research communications
κO)[5,10,15,20-tetrakis(2-isothiocyanatophenyl)porphyrinato-κ4N]zinc diethyl ether solvate
of (diethyl ether-aInstitut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany, and bInstitut für Anorganische Chemie, Universität Kiel, Otto-Hahn-Platz 6/7, 24118, Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de
The 48H24N8S4)(C4H10O)]·C4H10O, consists of discrete porphyrin complexes that are located on a twofold rotation axis. The ZnII cation is fivefold coordinated by four N atoms of the porphyrin moiety and one O atom of a diethyl ether molecule in a slightly distorted square-pyramidal environment with the diethyl ether molecule in the apical position. The porphyrin backbone is nearly planar with the metal cation slightly shifted out of the plane towards the coordinating diethyl ether molecule. All four isothiocyanato groups of the phenyl substituents at the meso-positions face the same side of the porphyrin, as is characteristic for picket fence In the the discrete porphyrin complexes are arranged in such a way that cavities are formed in which additional diethyl ether solvate molecules are located around a twofold rotation axis. The O atom of the solvent molecule is not positioned exactly on the twofold rotation axis, thus making the whole molecule equally disordered over two symmetry-related positions.
of the title compound, [Zn(CKeywords: crystal structure; picket fence porphyrin; zinc(II) porphyrin; atropisomer; isothiocyanate.
CCDC reference: 1872076
1. Chemical context
Isothiocyanates serve as versatile starting materials for a variety of functional groups (Batey & Powell, 2000; Ding et al., 2011; Serra et al., 2014; Guo et al., 2010; Shin et al., 2000; Kosurkar et al., 2014; Alizadeh et al., 2016; Rao et al., 2015). Included in porphyrin scaffolds, isothiocyanates may serve as precursors for the synthesis of tetratopic ligands with fourfold symmetry. In the case where all four ortho-substituents of the meso-phenyl groups face the same side of the porphyrin plane, these are denominated picket fence These compounds are widely used as model compounds for hemoproteins (Collman et al., 1975; Tabushi et al., 1985; Schappacher et al., 1989). With a bulky ortho-substituent and ZnII as the central metal cation, the rotational barriers are sufficiently high to isolate the different atropisomers (Freitag & Whitten, 1983). A variety of picket fence has been reported (Collman et al., 1975; Mansour et al., 2017; Cormode et al., 2006; Le Maux et al., 1993; Wuenschell et al., 1992). In most cases, are used as functional groups in the ortho-positions of the meso-phenyl groups, which hampers further functionalization. The title compound now opens new avenues for the synthesis of functionalized picket fence and is a promising starting material for the design of anion binding ligands. The title compound can be obtained in one step using a method reported by Jha et al. (Fig. 1), starting from the all-α isomer of the amino derivative we have published previously (Jha et al., 2007; Leben et al., 2018). It is important to note that the reaction has to be carried out at 273 K, because at room temperature a mixture of the atropisomers is obtained. After dissolving the tetrakis(isothiocyanatophenyl) porphyrin in acetone and precipitating with diethyl ether, single crystals were obtained, which were characterized by single crystal X-ray diffraction.
2. Structural commentary
The 48H24N8S4)(C4H10O)·C4H10O, comprises one ZnII cation, one half of the porphyrin molecule and one half of a coordinating diethyl ether molecule as well as one half of a diethyl ether solvate molecule. The complex porphyrin molecule and the coordinating diethyl ether molecule are located on a twofold rotation axis whereas the solvent diethyl ether molecule is in a general position and is equally disordered around a twofold rotation axis (Fig. 2). The four isothiocyanate substituents of the phenyl groups at the meso-positions point to the same side of the porphyrin moiety, which proves that the tetra-α isomer has formed. The porphyrin plane is close to planar with a maximum deviation from the mean plane of 0.276 (3) Å. The phenyl rings are rotated out of the porphyrin plane by 63.16 (5) and 82.06 (6)°. The ZnII cation is fivefold coordinated by the four N atoms of the porphyrin molecule in the basal positions and by one O atom of a diethyl ether molecule in the apical position, leading to a distorted square-pyramidal coordination environment (Table 1, Fig. 3). The Zn—N distances of 2.0622 (13) and 2.0684 (14) Å and the Zn—O distance of 2.1352 (19) Å are in characteristic ranges. The angles around the ZnII cation range from 88.54 (6) to 99.69 (4)° for the basal N4 plane and from 160.61 (8) to 164.44 (8)° involving the apical O atom, demonstrating that the square pyramid is slightly distorted (Table 1). The ZnII cation is located 0.4052 (9) Å out of the mean porphyrin plane and is shifted towards the coordinating diethyl ether molecule (Fig. 4).
of the title compound, Zn(C3. Supramolecular features
In the ). The complexes are arranged into columns along [001]. This arrangement leads to the formation of cavities between two neighbouring coordinating diethyl ether molecules, in which the disordered diethyl ether solvate molecules are embedded (Fig. 5). There are no notable intermolecular interactions between the molecular moieties in the crystal structure.
of the title compound, each two discrete complexes form centrosymmetric pairs with the coordinating diethyl ether molecules pointing in opposite directions (Fig. 54. Database survey
The synthesis of the metal-free oxygen derivative 5,10,15,20-tetrakis α,α,α,α 2-isocyanatophenyl porphyrin has been known for several years (Collman et al., 1998). However, the of this compound has not yet been reported. A CSD database search (Version 5.39; Groom et al., 2016) revealed the crystal structures of several metal with isothiocyanate entities as axial ligands (Dhifet et al., 2010; Scheidt et al., 1982; Ezzayani et al., 2014; Denden et al., 2015). In addition, the of a para-isothiocyanatophenyl porphyrin has been reported (Sibrian-Vazquez et al., 2005).
5. Synthesis and crystallization
The metal-free all-α isomer of 2-aminophenyl porphyrin was synthesized according to reported procedures (Collman et al., 1975; Lindsey, 1980). Metallation followed standard metallation conditions as reported previously (Strohmeier et al., 1997; Leben et al., 2018). For the introduction of the isothiocyanato groups, a modified synthesis was used (Jha et al., 2007). 5,10,15,20-Tetrakis(α,α,α,α 2-aminophenyl)zinc(II) porphyrin (150 mg, 203 µmol) was dissolved in 30 ml of dichloromethane and cooled to 273 K. 1,1′-Thiocarbonyldi-2,2′-pyridone (TDP, 377 mg, 1.62 mmol) was added and the mixture stirred for 50 minutes at 273 K. Removing the solvent and filtration over silica gel (cyclohexane/ethyl acetate, v:v = 1:1) gave the title compound in quantitative yield. For crystallization, a small amount was dissolved in acetone and crystallized by adding diethyl ether.
1H NMR (500 MHz, CDCl3, 300 K): δ = 8.80 (s, 8H, H-β), 8.21 (dd, 3J = 7.5 Hz, 4J = 1.2 Hz, 4H, H-6), 7.78 (dt, 3J = 7.9 Hz, 4J = 1.5 Hz, 4H, H-4), 7.68 (dt, 3J = 7.6 Hz, 4J = 1.3 Hz, 4H, H-5), 7.61 (dd, 3J = 8.2 Hz, 4J = 1.0 Hz, 4H, H-3) ppm. 13C NMR (125 MHz, CDCl3, 300 K): δ = 149.9 (C-α), 141.0 (C1), 134.8 (C6), 134.5 (C2), 131.6 (C-β), 129.3 (C4), 125.7 (C5), 124.4 (C3), 115.7 (C-meso) ppm. EI–MS (70 eV): m/z (%) = 904.1 (100) [M]+.
6. Refinement
Crystal data, data collection and structure . The C—H hydrogen atoms were positioned with idealized geometries (C—H = 0.95–0.99 Å; methyl H atoms of the coordinating diethyl ether molecule were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model. The O atom of the diethyl ether solvate molecule is not located exactly on the twofold rotation axis and thus the complete molecule is equally disordered over two sets of sites because of symmetry. Therefore for each atom the occupancy was set to 0.5, and atoms were treated with SADI and SIMU commands (Sheldrick, 2015b) to achieve similar displacement ellipsoids.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1872076
https://doi.org/10.1107/S2056989018014238/wm5466sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014238/wm5466Isup2.hkl
Data collection: X-AREA (Stoe, 2008); cell
X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C48H24N8S4)(C4H10O)]·C4H10O | F(000) = 2184 |
Mr = 1054.60 | Dx = 1.380 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.8830 (4) Å | Cell parameters from 39705 reflections |
b = 17.1781 (3) Å | θ = 1.6–27.0° |
c = 14.8684 (3) Å | µ = 0.70 mm−1 |
β = 91.667 (1)° | T = 200 K |
V = 5076.18 (17) Å3 | Block, red |
Z = 4 | 0.14 × 0.11 × 0.07 mm |
Stoe IPDS-2 diffractometer | 5042 reflections with I > 2σ(I) |
ω scans | Rint = 0.039 |
Absorption correction: numerical (X-Red and X-Shape; Stoe, 2008) | θmax = 27.0°, θmin = 1.6° |
Tmin = 0.807, Tmax = 0.951 | h = −25→25 |
39705 measured reflections | k = −21→21 |
5530 independent reflections | l = −18→18 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0603P)2 + 2.7141P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.103 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.39 e Å−3 |
5530 reflections | Δρmin = −0.35 e Å−3 |
346 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
26 restraints | Extinction coefficient: 0.0011 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.5000 | 0.64166 (2) | 0.7500 | 0.03835 (10) | |
N1 | 0.40708 (7) | 0.62138 (9) | 0.68826 (9) | 0.0400 (3) | |
N2 | 0.54332 (7) | 0.62541 (9) | 0.62706 (9) | 0.0392 (3) | |
C1 | 0.34674 (8) | 0.61377 (10) | 0.72962 (11) | 0.0405 (3) | |
C2 | 0.29355 (9) | 0.60302 (11) | 0.66268 (12) | 0.0460 (4) | |
H2 | 0.2471 | 0.5962 | 0.6736 | 0.055* | |
C3 | 0.32240 (9) | 0.60449 (12) | 0.58175 (12) | 0.0464 (4) | |
H3 | 0.3001 | 0.5983 | 0.5248 | 0.056* | |
C4 | 0.39333 (8) | 0.61718 (10) | 0.59772 (11) | 0.0407 (3) | |
C5 | 0.44062 (9) | 0.62460 (10) | 0.53022 (11) | 0.0408 (3) | |
C6 | 0.51067 (9) | 0.62744 (10) | 0.54465 (11) | 0.0405 (3) | |
C7 | 0.55953 (9) | 0.62818 (12) | 0.47508 (12) | 0.0472 (4) | |
H7 | 0.5503 | 0.6310 | 0.4121 | 0.057* | |
C8 | 0.62118 (9) | 0.62418 (12) | 0.51605 (12) | 0.0473 (4) | |
H8 | 0.6632 | 0.6226 | 0.4873 | 0.057* | |
C9 | 0.61077 (8) | 0.62273 (10) | 0.61146 (11) | 0.0407 (3) | |
C10 | 0.66219 (8) | 0.61682 (10) | 0.67757 (11) | 0.0406 (3) | |
C11 | 0.41493 (9) | 0.62820 (11) | 0.43487 (11) | 0.0423 (4) | |
C12 | 0.37604 (9) | 0.69080 (12) | 0.40320 (12) | 0.0479 (4) | |
C13 | 0.35525 (11) | 0.69580 (14) | 0.31334 (13) | 0.0578 (5) | |
H13 | 0.3294 | 0.7392 | 0.2928 | 0.069* | |
C14 | 0.37198 (10) | 0.63815 (14) | 0.25443 (13) | 0.0578 (5) | |
H14 | 0.3579 | 0.6417 | 0.1929 | 0.069* | |
C15 | 0.40929 (10) | 0.57473 (13) | 0.28425 (13) | 0.0539 (5) | |
H15 | 0.4204 | 0.5345 | 0.2435 | 0.065* | |
C16 | 0.43038 (9) | 0.57010 (12) | 0.37372 (12) | 0.0474 (4) | |
H16 | 0.4559 | 0.5263 | 0.3937 | 0.057* | |
N3 | 0.35733 (9) | 0.75046 (11) | 0.46079 (11) | 0.0581 (4) | |
C17 | 0.33979 (10) | 0.77941 (12) | 0.52739 (14) | 0.0531 (4) | |
S1 | 0.31534 (3) | 0.82304 (4) | 0.61376 (4) | 0.07149 (18) | |
C18 | 0.73280 (8) | 0.61190 (11) | 0.64634 (11) | 0.0422 (4) | |
C19 | 0.76769 (9) | 0.67895 (11) | 0.62281 (12) | 0.0456 (4) | |
C20 | 0.83405 (10) | 0.67559 (14) | 0.59531 (14) | 0.0564 (5) | |
H20 | 0.8569 | 0.7217 | 0.5787 | 0.068* | |
C21 | 0.86599 (10) | 0.60474 (15) | 0.59256 (15) | 0.0617 (5) | |
H21 | 0.9114 | 0.6020 | 0.5748 | 0.074* | |
C22 | 0.83267 (11) | 0.53773 (14) | 0.61539 (16) | 0.0629 (5) | |
H22 | 0.8551 | 0.4890 | 0.6131 | 0.075* | |
C23 | 0.76637 (10) | 0.54120 (12) | 0.64176 (14) | 0.0529 (4) | |
H23 | 0.7436 | 0.4946 | 0.6569 | 0.063* | |
N4 | 0.73517 (9) | 0.75053 (11) | 0.62762 (13) | 0.0587 (4) | |
C24 | 0.72587 (9) | 0.81716 (12) | 0.63222 (14) | 0.0510 (4) | |
S2 | 0.71060 (3) | 0.90666 (3) | 0.63860 (5) | 0.07015 (18) | |
O1 | 0.5000 | 0.76596 (11) | 0.7500 | 0.0511 (4) | |
C31 | 0.54792 (10) | 0.81107 (12) | 0.70173 (15) | 0.0555 (5) | |
H31A | 0.5892 | 0.7798 | 0.6939 | 0.067* | |
H31B | 0.5604 | 0.8578 | 0.7374 | 0.067* | |
C32 | 0.52032 (14) | 0.83590 (17) | 0.61075 (17) | 0.0761 (7) | |
H32A | 0.5068 | 0.7898 | 0.5759 | 0.114* | |
H32B | 0.5550 | 0.8644 | 0.5788 | 0.114* | |
H32C | 0.4812 | 0.8697 | 0.6184 | 0.114* | |
O2 | 0.9968 (9) | 0.5749 (3) | 0.7693 (6) | 0.092 (3) | 0.5 |
C41 | 1.0756 (8) | 0.5710 (9) | 0.6491 (11) | 0.155 (6) | 0.5 |
H41A | 1.0997 | 0.6007 | 0.6059 | 0.233* | 0.5 |
H41B | 1.1070 | 0.5431 | 0.6873 | 0.233* | 0.5 |
H41C | 1.0464 | 0.5346 | 0.6182 | 0.233* | 0.5 |
C42 | 1.0345 (7) | 0.6237 (9) | 0.7061 (9) | 0.114 (4) | 0.5 |
H42A | 1.0636 | 0.6605 | 0.7364 | 0.136* | 0.5 |
H42B | 1.0035 | 0.6521 | 0.6679 | 0.136* | 0.5 |
C43 | 0.9492 (8) | 0.6115 (8) | 0.8328 (10) | 0.124 (5) | 0.5 |
H43A | 0.9091 | 0.6246 | 0.7988 | 0.148* | 0.5 |
H43B | 0.9660 | 0.6586 | 0.8600 | 0.148* | 0.5 |
C44 | 0.9249 (6) | 0.5580 (6) | 0.8994 (8) | 0.117 (3) | 0.5 |
H44A | 0.8920 | 0.5822 | 0.9363 | 0.176* | 0.5 |
H44B | 0.9064 | 0.5111 | 0.8736 | 0.176* | 0.5 |
H44C | 0.9642 | 0.5455 | 0.9356 | 0.176* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03477 (15) | 0.04689 (17) | 0.03351 (15) | 0.000 | 0.00291 (10) | 0.000 |
N1 | 0.0356 (7) | 0.0494 (8) | 0.0350 (7) | −0.0013 (6) | 0.0024 (5) | 0.0005 (6) |
N2 | 0.0361 (7) | 0.0477 (8) | 0.0339 (7) | 0.0002 (6) | 0.0028 (5) | 0.0001 (5) |
C1 | 0.0360 (8) | 0.0453 (9) | 0.0404 (8) | −0.0008 (6) | 0.0033 (6) | 0.0012 (7) |
C2 | 0.0384 (8) | 0.0556 (10) | 0.0440 (9) | −0.0045 (7) | 0.0012 (7) | −0.0001 (8) |
C3 | 0.0407 (9) | 0.0590 (11) | 0.0394 (8) | −0.0046 (7) | −0.0009 (7) | −0.0013 (7) |
C4 | 0.0387 (8) | 0.0468 (9) | 0.0364 (8) | −0.0011 (7) | −0.0008 (6) | −0.0003 (7) |
C5 | 0.0408 (8) | 0.0458 (9) | 0.0359 (8) | −0.0009 (7) | 0.0016 (6) | −0.0009 (6) |
C6 | 0.0419 (8) | 0.0465 (9) | 0.0332 (8) | −0.0009 (7) | 0.0032 (6) | 0.0005 (6) |
C7 | 0.0429 (9) | 0.0639 (11) | 0.0350 (8) | −0.0039 (8) | 0.0049 (7) | 0.0007 (7) |
C8 | 0.0408 (9) | 0.0634 (11) | 0.0382 (9) | −0.0031 (8) | 0.0074 (7) | −0.0001 (8) |
C9 | 0.0384 (8) | 0.0464 (9) | 0.0377 (8) | −0.0012 (7) | 0.0066 (6) | −0.0003 (7) |
C10 | 0.0380 (8) | 0.0440 (8) | 0.0401 (8) | −0.0010 (6) | 0.0052 (6) | −0.0005 (7) |
C11 | 0.0395 (8) | 0.0507 (10) | 0.0365 (8) | −0.0032 (7) | 0.0013 (6) | −0.0006 (7) |
C12 | 0.0472 (9) | 0.0573 (11) | 0.0393 (8) | 0.0030 (8) | 0.0031 (7) | −0.0016 (7) |
C13 | 0.0524 (11) | 0.0778 (14) | 0.0431 (10) | 0.0109 (10) | −0.0023 (8) | 0.0054 (9) |
C14 | 0.0482 (10) | 0.0903 (16) | 0.0346 (9) | 0.0001 (10) | −0.0016 (7) | −0.0027 (9) |
C15 | 0.0495 (10) | 0.0705 (13) | 0.0418 (9) | −0.0087 (9) | 0.0040 (7) | −0.0132 (9) |
C16 | 0.0465 (9) | 0.0516 (10) | 0.0443 (9) | −0.0033 (7) | 0.0032 (7) | −0.0037 (7) |
N3 | 0.0655 (10) | 0.0604 (10) | 0.0485 (9) | 0.0124 (8) | 0.0023 (7) | −0.0006 (8) |
C17 | 0.0506 (10) | 0.0545 (11) | 0.0540 (11) | 0.0066 (8) | −0.0021 (8) | 0.0003 (9) |
S1 | 0.0758 (4) | 0.0729 (4) | 0.0663 (4) | 0.0059 (3) | 0.0115 (3) | −0.0197 (3) |
C18 | 0.0377 (8) | 0.0522 (9) | 0.0368 (8) | −0.0008 (7) | 0.0036 (6) | −0.0005 (7) |
C19 | 0.0423 (9) | 0.0526 (10) | 0.0417 (8) | −0.0045 (7) | −0.0004 (7) | −0.0002 (7) |
C20 | 0.0430 (9) | 0.0734 (13) | 0.0529 (10) | −0.0128 (9) | 0.0049 (8) | 0.0062 (9) |
C21 | 0.0389 (9) | 0.0876 (16) | 0.0592 (12) | 0.0013 (10) | 0.0104 (8) | 0.0032 (11) |
C22 | 0.0483 (10) | 0.0702 (14) | 0.0707 (13) | 0.0137 (10) | 0.0129 (9) | 0.0031 (11) |
C23 | 0.0463 (10) | 0.0548 (11) | 0.0579 (11) | 0.0035 (8) | 0.0105 (8) | 0.0038 (8) |
N4 | 0.0569 (10) | 0.0526 (10) | 0.0665 (11) | −0.0068 (8) | 0.0004 (8) | 0.0012 (8) |
C24 | 0.0418 (9) | 0.0569 (12) | 0.0543 (10) | −0.0058 (8) | 0.0004 (7) | 0.0018 (8) |
S2 | 0.0700 (4) | 0.0529 (3) | 0.0870 (4) | 0.0033 (2) | −0.0071 (3) | −0.0033 (3) |
O1 | 0.0499 (10) | 0.0455 (10) | 0.0586 (11) | 0.000 | 0.0160 (8) | 0.000 |
C31 | 0.0510 (10) | 0.0541 (11) | 0.0620 (12) | −0.0087 (8) | 0.0112 (9) | 0.0022 (9) |
C32 | 0.0862 (18) | 0.0802 (16) | 0.0623 (14) | −0.0162 (14) | 0.0082 (12) | 0.0123 (12) |
O2 | 0.073 (3) | 0.087 (2) | 0.116 (8) | 0.005 (3) | −0.004 (7) | −0.006 (3) |
C41 | 0.152 (10) | 0.135 (10) | 0.179 (13) | 0.050 (8) | −0.008 (10) | −0.063 (9) |
C42 | 0.091 (7) | 0.125 (8) | 0.122 (9) | −0.016 (5) | −0.039 (6) | 0.025 (7) |
C43 | 0.125 (11) | 0.099 (8) | 0.145 (13) | 0.046 (7) | −0.036 (9) | −0.035 (8) |
C44 | 0.108 (6) | 0.071 (5) | 0.175 (11) | −0.013 (4) | 0.030 (7) | −0.002 (6) |
Zn1—N2 | 2.0622 (13) | C20—C21 | 1.374 (3) |
Zn1—N2i | 2.0622 (13) | C20—H20 | 0.9500 |
Zn1—N1i | 2.0684 (14) | C21—C22 | 1.376 (3) |
Zn1—N1 | 2.0685 (14) | C21—H21 | 0.9500 |
Zn1—O1 | 2.1352 (19) | C22—C23 | 1.387 (3) |
N1—C4 | 1.368 (2) | C22—H22 | 0.9500 |
N1—C1 | 1.370 (2) | C23—H23 | 0.9500 |
N2—C9 | 1.368 (2) | N4—C24 | 1.162 (3) |
N2—C6 | 1.370 (2) | C24—S2 | 1.571 (2) |
C1—C10i | 1.397 (2) | O1—C31 | 1.436 (2) |
C1—C2 | 1.443 (2) | O1—C31i | 1.436 (2) |
C2—C3 | 1.348 (2) | C31—C32 | 1.507 (3) |
C2—H2 | 0.9500 | C31—H31A | 0.9900 |
C3—C4 | 1.440 (2) | C31—H31B | 0.9900 |
C3—H3 | 0.9500 | C32—H32A | 0.9800 |
C4—C5 | 1.401 (2) | C32—H32B | 0.9800 |
C5—C6 | 1.404 (2) | C32—H32C | 0.9800 |
C5—C11 | 1.494 (2) | O2—C42ii | 1.11 (2) |
C6—C7 | 1.440 (2) | O2—C42 | 1.479 (12) |
C7—C8 | 1.355 (3) | O2—C43 | 1.495 (11) |
C7—H7 | 0.9500 | O2—C41ii | 1.912 (18) |
C8—C9 | 1.440 (2) | C41—C44ii | 0.755 (17) |
C8—H8 | 0.9500 | C41—C43ii | 0.900 (18) |
C9—C10 | 1.401 (2) | C41—C42 | 1.499 (14) |
C10—C1i | 1.397 (2) | C41—O2ii | 1.912 (18) |
C10—C18 | 1.494 (2) | C41—H41A | 0.9600 |
C11—C16 | 1.391 (3) | C41—H41B | 0.9599 |
C11—C12 | 1.398 (3) | C41—H41C | 0.9600 |
C12—C13 | 1.390 (3) | C42—C43ii | 0.703 (16) |
C12—N3 | 1.393 (2) | C42—O2ii | 1.11 (2) |
C13—C14 | 1.370 (3) | C42—C42ii | 1.92 (3) |
C13—H13 | 0.9500 | C42—H42A | 0.9601 |
C14—C15 | 1.384 (3) | C42—H42B | 0.9599 |
C14—H14 | 0.9500 | C43—C42ii | 0.703 (16) |
C15—C16 | 1.385 (3) | C43—C41ii | 0.900 (18) |
C15—H15 | 0.9500 | C43—C44 | 1.446 (14) |
C16—H16 | 0.9500 | C43—H43A | 0.9599 |
N3—C17 | 1.170 (3) | C43—H43B | 0.9600 |
C17—S1 | 1.576 (2) | C44—C41ii | 0.755 (17) |
C18—C23 | 1.389 (3) | C44—H44A | 0.9600 |
C18—C19 | 1.394 (3) | C44—H44B | 0.9600 |
C19—N4 | 1.392 (3) | C44—H44C | 0.9599 |
C19—C20 | 1.394 (3) | ||
N2—Zn1—N2i | 164.44 (8) | C31—O1—Zn1 | 122.65 (11) |
N2—Zn1—N1i | 88.85 (6) | C31i—O1—Zn1 | 122.65 (11) |
N2i—Zn1—N1i | 88.54 (6) | O1—C31—C32 | 111.82 (17) |
N2—Zn1—N1 | 88.54 (6) | O1—C31—H31A | 109.3 |
N2i—Zn1—N1 | 88.85 (6) | C32—C31—H31A | 109.3 |
N1i—Zn1—N1 | 160.61 (8) | O1—C31—H31B | 109.3 |
N2—Zn1—O1 | 97.78 (4) | C32—C31—H31B | 109.3 |
N2i—Zn1—O1 | 97.78 (4) | H31A—C31—H31B | 107.9 |
N1i—Zn1—O1 | 99.69 (4) | C31—C32—H32A | 109.5 |
N1—Zn1—O1 | 99.69 (4) | C31—C32—H32B | 109.5 |
C4—N1—C1 | 106.50 (14) | H32A—C32—H32B | 109.5 |
C4—N1—Zn1 | 126.59 (11) | C31—C32—H32C | 109.5 |
C1—N1—Zn1 | 126.82 (11) | H32A—C32—H32C | 109.5 |
C9—N2—C6 | 106.88 (13) | H32B—C32—H32C | 109.5 |
C9—N2—Zn1 | 126.26 (11) | C42ii—O2—C42 | 94.7 (13) |
C6—N2—Zn1 | 126.16 (11) | C42ii—O2—C43 | 26.4 (9) |
N1—C1—C10i | 125.29 (15) | C42—O2—C43 | 120.3 (9) |
N1—C1—C2 | 109.66 (14) | C42ii—O2—C41ii | 51.6 (8) |
C10i—C1—C2 | 125.05 (16) | C42—O2—C41ii | 146.0 (10) |
C3—C2—C1 | 106.91 (15) | C43—O2—C41ii | 27.3 (8) |
C3—C2—H2 | 126.5 | C44ii—C41—C43ii | 122 (3) |
C1—C2—H2 | 126.5 | C44ii—C41—C42 | 137 (3) |
C2—C3—C4 | 107.20 (15) | C43ii—C41—C42 | 18.1 (13) |
C2—C3—H3 | 126.4 | C44ii—C41—O2ii | 129 (2) |
C4—C3—H3 | 126.4 | C43ii—C41—O2ii | 49.6 (12) |
N1—C4—C5 | 125.53 (15) | C42—C41—O2ii | 35.6 (7) |
N1—C4—C3 | 109.70 (14) | C44ii—C41—H41A | 60.7 |
C5—C4—C3 | 124.76 (16) | C43ii—C41—H41A | 94.4 |
C4—C5—C6 | 125.25 (16) | C42—C41—H41A | 110.3 |
C4—C5—C11 | 117.74 (15) | O2ii—C41—H41A | 143.7 |
C6—C5—C11 | 116.99 (15) | C44ii—C41—H41B | 114.2 |
N2—C6—C5 | 125.30 (15) | C43ii—C41—H41B | 124.1 |
N2—C6—C7 | 109.32 (15) | C42—C41—H41B | 108.7 |
C5—C6—C7 | 125.28 (16) | O2ii—C41—H41B | 97.5 |
C8—C7—C6 | 107.28 (16) | H41A—C41—H41B | 109.5 |
C8—C7—H7 | 126.4 | C44ii—C41—H41C | 50.2 |
C6—C7—H7 | 126.4 | C43ii—C41—H41C | 108.5 |
C7—C8—C9 | 106.85 (15) | C42—C41—H41C | 109.4 |
C7—C8—H8 | 126.6 | O2ii—C41—H41C | 82.6 |
C9—C8—H8 | 126.6 | H41A—C41—H41C | 109.5 |
N2—C9—C10 | 125.61 (15) | H41B—C41—H41C | 109.5 |
N2—C9—C8 | 109.64 (15) | C43ii—C42—O2ii | 109 (2) |
C10—C9—C8 | 124.73 (16) | C43ii—C42—O2 | 127 (2) |
C1i—C10—C9 | 125.76 (16) | O2ii—C42—O2 | 20.8 (8) |
C1i—C10—C18 | 116.90 (15) | C43ii—C42—C41 | 23 (2) |
C9—C10—C18 | 117.33 (15) | O2ii—C42—C41 | 92.9 (12) |
C16—C11—C12 | 117.55 (16) | O2—C42—C41 | 108.1 (13) |
C16—C11—C5 | 120.98 (17) | C43ii—C42—C42ii | 156 (3) |
C12—C11—C5 | 121.45 (16) | O2ii—C42—C42ii | 50.1 (8) |
C13—C12—N3 | 117.92 (18) | O2—C42—C42ii | 35.3 (7) |
C13—C12—C11 | 121.16 (18) | C41—C42—C42ii | 142.7 (10) |
N3—C12—C11 | 120.92 (16) | C43ii—C42—H42A | 107.4 |
C14—C13—C12 | 119.9 (2) | O2ii—C42—H42A | 132.6 |
C14—C13—H13 | 120.0 | O2—C42—H42A | 112.6 |
C12—C13—H13 | 120.0 | C41—C42—H42A | 109.5 |
C13—C14—C15 | 120.15 (18) | C42ii—C42—H42A | 96.5 |
C13—C14—H14 | 119.9 | C43ii—C42—H42B | 88.1 |
C15—C14—H14 | 119.9 | O2ii—C42—H42B | 102.7 |
C14—C15—C16 | 119.83 (18) | O2—C42—H42B | 109.6 |
C14—C15—H15 | 120.1 | C41—C42—H42B | 108.8 |
C16—C15—H15 | 120.1 | C42ii—C42—H42B | 86.7 |
C15—C16—C11 | 121.34 (19) | H42A—C42—H42B | 108.1 |
C15—C16—H16 | 119.3 | C42ii—C43—C41ii | 138 (3) |
C11—C16—H16 | 119.3 | C42ii—C43—C44 | 158 (2) |
C17—N3—C12 | 157.6 (2) | C41ii—C43—C44 | 26.4 (16) |
N3—C17—S1 | 176.6 (2) | C42ii—C43—O2 | 44.9 (18) |
C23—C18—C19 | 117.82 (16) | C41ii—C43—O2 | 103.2 (17) |
C23—C18—C10 | 121.48 (16) | C44—C43—O2 | 113.4 (10) |
C19—C18—C10 | 120.68 (17) | C42ii—C43—H43A | 83.7 |
N4—C19—C20 | 119.79 (18) | C41ii—C43—H43A | 83.3 |
N4—C19—C18 | 118.78 (16) | C44—C43—H43A | 102.7 |
C20—C19—C18 | 121.44 (19) | O2—C43—H43A | 107.3 |
C21—C20—C19 | 119.2 (2) | C42ii—C43—H43B | 86.1 |
C21—C20—H20 | 120.4 | C41ii—C43—H43B | 135.5 |
C19—C20—H20 | 120.4 | C44—C43—H43B | 111.5 |
C20—C21—C22 | 120.49 (18) | O2—C43—H43B | 113.6 |
C20—C21—H21 | 119.8 | H43A—C43—H43B | 107.3 |
C22—C21—H21 | 119.8 | C41ii—C44—C43 | 32.0 (18) |
C21—C22—C23 | 120.1 (2) | C41ii—C44—H44A | 115.3 |
C21—C22—H22 | 119.9 | C43—C44—H44A | 111.3 |
C23—C22—H22 | 119.9 | C41ii—C44—H44B | 82.6 |
C22—C23—C18 | 120.90 (19) | C43—C44—H44B | 113.0 |
C22—C23—H23 | 119.5 | H44A—C44—H44B | 109.5 |
C18—C23—H23 | 119.5 | C41ii—C44—H44C | 126.1 |
C24—N4—C19 | 161.5 (2) | C43—C44—H44C | 104.0 |
N4—C24—S2 | 178.01 (19) | H44A—C44—H44C | 109.5 |
C31—O1—C31i | 114.7 (2) | H44B—C44—H44C | 109.5 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+2, y, −z+3/2. |
Acknowledgements
We thank Professor Dr Wolfgang Bensch for access to his experimental facility.
Funding information
The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 677.
References
Alizadeh, A., Bagherinejad, A., Bayat, F. & Zhu, L.-G. (2016). Tetrahedron, 72, 7070–7075. CrossRef Google Scholar
Batey, R. A. & Powell, D. A. (2000). J. Am. Chem. Soc. 2, 3237–3240. Google Scholar
Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439. CrossRef PubMed CAS Web of Science Google Scholar
Collman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424–2425. Web of Science CrossRef PubMed CAS Google Scholar
Cormode, D. P., Murray, S. S., Cowley, A. R. & Beer, P. D. (2006). Dalton Trans. pp. 5135–5140. Web of Science CrossRef Google Scholar
Denden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. 2015, 2596–2610. CrossRef Google Scholar
Dhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208–3213. Web of Science CSD CrossRef CAS Google Scholar
Ding, Q., Liu, X., Cao, B., Zong, Z. & Peng, Y. (2011). Tetrahedron Lett. 52, 1964–1967. CrossRef Google Scholar
Ezzayani, K., Denden, Z., Najmudin, S., Bonifácio, C., Saint-Aman, E., Loiseau, F. & Nasri, H. (2014). Eur. J. Inorg. Chem. 2014, 5348–5361. CrossRef Google Scholar
Freitag, R. A. & Whitten, D. G. (1983). J. Phys. Chem. 87, 3918–3925. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guo, Y.-J., Tang, R.-Y., Zhong, P. & Li, J.-H. (2010). Tetrahedron Lett. 51, 649–652. CrossRef Google Scholar
Jha, S. C., Lorch, M., Lewis, R. A., Archibald, S. J. & Boyle, R. W. (2007). Org. Biomol. Chem. 5, 1970–1974. CrossRef PubMed Google Scholar
Kosurkar, U. B., Dadmal, T. L., Appalanaidu, K., Khageswara Rao, Y., Nanubolu, J. B. & Kumbhare, R. M. (2014). Tetrahedron Lett. 55, 1296–1298. CrossRef Google Scholar
Leben, L., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1285–1289. CrossRef IUCr Journals Google Scholar
Le Maux, P., Bahri, H. & Simonneaux, G. (1993). Tetrahedron, 49, 1401–1408. CrossRef Google Scholar
Lindsey, J. (1980). J. Org. Chem. 45, 5215. CrossRef Web of Science Google Scholar
Mansour, A., Zaied, M., Ali, I., Soliman, S. & Othmani, M. (2017). Polyhedron, 127, 496–504. CrossRef Google Scholar
Rao, D. S., Madhava, G., Rasheed, S., Thahir Basha, S., Lakshmi Devamma, M. N. & Naga Raju, C. (2015). Phosphorus Sulfur Silicon, 190, 574–584. CrossRef Google Scholar
Schappacher, M., Ricard, L., Fischer, J., Weiss, R., Montiel-Montoya, R., Bill, E. & Trautwein, A. X. (1989). Inorg. Chem. 28, 4639–4645. CrossRef Web of Science Google Scholar
Scheidt, W. R., Lee, Y. J., Geiger, D. K., Taylor, K. & Hatano, K. (1982). J. Am. Chem. Soc. 104, 3367–3374. CrossRef Google Scholar
Serra, S., Moineaux, L., Vancraeynest, C., Masereel, B., Wouters, J., Pochet, L. & Frédérick, R. (2014). Eur. J. Med. Chem. 82, 96–105. CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, K. J., Koo, K. D., Yoo, K. H., Kim, D. C., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 1421–1425. CrossRef PubMed Google Scholar
Sibrian-Vazquez, M., Jensen, T. J., Fronczek, F. R., Hammer, R. P. & Vicente, M. G. H. (2005). Bioconjugate Chem. 16, 852–863. Google Scholar
Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Strohmeier, M., Orendt, A. M., Facelli, J. C., Solum, M. S., Pugmire, R. J., Parry, R. W. & Grant, D. M. (1997). J. Am. Chem. Soc. 119, 7114–7120. CrossRef Web of Science Google Scholar
Tabushi, I., Kodera, M. & Yokoyama, M. (1985). J. Am. Chem. Soc. 107, 4466–4473. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wuenschell, G. E., Tetreau, C., Lavalette, D. & Reed, C. A. (1992). J. Am. Chem. Soc. 114, 3346–3355. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.