report the synthesis, mol­ecular and crystal structure of this compound as well as a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound (Fig. 1[link]) is made up from a fused cyclic system containing four five-membered rings (two di­hydro­furan and two tetra­hydro­furan) in the usual envelope conformations and a six-membered piperidine ring in a chair conformation. The latter is distorted because the environment of the N1 atom is inter­mediate between trigonal–planar and trigonal–pyramidal. The puckering parameters of the five-membered di­hydro­furan [A (O1/C1/C2/C5/C6), B (O2/C1/C6/C7/C10)] and tetra­hydro­furan [C (O1/C2–C5), D (O2/C7–C10)] rings are A: Q(2) = 0.5780 (15) Å, φ(2) = 359.75 (17)°; B: Q(2) = 0.5737 (16) Å, φ(2) = 4.53 (17)°; C: Q(2) = 0.5173 (15) Å, φ(2) = 179.60 (19)°; D: Q(2) = 0.5154 (16) Å, φ(2) = 178.2 (2)°. The puckering parameters of the six-membered piperidine ring (N1/C1/C2/C10–C12) are QT = 0.5312 (17) Å, θ = 9.58 (18)°, φ = 329.1 (11)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

The mol­ecular conformations are stabilized by weak intra­molecular C—H⋯O and C—H⋯F inter­actions (Table 1[link]) between methyl­ene groups (C11; C12) and a meth­oxy group and the –CF3 group, respectively. A rather unusual intra­molecular OF inter­action between one of the oxygen bridgehead atoms (O1) and one of the F atoms of the –CF3 group [C5—O1⋯F2 = 2.9336 (16) Å; C5—O1⋯F2 = 153.60 (9)°] might help to consolidate the conformational arrangement.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.95 2.44 3.116 (2) 128
C5—H5⋯O2ii 1.00 2.60 3.1960 (19) 118
C7—H7⋯O1ii 1.00 2.54 3.2091 (19) 124
C11—H11B⋯O4 0.99 2.57 3.093 (2) 113
C12—H12A⋯O7iii 0.99 2.52 3.328 (2) 138
C12—H12B⋯O5iii 0.99 2.34 3.030 (2) 127
C12—H12B⋯F1 0.99 2.40 3.043 (2) 122
C12—H12B⋯F2 0.99 2.33 2.962 (2) 121
C16—H16A⋯F3iv 0.98 2.62 3.475 (2) 146
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

3. Supra­molecular features

Inter­molecular C—H⋯O inter­actions involving the O atoms of carbonyl groups, the oxygen bridgehead atoms and meth­oxy O atoms, as well as C—H⋯F hydrogen bonds define the crystal packing, which is shown in Fig. 2[link]. These packing features lead to the formation of a three-dimensional network structure. C—H⋯π and ππ inter­actions are not observed, but H⋯H inter­actions dominate in the packing as detailed in the next section.

[Figure 2]
Figure 2
The crystal structure of the title compound in a view along [100], emphasizing the inter­molecular C—H⋯O and C—H⋯F hydrogen bonds (dashed lines).

4. Hirshfeld surface analysis

Hirshfeld surface and fingerprint plots were generated using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colors and color intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 3[link] shows the Hirshfeld surface of the title compound mapped over dnorm where it is evident from the bright-red spots appearing near the oxygen atoms that these atoms play a significant role in the mol­ecular packing. The red spots represent closer contacts and negative dnorm values on the surface, corresponding to the C—H⋯O inter­actions. The percentage contributions of various contacts to the total Hirshfeld surface are given in Table 2[link] and are also shown as two-dimensional fingerprint plots in Fig. 4[link]. The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 35.6% (Fig. 4[link]b). The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding inter­action (28.5%; Fig. 4[link]c). The contribution of the F⋯H/H⋯F inter­molecular contacts to the Hirshfeld surfaces is 23.8% (Fig. 4[link]d). The small percentage contributions from the remaining inter­atomic contacts are summarized in Table 2[link] and indicated by their fingerprint plots for C⋯H/H⋯C (Fig. 4[link]e), F⋯F (Fig. 4[link]f), F⋯O/O⋯F (Fig. 4[link]g), O⋯O (Fig. 4[link]h), N⋯H/H⋯N (Fig. 4[link]i) and C⋯O/O⋯C (Fig. 4[link]j). The large number of H⋯H, O⋯H/H⋯O and F⋯H/H⋯F inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 35.6
O⋯H/H⋯O 28.5
F⋯H/H⋯F 23.8
C⋯H/H⋯C 5.5
F⋯F 2.7
F⋯O/O⋯F 1.6
N⋯H/H⋯N 1.1
O⋯O 1.1
C⋯O/O⋯C 0.2
[Figure 3]
Figure 3
Hirshfeld surface of the title compound mapped over dnorm.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/ H⋯O, (d) F⋯H/H⋯F, (e) C⋯H/H⋯C, (f) F⋯F, (g) F⋯O/O⋯F, (h) O⋯O, (i) N⋯H/H⋯N and (j) C⋯O/O⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures showed the two closest are those of 2-benzyl-6a,9b-bis­(tri­fluoro­meth­yl)-2,3,6a,9b-tetra­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline (CSD refcode HENLAQ; Borisova et al., 2018c[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018c). Private communication (refcode 1570123). CCDC, Cambridge, England.]) and 2-benzyl-4,5-bis­(tri­fluoro­meth­yl)-2,3,6a,9b-tetra­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline (HEN­LEU; Borisova et al., 2018d[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018d). Private communication (refcode 1570124). CCDC, Cambridge, England.]). In the crystal of HENLAQ, inversion-related pairs of mol­ecules are linked into dimers by C—H⋯O hydrogen bonds. These dimers form sheets lying parallel to (100). C—H⋯π inter­actions are also observed in the crystal structure of HENLAQ, together with intra­molecular F⋯F contacts. The asymmetric unit of HENLEU contains two mol­ecules. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming columns along [010]. Likewise, C—H⋯π inter­actions and F⋯F intra­molecular contacts are also present.

6. Synthesis and crystallization

The synthesis of the title compound and its characterization by 1H NMR, 13C NMR, IR and HRMS spectroscopy have previously been reported (Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.]). Dimethyl acetyl­enedi­carboxyl­ate (DMAD, 1.84 ml, 0.015 mol) was added to a solution of 2,2,2-tri­fluoro-N,N-bis­(furan-2-yl­meth­yl)acetamide (0.01 mol) in benzene (30 ml). The mixture was heated at reflux for 15.5–40 h at 353 K (GC–MS monitoring until disappearance of the starting material). The reaction mixture was cooled and left overnight at room temperature. The solvent was removed under reduced pressure. The residue (brown oil) was triturated with diethyl ether. The obtained crystals were filtered off and recrystallized from hexa­ne/EtOAc (v:v = 2:1) to give the pure compound as a white powder (2.57 g, 6.2 mmol, yield 62%). Rf = 0.56 (EtOAc/hexane, 2:1, Sorbfil). M.p. 467.2–467.9 K (from hexa­ne/EtOAc). 1H NMR (400 MHz, CDCl3): δ 6.74–6.71 (2H, m, H-4 and H-9), 6.46 (2H, dd, J = 2.3 and J = 5.5 Hz, H-5 and H-8), 5.14 (2H, br s, H-6 and H-7), 5.10 (1H, d, J = 14.9 Hz, H-1A), 4.43 (1H, br d, J = 14.9 Hz, H-3A), 4.08 (1H, d, J = 14.9 Hz, H-3B), 3.64 (6H, s, 2 × CO2Me), 3.59 (1H, d, J = 14.9, H-1B). 13C NMR (100 MHz, CDCl3): δ 170.1 (2 × CO2Me), 157.2 (q, J = 35.5 Hz, F3C—C), 141.2 (C-5 and C-8), 137.5 (C-4 and C-9), 116.4 (q, J = 288.1 Hz, CF3), 87.1 (C-3a and C-9a), 83.8 (C-6 and C-7), 71.4 and 68.8 (C-9 and C-6a), 52.4 (2 × CO2Me), 44.8 (q, J = 3.8 Hz, C-1), 42.4 (C-3). 19F NMR (282 MHz, CDCl3): δ −67.7 (s, CF3). IR νmax/cm−1 (KBr): 3109, 3055, 2956, 1713, 1688, 1197. HRMS (ESI–TOF): calculated for C18H16F3NO7 [M + H]+, 415.0879; found, 415.0889.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were fixed and allowed to ride on the parent atoms, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. Eight outliers [(101), (011), ([\overline{1}]01), (002), (110), (363), ([\overline{3}]03), (111)] were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C18H16F3NO7
Mr 415.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.7661 (2), 11.2908 (3), 17.5089 (4)
β (°) 96.021 (1)
V3) 1723.41 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.35 × 0.32 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.942, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 11170, 3496, 2739
Rint 0.028
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.01
No. of reflections 3496
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Crystal structure and Hirshfeld surface analysis of dimethyl (3aS,6R,6aS,7S)-2-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline-3a1,6a-dicarboxylate, dimethyl (3aS,6R,6aS,7S)-2-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline-3a1,6a-dicarboxylate top
Crystal data top
C18H16F3NO7F(000) = 856
Mr = 415.32Dx = 1.601 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7661 (2) ÅCell parameters from 3572 reflections
b = 11.2908 (3) Åθ = 3.0–25.9°
c = 17.5089 (4) ŵ = 0.14 mm1
β = 96.021 (1)°T = 150 K
V = 1723.41 (7) Å3Block, colourless
Z = 40.35 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2739 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 3.1°
Tmin = 0.942, Tmax = 0.946h = 1010
11170 measured reflectionsk = 1411
3496 independent reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.8462P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3496 reflectionsΔρmax = 0.30 e Å3
264 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39473 (17)0.49611 (14)0.67777 (9)0.0151 (3)
C20.34636 (17)0.36454 (14)0.65512 (9)0.0159 (3)
C30.17517 (18)0.35392 (15)0.66061 (10)0.0188 (4)
H30.1259100.3137750.6989180.023*
C40.10926 (18)0.41275 (15)0.60044 (9)0.0190 (4)
H40.0024140.4230580.5864880.023*
C50.23948 (17)0.46040 (14)0.55824 (9)0.0166 (3)
H50.2111340.4781430.5026040.020*
C60.31682 (17)0.56580 (14)0.60653 (9)0.0156 (3)
C70.46580 (18)0.61837 (14)0.57545 (9)0.0181 (3)
H70.4506250.6485140.5214780.022*
C80.53785 (19)0.70697 (16)0.63430 (10)0.0223 (4)
H80.5349380.7909010.6305650.027*
C90.60537 (19)0.64310 (16)0.69172 (10)0.0215 (4)
H90.6630540.6713590.7370220.026*
C100.57077 (18)0.51491 (15)0.66959 (9)0.0173 (3)
C110.67413 (18)0.41488 (15)0.70014 (9)0.0196 (4)
H11A0.7779070.4264650.6838860.023*
H11B0.6830280.4151790.7569800.023*
C120.45739 (18)0.27365 (15)0.69121 (9)0.0187 (3)
H12A0.4565180.2747150.7477040.022*
H12B0.4262480.1936470.6723940.022*
C130.68211 (18)0.24366 (16)0.61696 (10)0.0213 (4)
C140.61562 (19)0.12361 (17)0.58786 (11)0.0268 (4)
C150.34324 (19)0.52840 (15)0.75488 (9)0.0187 (4)
C160.4132 (2)0.54441 (18)0.88782 (9)0.0294 (4)
H16A0.5023780.5353760.9260900.044*
H16B0.3322650.4895670.8996230.044*
H16C0.3751060.6259210.8889220.044*
C170.20610 (18)0.66654 (15)0.61749 (9)0.0171 (3)
C180.0373 (2)0.74427 (17)0.57152 (12)0.0332 (5)
H18A0.1363390.7162490.5470190.050*
H18B0.0014220.8104910.5419280.050*
H18C0.0489090.7706800.6239100.050*
N10.61226 (15)0.30034 (12)0.67137 (8)0.0174 (3)
O10.35051 (12)0.36756 (10)0.57348 (6)0.0157 (2)
O20.57083 (12)0.52159 (10)0.58756 (6)0.0171 (3)
O30.79898 (15)0.27623 (13)0.59189 (8)0.0386 (4)
O40.45760 (13)0.51821 (11)0.81186 (6)0.0234 (3)
O50.21495 (14)0.55547 (12)0.76498 (7)0.0274 (3)
O60.07292 (13)0.64922 (10)0.57403 (7)0.0226 (3)
O70.23490 (14)0.75410 (11)0.65517 (7)0.0263 (3)
F10.60895 (14)0.04589 (10)0.64497 (7)0.0422 (3)
F20.47566 (12)0.13074 (10)0.55061 (6)0.0350 (3)
F30.70476 (14)0.07621 (12)0.53923 (8)0.0509 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0169 (8)0.0155 (8)0.0130 (8)0.0009 (6)0.0023 (6)0.0006 (6)
C20.0181 (8)0.0163 (8)0.0139 (8)0.0018 (6)0.0051 (6)0.0002 (6)
C30.0172 (8)0.0149 (8)0.0254 (9)0.0042 (6)0.0082 (7)0.0020 (7)
C40.0163 (8)0.0167 (9)0.0244 (9)0.0025 (6)0.0033 (6)0.0048 (7)
C50.0173 (8)0.0169 (8)0.0153 (8)0.0008 (6)0.0002 (6)0.0011 (7)
C60.0185 (8)0.0150 (8)0.0134 (8)0.0012 (6)0.0022 (6)0.0005 (6)
C70.0199 (8)0.0168 (9)0.0179 (8)0.0009 (6)0.0039 (6)0.0027 (7)
C80.0226 (9)0.0184 (9)0.0268 (9)0.0068 (7)0.0060 (7)0.0007 (7)
C90.0213 (8)0.0222 (9)0.0205 (9)0.0071 (7)0.0002 (7)0.0038 (7)
C100.0191 (8)0.0184 (9)0.0144 (8)0.0048 (6)0.0024 (6)0.0019 (7)
C110.0173 (8)0.0230 (9)0.0180 (8)0.0029 (7)0.0003 (6)0.0014 (7)
C120.0181 (8)0.0198 (9)0.0193 (8)0.0011 (7)0.0064 (6)0.0027 (7)
C130.0171 (8)0.0241 (10)0.0225 (9)0.0007 (7)0.0020 (7)0.0008 (7)
C140.0226 (9)0.0268 (10)0.0315 (10)0.0019 (7)0.0048 (7)0.0048 (8)
C150.0254 (9)0.0149 (8)0.0161 (8)0.0005 (7)0.0042 (7)0.0006 (7)
C160.0470 (11)0.0304 (11)0.0114 (8)0.0037 (9)0.0057 (8)0.0025 (8)
C170.0211 (8)0.0172 (9)0.0131 (8)0.0012 (6)0.0030 (6)0.0016 (7)
C180.0299 (10)0.0263 (11)0.0409 (11)0.0115 (8)0.0074 (8)0.0080 (9)
N10.0158 (7)0.0180 (7)0.0184 (7)0.0010 (5)0.0016 (5)0.0014 (6)
O10.0176 (5)0.0157 (6)0.0141 (6)0.0001 (4)0.0034 (4)0.0016 (4)
O20.0170 (6)0.0201 (6)0.0148 (6)0.0021 (5)0.0039 (4)0.0005 (5)
O30.0259 (7)0.0424 (9)0.0509 (9)0.0105 (6)0.0205 (6)0.0156 (7)
O40.0297 (7)0.0287 (7)0.0116 (6)0.0004 (5)0.0019 (5)0.0020 (5)
O50.0296 (7)0.0322 (8)0.0215 (6)0.0095 (6)0.0086 (5)0.0015 (5)
O60.0212 (6)0.0194 (6)0.0261 (6)0.0044 (5)0.0023 (5)0.0039 (5)
O70.0296 (7)0.0210 (7)0.0272 (7)0.0035 (5)0.0020 (5)0.0069 (5)
F10.0515 (7)0.0218 (6)0.0523 (8)0.0029 (5)0.0002 (6)0.0056 (5)
F20.0279 (6)0.0320 (6)0.0427 (7)0.0024 (5)0.0073 (5)0.0102 (5)
F30.0405 (7)0.0496 (8)0.0662 (9)0.0048 (6)0.0225 (6)0.0341 (7)
Geometric parameters (Å, º) top
C1—C151.512 (2)C11—N11.471 (2)
C1—C61.569 (2)C11—H11A0.9900
C1—C101.579 (2)C11—H11B0.9900
C1—C21.584 (2)C12—N11.467 (2)
C2—O11.4341 (19)C12—H12A0.9900
C2—C121.507 (2)C12—H12B0.9900
C2—C31.519 (2)C13—O31.213 (2)
C3—C41.326 (2)C13—N11.347 (2)
C3—H30.9500C13—C141.541 (3)
C4—C51.522 (2)C14—F31.327 (2)
C4—H40.9500C14—F21.330 (2)
C5—O11.4363 (19)C14—F11.336 (2)
C5—C61.572 (2)C15—O51.196 (2)
C5—H51.0000C15—O41.343 (2)
C6—C171.520 (2)C16—O41.455 (2)
C6—C71.582 (2)C16—H16A0.9800
C7—O21.4303 (19)C16—H16B0.9800
C7—C81.525 (2)C16—H16C0.9800
C7—H71.0000C17—O71.2006 (19)
C8—C91.325 (2)C17—O61.3393 (19)
C8—H80.9500C18—O61.441 (2)
C9—C101.521 (2)C18—H18A0.9800
C9—H90.9500C18—H18B0.9800
C10—O21.4382 (19)C18—H18C0.9800
C10—C111.510 (2)
C15—C1—C6116.28 (13)C9—C10—C1106.00 (13)
C15—C1—C10115.76 (13)N1—C11—C10110.50 (12)
C6—C1—C10102.03 (12)N1—C11—H11A109.5
C15—C1—C2110.64 (13)C10—C11—H11A109.5
C6—C1—C2100.86 (12)N1—C11—H11B109.5
C10—C1—C2109.99 (12)C10—C11—H11B109.5
O1—C2—C12110.57 (12)H11A—C11—H11B108.1
O1—C2—C3101.16 (12)N1—C12—C2109.50 (13)
C12—C2—C3121.25 (13)N1—C12—H12A109.8
O1—C2—C1101.14 (11)C2—C12—H12A109.8
C12—C2—C1112.92 (13)N1—C12—H12B109.8
C3—C2—C1107.37 (13)C2—C12—H12B109.8
C4—C3—C2105.15 (14)H12A—C12—H12B108.2
C4—C3—H3127.4O3—C13—N1125.15 (16)
C2—C3—H3127.4O3—C13—C14116.83 (15)
C3—C4—C5106.05 (14)N1—C13—C14117.88 (14)
C3—C4—H4127.0F3—C14—F2106.54 (15)
C5—C4—H4127.0F3—C14—F1106.87 (16)
O1—C5—C4100.37 (12)F2—C14—F1107.23 (14)
O1—C5—C6101.94 (12)F3—C14—C13109.82 (14)
C4—C5—C6108.05 (13)F2—C14—C13113.97 (15)
O1—C5—H5114.9F1—C14—C13112.02 (15)
C4—C5—H5114.9O5—C15—O4123.51 (15)
C6—C5—H5114.9O5—C15—C1124.53 (15)
C17—C6—C1120.34 (13)O4—C15—C1111.90 (14)
C17—C6—C5112.90 (13)O4—C16—H16A109.5
C1—C6—C5100.09 (12)O4—C16—H16B109.5
C17—C6—C7108.88 (13)H16A—C16—H16B109.5
C1—C6—C798.94 (12)O4—C16—H16C109.5
C5—C6—C7115.09 (13)H16A—C16—H16C109.5
O2—C7—C8100.74 (12)H16B—C16—H16C109.5
O2—C7—C6101.77 (12)O7—C17—O6123.57 (15)
C8—C7—C6108.18 (13)O7—C17—C6125.81 (15)
O2—C7—H7114.8O6—C17—C6110.43 (13)
C8—C7—H7114.8O6—C18—H18A109.5
C6—C7—H7114.8O6—C18—H18B109.5
C9—C8—C7106.02 (15)H18A—C18—H18B109.5
C9—C8—H8127.0O6—C18—H18C109.5
C7—C8—H8127.0H18A—C18—H18C109.5
C8—C9—C10105.27 (14)H18B—C18—H18C109.5
C8—C9—H9127.4C13—N1—C12124.77 (14)
C10—C9—H9127.4C13—N1—C11118.78 (13)
O2—C10—C11109.26 (13)C12—N1—C11114.62 (13)
O2—C10—C9100.58 (13)C2—O1—C596.60 (11)
C11—C10—C9121.69 (14)C7—O2—C1096.93 (11)
O2—C10—C1101.56 (11)C15—O4—C16114.29 (13)
C11—C10—C1115.03 (13)C17—O6—C18116.74 (13)
C15—C1—C2—O1158.98 (12)C6—C1—C10—C973.08 (14)
C6—C1—C2—O135.33 (13)C2—C1—C10—C9179.49 (12)
C10—C1—C2—O171.87 (14)O2—C10—C11—N165.07 (16)
C15—C1—C2—C1282.85 (16)C9—C10—C11—N1178.56 (14)
C6—C1—C2—C12153.50 (12)C1—C10—C11—N148.35 (17)
C10—C1—C2—C1246.30 (16)O1—C2—C12—N157.13 (17)
C15—C1—C2—C353.42 (16)C3—C2—C12—N1175.15 (14)
C6—C1—C2—C370.24 (14)C1—C2—C12—N155.37 (17)
C10—C1—C2—C3177.43 (13)O3—C13—C14—F30.8 (2)
O1—C2—C3—C432.33 (16)N1—C13—C14—F3175.17 (15)
C12—C2—C3—C4154.93 (15)O3—C13—C14—F2118.68 (18)
C1—C2—C3—C473.22 (16)N1—C13—C14—F265.4 (2)
C2—C3—C4—C50.44 (17)O3—C13—C14—F1119.35 (18)
C3—C4—C5—O132.93 (16)N1—C13—C14—F156.6 (2)
C3—C4—C5—C673.38 (16)C6—C1—C15—O535.8 (2)
C15—C1—C6—C174.8 (2)C10—C1—C15—O5155.57 (16)
C10—C1—C6—C17122.10 (14)C2—C1—C15—O578.4 (2)
C2—C1—C6—C17124.52 (14)C6—C1—C15—O4146.90 (14)
C15—C1—C6—C5119.37 (14)C10—C1—C15—O427.14 (19)
C10—C1—C6—C5113.70 (12)C2—C1—C15—O498.85 (15)
C2—C1—C6—C50.31 (13)C1—C6—C17—O758.2 (2)
C15—C1—C6—C7122.99 (14)C5—C6—C17—O7176.13 (15)
C10—C1—C6—C73.95 (14)C7—C6—C17—O754.7 (2)
C2—C1—C6—C7117.33 (12)C1—C6—C17—O6126.65 (15)
O1—C5—C6—C17165.16 (12)C5—C6—C17—O68.77 (18)
C4—C5—C6—C1759.95 (17)C7—C6—C17—O6120.36 (14)
O1—C5—C6—C135.94 (13)O3—C13—N1—C12167.96 (17)
C4—C5—C6—C169.27 (14)C14—C13—N1—C1216.5 (2)
O1—C5—C6—C768.99 (15)O3—C13—N1—C114.3 (3)
C4—C5—C6—C7174.20 (13)C14—C13—N1—C11179.81 (14)
C17—C6—C7—O2165.38 (12)C2—C12—N1—C13101.78 (18)
C1—C6—C7—O238.92 (14)C2—C12—N1—C1162.52 (17)
C5—C6—C7—O266.71 (16)C10—C11—N1—C13106.74 (16)
C17—C6—C7—C859.79 (16)C10—C11—N1—C1258.57 (17)
C1—C6—C7—C866.68 (15)C12—C2—O1—C5178.88 (12)
C5—C6—C7—C8172.31 (13)C3—C2—O1—C551.41 (13)
O2—C7—C8—C931.04 (16)C1—C2—O1—C559.02 (12)
C6—C7—C8—C975.27 (16)C4—C5—O1—C251.23 (13)
C7—C8—C9—C101.76 (17)C6—C5—O1—C259.90 (13)
C8—C9—C10—O233.85 (16)C8—C7—O2—C1050.57 (13)
C8—C9—C10—C11154.49 (15)C6—C7—O2—C1060.77 (13)
C8—C9—C10—C171.55 (16)C11—C10—O2—C7179.05 (12)
C15—C1—C10—O2158.88 (13)C9—C10—O2—C751.80 (13)
C6—C1—C10—O231.61 (14)C1—C10—O2—C757.12 (13)
C2—C1—C10—O274.81 (14)O5—C15—O4—C160.7 (2)
C15—C1—C10—C1183.27 (17)C1—C15—O4—C16178.05 (14)
C6—C1—C10—C11149.45 (13)O7—C17—O6—C182.2 (2)
C2—C1—C10—C1143.04 (17)C6—C17—O6—C18173.02 (14)
C15—C1—C10—C954.19 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.952.443.116 (2)128
C5—H5···O2ii1.002.603.1960 (19)118
C7—H7···O1ii1.002.543.2091 (19)124
C11—H11B···O40.992.573.093 (2)113
C12—H12A···O7iii0.992.523.328 (2)138
C12—H12B···O5iii0.992.343.030 (2)127
C12—H12B···F10.992.403.043 (2)122
C12—H12B···F20.992.332.962 (2)121
C16—H16A···F3iv0.982.623.475 (2)146
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+3/2.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H35.6
O···H/H···O28.5
F···H/H···F23.8
C···H/H···C5.5
F···F2.7
F···O/O···F1.6
N···H/H···N1.1
O···O1.1
C···O/O···C0.2
 

Funding information

X-ray crystallographic studies using synchrotron radiation were performed at the scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007). This work was partially supported by Baku State University.

References

First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850.  CrossRef PubMed Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853.  CrossRef Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018c). Private communication (refcode 1570123). CCDC, Cambridge, England.  Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018d). Private communication (refcode 1570124). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193–200.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLegon, A. C. (2017). Phys. Chem. Chem. Phys. 19, 14884–14896.  CrossRef PubMed Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138.  CrossRef PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMikherdov, A. S., Kinzhalov, M. A., Novikov, A. S., Boyarskiy, V. P., Boyarskaya, I. A., Dar'in, D. V., Starova, G. L. & Kukushkin, V. Yu. (2016). J. Am. Chem. Soc. 138, 14129–14137.  CrossRef Google Scholar
First citationScheiner, S. (2013). Acc. Chem. Res. 46, 280–288.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVandyshev, D. Yu., Shikhaliev, K. S., Potapov, A. Yu., Krysin, M. Yu., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561–2568.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds