research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (di­ethyl ether-κO)[5,10,15,20-tetra­kis­(2-iso­thio­cyanato­phen­yl)porphyrinato-κ4N]zinc di­ethyl ether solvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany, and bInstitut für Anorganische Chemie, Universität Kiel, Otto-Hahn-Platz 6/7, 24118, Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 October 2018; accepted 8 October 2018; online 19 October 2018)

The crystal structure of the title compound, [Zn(C48H24N8S4)(C4H10O)]·C4H10O, consists of discrete porphyrin complexes that are located on a twofold rotation axis. The ZnII cation is fivefold coordinated by four N atoms of the porphyrin moiety and one O atom of a diethyl ether mol­ecule in a slightly distorted square-pyramidal environment with the diethyl ether mol­ecule in the apical position. The porphyrin backbone is nearly planar with the metal cation slightly shifted out of the plane towards the coordinating diethyl ether mol­ecule. All four iso­thio­cyanato groups of the phenyl substituents at the meso-positions face the same side of the porphyrin, as is characteristic for picket fence porphyrins. In the crystal structure, the discrete porphyrin complexes are arranged in such a way that cavities are formed in which additional diethyl ether solvate mol­ecules are located around a twofold rotation axis. The O atom of the solvent mol­ecule is not positioned exactly on the twofold rotation axis, thus making the whole mol­ecule equally disordered over two symmetry-related positions.

1. Chemical context

Iso­thio­cyanates serve as versatile starting materials for a variety of functional groups (Batey & Powell, 2000[Batey, R. A. & Powell, D. A. (2000). J. Am. Chem. Soc. 2, 3237-3240.]; Ding et al., 2011[Ding, Q., Liu, X., Cao, B., Zong, Z. & Peng, Y. (2011). Tetrahedron Lett. 52, 1964-1967.]; Serra et al., 2014[Serra, S., Moineaux, L., Vancraeynest, C., Masereel, B., Wouters, J., Pochet, L. & Frédérick, R. (2014). Eur. J. Med. Chem. 82, 96-105.]; Guo et al., 2010[Guo, Y.-J., Tang, R.-Y., Zhong, P. & Li, J.-H. (2010). Tetrahedron Lett. 51, 649-652.]; Shin et al., 2000[Shin, K. J., Koo, K. D., Yoo, K. H., Kim, D. C., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 1421-1425.]; Kosurkar et al., 2014[Kosurkar, U. B., Dadmal, T. L., Appalanaidu, K., Khageswara Rao, Y., Nanubolu, J. B. & Kumbhare, R. M. (2014). Tetrahedron Lett. 55, 1296-1298.]; Alizadeh et al., 2016[Alizadeh, A., Bagherinejad, A., Bayat, F. & Zhu, L.-G. (2016). Tetrahedron, 72, 7070-7075.]; Rao et al., 2015[Rao, D. S., Madhava, G., Rasheed, S., Thahir Basha, S., Lakshmi Devamma, M. N. & Naga Raju, C. (2015). Phosphorus Sulfur Silicon, 190, 574-584.]). Included in porphyrin scaffolds, iso­thio­cyanates may serve as precursors for the synthesis of tetra­topic ligands with fourfold symmetry. In the case where all four ortho-substituents of the meso-phenyl groups face the same side of the porphyrin plane, these porphyrins are denominated picket fence porphyrins. These compounds are widely used as model compounds for hemoproteins (Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]; Tabushi et al., 1985[Tabushi, I., Kodera, M. & Yokoyama, M. (1985). J. Am. Chem. Soc. 107, 4466-4473.]; Schappacher et al., 1989[Schappacher, M., Ricard, L., Fischer, J., Weiss, R., Montiel-Montoya, R., Bill, E. & Trautwein, A. X. (1989). Inorg. Chem. 28, 4639-4645.]). With a bulky ortho-substituent and ZnII as the central metal cation, the rotational barriers are sufficiently high to isolate the different atropisomers (Freitag & Whitten, 1983[Freitag, R. A. & Whitten, D. G. (1983). J. Phys. Chem. 87, 3918-3925.]). A variety of picket fence porphyrins has been reported (Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]; Mansour et al., 2017[Mansour, A., Zaied, M., Ali, I., Soliman, S. & Othmani, M. (2017). Polyhedron, 127, 496-504.]; Cormode et al., 2006[Cormode, D. P., Murray, S. S., Cowley, A. R. & Beer, P. D. (2006). Dalton Trans. pp. 5135-5140.]; Le Maux et al., 1993[Le Maux, P., Bahri, H. & Simonneaux, G. (1993). Tetrahedron, 49, 1401-1408.]; Wuenschell et al., 1992[Wuenschell, G. E., Tetreau, C., Lavalette, D. & Reed, C. A. (1992). J. Am. Chem. Soc. 114, 3346-3355.]). In most cases, amides are used as functional groups in the ortho-positions of the meso-phenyl groups, which hampers further functionalization. The title compound now opens new avenues for the synthesis of functionalized picket fence porphyrins and is a promising starting material for the design of anion binding ligands. The title compound can be obtained in one step using a method reported by Jha et al. (Fig. 1[link]), starting from the all-α isomer of the amino derivative we have published previously (Jha et al., 2007[Jha, S. C., Lorch, M., Lewis, R. A., Archibald, S. J. & Boyle, R. W. (2007). Org. Biomol. Chem. 5, 1970-1974.]; Leben et al., 2018[Leben, L., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1285-1289.]). It is important to note that the reaction has to be carried out at 273 K, because at room temperature a mixture of the atrop­isomers is obtained. After dissolving the tetra­kis­(iso­thio­cyanato­phen­yl) porphyrin in acetone and precipitating with diethyl ether, single crystals were obtained, which were characterized by single crystal X-ray diffraction.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of the title compound.

2. Structural commentary

The asymmetric unit of the title compound, Zn(C48H24N8S4)(C4H10O)·C4H10O, comprises one ZnII cation, one half of the porphyrin mol­ecule and one half of a coordinating diethyl ether mol­ecule as well as one half of a diethyl ether solvate mol­ecule. The complex porphyrin mol­ecule and the coordinating diethyl ether mol­ecule are located on a twofold rotation axis whereas the solvent diethyl ether mol­ecule is in a general position and is equally disordered around a twofold rotation axis (Fig. 2[link]). The four iso­thio­cyanate substituents of the phenyl groups at the meso-positions point to the same side of the porphyrin moiety, which proves that the tetra-α isomer has formed. The porphyrin plane is close to planar with a maximum deviation from the mean plane of 0.276 (3) Å. The phenyl rings are rotated out of the porphyrin plane by 63.16 (5) and 82.06 (6)°. The ZnII cation is fivefold coordinated by the four N atoms of the porphyrin mol­ecule in the basal positions and by one O atom of a diethyl ether mol­ecule in the apical position, leading to a distorted square-pyramidal coordination environment (Table 1[link], Fig. 3[link]). The Zn—N distances of 2.0622 (13) and 2.0684 (14) Å and the Zn—O distance of 2.1352 (19) Å are in characteristic ranges. The angles around the ZnII cation range from 88.54 (6) to 99.69 (4)° for the basal N4 plane and from 160.61 (8) to 164.44 (8)° involving the apical O atom, demonstrating that the square pyramid is slightly distorted (Table 1[link]). The ZnII cation is located 0.4052 (9) Å out of the mean porphyrin plane and is shifted towards the coordinating diethyl ether mol­ecule (Fig. 4[link]).

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.0622 (13) Zn1—N1 2.0685 (14)
Zn1—N2i 2.0622 (13) Zn1—O1 2.1352 (19)
Zn1—N1i 2.0684 (14)    
       
N2—Zn1—N2i 164.44 (8) N1i—Zn1—N1 160.61 (8)
N2—Zn1—N1i 88.85 (6) N2i—Zn1—O1 97.78 (4)
N2i—Zn1—N1i 88.54 (6) N1i—Zn1—O1 99.69 (4)
N2—Zn1—N1 88.54 (6) N1—Zn1—O1 99.69 (4)
N2i—Zn1—N1 88.85 (6)    
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The mol­ecular entities of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. Only one orientation of the disordered diethyl ether solvent is given. [Symmetry code: (i) −x + 2, y, −z + [{3\over 2}].]
[Figure 3]
Figure 3
Mol­ecular structure of the discrete complex in a view onto the porphyrin plane.
[Figure 4]
Figure 4
Mol­ecular structure of the discrete complex in a view parallel to the porphyrin plane.

3. Supra­molecular features

In the crystal structure of the title compound, each two discrete complexes form centrosymmetric pairs with the coordinating diethyl ether mol­ecules pointing in opposite directions (Fig. 5[link]). The complexes are arranged into columns along [001]. This arrangement leads to the formation of cavities between two neighbouring coordinating diethyl ether mol­ecules, in which the disordered diethyl ether solvate mol­ecules are embedded (Fig. 5[link]). There are no notable inter­molecular inter­actions between the mol­ecular moieties in the crystal structure.

[Figure 5]
Figure 5
Crystal structure of the title compound viewed along [001].

4. Database survey

The synthesis of the metal-free oxygen derivative 5,10,15,20-tetra­kis α,α,α,α 2-iso­cyanato­phenyl porphyrin has been known for several years (Collman et al., 1998[Collman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424-2425.]). However, the crystal structure of this compound has not yet been reported. A CSD database search (Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the crystal structures of several metal porphyrins with iso­thio­cyanate entities as axial ligands (Dhifet et al., 2010[Dhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208-3213.]; Scheidt et al., 1982[Scheidt, W. R., Lee, Y. J., Geiger, D. K., Taylor, K. & Hatano, K. (1982). J. Am. Chem. Soc. 104, 3367-3374.]; Ezzayani et al., 2014[Ezzayani, K., Denden, Z., Najmudin, S., Bonifácio, C., Saint-Aman, E., Loiseau, F. & Nasri, H. (2014). Eur. J. Inorg. Chem. 2014, 5348-5361.]; Denden et al., 2015[Denden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. 2015, 2596-2610.]). In addition, the crystal structure of a para-iso­thio­cyanato­phenyl porphyrin has been reported (Sibrian-Vazquez et al., 2005[Sibrian-Vazquez, M., Jensen, T. J., Fronczek, F. R., Hammer, R. P. & Vicente, M. G. H. (2005). Bioconjugate Chem. 16, 852-863.]).

5. Synthesis and crystallization

The metal-free all-α isomer of 2-amino­phenyl porphyrin was synthesized according to reported procedures (Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]; Lindsey, 1980[Lindsey, J. (1980). J. Org. Chem. 45, 5215.]). Metallation followed standard metallation conditions as reported previously (Strohmeier et al., 1997[Strohmeier, M., Orendt, A. M., Facelli, J. C., Solum, M. S., Pugmire, R. J., Parry, R. W. & Grant, D. M. (1997). J. Am. Chem. Soc. 119, 7114-7120.]; Leben et al., 2018[Leben, L., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1285-1289.]). For the introduction of the iso­thio­cyanato groups, a modified synthesis was used (Jha et al., 2007[Jha, S. C., Lorch, M., Lewis, R. A., Archibald, S. J. & Boyle, R. W. (2007). Org. Biomol. Chem. 5, 1970-1974.]). 5,10,15,20-Tetra­kis(α,α,α,α 2-amino­phen­yl)zinc(II) porphyrin (150 mg, 203 µmol) was dissolved in 30 ml of di­chloro­methane and cooled to 273 K. 1,1′-Thio­carbonyldi-2,2′-pyridone (TDP, 377 mg, 1.62 mmol) was added and the mixture stirred for 50 minutes at 273 K. Removing the solvent and filtration over silica gel (cyclo­hexa­ne/ethyl acetate, v:v = 1:1) gave the title compound in qu­anti­tative yield. For crystallization, a small amount was dissolved in acetone and crystallized by adding diethyl ether.

1H NMR (500 MHz, CDCl3, 300 K): δ = 8.80 (s, 8H, H-β), 8.21 (dd, 3J = 7.5 Hz, 4J = 1.2 Hz, 4H, H-6), 7.78 (dt, 3J = 7.9 Hz, 4J = 1.5 Hz, 4H, H-4), 7.68 (dt, 3J = 7.6 Hz, 4J = 1.3 Hz, 4H, H-5), 7.61 (dd, 3J = 8.2 Hz, 4J = 1.0 Hz, 4H, H-3) ppm. 13C NMR (125 MHz, CDCl3, 300 K): δ = 149.9 (C-α), 141.0 (C1), 134.8 (C6), 134.5 (C2), 131.6 (C-β), 129.3 (C4), 125.7 (C5), 124.4 (C3), 115.7 (C-meso) ppm. EI–MS (70 eV): m/z (%) = 904.1 (100) [M]+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C—H hydrogen atoms were positioned with idealized geometries (C—H = 0.95–0.99 Å; methyl H atoms of the coordinating diethyl ether mol­ecule were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The O atom of the diethyl ether solvate mol­ecule is not located exactly on the twofold rotation axis and thus the complete mol­ecule is equally disordered over two sets of sites because of symmetry. Therefore for each atom the occupancy was set to 0.5, and atoms were treated with SADI and SIMU commands (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) to achieve similar displacement ellipsoids.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C48H24N8S4)(C4H10O)]·C4H10O
Mr 1054.60
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 19.8830 (4), 17.1781 (3), 14.8684 (3)
β (°) 91.667 (1)
V3) 5076.18 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.70
Crystal size (mm) 0.14 × 0.11 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.807, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 39705, 5530, 5042
Rint 0.039
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.05
No. of reflections 5530
No. of parameters 346
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.35
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

(Diethyl ether-κO)[5,10,15,20-tetrakis(2-isothiocyanatophenyl)porphyrinato-κ4N]zinc diethyl ether solvate top
Crystal data top
[Zn(C48H24N8S4)(C4H10O)]·C4H10OF(000) = 2184
Mr = 1054.60Dx = 1.380 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.8830 (4) ÅCell parameters from 39705 reflections
b = 17.1781 (3) Åθ = 1.6–27.0°
c = 14.8684 (3) ŵ = 0.70 mm1
β = 91.667 (1)°T = 200 K
V = 5076.18 (17) Å3Block, red
Z = 40.14 × 0.11 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
5042 reflections with I > 2σ(I)
ω scansRint = 0.039
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 27.0°, θmin = 1.6°
Tmin = 0.807, Tmax = 0.951h = 2525
39705 measured reflectionsk = 2121
5530 independent reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0603P)2 + 2.7141P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.39 e Å3
5530 reflectionsΔρmin = 0.35 e Å3
346 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
26 restraintsExtinction coefficient: 0.0011 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.64166 (2)0.75000.03835 (10)
N10.40708 (7)0.62138 (9)0.68826 (9)0.0400 (3)
N20.54332 (7)0.62541 (9)0.62706 (9)0.0392 (3)
C10.34674 (8)0.61377 (10)0.72962 (11)0.0405 (3)
C20.29355 (9)0.60302 (11)0.66268 (12)0.0460 (4)
H20.24710.59620.67360.055*
C30.32240 (9)0.60449 (12)0.58175 (12)0.0464 (4)
H30.30010.59830.52480.056*
C40.39333 (8)0.61718 (10)0.59772 (11)0.0407 (3)
C50.44062 (9)0.62460 (10)0.53022 (11)0.0408 (3)
C60.51067 (9)0.62744 (10)0.54465 (11)0.0405 (3)
C70.55953 (9)0.62818 (12)0.47508 (12)0.0472 (4)
H70.55030.63100.41210.057*
C80.62118 (9)0.62418 (12)0.51605 (12)0.0473 (4)
H80.66320.62260.48730.057*
C90.61077 (8)0.62273 (10)0.61146 (11)0.0407 (3)
C100.66219 (8)0.61682 (10)0.67757 (11)0.0406 (3)
C110.41493 (9)0.62820 (11)0.43487 (11)0.0423 (4)
C120.37604 (9)0.69080 (12)0.40320 (12)0.0479 (4)
C130.35525 (11)0.69580 (14)0.31334 (13)0.0578 (5)
H130.32940.73920.29280.069*
C140.37198 (10)0.63815 (14)0.25443 (13)0.0578 (5)
H140.35790.64170.19290.069*
C150.40929 (10)0.57473 (13)0.28425 (13)0.0539 (5)
H150.42040.53450.24350.065*
C160.43038 (9)0.57010 (12)0.37372 (12)0.0474 (4)
H160.45590.52630.39370.057*
N30.35733 (9)0.75046 (11)0.46079 (11)0.0581 (4)
C170.33979 (10)0.77941 (12)0.52739 (14)0.0531 (4)
S10.31534 (3)0.82304 (4)0.61376 (4)0.07149 (18)
C180.73280 (8)0.61190 (11)0.64634 (11)0.0422 (4)
C190.76769 (9)0.67895 (11)0.62281 (12)0.0456 (4)
C200.83405 (10)0.67559 (14)0.59531 (14)0.0564 (5)
H200.85690.72170.57870.068*
C210.86599 (10)0.60474 (15)0.59256 (15)0.0617 (5)
H210.91140.60200.57480.074*
C220.83267 (11)0.53773 (14)0.61539 (16)0.0629 (5)
H220.85510.48900.61310.075*
C230.76637 (10)0.54120 (12)0.64176 (14)0.0529 (4)
H230.74360.49460.65690.063*
N40.73517 (9)0.75053 (11)0.62762 (13)0.0587 (4)
C240.72587 (9)0.81716 (12)0.63222 (14)0.0510 (4)
S20.71060 (3)0.90666 (3)0.63860 (5)0.07015 (18)
O10.50000.76596 (11)0.75000.0511 (4)
C310.54792 (10)0.81107 (12)0.70173 (15)0.0555 (5)
H31A0.58920.77980.69390.067*
H31B0.56040.85780.73740.067*
C320.52032 (14)0.83590 (17)0.61075 (17)0.0761 (7)
H32A0.50680.78980.57590.114*
H32B0.55500.86440.57880.114*
H32C0.48120.86970.61840.114*
O20.9968 (9)0.5749 (3)0.7693 (6)0.092 (3)0.5
C411.0756 (8)0.5710 (9)0.6491 (11)0.155 (6)0.5
H41A1.09970.60070.60590.233*0.5
H41B1.10700.54310.68730.233*0.5
H41C1.04640.53460.61820.233*0.5
C421.0345 (7)0.6237 (9)0.7061 (9)0.114 (4)0.5
H42A1.06360.66050.73640.136*0.5
H42B1.00350.65210.66790.136*0.5
C430.9492 (8)0.6115 (8)0.8328 (10)0.124 (5)0.5
H43A0.90910.62460.79880.148*0.5
H43B0.96600.65860.86000.148*0.5
C440.9249 (6)0.5580 (6)0.8994 (8)0.117 (3)0.5
H44A0.89200.58220.93630.176*0.5
H44B0.90640.51110.87360.176*0.5
H44C0.96420.54550.93560.176*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03477 (15)0.04689 (17)0.03351 (15)0.0000.00291 (10)0.000
N10.0356 (7)0.0494 (8)0.0350 (7)0.0013 (6)0.0024 (5)0.0005 (6)
N20.0361 (7)0.0477 (8)0.0339 (7)0.0002 (6)0.0028 (5)0.0001 (5)
C10.0360 (8)0.0453 (9)0.0404 (8)0.0008 (6)0.0033 (6)0.0012 (7)
C20.0384 (8)0.0556 (10)0.0440 (9)0.0045 (7)0.0012 (7)0.0001 (8)
C30.0407 (9)0.0590 (11)0.0394 (8)0.0046 (7)0.0009 (7)0.0013 (7)
C40.0387 (8)0.0468 (9)0.0364 (8)0.0011 (7)0.0008 (6)0.0003 (7)
C50.0408 (8)0.0458 (9)0.0359 (8)0.0009 (7)0.0016 (6)0.0009 (6)
C60.0419 (8)0.0465 (9)0.0332 (8)0.0009 (7)0.0032 (6)0.0005 (6)
C70.0429 (9)0.0639 (11)0.0350 (8)0.0039 (8)0.0049 (7)0.0007 (7)
C80.0408 (9)0.0634 (11)0.0382 (9)0.0031 (8)0.0074 (7)0.0001 (8)
C90.0384 (8)0.0464 (9)0.0377 (8)0.0012 (7)0.0066 (6)0.0003 (7)
C100.0380 (8)0.0440 (8)0.0401 (8)0.0010 (6)0.0052 (6)0.0005 (7)
C110.0395 (8)0.0507 (10)0.0365 (8)0.0032 (7)0.0013 (6)0.0006 (7)
C120.0472 (9)0.0573 (11)0.0393 (8)0.0030 (8)0.0031 (7)0.0016 (7)
C130.0524 (11)0.0778 (14)0.0431 (10)0.0109 (10)0.0023 (8)0.0054 (9)
C140.0482 (10)0.0903 (16)0.0346 (9)0.0001 (10)0.0016 (7)0.0027 (9)
C150.0495 (10)0.0705 (13)0.0418 (9)0.0087 (9)0.0040 (7)0.0132 (9)
C160.0465 (9)0.0516 (10)0.0443 (9)0.0033 (7)0.0032 (7)0.0037 (7)
N30.0655 (10)0.0604 (10)0.0485 (9)0.0124 (8)0.0023 (7)0.0006 (8)
C170.0506 (10)0.0545 (11)0.0540 (11)0.0066 (8)0.0021 (8)0.0003 (9)
S10.0758 (4)0.0729 (4)0.0663 (4)0.0059 (3)0.0115 (3)0.0197 (3)
C180.0377 (8)0.0522 (9)0.0368 (8)0.0008 (7)0.0036 (6)0.0005 (7)
C190.0423 (9)0.0526 (10)0.0417 (8)0.0045 (7)0.0004 (7)0.0002 (7)
C200.0430 (9)0.0734 (13)0.0529 (10)0.0128 (9)0.0049 (8)0.0062 (9)
C210.0389 (9)0.0876 (16)0.0592 (12)0.0013 (10)0.0104 (8)0.0032 (11)
C220.0483 (10)0.0702 (14)0.0707 (13)0.0137 (10)0.0129 (9)0.0031 (11)
C230.0463 (10)0.0548 (11)0.0579 (11)0.0035 (8)0.0105 (8)0.0038 (8)
N40.0569 (10)0.0526 (10)0.0665 (11)0.0068 (8)0.0004 (8)0.0012 (8)
C240.0418 (9)0.0569 (12)0.0543 (10)0.0058 (8)0.0004 (7)0.0018 (8)
S20.0700 (4)0.0529 (3)0.0870 (4)0.0033 (2)0.0071 (3)0.0033 (3)
O10.0499 (10)0.0455 (10)0.0586 (11)0.0000.0160 (8)0.000
C310.0510 (10)0.0541 (11)0.0620 (12)0.0087 (8)0.0112 (9)0.0022 (9)
C320.0862 (18)0.0802 (16)0.0623 (14)0.0162 (14)0.0082 (12)0.0123 (12)
O20.073 (3)0.087 (2)0.116 (8)0.005 (3)0.004 (7)0.006 (3)
C410.152 (10)0.135 (10)0.179 (13)0.050 (8)0.008 (10)0.063 (9)
C420.091 (7)0.125 (8)0.122 (9)0.016 (5)0.039 (6)0.025 (7)
C430.125 (11)0.099 (8)0.145 (13)0.046 (7)0.036 (9)0.035 (8)
C440.108 (6)0.071 (5)0.175 (11)0.013 (4)0.030 (7)0.002 (6)
Geometric parameters (Å, º) top
Zn1—N22.0622 (13)C20—C211.374 (3)
Zn1—N2i2.0622 (13)C20—H200.9500
Zn1—N1i2.0684 (14)C21—C221.376 (3)
Zn1—N12.0685 (14)C21—H210.9500
Zn1—O12.1352 (19)C22—C231.387 (3)
N1—C41.368 (2)C22—H220.9500
N1—C11.370 (2)C23—H230.9500
N2—C91.368 (2)N4—C241.162 (3)
N2—C61.370 (2)C24—S21.571 (2)
C1—C10i1.397 (2)O1—C311.436 (2)
C1—C21.443 (2)O1—C31i1.436 (2)
C2—C31.348 (2)C31—C321.507 (3)
C2—H20.9500C31—H31A0.9900
C3—C41.440 (2)C31—H31B0.9900
C3—H30.9500C32—H32A0.9800
C4—C51.401 (2)C32—H32B0.9800
C5—C61.404 (2)C32—H32C0.9800
C5—C111.494 (2)O2—C42ii1.11 (2)
C6—C71.440 (2)O2—C421.479 (12)
C7—C81.355 (3)O2—C431.495 (11)
C7—H70.9500O2—C41ii1.912 (18)
C8—C91.440 (2)C41—C44ii0.755 (17)
C8—H80.9500C41—C43ii0.900 (18)
C9—C101.401 (2)C41—C421.499 (14)
C10—C1i1.397 (2)C41—O2ii1.912 (18)
C10—C181.494 (2)C41—H41A0.9600
C11—C161.391 (3)C41—H41B0.9599
C11—C121.398 (3)C41—H41C0.9600
C12—C131.390 (3)C42—C43ii0.703 (16)
C12—N31.393 (2)C42—O2ii1.11 (2)
C13—C141.370 (3)C42—C42ii1.92 (3)
C13—H130.9500C42—H42A0.9601
C14—C151.384 (3)C42—H42B0.9599
C14—H140.9500C43—C42ii0.703 (16)
C15—C161.385 (3)C43—C41ii0.900 (18)
C15—H150.9500C43—C441.446 (14)
C16—H160.9500C43—H43A0.9599
N3—C171.170 (3)C43—H43B0.9600
C17—S11.576 (2)C44—C41ii0.755 (17)
C18—C231.389 (3)C44—H44A0.9600
C18—C191.394 (3)C44—H44B0.9600
C19—N41.392 (3)C44—H44C0.9599
C19—C201.394 (3)
N2—Zn1—N2i164.44 (8)C31—O1—Zn1122.65 (11)
N2—Zn1—N1i88.85 (6)C31i—O1—Zn1122.65 (11)
N2i—Zn1—N1i88.54 (6)O1—C31—C32111.82 (17)
N2—Zn1—N188.54 (6)O1—C31—H31A109.3
N2i—Zn1—N188.85 (6)C32—C31—H31A109.3
N1i—Zn1—N1160.61 (8)O1—C31—H31B109.3
N2—Zn1—O197.78 (4)C32—C31—H31B109.3
N2i—Zn1—O197.78 (4)H31A—C31—H31B107.9
N1i—Zn1—O199.69 (4)C31—C32—H32A109.5
N1—Zn1—O199.69 (4)C31—C32—H32B109.5
C4—N1—C1106.50 (14)H32A—C32—H32B109.5
C4—N1—Zn1126.59 (11)C31—C32—H32C109.5
C1—N1—Zn1126.82 (11)H32A—C32—H32C109.5
C9—N2—C6106.88 (13)H32B—C32—H32C109.5
C9—N2—Zn1126.26 (11)C42ii—O2—C4294.7 (13)
C6—N2—Zn1126.16 (11)C42ii—O2—C4326.4 (9)
N1—C1—C10i125.29 (15)C42—O2—C43120.3 (9)
N1—C1—C2109.66 (14)C42ii—O2—C41ii51.6 (8)
C10i—C1—C2125.05 (16)C42—O2—C41ii146.0 (10)
C3—C2—C1106.91 (15)C43—O2—C41ii27.3 (8)
C3—C2—H2126.5C44ii—C41—C43ii122 (3)
C1—C2—H2126.5C44ii—C41—C42137 (3)
C2—C3—C4107.20 (15)C43ii—C41—C4218.1 (13)
C2—C3—H3126.4C44ii—C41—O2ii129 (2)
C4—C3—H3126.4C43ii—C41—O2ii49.6 (12)
N1—C4—C5125.53 (15)C42—C41—O2ii35.6 (7)
N1—C4—C3109.70 (14)C44ii—C41—H41A60.7
C5—C4—C3124.76 (16)C43ii—C41—H41A94.4
C4—C5—C6125.25 (16)C42—C41—H41A110.3
C4—C5—C11117.74 (15)O2ii—C41—H41A143.7
C6—C5—C11116.99 (15)C44ii—C41—H41B114.2
N2—C6—C5125.30 (15)C43ii—C41—H41B124.1
N2—C6—C7109.32 (15)C42—C41—H41B108.7
C5—C6—C7125.28 (16)O2ii—C41—H41B97.5
C8—C7—C6107.28 (16)H41A—C41—H41B109.5
C8—C7—H7126.4C44ii—C41—H41C50.2
C6—C7—H7126.4C43ii—C41—H41C108.5
C7—C8—C9106.85 (15)C42—C41—H41C109.4
C7—C8—H8126.6O2ii—C41—H41C82.6
C9—C8—H8126.6H41A—C41—H41C109.5
N2—C9—C10125.61 (15)H41B—C41—H41C109.5
N2—C9—C8109.64 (15)C43ii—C42—O2ii109 (2)
C10—C9—C8124.73 (16)C43ii—C42—O2127 (2)
C1i—C10—C9125.76 (16)O2ii—C42—O220.8 (8)
C1i—C10—C18116.90 (15)C43ii—C42—C4123 (2)
C9—C10—C18117.33 (15)O2ii—C42—C4192.9 (12)
C16—C11—C12117.55 (16)O2—C42—C41108.1 (13)
C16—C11—C5120.98 (17)C43ii—C42—C42ii156 (3)
C12—C11—C5121.45 (16)O2ii—C42—C42ii50.1 (8)
C13—C12—N3117.92 (18)O2—C42—C42ii35.3 (7)
C13—C12—C11121.16 (18)C41—C42—C42ii142.7 (10)
N3—C12—C11120.92 (16)C43ii—C42—H42A107.4
C14—C13—C12119.9 (2)O2ii—C42—H42A132.6
C14—C13—H13120.0O2—C42—H42A112.6
C12—C13—H13120.0C41—C42—H42A109.5
C13—C14—C15120.15 (18)C42ii—C42—H42A96.5
C13—C14—H14119.9C43ii—C42—H42B88.1
C15—C14—H14119.9O2ii—C42—H42B102.7
C14—C15—C16119.83 (18)O2—C42—H42B109.6
C14—C15—H15120.1C41—C42—H42B108.8
C16—C15—H15120.1C42ii—C42—H42B86.7
C15—C16—C11121.34 (19)H42A—C42—H42B108.1
C15—C16—H16119.3C42ii—C43—C41ii138 (3)
C11—C16—H16119.3C42ii—C43—C44158 (2)
C17—N3—C12157.6 (2)C41ii—C43—C4426.4 (16)
N3—C17—S1176.6 (2)C42ii—C43—O244.9 (18)
C23—C18—C19117.82 (16)C41ii—C43—O2103.2 (17)
C23—C18—C10121.48 (16)C44—C43—O2113.4 (10)
C19—C18—C10120.68 (17)C42ii—C43—H43A83.7
N4—C19—C20119.79 (18)C41ii—C43—H43A83.3
N4—C19—C18118.78 (16)C44—C43—H43A102.7
C20—C19—C18121.44 (19)O2—C43—H43A107.3
C21—C20—C19119.2 (2)C42ii—C43—H43B86.1
C21—C20—H20120.4C41ii—C43—H43B135.5
C19—C20—H20120.4C44—C43—H43B111.5
C20—C21—C22120.49 (18)O2—C43—H43B113.6
C20—C21—H21119.8H43A—C43—H43B107.3
C22—C21—H21119.8C41ii—C44—C4332.0 (18)
C21—C22—C23120.1 (2)C41ii—C44—H44A115.3
C21—C22—H22119.9C43—C44—H44A111.3
C23—C22—H22119.9C41ii—C44—H44B82.6
C22—C23—C18120.90 (19)C43—C44—H44B113.0
C22—C23—H23119.5H44A—C44—H44B109.5
C18—C23—H23119.5C41ii—C44—H44C126.1
C24—N4—C19161.5 (2)C43—C44—H44C104.0
N4—C24—S2178.01 (19)H44A—C44—H44C109.5
C31—O1—C31i114.7 (2)H44B—C44—H44C109.5
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+2, y, z+3/2.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 677.

References

First citationAlizadeh, A., Bagherinejad, A., Bayat, F. & Zhu, L.-G. (2016). Tetrahedron, 72, 7070–7075.  CrossRef Google Scholar
First citationBatey, R. A. & Powell, D. A. (2000). J. Am. Chem. Soc. 2, 3237–3240.  Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCollman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCollman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424–2425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCormode, D. P., Murray, S. S., Cowley, A. R. & Beer, P. D. (2006). Dalton Trans. pp. 5135–5140.  Web of Science CrossRef Google Scholar
First citationDenden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. 2015, 2596–2610.  CrossRef Google Scholar
First citationDhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208–3213.  Web of Science CSD CrossRef CAS Google Scholar
First citationDing, Q., Liu, X., Cao, B., Zong, Z. & Peng, Y. (2011). Tetrahedron Lett. 52, 1964–1967.  CrossRef Google Scholar
First citationEzzayani, K., Denden, Z., Najmudin, S., Bonifácio, C., Saint-Aman, E., Loiseau, F. & Nasri, H. (2014). Eur. J. Inorg. Chem. 2014, 5348–5361.  CrossRef Google Scholar
First citationFreitag, R. A. & Whitten, D. G. (1983). J. Phys. Chem. 87, 3918–3925.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Y.-J., Tang, R.-Y., Zhong, P. & Li, J.-H. (2010). Tetrahedron Lett. 51, 649–652.  CrossRef Google Scholar
First citationJha, S. C., Lorch, M., Lewis, R. A., Archibald, S. J. & Boyle, R. W. (2007). Org. Biomol. Chem. 5, 1970–1974.  CrossRef PubMed Google Scholar
First citationKosurkar, U. B., Dadmal, T. L., Appalanaidu, K., Khageswara Rao, Y., Nanubolu, J. B. & Kumbhare, R. M. (2014). Tetrahedron Lett. 55, 1296–1298.  CrossRef Google Scholar
First citationLeben, L., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1285–1289.  CrossRef IUCr Journals Google Scholar
First citationLe Maux, P., Bahri, H. & Simonneaux, G. (1993). Tetrahedron, 49, 1401–1408.  CrossRef Google Scholar
First citationLindsey, J. (1980). J. Org. Chem. 45, 5215.  CrossRef Web of Science Google Scholar
First citationMansour, A., Zaied, M., Ali, I., Soliman, S. & Othmani, M. (2017). Polyhedron, 127, 496–504.  CrossRef Google Scholar
First citationRao, D. S., Madhava, G., Rasheed, S., Thahir Basha, S., Lakshmi Devamma, M. N. & Naga Raju, C. (2015). Phosphorus Sulfur Silicon, 190, 574–584.  CrossRef Google Scholar
First citationSchappacher, M., Ricard, L., Fischer, J., Weiss, R., Montiel-Montoya, R., Bill, E. & Trautwein, A. X. (1989). Inorg. Chem. 28, 4639–4645.  CrossRef Web of Science Google Scholar
First citationScheidt, W. R., Lee, Y. J., Geiger, D. K., Taylor, K. & Hatano, K. (1982). J. Am. Chem. Soc. 104, 3367–3374.  CrossRef Google Scholar
First citationSerra, S., Moineaux, L., Vancraeynest, C., Masereel, B., Wouters, J., Pochet, L. & Frédérick, R. (2014). Eur. J. Med. Chem. 82, 96–105.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, K. J., Koo, K. D., Yoo, K. H., Kim, D. C., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 1421–1425.  CrossRef PubMed Google Scholar
First citationSibrian-Vazquez, M., Jensen, T. J., Fronczek, F. R., Hammer, R. P. & Vicente, M. G. H. (2005). Bioconjugate Chem. 16, 852–863.  Google Scholar
First citationStoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStrohmeier, M., Orendt, A. M., Facelli, J. C., Solum, M. S., Pugmire, R. J., Parry, R. W. & Grant, D. M. (1997). J. Am. Chem. Soc. 119, 7114–7120.  CrossRef Web of Science Google Scholar
First citationTabushi, I., Kodera, M. & Yokoyama, M. (1985). J. Am. Chem. Soc. 107, 4466–4473.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWuenschell, G. E., Tetreau, C., Lavalette, D. & Reed, C. A. (1992). J. Am. Chem. Soc. 114, 3346–3355.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds