research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(diiso­propyl­ammonium) molybdate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie et Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor (UASZ), BP: 523 Ziguinchor, Senegal, cChimie de la Matière Complexe UMR 7140, Laboratoire de Bioélectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France, and dICMUB-UMR 6302, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: bouks89@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 September 2018; accepted 18 October 2018; online 31 October 2018)

The organic–inorganic title salt, (C6H16N)2[MoO4] or (iPr2NH2)2[MoO4], was obtained by reacting MoO3 with diiso­propyl­amine in a 1:2 molar ratio in water. The molybdate anion is located on a twofold rotation axis and exhibits a slightly distorted tetra­hedral configuration. In the crystal structure, the diiso­propyl­ammmonium (iPr2NH2)+ cations and [MoO4]2− anions are linked to each other through N—H⋯O hydrogen bonds, generating rings with R1212(36) motifs that give rise to the formation of a three-dimensional network. The structure was refined taking into account inversion twinning (ratio of ca 4:1 between the two domains).

1. Chemical context

As a result of the photochromic properties of alkyl­ammonium molybdates (Arnaud-Neu & Schwing-Weill, 1974[Arnaud-Neu, F. & Schwing-Weill, M. J. (1974). J. Less-Common Met. 36, 71-78.]), molybdenum chemistry is an exciting research area. A large variety of oxidoanions based on molybdenum have been synthesized and characterized with numerous counter-cations. Among these, mononuclear and binuclear anions as well as polyoxidomolybdates with a much higher nuclearity are known (Gatehouse & Leverett, 1969[Gatehouse, B. M. & Leverett, P. (1969). J. Chem. Soc. A, pp. 849-854.]; Matsumoto et al. 1975[Matsumoto, K. Y., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009-1013.]; Modec et al., 2004[Modec, B., Brenčič, J. V. & Koller, J. (2004). Eur. J. Inorg. Chem. pp. 1611-1620.]; Müller & Gouzerh, 2012[Müller, A. & Gouzerh, P. (2012). Chem. Soc. Rev. 41, 7431-7463.]; Pouye et al., 2014[Pouye, S. F., Cissé, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 15, 091-094.]; Sarr et al., 2018[Sarr, B., Diop, C. A. K., Melin, F., Sidibe, M., Hellwig, P., Michaud, F., Maury, F., Senocq, F., Mbaye, A. & Rousselin, Y. (2018). J. Mol. Struct. 1170, 44-50.]). Salts containing the tetra­hedral molybdate anion [MoO4]2– combined with cations such as K+, Na+, (CH6N3)+, ((C6H11)2NH2)+, (NH3(CH2)2NH3)+, (OHRNH3)+ and (CyNH2)+ have been isolated in the past (Gatehouse & Leverett, 1969[Gatehouse, B. M. & Leverett, P. (1969). J. Chem. Soc. A, pp. 849-854.]; Matsumoto et al., 1975[Matsumoto, K. Y., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009-1013.]; Ozeki et al., 1987[Ozeki, T., Ichida, H. & Sasaki, Y. (1987). Acta Cryst. C43, 2220-2221.]; Thiele & Fuchs, 1979[Thiele, A. & Fuchs, J. (1979). Z. Naturforsch. Teil B, 34, 145-154.]; Bensch et al., 1987[Bensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447-454.]; Sheikhshoaie & Ghazizadeh, 2013[Sheikhshoaie, I. & Ghazizadeh, M. (2013). Bull. Chem. Soc. Ethiop. 27, 69-76.]; Pouye et al., 2014[Pouye, S. F., Cissé, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 15, 091-094.]), but never with the diiso­propyl­ammonium cation (iPr2NH2)+. In a continuation of our work on molybdenum compounds with organic cations, we report here the synthesis and crystal structure of the title compound, (iPr2NH2)2[MoO4], (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises one (iPr2NH2)+ cation and an {MoO2} entity (Fig. 1[link]). The [MoO4]2– molybdate anion is completed by application of twofold rotation symmetry. The two Mo—O distances are 1.732 (2) and 1.7505 (15) Å and the O—Mo—O angles vary in a narrow range between 108.77 (10) and 110.7 (2)° (Table 1[link]), revealing only slight distortions from ideal values. Similar bond lengths and angles for the molybdate anion were reported in previous studies (Ozeki et al., 1987[Ozeki, T., Ichida, H. & Sasaki, Y. (1987). Acta Cryst. C43, 2220-2221.]; Bensch et al., 1987[Bensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447-454.]; Sheikhshoaie & Ghazizadeh, 2013[Sheikhshoaie, I. & Ghazizadeh, M. (2013). Bull. Chem. Soc. Ethiop. 27, 69-76.]; Pouye et al., 2014[Pouye, S. F., Cissé, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 15, 091-094.]) where the Mo—O distances vary between 1.749 (2) and 1.776 (3) Å, and the O—Mo—O angles between 106.85 (4) and 113.2 (1)°.

Table 1
Selected bond angles (°)

O1i—Mo1—O1 110.33 (12) O2—Mo1—O1 108.77 (10)
O2—Mo1—O1i 109.13 (11) O2i—Mo1—O2 110.7 (2)
Symmetry code: (i) y, x, -z+1.
[Figure 1]
Figure 1
Asymmetric unit view of (I)[link] with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as spheres of arbitrary radius.

In the crystal structure of (CyNH2)2MoO4·2H2O (Cy = cyclo­hexyl; Pouye et al., 2014[Pouye, S. F., Cissé, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 15, 091-094.]) the four Mo—O bond lengths are equal with 1.7613 (12) Å. Although in this structure similar N—H⋯O inter­molecular inter­actions between the (CyNH2)+ cation and the molybdate anion are present in comparison with the (iPr2NH2)+ cation in the title compound, the small differences in the hydrogen-bonding pattern result in slightly different Mo—O bond lengths between the two structures. On one hand this may be related to the presence of additional water mol­ecules in (CyNH2)2MoO4·2H2O, on the other hand to steric hindrance between the four diiso­propyl­ammonium cations that surround each molybdate anion in (I)[link]. At least the strengths of the N—H⋯O hydrogen bonds do not seem to have a noticeable effect on the different Mo—O distances in (I)[link]. Both hydrogen bonds are very similar in terms of N⋯O distances and N—H⋯O angles (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 1.80 2.684 (3) 170
N1—H1B⋯O1ii 0.89 1.81 2.695 (2) 174
Symmetry code: (ii) [y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z+{\script{1\over 4}}].

3. Supra­molecular features

In the crystal structure of (I)[link], each [MoO4]2– anion is linked to two pairs of symmetry-related diiso­propyl­ammonium cations through N—H⋯O hydrogen bonds (Table 2[link]). Contrariwise, each (iPr2NH2)+ cation is linked to two molybdate [MoO4]2− anions. The inter­action of six molybdate anions with six diiso­propyl­ammonium cations leads to {(iPr2NH2)⋯MoO4}6 ring systems with an R1212(36) motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Each ring is linked to six adjacent rings giving rise to infinite layers extending parallel to (010) (Fig. 2[link]). The connection of the rings into a three-dimensional network structure perpendicular to this plane is shown in Fig. 3[link].

[Figure 2]
Figure 2
The N—H⋯O hydrogen-bonding network in (I)[link] (turquoise dashed lines) in a view approximately along [010].
[Figure 3]
Figure 3
The N—H⋯O hydrogen-bonding network in (I)[link] (turquoise dashed lines) in a view approximately along [001].

4. Database survey

A search of the Cambridge Structural Database (Version 5.39 plus 1 update, November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 226 entries dealing with (iPr2NH2)+ cations while 32 entries contained the [MoO4]2− molybdate anion.

5. Synthesis and crystallization

Compound (I)[link] was obtained from a mixture of molybdenum trioxide (3.2 g, 22.23 mmol) and diiso­propyl­amine (4 g, 44.46 mmol) in a 1:2 molar ratio in water. A clear, colourless solution was obtained after stirring for approximately one h. After twenty days of evaporation in an oven at 333 K, some colourless single crystals were obtained.

In the IR spectrum of (I)[link] (Fig. 4[link]a), the bands at 899 and 786 cm−1 can be attributed to symmetric and asymmetric Mo—O stretching modes, respectively. The diso­propyl­ammonium cation is characterized by a series of vibrational bands in the 3000–2200 cm−1 region, which can be attributed to ν(N—H), ν(C—H) and combination modes. The δ(N—H) bending vibrations probably contribute to the signal observed at 1598 cm−1.

[Figure 4]
Figure 4
IR (a) and Raman (b) spectra of (I)[link].

In the Raman spectrum of (I)[link] (Fig. 4[link]b), the band at 797 cm−1 is attributed to the anti­symmetric stretching mode of the [MoO4]2− molybdate anion. The symmetric vibration, νs(Mo—O), in the form of a weak shoulder at 839 cm−1 in the infrared spectrum, is very intense in the Raman spectrum at 896 cm−1. In the high wavenumber region of the Raman spectrum, the bands between 3000 and 2800 cm−1 can be assigned to the ν(N—H) and ν(C—H) stretching vibrations of the diiso­propyl­ammonium cation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The structure was refined taking into account twinning by inversion (ratio of ca 4:1 between the two domains). H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H distances of 0.89 Å and C—H distances of 0.96 Å for methyl and of 0.98 Å for methyl­ene groups, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmeth­yl).

Table 3
Experimental details

Crystal data
Chemical formula (C6H16N)2[MoO4]
Mr 364.33
Crystal system, space group Tetragonal, P43212
Temperature (K) 293
a, c (Å) 9.0166 (1), 23.1158 (3)
V3) 1879.29 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.71
Crystal size (mm) 0.38 × 0.26 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.612, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 111277, 2156, 2109
Rint 0.055
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.12
No. of reflections 2156
No. of parameters 92
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.31
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.19 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(diisopropylazanium tetraoxomolybdate top
Crystal data top
(C6H16N)2[MoO4]Dx = 1.288 Mg m3
Mr = 364.33Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 49023 reflections
a = 9.0166 (1) Åθ = 3.6–27.7°
c = 23.1158 (3) ŵ = 0.71 mm1
V = 1879.29 (5) Å3T = 293 K
Z = 4Prism, clear light colourless
F(000) = 7680.38 × 0.26 × 0.1 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
2109 reflections with I > 2σ(I)
Detector resolution: 5.3048 pixels mm-1Rint = 0.055
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1111
Tmin = 0.612, Tmax = 1.000k = 1111
111277 measured reflectionsl = 2930
2156 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.4149P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.21 e Å3
2156 reflectionsΔρmin = 0.31 e Å3
92 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.19 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6950 (2)0.2985 (3)0.57328 (7)0.0451 (5)
H1A0.6079990.2802810.5565620.054*
H1B0.6818090.2898400.6112890.054*
C10.8015 (3)0.1790 (4)0.55462 (12)0.0603 (7)
H10.8970570.1963630.5736160.072*
C20.7411 (5)0.0325 (4)0.57499 (18)0.0827 (10)
H2A0.7253090.0361360.6160350.124*
H2B0.8108110.0446980.5661060.124*
H2C0.6487920.0126180.5558320.124*
C30.8245 (4)0.1852 (5)0.48930 (13)0.0872 (11)
H3A0.7314480.1692860.4700930.131*
H3B0.8934980.1095740.4779260.131*
H3C0.8630300.2807350.4787680.131*
C40.7349 (4)0.4560 (3)0.56091 (11)0.0590 (7)
H40.7455200.4683180.5189860.071*
C50.8813 (4)0.4960 (4)0.58963 (15)0.0750 (10)
H5A0.8769690.4710350.6299660.112*
H5B0.8990690.6003900.5854790.112*
H5C0.9603020.4416240.5715620.112*
C60.6069 (4)0.5518 (4)0.58154 (14)0.0735 (10)
H6A0.5182090.5243790.5611900.110*
H6B0.6289920.6541840.5741690.110*
H6C0.5925290.5372360.6222950.110*
Mo10.26396 (2)0.26396 (2)0.5000000.03021 (9)
O10.2086 (2)0.1625 (2)0.43916 (6)0.0510 (5)
O20.4506 (2)0.2317 (4)0.51236 (10)0.0959 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0337 (9)0.0747 (15)0.0269 (8)0.0005 (9)0.0009 (7)0.0005 (9)
C10.0350 (13)0.095 (2)0.0510 (15)0.0047 (13)0.0011 (11)0.0167 (15)
C20.069 (2)0.075 (2)0.104 (3)0.006 (2)0.010 (2)0.016 (2)
C30.070 (2)0.138 (3)0.0536 (17)0.007 (2)0.0170 (16)0.026 (2)
C40.0638 (19)0.0767 (18)0.0364 (12)0.0047 (17)0.0013 (14)0.0133 (12)
C50.064 (2)0.083 (3)0.078 (2)0.0223 (18)0.0017 (18)0.003 (2)
C60.086 (2)0.071 (2)0.0631 (18)0.0121 (18)0.0156 (17)0.0083 (17)
Mo10.03380 (10)0.03380 (10)0.02304 (12)0.00356 (9)0.00072 (6)0.00072 (6)
O10.0687 (12)0.0566 (10)0.0277 (7)0.0072 (9)0.0063 (7)0.0049 (7)
O20.0350 (9)0.178 (3)0.0751 (14)0.0026 (14)0.0119 (9)0.0308 (18)
Geometric parameters (Å, º) top
N1—H1A0.8900C4—H40.9800
N1—H1B0.8900C4—C51.521 (5)
N1—C11.506 (4)C4—C61.518 (5)
N1—C41.493 (4)C5—H5A0.9600
C1—H10.9800C5—H5B0.9600
C1—C21.504 (5)C5—H5C0.9600
C1—C31.525 (4)C6—H6A0.9600
C2—H2A0.9600C6—H6B0.9600
C2—H2B0.9600C6—H6C0.9600
C2—H2C0.9600Mo1—O11.7505 (15)
C3—H3A0.9600Mo1—O1i1.7504 (15)
C3—H3B0.9600Mo1—O21.732 (2)
C3—H3C0.9600Mo1—O2i1.732 (2)
H1A—N1—H1B107.1N1—C4—H4108.7
C1—N1—H1A107.8N1—C4—C5110.5 (2)
C1—N1—H1B107.8N1—C4—C6107.3 (3)
C4—N1—H1A107.8C5—C4—H4108.7
C4—N1—H1B107.8C6—C4—H4108.7
C4—N1—C1118.2 (2)C6—C4—C5112.9 (3)
N1—C1—H1108.5C4—C5—H5A109.5
N1—C1—C3110.1 (3)C4—C5—H5B109.5
C2—C1—N1108.0 (3)C4—C5—H5C109.5
C2—C1—H1108.5H5A—C5—H5B109.5
C2—C1—C3113.0 (3)H5A—C5—H5C109.5
C3—C1—H1108.5H5B—C5—H5C109.5
C1—C2—H2A109.5C4—C6—H6A109.5
C1—C2—H2B109.5C4—C6—H6B109.5
C1—C2—H2C109.5C4—C6—H6C109.5
H2A—C2—H2B109.5H6A—C6—H6B109.5
H2A—C2—H2C109.5H6A—C6—H6C109.5
H2B—C2—H2C109.5H6B—C6—H6C109.5
C1—C3—H3A109.5O1i—Mo1—O1110.33 (12)
C1—C3—H3B109.5O2i—Mo1—O1109.13 (11)
C1—C3—H3C109.5O2—Mo1—O1i109.13 (11)
H3A—C3—H3B109.5O2—Mo1—O1108.77 (10)
H3A—C3—H3C109.5O2i—Mo1—O1i108.77 (10)
H3B—C3—H3C109.5O2i—Mo1—O2110.7 (2)
C1—N1—C4—C559.1 (3)C4—N1—C1—C2176.6 (2)
C1—N1—C4—C6177.5 (2)C4—N1—C1—C359.5 (3)
Symmetry code: (i) y, x, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.891.802.684 (3)170
N1—H1B···O1ii0.891.812.695 (2)174
Symmetry code: (ii) y+1/2, x+1/2, z+1/4.
 

Acknowledgements

The authors thank the Université Cheikh Anta Diop, Dakar, Sénégal, the Laboratoire de Chimie et Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor, Sénégal, the CNRS and Université de Strasbourg, France, the Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France and the ICMUB-UMR 6302, Dijon, France for financial support.

References

First citationArnaud-Neu, F. & Schwing-Weill, M. J. (1974). J. Less-Common Met. 36, 71–78.  Google Scholar
First citationBensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447–454.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGatehouse, B. M. & Leverett, P. (1969). J. Chem. Soc. A, pp. 849–854.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsumoto, K. Y., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009–1013.  CrossRef Google Scholar
First citationModec, B., Brenčič, J. V. & Koller, J. (2004). Eur. J. Inorg. Chem. pp. 1611–1620.  CrossRef Google Scholar
First citationMüller, A. & Gouzerh, P. (2012). Chem. Soc. Rev. 41, 7431–7463.  Web of Science PubMed Google Scholar
First citationOzeki, T., Ichida, H. & Sasaki, Y. (1987). Acta Cryst. C43, 2220–2221.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPouye, S. F., Cissé, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 15, 091–094.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSarr, B., Diop, C. A. K., Melin, F., Sidibe, M., Hellwig, P., Michaud, F., Maury, F., Senocq, F., Mbaye, A. & Rousselin, Y. (2018). J. Mol. Struct. 1170, 44–50.  CrossRef Google Scholar
First citationSheikhshoaie, I. & Ghazizadeh, M. (2013). Bull. Chem. Soc. Ethiop. 27, 69–76.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThiele, A. & Fuchs, J. (1979). Z. Naturforsch. Teil B, 34, 145–154.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds