research communications
S)-2-(2-hydroxybenzylamino)-4-methylpentanoato-κ2N,O1](1,10-phenanthroline-κ2N,N′)cadmium dihydrate
of bis[(aDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar, University, Muzaffarpur, Bihar, India, bOndokuz Mayis University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., 01601 Kiev, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, jameslspogr@ukr.net
The 13H18NO3)2(C12H8N2)]·2H2O, contains two crystallographically independent molecules that differ insignificantly in their geometrical parameters. In both, the CdII cation lies on a twofold rotation axis and is coordinated in a distorted octahedral fashion to two monodeprotonated residues of the L-leucine-derived ligand (S)-2-(2-hydroxybenzylamino)-4-methylpentanoic acid (L), as well as to a 1,10-phenanthroline ligand in a κ2N,N′ mode. The former coordinate in an N,O-chelating mode, exhibiting a trans-N,N′ mutual disposition. The phenolic oxygen donor groups remain protonated and do not coordinate to the cation but take part in intra- and intermolecular hydrogen bonds. In the crystal, O—H⋯O hydrogen bonding results in the formation of a three-dimensional network structure. The contribution to the electron density of two disordered water molecules was removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The studied crystal was refined as a two-component The title complex was also characterized by IR and 1H NMR spectroscopic methods.
of the mononuclear mixed-ligand title complex, [Cd(CKeywords: crystal structure; CdII complex; distorted octahedral coordination; O— H⋯O hydrogen bonding; π—π stacking interactions.; crystal structure.
CCDC reference: 1534691
1. Chemical context
Schiff base metal complexes are an important research area with respect to inorganic and supramolecular chemistry (Burkhardt et al., 2008; Przybylski et al., 2009; Moroz et al., 2012). Such compounds have been found to exhibit a number of properties among which are antibacterial, antifungal, antitumor, herbicidal activities (Asadi et al., 2011), as well as having applications in pharmaceutical, agricultural and industrial chemistry (Anis et al., 2013). Unlike another azomethine ligand family (Sliva et al., 1997; Penkova et al., 2010; Pavlishchuk et al., 2010), Schiff base ligands containing additional polar or acidic groups are known for their enhanced reactivity and, as a consequence, instability upon coordination to metals (Casella & Gullotti, 1983). Thus, attempts to isolate derived from aminohydroxamic acids resulted in under the formation of 2-substituted 3-hydroxyimidazolidine-4-ones (Iskenderov et al., 2009). In attempts to achieve stable polydentate ligand systems retaining the initial donor sets, it was found that reduction of to allows the formation of stable complexes (Koh et al., 1996). Phenanthroline and phenanthroline-derived ligands also have important roles in many fields (Faizi & Sharkina, 2015; Faizi et al., 2017). Herein we report the synthesis and structure of a new hydrated cadmium complex, [Cd(C13H18NO3)2(C12H8N2)]·2H2O, with a phenanthroline ligand and two ligands derived from L-leucine.
2. Structural commentary
The ). In each, the metal cation is located on a twofold rotation axis and is coordinated by three chelating ligands, leading to a distorted octahedral N4O2 coordination sphere. The mixed-ligand complex is made up from one neutral phenanthroline ligand and two residues of the monodeprotonated L-leucine-derived ligand L. The L ligands of each complex are trans-N,N′ disposed with respect to each other and comprise the chiral atoms C8 for the first and C27 for the second molecule. The Cd—O and Cd—N bond lengths in the first molecule are virtually the same in the Cd1O4N2 octahedron with Cd1—O1, Cd1—N1 and Cd1—N2 = 2.346 (3), 2.341 (4) and 2.315 (4) Å, respectively. The second molecule also exhibits similar geometrical parameters [Cd2—O4, Cd2—N3 and Cd2—N4 = 2.322 (4), 2.351 (5) and 2.339 (4) Å, respectively]. All three sets of ligands form five-membered chelate rings. Unlike the essentially planar chelate rings formed by the phenanthroline ligands, the ones involving the L-leucine-derived ligands exhibit a λ-conformation in both complex molecules. The deviations of the carbon atoms from the planes defined by the central atom and donor atoms are 0.258 (6) Å for C7, 0.599 (7) Å for C8, −0.417 (7) Å for C26 and 0.632 (5) Å for C27. In the second molecule, the highest deviations are found to be 0.160 and 0.232 Å for O4 and N4, respectively. The N—Cd—O and N—Cd—N bite angles are 73.01 (13) and 71.2 (2)°, respectively, for the first molecule and 72.40 (14) and 70.8 (2)° for the second. The phenolic O—H group remains protonated and is non-coordinating, albeit participating in an extensive intermolecular hydrogen-bonding network. Intramolecular hydrogen bonds are also found to exist and take place between atoms H2A and O3 as well as between H4 and O6 of the L-leucine-derived ligands. To a minor extent, intramolecular C—H⋯O interactions are also present between a methylene group and O4 (Table 1).
of the title complex contains two mononuclear molecules (Fig. 13. Supramolecular features
In the via hydrogen-bonding interactions between phenolic O—H and C—O groups of L-leucine-derived ligands (Table 1, Fig. 2). π–π interactions take place between the central phenanthroline ring and the C14–C19 rings of two leucine-derived L ligands with distances between the centroids of the aromatic fragments being 3.813 (4) Å for the first molecule. The stacking interactions of the second molecule are between C33–C38 rings of two L-leucine-derived ligands L and the C23–C25/C23′–C25′(–x + 1, y, –z + 2) phenanthroline fragment with a centroid-to-centroid distance of 3.773 (4) Å.
the complex molecules are linked4. Database survey
A search in the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016) revealed only one precedent of a CdII complex with a 2-hydroxybenzyl derivative of an amino acid (refcode WARLIL). In this mononuclear complex, the phenolic and β-carboxylic groups are deprotonated. The N-(2-hydroxybenzyl)-D,L-aspartic acid residue coordinates in an (O,N,O′)-tridentate mode including the phenolic O atom (Lou et al., 2005). This differs from the title compound in which the phenolic group is protonated and is non-coordinating. The second O atom of the β-carboxylic group bridges the neighbouring CdII units into a polymeric chain. In addition, there are four structures of complexes of homologous zinc and with 2-hydroxybenzyl derivatives of alanine (refcodes AZIROQ, AZIRUW, NOLYIW, NOLYOC). These compounds have a Zn2O2 binuclear core, and the ligands also coordinate in an (O,N,O′)-tridentate manner, with an additional μ2-mode for the phenolic O atom (Lou et al., 2004; Ranford et al., 1998).
5. Synthesis and crystallization
Synthesis of (S)-2-(2-hydroxybenzylamino)-4-methylpentanoic acid (L)
A mixture of L-leucine (1.00 g, 7.62 mmol) and LiOH·H2O (0.323 g, 7.62 mmol) in methanol (25 ml) was stirred for 10 min to dissolve. A methanolic solution of o-salicylaldehyde (0.930 g, 7.62 mmol) was added dropwise to the above solution whereby the colour of the solution turned to yellow. Stirring was continued for 30 min before the solution was treated with NaBH4 (0.580 g, 15.3 mmol), leading to a colourless solution. The solvent was evaporated under reduced pressure, and the resulting solid was dissolved in water. The clear solution was then acidified with diluted HCl (pH ∼5–7). The ligand precipitated as a white solid. The suspension was filtered, and the residue was washed thoroughly with water. The solid was dried in a vacuum desiccator (yield 1.65 g, 88%). Because of its poor solubility, the 1H NMR spectrum for the ligand was recorded as the lithium salt of the ligand, prepared by adding 2 equiv. of LiOH·3H2O in CD3OD. 1H NMR Li2L (CD3OD, 400 MHz, ppm): 0.76 (d, 3H, Hj) , 0.81 (d, 3H, Hi) , 1.36 (m, 1H, Hg) , 1.41 (m, 1H, Hg′), 1.67 (m, 1H, Hh) , 3.07 (dd, 1H, Hf) , 3.65 (d, 1H, He) , 3.94 (d, 1H, He′), 6.35 (t, 1H, Hc) , 6.45 (d, 1H, Ha) , 6.94 (m, 2H, Hb,d). m/z (ESI–MS, [LiL]−); calculated: 242.22, found 242.02. IR (KBr, cm−1) ν(COO)asym 1600 (s), 1593 (s); ν (COO)sym 1393 (m), cm−1.
Synthesis of [Cd(L)2(phen)]·(H2O)2]
A methanolic solution of Cd(NO3)2·4H2O (0.130 g, 0.421 mmol) was added under stirring to 20 ml of a methanolic solution of L (0.200 g, 0.843mmol) and NaOH (0.034 g, 0.843 mmol), followed by addition of phenanthroline monohydrate (0.076 g, 0.421mmol) in 5 ml of methanol. A clear solution was formed within half an hour under constant stirring. After 2 h, the solvent was evaporated to dryness. The residue was subsequently washed with methanol and diethyl ether, and finally dried under vacuum. [Cd(L)2(phen)]·2H2O. Yield: 60%. [Cd(L)2(phen)]·2H2O: IR (KBr, cm−1) ν(COO)asym 1594, ν(COO)sym 1384, ν(phenolic, CO) 1257. 1H NMR [Cd(L)2(phen)]·2H2O] (DMSO, 400 MHz. ppm): 0.6 (s, broad, 3HJ), 0.7 (s, broad, 3Hi), 1.3 (s, broad, 1Hg), 1.5 (s, broad, Hg′), 2.7 (s, broad, 1Hf), 2.9 (s, broad, 2He,e′), 6.6 (s, broad, 1Hd), 6.4 (s, broad, 1Hc), 6.6 (s, broad, 1Hb), 6.1 (s, broad,1Ha), 8.0 (s, broad, 2Hn), 8.1 (s, broad, 2Hm), 8.7 (s, broad, 2Hl), 9.1 (s, broad, 2Hk). ESI–Mass (-ve) at 829.18 (calculated 829.18). Suitable needle-shaped crystals for X-ray data collection were obtained by slow evaporation of a methanol: DMF (2:1 v:v) solution within a week.
6. Refinement
Crystal data, data collection and structure . Atoms O3, C3, C4 and C6 showed highly anisotropic displacement parameters and were modelled using the ISOR instruction in SHELXL (Sheldrick, 2015). The H atoms of the phenolic OH group were located from a difference-Fourier map and were constrained to ride on their parent atoms, with O—H = 0.82 Å and with Uiso(H) = 1.5Ueq(O). All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2After unsuccessful attempts to model disordered solvent molecules, their contributions to the diffraction data were removed by using the SQUEEZE routine in PLATON (Spek, 2015). PLATON calculated a solvent-accessible void volume in the of 629 Å3 (15.4% of the total cell volume), corresponding to 151 electrons (residual electron density after the last cycle) per or 37.75 electrons per one complex molecule. This number agrees with two water molecules. Although not modelled in the refined structure, the two water molecules are included in the formula and other crystallographic data.
Supporting information
CCDC reference: 1534691
https://doi.org/10.1107/S2056989018013877/wm5464sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018013877/wm5464Isup2.hkl
Data collection: SMART (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cd(C13H18NO3)2(C12H8N2)]·2H2O | F(000) = 1584 |
Mr = 801.22 | Dx = 1.304 Mg m−3 |
Monoclinic, I2 | Mo Kα radiation, λ = 0.71073 Å |
a = 18.0171 (6) Å | Cell parameters from 2245 reflections |
b = 12.2561 (3) Å | θ = 1.8–26.0° |
c = 18.8597 (9) Å | µ = 0.59 mm−1 |
β = 101.582 (3)° | T = 293 K |
V = 4079.8 (3) Å3 | Needle, colorless |
Z = 4 | 0.19 × 0.12 × 0.09 mm |
Bruker SMART CCD diffractometer | 7944 independent reflections |
Radiation source: fine-focus sealed tube, x-ray | 6342 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
phi and ω scans | θmax = 26.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −22→21 |
Tmin = 0.867, Tmax = 0.942 | k = −15→15 |
22798 measured reflections | l = −23→23 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0365P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max = 0.036 |
S = 0.99 | Δρmax = 0.22 e Å−3 |
7944 reflections | Δρmin = −0.18 e Å−3 |
444 parameters | Absolute structure: Refined as an inversion twin |
37 restraints | Absolute structure parameter: −0.03 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.500000 | 0.69148 (3) | 0.500000 | 0.05478 (18) | |
C1 | 0.3532 (4) | 0.5367 (7) | 0.4350 (4) | 0.094 (2) | |
H1 | 0.328791 | 0.603070 | 0.423336 | 0.113* | |
C2 | 0.3123 (6) | 0.4396 (10) | 0.4188 (6) | 0.136 (4) | |
H2 | 0.261275 | 0.441306 | 0.396832 | 0.163* | |
C3 | 0.3476 (8) | 0.3454 (10) | 0.4352 (6) | 0.142 (4) | |
H3 | 0.320426 | 0.281053 | 0.424184 | 0.171* | |
C4 | 0.4239 (6) | 0.3391 (6) | 0.4682 (4) | 0.106 (2) | |
C5 | 0.4604 (3) | 0.4394 (4) | 0.4823 (3) | 0.0693 (15) | |
C6 | 0.4641 (6) | 0.2410 (6) | 0.4860 (6) | 0.146 (6) | |
H6 | 0.438503 | 0.174909 | 0.477383 | 0.176* | |
C7 | 0.3702 (3) | 0.8567 (5) | 0.5040 (3) | 0.0707 (15) | |
C8 | 0.4129 (4) | 0.8566 (6) | 0.5827 (4) | 0.0677 (19) | |
H8 | 0.376062 | 0.862966 | 0.614269 | 0.081* | |
C9 | 0.4657 (4) | 0.9528 (5) | 0.5960 (3) | 0.0820 (18) | |
H9A | 0.436890 | 1.017813 | 0.578965 | 0.098* | |
H9B | 0.503823 | 0.943726 | 0.566820 | 0.098* | |
C10 | 0.5066 (6) | 0.9725 (7) | 0.6751 (4) | 0.121 (3) | |
H10 | 0.533040 | 0.904880 | 0.692573 | 0.145* | |
C11 | 0.5670 (6) | 1.0626 (7) | 0.6790 (5) | 0.152 (4) | |
H11A | 0.600500 | 1.044664 | 0.646987 | 0.228* | |
H11B | 0.542692 | 1.131051 | 0.664725 | 0.228* | |
H11C | 0.595593 | 1.068085 | 0.727635 | 0.228* | |
C12 | 0.4540 (7) | 0.9980 (11) | 0.7240 (6) | 0.208 (6) | |
H12A | 0.416817 | 0.941072 | 0.720849 | 0.313* | |
H12B | 0.481962 | 1.003153 | 0.772901 | 0.313* | |
H12C | 0.429061 | 1.066120 | 0.709991 | 0.313* | |
C13 | 0.4116 (3) | 0.6711 (5) | 0.6333 (4) | 0.0833 (18) | |
H13A | 0.365937 | 0.653468 | 0.598276 | 0.100* | |
H13B | 0.396256 | 0.704215 | 0.674837 | 0.100* | |
C14 | 0.4537 (3) | 0.5672 (5) | 0.6570 (3) | 0.0637 (14) | |
C15 | 0.4194 (4) | 0.4692 (7) | 0.6421 (3) | 0.0750 (16) | |
H15 | 0.370191 | 0.467626 | 0.614955 | 0.090* | |
C16 | 0.4535 (5) | 0.3729 (6) | 0.6649 (4) | 0.089 (2) | |
H16 | 0.428382 | 0.307134 | 0.653054 | 0.106* | |
C17 | 0.5248 (5) | 0.3745 (6) | 0.7052 (4) | 0.096 (2) | |
H17 | 0.548436 | 0.309439 | 0.722026 | 0.116* | |
C18 | 0.5618 (4) | 0.4705 (7) | 0.7211 (4) | 0.099 (2) | |
H18 | 0.611238 | 0.471017 | 0.747584 | 0.119* | |
C19 | 0.5264 (4) | 0.5667 (5) | 0.6981 (3) | 0.0790 (17) | |
N1 | 0.4256 (3) | 0.5362 (4) | 0.4664 (2) | 0.0674 (12) | |
N2 | 0.4565 (2) | 0.7519 (3) | 0.6006 (2) | 0.0576 (10) | |
H2A | 0.501263 | 0.769513 | 0.637666 | 0.069* | |
O1 | 0.3930 (2) | 0.7999 (3) | 0.4576 (2) | 0.0728 (10) | |
O2 | 0.3145 (3) | 0.9197 (4) | 0.4897 (3) | 0.1030 (15) | |
O3 | 0.5641 (3) | 0.6627 (4) | 0.7132 (3) | 0.130 (2) | |
H3A | 0.542946 | 0.699788 | 0.739444 | 0.194* | |
Cd2 | 0.500000 | 0.46530 (4) | 1.000000 | 0.05859 (18) | |
C20 | 0.5982 (4) | 0.3122 (7) | 0.9104 (4) | 0.076 (2) | |
H20 | 0.614551 | 0.379213 | 0.896042 | 0.091* | |
C21 | 0.6251 (4) | 0.2141 (7) | 0.8843 (4) | 0.094 (2) | |
H21 | 0.659847 | 0.216857 | 0.853995 | 0.113* | |
C22 | 0.6000 (4) | 0.1167 (7) | 0.9037 (4) | 0.098 (2) | |
H22 | 0.615858 | 0.052420 | 0.885145 | 0.118* | |
C23 | 0.5505 (3) | 0.1129 (5) | 0.9514 (4) | 0.0829 (19) | |
C24 | 0.5265 (3) | 0.2132 (4) | 0.9755 (3) | 0.0661 (14) | |
C25 | 0.5235 (4) | 0.0111 (5) | 0.9773 (5) | 0.104 (3) | |
H25 | 0.539693 | −0.055026 | 0.961602 | 0.124* | |
C26 | 0.5314 (4) | 0.6410 (6) | 0.8935 (4) | 0.0804 (18) | |
C27 | 0.4446 (3) | 0.6360 (4) | 0.8759 (3) | 0.0664 (14) | |
H27 | 0.428202 | 0.641918 | 0.823245 | 0.080* | |
C28 | 0.4105 (4) | 0.7320 (5) | 0.9101 (3) | 0.0778 (16) | |
H28A | 0.424075 | 0.724288 | 0.962241 | 0.093* | |
H28B | 0.434021 | 0.798545 | 0.897435 | 0.093* | |
C29 | 0.3254 (5) | 0.7458 (6) | 0.8891 (5) | 0.098 (2) | |
H29 | 0.301566 | 0.675093 | 0.894081 | 0.117* | |
C30 | 0.3004 (6) | 0.7846 (11) | 0.8102 (6) | 0.195 (5) | |
H30A | 0.317410 | 0.733412 | 0.778404 | 0.293* | |
H30B | 0.246106 | 0.789565 | 0.798264 | 0.293* | |
H30C | 0.321961 | 0.854958 | 0.804816 | 0.293* | |
C31 | 0.2988 (6) | 0.8255 (8) | 0.9385 (7) | 0.164 (4) | |
H31A | 0.244850 | 0.833614 | 0.924712 | 0.246* | |
H31B | 0.311856 | 0.799333 | 0.987370 | 0.246* | |
H31C | 0.322687 | 0.894820 | 0.935077 | 0.246* | |
C32 | 0.3922 (3) | 0.4556 (4) | 0.8372 (3) | 0.0645 (13) | |
H32A | 0.435248 | 0.441562 | 0.814871 | 0.077* | |
H32B | 0.353162 | 0.490151 | 0.801309 | 0.077* | |
C33 | 0.3628 (3) | 0.3497 (4) | 0.8590 (3) | 0.0593 (12) | |
C34 | 0.3872 (3) | 0.2514 (5) | 0.8345 (3) | 0.0728 (15) | |
H34 | 0.423115 | 0.252114 | 0.805316 | 0.087* | |
C35 | 0.3586 (4) | 0.1516 (5) | 0.8532 (4) | 0.0872 (19) | |
H35 | 0.374557 | 0.086691 | 0.835592 | 0.105* | |
C36 | 0.3074 (4) | 0.1500 (5) | 0.8971 (4) | 0.0847 (19) | |
H36 | 0.288831 | 0.083470 | 0.909771 | 0.102* | |
C37 | 0.2824 (3) | 0.2463 (5) | 0.9235 (4) | 0.0759 (16) | |
H37 | 0.249014 | 0.244196 | 0.955244 | 0.091* | |
C38 | 0.3078 (3) | 0.3458 (4) | 0.9020 (3) | 0.0606 (13) | |
N3 | 0.5503 (2) | 0.3089 (4) | 0.9548 (2) | 0.0644 (11) | |
N4 | 0.4156 (2) | 0.5315 (3) | 0.8985 (2) | 0.0529 (9) | |
H4 | 0.369103 | 0.549857 | 0.915387 | 0.063* | |
O4 | 0.5687 (2) | 0.5731 (4) | 0.9349 (2) | 0.0770 (11) | |
O5 | 0.5606 (4) | 0.7171 (7) | 0.8649 (4) | 0.164 (4) | |
O6 | 0.2817 (2) | 0.4428 (3) | 0.9223 (2) | 0.0803 (11) | |
H6A | 0.250728 | 0.431603 | 0.947898 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0543 (4) | 0.0500 (4) | 0.0664 (4) | 0.000 | 0.0272 (3) | 0.000 |
C1 | 0.072 (4) | 0.118 (6) | 0.096 (5) | −0.017 (4) | 0.024 (4) | −0.012 (4) |
C2 | 0.101 (7) | 0.160 (10) | 0.143 (8) | −0.066 (7) | 0.015 (6) | −0.024 (8) |
C3 | 0.197 (12) | 0.117 (8) | 0.126 (8) | −0.089 (9) | 0.064 (8) | −0.035 (7) |
C4 | 0.171 (8) | 0.073 (5) | 0.082 (5) | −0.042 (5) | 0.048 (5) | −0.010 (4) |
C5 | 0.105 (4) | 0.051 (3) | 0.058 (3) | −0.009 (3) | 0.031 (3) | −0.002 (2) |
C6 | 0.303 (19) | 0.057 (4) | 0.105 (9) | −0.026 (6) | 0.101 (11) | −0.008 (5) |
C7 | 0.072 (4) | 0.066 (3) | 0.085 (4) | 0.019 (3) | 0.043 (3) | 0.027 (3) |
C8 | 0.085 (4) | 0.051 (4) | 0.078 (5) | 0.007 (3) | 0.044 (4) | 0.012 (3) |
C9 | 0.121 (5) | 0.056 (4) | 0.080 (4) | 0.017 (3) | 0.047 (4) | 0.009 (3) |
C10 | 0.184 (8) | 0.091 (5) | 0.095 (5) | −0.019 (6) | 0.045 (5) | −0.015 (5) |
C11 | 0.220 (11) | 0.090 (6) | 0.136 (8) | −0.023 (7) | 0.012 (7) | −0.021 (6) |
C12 | 0.244 (13) | 0.261 (15) | 0.145 (9) | −0.056 (11) | 0.097 (10) | −0.084 (9) |
C13 | 0.093 (4) | 0.070 (4) | 0.103 (5) | 0.014 (3) | 0.056 (4) | 0.029 (3) |
C14 | 0.074 (4) | 0.067 (4) | 0.057 (3) | 0.012 (3) | 0.029 (3) | 0.015 (3) |
C15 | 0.083 (4) | 0.080 (4) | 0.062 (3) | −0.012 (4) | 0.016 (3) | 0.015 (4) |
C16 | 0.141 (7) | 0.063 (4) | 0.069 (4) | −0.006 (4) | 0.036 (4) | 0.008 (3) |
C17 | 0.144 (7) | 0.075 (5) | 0.077 (5) | 0.031 (5) | 0.037 (5) | 0.021 (4) |
C18 | 0.106 (5) | 0.107 (6) | 0.079 (4) | 0.010 (5) | 0.002 (4) | 0.030 (4) |
C19 | 0.117 (5) | 0.062 (4) | 0.054 (3) | −0.008 (4) | 0.006 (3) | 0.013 (3) |
N1 | 0.072 (3) | 0.070 (3) | 0.064 (3) | −0.019 (2) | 0.022 (2) | −0.003 (2) |
N2 | 0.067 (3) | 0.052 (2) | 0.061 (2) | 0.007 (2) | 0.033 (2) | 0.011 (2) |
O1 | 0.073 (2) | 0.078 (3) | 0.074 (2) | 0.0225 (19) | 0.029 (2) | 0.006 (2) |
O2 | 0.099 (3) | 0.117 (3) | 0.106 (3) | 0.057 (3) | 0.052 (3) | 0.039 (3) |
O3 | 0.182 (5) | 0.094 (4) | 0.090 (3) | −0.043 (3) | −0.027 (3) | 0.017 (3) |
Cd2 | 0.0580 (4) | 0.0627 (4) | 0.0563 (4) | 0.000 | 0.0145 (3) | 0.000 |
C20 | 0.075 (4) | 0.082 (5) | 0.071 (4) | 0.008 (4) | 0.011 (3) | −0.012 (4) |
C21 | 0.086 (4) | 0.112 (6) | 0.088 (5) | 0.018 (4) | 0.025 (3) | −0.026 (4) |
C22 | 0.089 (5) | 0.088 (6) | 0.109 (6) | 0.022 (4) | −0.002 (4) | −0.034 (4) |
C23 | 0.064 (4) | 0.081 (5) | 0.092 (5) | 0.015 (3) | −0.013 (3) | −0.018 (4) |
C24 | 0.053 (3) | 0.064 (4) | 0.073 (4) | 0.003 (2) | −0.007 (2) | −0.006 (3) |
C25 | 0.099 (7) | 0.054 (4) | 0.141 (8) | 0.006 (3) | −0.018 (4) | −0.011 (4) |
C26 | 0.085 (5) | 0.091 (5) | 0.070 (4) | −0.035 (4) | 0.028 (4) | −0.007 (4) |
C27 | 0.086 (4) | 0.066 (3) | 0.046 (3) | −0.020 (3) | 0.011 (3) | 0.008 (2) |
C28 | 0.104 (5) | 0.055 (3) | 0.068 (4) | −0.013 (3) | 0.001 (3) | 0.009 (3) |
C29 | 0.110 (6) | 0.056 (4) | 0.119 (6) | 0.007 (4) | 0.005 (5) | 0.005 (4) |
C30 | 0.150 (9) | 0.275 (15) | 0.136 (9) | 0.038 (9) | −0.033 (7) | 0.031 (9) |
C31 | 0.180 (10) | 0.124 (8) | 0.189 (11) | 0.073 (7) | 0.038 (8) | 0.017 (7) |
C32 | 0.071 (3) | 0.068 (3) | 0.053 (3) | −0.010 (3) | 0.009 (2) | −0.003 (3) |
C33 | 0.055 (3) | 0.054 (3) | 0.065 (3) | −0.011 (2) | 0.001 (2) | −0.009 (2) |
C34 | 0.069 (3) | 0.070 (4) | 0.076 (4) | 0.002 (3) | 0.006 (3) | −0.016 (3) |
C35 | 0.088 (5) | 0.057 (4) | 0.113 (5) | −0.004 (3) | 0.010 (4) | −0.018 (3) |
C36 | 0.067 (4) | 0.055 (4) | 0.126 (6) | −0.008 (3) | 0.006 (4) | 0.005 (4) |
C37 | 0.054 (3) | 0.072 (4) | 0.101 (5) | −0.011 (3) | 0.014 (3) | 0.009 (4) |
C38 | 0.058 (3) | 0.053 (3) | 0.070 (3) | −0.011 (2) | 0.011 (3) | −0.009 (3) |
N3 | 0.055 (3) | 0.072 (3) | 0.064 (3) | −0.001 (2) | 0.008 (2) | −0.009 (2) |
N4 | 0.058 (2) | 0.052 (2) | 0.050 (2) | −0.0103 (18) | 0.0133 (18) | −0.0006 (18) |
O4 | 0.061 (2) | 0.091 (3) | 0.083 (3) | −0.013 (2) | 0.026 (2) | −0.005 (2) |
O5 | 0.157 (5) | 0.182 (8) | 0.148 (5) | −0.098 (6) | 0.021 (4) | 0.078 (6) |
O6 | 0.071 (2) | 0.059 (2) | 0.124 (3) | −0.0123 (18) | 0.049 (2) | −0.011 (2) |
Cd1—N2i | 2.315 (4) | Cd2—O4ii | 2.322 (4) |
Cd1—N2 | 2.315 (4) | Cd2—O4 | 2.322 (4) |
Cd1—N1i | 2.341 (4) | Cd2—N4ii | 2.339 (4) |
Cd1—N1 | 2.341 (4) | Cd2—N4 | 2.339 (4) |
Cd1—O1i | 2.346 (3) | Cd2—N3 | 2.351 (5) |
Cd1—O1 | 2.346 (3) | Cd2—N3ii | 2.352 (5) |
C1—N1 | 1.320 (8) | C20—N3 | 1.321 (8) |
C1—C2 | 1.400 (12) | C20—C21 | 1.420 (10) |
C1—H1 | 0.9300 | C20—H20 | 0.9300 |
C2—C3 | 1.324 (15) | C21—C22 | 1.353 (10) |
C2—H2 | 0.9300 | C21—H21 | 0.9300 |
C3—C4 | 1.393 (15) | C22—C23 | 1.388 (10) |
C3—H3 | 0.9300 | C22—H22 | 0.9300 |
C4—C5 | 1.393 (9) | C23—C24 | 1.408 (8) |
C4—C6 | 1.408 (12) | C23—C25 | 1.459 (9) |
C5—N1 | 1.347 (7) | C24—N3 | 1.333 (7) |
C5—C5i | 1.449 (12) | C24—C24ii | 1.458 (12) |
C6—C6i | 1.30 (2) | C25—C25ii | 1.318 (16) |
C6—H6 | 0.9300 | C25—H25 | 0.9300 |
C7—O1 | 1.251 (6) | C26—O4 | 1.242 (8) |
C7—O2 | 1.252 (6) | C26—O5 | 1.246 (8) |
C7—C8 | 1.529 (9) | C26—C27 | 1.533 (8) |
C8—C9 | 1.503 (10) | C27—N4 | 1.477 (6) |
C8—N2 | 1.506 (8) | C27—C28 | 1.529 (8) |
C8—H8 | 0.9800 | C27—H27 | 0.9800 |
C9—C10 | 1.544 (10) | C28—C29 | 1.514 (10) |
C9—H9A | 0.9700 | C28—H28A | 0.9700 |
C9—H9B | 0.9700 | C28—H28B | 0.9700 |
C10—C12 | 1.482 (12) | C29—C31 | 1.494 (13) |
C10—C11 | 1.543 (11) | C29—C30 | 1.540 (13) |
C10—H10 | 0.9800 | C29—H29 | 0.9800 |
C11—H11A | 0.9600 | C30—H30A | 0.9600 |
C11—H11B | 0.9600 | C30—H30B | 0.9600 |
C11—H11C | 0.9600 | C30—H30C | 0.9600 |
C12—H12A | 0.9600 | C31—H31A | 0.9600 |
C12—H12B | 0.9600 | C31—H31B | 0.9600 |
C12—H12C | 0.9600 | C31—H31C | 0.9600 |
C13—N2 | 1.489 (6) | C32—N4 | 1.477 (6) |
C13—C14 | 1.504 (7) | C32—C33 | 1.491 (7) |
C13—H13A | 0.9700 | C32—H32A | 0.9700 |
C13—H13B | 0.9700 | C32—H32B | 0.9700 |
C14—C15 | 1.355 (10) | C33—C34 | 1.393 (7) |
C14—C19 | 1.380 (8) | C33—C38 | 1.402 (7) |
C15—C16 | 1.360 (10) | C34—C35 | 1.400 (8) |
C15—H15 | 0.9300 | C34—H34 | 0.9300 |
C16—C17 | 1.354 (9) | C35—C36 | 1.358 (10) |
C16—H16 | 0.9300 | C35—H35 | 0.9300 |
C17—C18 | 1.356 (10) | C36—C37 | 1.391 (9) |
C17—H17 | 0.9300 | C36—H36 | 0.9300 |
C18—C19 | 1.369 (9) | C37—C38 | 1.391 (8) |
C18—H18 | 0.9300 | C37—H37 | 0.9300 |
C19—O3 | 1.359 (7) | C38—O6 | 1.360 (6) |
N2—H2A | 0.9800 | N4—H4 | 0.9800 |
O3—H3A | 0.8200 | O6—H6A | 0.8200 |
N2i—Cd1—N2 | 142.70 (19) | O4ii—Cd2—O4 | 110.6 (2) |
N2i—Cd1—N1i | 102.22 (15) | O4ii—Cd2—N4ii | 72.40 (14) |
N2—Cd1—N1i | 107.96 (14) | O4—Cd2—N4ii | 84.68 (14) |
N2i—Cd1—N1 | 107.96 (14) | O4ii—Cd2—N4 | 84.68 (14) |
N2—Cd1—N1 | 102.22 (15) | O4—Cd2—N4 | 72.40 (14) |
N1i—Cd1—N1 | 71.2 (2) | N4ii—Cd2—N4 | 139.38 (18) |
N2i—Cd1—O1i | 73.01 (13) | O4ii—Cd2—N3 | 160.06 (16) |
N2—Cd1—O1i | 85.98 (14) | O4—Cd2—N3 | 89.30 (16) |
N1i—Cd1—O1i | 88.94 (16) | N4ii—Cd2—N3 | 110.19 (13) |
N1—Cd1—O1i | 159.98 (16) | N4—Cd2—N3 | 102.76 (14) |
N2i—Cd1—O1 | 85.98 (14) | O4ii—Cd2—N3ii | 89.30 (17) |
N2—Cd1—O1 | 73.01 (13) | O4—Cd2—N3ii | 160.06 (16) |
N1i—Cd1—O1 | 159.98 (16) | N4ii—Cd2—N3ii | 102.76 (14) |
N1—Cd1—O1 | 88.94 (16) | N4—Cd2—N3ii | 110.18 (13) |
O1i—Cd1—O1 | 111.0 (2) | N3—Cd2—N3ii | 70.8 (2) |
N1—C1—C2 | 121.5 (8) | N3—C20—C21 | 120.3 (8) |
N1—C1—H1 | 119.2 | N3—C20—H20 | 119.8 |
C2—C1—H1 | 119.2 | C21—C20—H20 | 119.8 |
C3—C2—C1 | 118.9 (10) | C22—C21—C20 | 119.9 (7) |
C3—C2—H2 | 120.6 | C22—C21—H21 | 120.0 |
C1—C2—H2 | 120.6 | C20—C21—H21 | 120.0 |
C2—C3—C4 | 122.5 (9) | C21—C22—C23 | 119.8 (6) |
C2—C3—H3 | 118.7 | C21—C22—H22 | 120.1 |
C4—C3—H3 | 118.7 | C23—C22—H22 | 120.1 |
C3—C4—C5 | 114.9 (8) | C22—C23—C24 | 117.3 (7) |
C3—C4—C6 | 124.6 (9) | C22—C23—C25 | 123.2 (7) |
C5—C4—C6 | 120.5 (9) | C24—C23—C25 | 119.6 (7) |
N1—C5—C4 | 123.6 (7) | N3—C24—C23 | 122.5 (6) |
N1—C5—C5i | 118.3 (3) | N3—C24—C24ii | 118.3 (3) |
C4—C5—C5i | 118.1 (5) | C23—C24—C24ii | 119.2 (4) |
C6i—C6—C4 | 121.3 (6) | C25ii—C25—C23 | 121.2 (4) |
C6i—C6—H6 | 119.3 | C25ii—C25—H25 | 119.4 |
C4—C6—H6 | 119.3 | C23—C25—H25 | 119.4 |
O1—C7—O2 | 123.6 (6) | O4—C26—O5 | 123.5 (7) |
O1—C7—C8 | 120.5 (5) | O4—C26—C27 | 120.6 (5) |
O2—C7—C8 | 115.9 (6) | O5—C26—C27 | 115.9 (7) |
C9—C8—N2 | 110.3 (5) | N4—C27—C28 | 110.5 (4) |
C9—C8—C7 | 109.8 (5) | N4—C27—C26 | 112.2 (5) |
N2—C8—C7 | 110.9 (5) | C28—C27—C26 | 110.8 (5) |
C9—C8—H8 | 108.6 | N4—C27—H27 | 107.7 |
N2—C8—H8 | 108.6 | C28—C27—H27 | 107.7 |
C7—C8—H8 | 108.6 | C26—C27—H27 | 107.7 |
C8—C9—C10 | 116.6 (6) | C29—C28—C27 | 116.6 (5) |
C8—C9—H9A | 108.1 | C29—C28—H28A | 108.2 |
C10—C9—H9A | 108.1 | C27—C28—H28A | 108.2 |
C8—C9—H9B | 108.1 | C29—C28—H28B | 108.2 |
C10—C9—H9B | 108.1 | C27—C28—H28B | 108.2 |
H9A—C9—H9B | 107.3 | H28A—C28—H28B | 107.3 |
C12—C10—C11 | 110.7 (8) | C31—C29—C28 | 110.2 (7) |
C12—C10—C9 | 113.2 (9) | C31—C29—C30 | 109.4 (8) |
C11—C10—C9 | 110.7 (7) | C28—C29—C30 | 111.8 (8) |
C12—C10—H10 | 107.3 | C31—C29—H29 | 108.5 |
C11—C10—H10 | 107.3 | C28—C29—H29 | 108.5 |
C9—C10—H10 | 107.3 | C30—C29—H29 | 108.5 |
C10—C11—H11A | 109.5 | C29—C30—H30A | 109.5 |
C10—C11—H11B | 109.5 | C29—C30—H30B | 109.5 |
H11A—C11—H11B | 109.5 | H30A—C30—H30B | 109.5 |
C10—C11—H11C | 109.5 | C29—C30—H30C | 109.5 |
H11A—C11—H11C | 109.5 | H30A—C30—H30C | 109.5 |
H11B—C11—H11C | 109.5 | H30B—C30—H30C | 109.5 |
C10—C12—H12A | 109.5 | C29—C31—H31A | 109.5 |
C10—C12—H12B | 109.5 | C29—C31—H31B | 109.5 |
H12A—C12—H12B | 109.5 | H31A—C31—H31B | 109.5 |
C10—C12—H12C | 109.5 | C29—C31—H31C | 109.5 |
H12A—C12—H12C | 109.5 | H31A—C31—H31C | 109.5 |
H12B—C12—H12C | 109.5 | H31B—C31—H31C | 109.5 |
N2—C13—C14 | 113.7 (4) | N4—C32—C33 | 113.2 (4) |
N2—C13—H13A | 108.8 | N4—C32—H32A | 108.9 |
C14—C13—H13A | 108.8 | C33—C32—H32A | 108.9 |
N2—C13—H13B | 108.8 | N4—C32—H32B | 108.9 |
C14—C13—H13B | 108.8 | C33—C32—H32B | 108.9 |
H13A—C13—H13B | 107.7 | H32A—C32—H32B | 107.7 |
C15—C14—C19 | 117.1 (5) | C34—C33—C38 | 118.0 (5) |
C15—C14—C13 | 120.4 (6) | C34—C33—C32 | 120.5 (5) |
C19—C14—C13 | 122.4 (6) | C38—C33—C32 | 121.4 (5) |
C14—C15—C16 | 123.0 (6) | C33—C34—C35 | 121.0 (6) |
C14—C15—H15 | 118.5 | C33—C34—H34 | 119.5 |
C16—C15—H15 | 118.5 | C35—C34—H34 | 119.5 |
C17—C16—C15 | 118.9 (7) | C36—C35—C34 | 119.8 (6) |
C17—C16—H16 | 120.6 | C36—C35—H35 | 120.1 |
C15—C16—H16 | 120.6 | C34—C35—H35 | 120.1 |
C16—C17—C18 | 120.4 (6) | C35—C36—C37 | 120.9 (6) |
C16—C17—H17 | 119.8 | C35—C36—H36 | 119.5 |
C18—C17—H17 | 119.8 | C37—C36—H36 | 119.5 |
C17—C18—C19 | 120.0 (6) | C36—C37—C38 | 119.4 (6) |
C17—C18—H18 | 120.0 | C36—C37—H37 | 120.3 |
C19—C18—H18 | 120.0 | C38—C37—H37 | 120.3 |
O3—C19—C18 | 119.8 (6) | O6—C38—C37 | 122.1 (5) |
O3—C19—C14 | 119.4 (6) | O6—C38—C33 | 117.2 (5) |
C18—C19—C14 | 120.7 (6) | C37—C38—C33 | 120.7 (5) |
C1—N1—C5 | 118.6 (5) | C20—N3—C24 | 120.1 (6) |
C1—N1—Cd1 | 125.3 (5) | C20—N3—Cd2 | 123.6 (5) |
C5—N1—Cd1 | 116.1 (4) | C24—N3—Cd2 | 116.3 (4) |
C13—N2—C8 | 110.9 (4) | C32—N4—C27 | 112.5 (4) |
C13—N2—Cd1 | 115.4 (3) | C32—N4—Cd2 | 117.3 (3) |
C8—N2—Cd1 | 109.6 (3) | C27—N4—Cd2 | 109.1 (3) |
C13—N2—H2A | 106.8 | C32—N4—H4 | 105.7 |
C8—N2—H2A | 106.8 | C27—N4—H4 | 105.7 |
Cd1—N2—H2A | 106.8 | Cd2—N4—H4 | 105.7 |
C7—O1—Cd1 | 116.1 (4) | C26—O4—Cd2 | 115.8 (4) |
C19—O3—H3A | 109.5 | C38—O6—H6A | 109.5 |
N1—C1—C2—C3 | −0.4 (15) | N3—C20—C21—C22 | 1.6 (10) |
C1—C2—C3—C4 | 0.2 (17) | C20—C21—C22—C23 | −2.7 (10) |
C2—C3—C4—C5 | −0.4 (15) | C21—C22—C23—C24 | 2.3 (9) |
C2—C3—C4—C6 | −179.3 (11) | C21—C22—C23—C25 | −177.3 (7) |
C3—C4—C5—N1 | 0.7 (10) | C22—C23—C24—N3 | −0.8 (8) |
C6—C4—C5—N1 | 179.6 (8) | C25—C23—C24—N3 | 178.7 (6) |
C3—C4—C5—C5i | 179.1 (7) | C22—C23—C24—C24ii | 178.9 (6) |
C6—C4—C5—C5i | −2.0 (11) | C25—C23—C24—C24ii | −1.5 (9) |
C3—C4—C6—C6i | 177.1 (14) | C22—C23—C25—C25ii | 180.0 (9) |
C5—C4—C6—C6i | −2 (2) | C24—C23—C25—C25ii | 0.4 (13) |
O1—C7—C8—C9 | 96.8 (7) | O4—C26—C27—N4 | −13.5 (8) |
O2—C7—C8—C9 | −80.3 (7) | O5—C26—C27—N4 | 167.5 (6) |
O1—C7—C8—N2 | −25.4 (8) | O4—C26—C27—C28 | 110.5 (6) |
O2—C7—C8—N2 | 157.5 (5) | O5—C26—C27—C28 | −68.5 (8) |
N2—C8—C9—C10 | −64.3 (8) | N4—C27—C28—C29 | −62.8 (6) |
C7—C8—C9—C10 | 173.2 (6) | C26—C27—C28—C29 | 172.3 (5) |
C8—C9—C10—C12 | −63.4 (10) | C27—C28—C29—C31 | 167.2 (7) |
C8—C9—C10—C11 | 171.6 (7) | C27—C28—C29—C30 | −71.0 (9) |
N2—C13—C14—C15 | −135.5 (6) | N4—C32—C33—C34 | −133.4 (5) |
N2—C13—C14—C19 | 48.4 (8) | N4—C32—C33—C38 | 49.2 (6) |
C19—C14—C15—C16 | −0.7 (9) | C38—C33—C34—C35 | −1.0 (8) |
C13—C14—C15—C16 | −177.0 (6) | C32—C33—C34—C35 | −178.4 (5) |
C14—C15—C16—C17 | 0.8 (10) | C33—C34—C35—C36 | −1.4 (9) |
C15—C16—C17—C18 | −1.4 (11) | C34—C35—C36—C37 | 0.5 (10) |
C16—C17—C18—C19 | 1.8 (11) | C35—C36—C37—C38 | 2.8 (10) |
C17—C18—C19—O3 | −179.0 (7) | C36—C37—C38—O6 | 175.8 (5) |
C17—C18—C19—C14 | −1.7 (10) | C36—C37—C38—C33 | −5.3 (8) |
C15—C14—C19—O3 | 178.5 (5) | C34—C33—C38—O6 | −176.6 (4) |
C13—C14—C19—O3 | −5.3 (9) | C32—C33—C38—O6 | 0.7 (7) |
C15—C14—C19—C18 | 1.1 (9) | C34—C33—C38—C37 | 4.4 (8) |
C13—C14—C19—C18 | 177.4 (5) | C32—C33—C38—C37 | −178.3 (5) |
C2—C1—N1—C5 | 0.7 (10) | C21—C20—N3—C24 | −0.2 (9) |
C2—C1—N1—Cd1 | −178.0 (6) | C21—C20—N3—Cd2 | −178.8 (5) |
C4—C5—N1—C1 | −0.9 (8) | C23—C24—N3—C20 | −0.2 (8) |
C5i—C5—N1—C1 | −179.3 (6) | C24ii—C24—N3—C20 | −179.9 (6) |
C4—C5—N1—Cd1 | 177.9 (5) | C23—C24—N3—Cd2 | 178.6 (4) |
C5i—C5—N1—Cd1 | −0.5 (7) | C24ii—C24—N3—Cd2 | −1.2 (7) |
C14—C13—N2—C8 | −176.2 (5) | C33—C32—N4—C27 | 179.9 (4) |
C14—C13—N2—Cd1 | 58.4 (6) | C33—C32—N4—Cd2 | 52.3 (5) |
C9—C8—N2—C13 | 143.7 (5) | C28—C27—N4—C32 | 134.3 (5) |
C7—C8—N2—C13 | −94.4 (6) | C26—C27—N4—C32 | −101.4 (5) |
C9—C8—N2—Cd1 | −87.7 (5) | C28—C27—N4—Cd2 | −93.8 (4) |
C7—C8—N2—Cd1 | 34.2 (6) | C26—C27—N4—Cd2 | 30.4 (5) |
O2—C7—O1—Cd1 | 179.1 (5) | O5—C26—O4—Cd2 | 166.8 (6) |
C8—C7—O1—Cd1 | 2.2 (7) | C27—C26—O4—Cd2 | −12.1 (8) |
Symmetry codes: (i) −x+1, y, −z+1; (ii) −x+1, y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O2iii | 0.82 | 1.83 | 2.645 (5) | 174 |
N4—H4···O6 | 0.98 | 2.07 | 2.763 (5) | 126 |
N2—H2A···O3 | 0.98 | 2.09 | 2.795 (6) | 127 |
O3—H3A···O5 | 0.82 | 2.33 | 2.951 (9) | 133 |
C28—H28A···O4ii | 0.97 | 2.67 | 3.470 (7) | 141 |
Symmetry codes: (ii) −x+1, y, −z+2; (iii) −x+1/2, y−1/2, −z+3/2. |
Acknowledgements
The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev, Ukraine, for financial support, and Dr Pratik Sen and Dr Manabendra Ray for valuable discussions.
References
Anis, I., Aslam, M., Noreen, Z., Afza, N., Hussain, A., Safder, M. & Chaudhry, A. H. (2013). Int J Curr Pharm Res, 5, 21–24. Google Scholar
Asadi, M., Sepehrpour, H. & Mohammadi, K. (2011). J. Serb. Chem. Soc. 76, 63–74. Web of Science CrossRef Google Scholar
Bruker (2011). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burkhardt, A., Görls, H. & Plass, W. (2008). Carbohydr. Res. 343, 1266–1277. Web of Science CrossRef PubMed Google Scholar
Casella, L. & Gullotti, M. (1983). Inorg. Chem. 22, 2259–2266. CrossRef CAS Web of Science Google Scholar
Faizi, M. S. H., Dege, N. & Malinkin, S. (2017). Acta Cryst. E73, 1393–1397. Web of Science CrossRef IUCr Journals Google Scholar
Faizi, M. S. H. & Sharkina, N. O. (2015). Acta Cryst. E71, 195–198. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123–o2124. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Koh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). Inorg. Chem. 35, 6466–6472. CSD CrossRef PubMed CAS Web of Science Google Scholar
Lou, B.-Y., Yuan, D.-Q., Han, L., Wu, B.-L. & Hong, M.-C. (2005). Chin. J. Struct. Chem. 24, 759–764. Google Scholar
Lou, B.-Y., Yuan, D.-Q., Wang, R.-H., Xu, Y., Wu, B.-L., Han, L. & Hong, M.-C. (2004). J. Mol. Struct. 698, 87–91. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. 2010, 4851–4858. Web of Science CrossRef Google Scholar
Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040. Web of Science CSD CrossRef CAS Google Scholar
Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148. Web of Science CrossRef CAS Google Scholar
Ranford, J. D., Vittal, J. J. & Wu, D. (1998). Angew. Chem. Int. Ed. 37, 1114–1116. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276. CSD CrossRef Web of Science Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.