research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [{FeCl3}2(μ-PCHP)2] [PCHP = 1,3-bis­­(2-di­phenyl­phosphanyleth­yl)-3H-imidazol-1-ium] with an unknown solvent

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
*Correspondence e-mail: ftuczek@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 October 2018; accepted 17 October 2018; online 31 October 2018)

The crystal structure of the title compound, bis­{μ-1,3-bis­[2-(di­phenyl­phosphan­yl)eth­yl]-1H-imidazole-κ2P:P′}bis­[tri­chlorido­iron(III)], [Fe2Cl6(C31H31N2P2)2] or [{FeCl3}2(μ-PCHP)2] (PCHP = C31H31N2P2), consists of dinuclear complexes that are located about centres of inversion. The FeIII cation is in a distorted trigonal–bipyramidal coordination with three chloride ligands located in the trigonal plane and two P atoms of symmetry-related PCHP ligands occupying the axial positions. Within the centrosymmetric complex, a pair of intra­molecular C—H⋯Cl hydrogen bonds between aromatic CH groups and chloride ligands are found. Individual complexes are linked into layers parallel to ([\overline{1}]01) by inter­molecular C—H⋯Cl hydrogen bonds. No pronounced inter­molecular inter­actions occur between these layers. This arrangement leaves space for disordered solvent mol­ecules. Electron density associated with these additional solvent mol­ecules was removed with the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

1. Chemical context

The conversion of di­nitro­gen into ammonia is an inter­esting reaction in the area of bioinorganic chemistry. In nature, the enzyme nitro­genase comprising the iron molybdenum cofactor (an MoFe7S9C-cluster), catalyses the derivatization of di­nitro­gen (Burgess & Lowe, 1996[Burgess, B. K. & Lowe, D. J. (1996). Chem. Rev. 96, 2983-3012.]; Spatzal et al., 2011[Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., Weber, S., Rees, D. C. & Einsle, O. (2011). Science, 334, 940-940.]; Lancaster et al., 2011[Lancaster, K. M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M. W., Neese, F., Bergmann, U. & DeBeer, S. (2011). Science, 334, 974-977.]). Based on spectroscopic, biochemical and theoretical investigations, one of the iron atoms of the MoFe cofactor is considered to be the binding site of the di­nitro­gen mol­ecule (Hoffman et al., 2009[Hoffman, B. M., Dean, D. R. & Seefeldt, L. C. (2009). Acc. Chem. Res. 42, 609-619.], 2014[Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. (2014). Chem. Rev. 114, 4041-4062.]). For this reason, the synthesis of model systems based on iron complexes serving as N2 → NH3 catalysts has gained in importance over the past few years (Stucke et al., 2018[Stucke, N., Flöser, B. M., Weyrich, T. & Tuczek, F. (2018). Eur. J. Inorg. Chem. pp. 1337-1355.]). In particular, iron(II) di­nitro­gen complexes containing a PCP pincer ligand with a central N-heterocyclic carbene (Lee et al., 2004[Lee, H. M., Zeng, J. Y., Hu, C.-H. & Lee, M.-T. (2004). Inorg. Chem. 43, 6822-6829.]) are of significant inter­est because they are able to bind and activate di­nitro­gen. As a result of the strong σ-donor property of the central carbene unit, electron density is transferred to the central metal atom and to the N2 ligand (Gradert et al., 2015[Gradert, C., Stucke, N., Krahmer, J., Näther, C. & Tuczek, F. (2015). Chem. Eur. J. 21, 1130-1137.]). In this way, the di­nitro­gen mol­ecule coordinating to the iron(II) cation should be activated sufficiently in order to get protonated, which is the first step in the N2 → NH3 conversion (Yandulov & Schrock, 2003[Yandulov, D. V. & Schrock, R. R. (2003). Science, 301, 76-78.]; Del Castillo et al., 2016[Del Castillo, T. J., Thompson, N. B. & Peters, J. C. (2016). J. Am. Chem. Soc. 138, 5341-5350.])

In this context we are inter­ested in the synthesis of iron di­nitro­gen complexes containing PCP pincer ligands. In the course of this project we serendipitously obtained crystals of the title compound by the reaction of the PCHP pincer ligand and the dinuclear iron(II) precursor [{FeCl(tmeda)}2(μ-Cl)2]. To prove the identity of this compound, a single crystal X-ray structure determination was performed, which revealed that the central carbene C atom is protonated and that a dimeric iron(II) tri­chlorido complex has formed. Comparison of the experimental X-ray powder diffraction pattern with the calculated pattern on the basis of single-crystal data shows that the obtained product contained the title compound as the major phase but is contaminated with small amounts of other unknown crystalline phase(s) (Supplementary Fig. S1).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound consists of one FeIII cation, three chlorido ligands and one PCHP ligand. The binuclear mol­ecule is completed by inversion symmetry. The FeIII cation has a distorted trigonal–bipyramidal environment, being coordinated by two phospho­rus atoms of two symmetry-related PCHP ligands that occupy the axial positions and by three chlorido ligands that are located in the trigonal plane of the bipyramid (Figs. 1[link] and 2[link]). The Fe—Cl bond lengths range from 2.3193 (5) to 2.3499 (4) Å and are much shorter than the Fe—P bond lengths of 2.6014 (5) and 2.6329 (5) Å (Table 1[link]). In the binuclear mol­ecule, the two iron(II) cations are linked by pairs of PCHP ligands (Figs. 1[link], 2[link]). The protonation of the central carbene moiety and hence the +2 oxidation state of iron of was proven by localization of the H atom attached to C1 and free refinement of its position. We also looked for tri­chlorido iron complexes with a trigonal–bipyramidal configuration in which the central iron atom has an oxidation state of +3. In comparison with the title compound, the Fe—Cl bond lengths in these complexes are significantly shorter (2.21 to 2.27 Å; Walker & Poli, 1989[Walker, J. D. & Poli, R. (1989). Inorg. Chem. 28, 1793-1801.]; Feng et al., 2017[Feng, X., Hwang, S. J., Liu, J.-L., Chen, Y.-C., Tong, M.-L. & Nocera, D. G. (2017). J. Am. Chem. Soc. 139, 16474-16477.]), thus confirming the oxidation state +2 of the iron cation in [{FeCl3}2(μ-PCHP)2].

Table 1
Selected geometric parameters (Å, °)

Fe1—Cl1 2.3193 (5) Fe1—P2i 2.6014 (5)
Fe1—Cl2 2.3285 (5) Fe1—P1 2.6329 (5)
Fe1—Cl3 2.3499 (4)    
       
Cl1—Fe1—Cl2 119.70 (2) Cl3—Fe1—P2i 92.918 (16)
Cl1—Fe1—Cl3 127.439 (19) Cl1—Fe1—P1 87.544 (16)
Cl2—Fe1—Cl3 112.83 (2) Cl2—Fe1—P1 96.663 (17)
Cl1—Fe1—P2i 88.188 (16) Cl3—Fe1—P1 88.327 (16)
Cl2—Fe1—P2i 86.935 (16) P2i—Fe1—P1 175.405 (17)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (A) –x + 1, –y + 1, –z + 1.]
[Figure 2]
Figure 2
Mol­ecular structure of the title compound showing the intra­molecular C—H⋯Cl hydrogen bonds as as dashed lines. For clarity, only the hydrogen bonds with short H⋯Cl distances (C1—H1⋯Cl2) are shown.

Finally it is noted that within the dimer, a pair of intra­molecular C—H⋯Cl hydrogen bonds between the aromatic H atom attached to C1 and one of the chlorido ligands is observed (Fig. 2[link], Table 2[link]). There is an additional intra­molecular contact between the H atom attached to C16 and Cl1, but at a much longer H⋯Cl distance (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl3ii 0.95 2.65 3.4710 (18) 145
C3—H3⋯Cl1iii 0.95 2.80 3.406 (2) 123
C4—H4A⋯Cl3ii 0.99 2.98 3.6985 (18) 130
C6—H6A⋯Cl1i 0.99 2.77 3.4402 (17) 126
C6—H6B⋯Cl1iii 0.99 2.84 3.6716 (19) 143
C16—H16⋯Cl1 0.95 2.93 3.726 (2) 143
C32—H32⋯Cl1iii 0.95 2.91 3.6057 (17) 131
C1—H1⋯Cl2 0.95 2.43 3.3260 (17) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z.

3. Supra­molecular features

In the crystal structure, the dimers are linked by centrosymmetric pairs of C—H⋯Cl hydrogen bonds between the H atom attached to C2 and the Cl3 atom of a neighbouring complex into layers parallel to ([\overline{1}]01) (Fig. 3[link], Table 2[link]). Within these layers there are a number of additional C—H⋯Cl contacts, but either at much longer H⋯Cl distances or with angles deviating strongly from linearity (Table 2[link]). These layers are stacked along [100] with no pronounced inter­molecular inter­actions between them (Fig. 4[link], Table 2[link]). By this arrangement, large cavities are formed in which disordered solvent mol­ecules of unknown identity are present (see Refinement).

[Figure 3]
Figure 3
Crystal structure of the title compound in a view along [010]. Inter­molecular C—H⋯Cl hydrogen bonds are shown as dashed lines. For clarity, only the short hydrogen bond with a H⋯Cl distance of 2.65 Å is shown.
[Figure 4]
Figure 4
Crystal structure of the title compound in a view along [100]. For clarity, only short intra- and inter­molecular C—H⋯Cl hydrogen bonds with H⋯Cl distances of 2.43 and 2.65 Å, respectively, are shown as dashed lines.

4. Database survey

To the best of our knowledge, no other iron complexes with the PCHP ligand have been reported in the literature. However, a few iron complexes where iron is coordinated by three chlorido and two phosphine ligands in a trigonal–bipyramidal environment are known (Walker & Poli, 1989[Walker, J. D. & Poli, R. (1989). Inorg. Chem. 28, 1793-1801.]; Feng et al., 2017[Feng, X., Hwang, S. J., Liu, J.-L., Chen, Y.-C., Tong, M.-L. & Nocera, D. G. (2017). J. Am. Chem. Soc. 139, 16474-16477.]). Furthermore, other metal complexes of silver, palladium, rhodium and molybdenum with the metal coordinated by the deprotonated PCHP ligand have been reported and are well investigated (Lee et al., 2004[Lee, H. M., Zeng, J. Y., Hu, C.-H. & Lee, M.-T. (2004). Inorg. Chem. 43, 6822-6829.]; Zeng et al., 2005[Zeng, J. Y., Hsieh, M.-H. & Lee, H. M. (2005). J. Organomet. Chem. 690, 5662-5671.]; Gradert et al., 2013[Gradert, C., Krahmer, J., Sönnichsen, F. D., Näther, C. & Tuczek, F. (2013). Eur. J. Inorg. Chem. pp. 3943-3955.]). The difference between these complexes and the title complex [{FeCl3}2(μ-PCHP)2] is the coordination of the carbene unit to the central metal cation, leading to the formation of mononuclear complexes. Nevertheless, a dinuclear gold complex with two bridging PCHP ligands was obtained by Bestgen et al. (2015[Bestgen, S., Gamer, M. T., Lebedkin, S., Kappes, M. M. & Roesky, P. W. (2015). Chem. Eur. J. 21, 601-614.]). Here, the PCHP pincer ligands exhibit the same coordination mode as in the title complex [{FeCl3}2(μ-PCHP)2], i.e. the pincer ligand binds to the central metal merely with the two phosphine donor groups. Polynuclear silver complexes with the PCHP ligand have also been reported, but in contrast to the aforementioned gold complex the central carbene unit does coordinate to the silver atom (Chiu et al., 2005[Chiu, P. L. & Lee, H. M. (2005). Organometallics, 24, 1692-1702.]).

5. Synthesis and crystallization

Synthetic procedures were performed according to Xiang et al. (2011[Xiang, L., Xiao, J. & Deng, L. (2011). Organometallics, 30, 2018-2025.]). To 230 mg (435 µmol) of 1,3-bis­(2-di­phenyl­phos­phan­yl­eth­yl)-3H-imidazol-1-ium chloride (PCHP·Cl), which was prepared according to literature procedures (Lee et al., 2004[Lee, H. M., Zeng, J. Y., Hu, C.-H. & Lee, M.-T. (2004). Inorg. Chem. 43, 6822-6829.]), and 54.0 mg (482 µmol) of KOtBu was added toluene (20 ml). The mixture was stirred at room temperature for 2 h. Afterwards, the suspension was filtered and added to 100 mg (207 µmol) of [{FeCl(tmeda)}2(μ-Cl)2] in 5 ml of toluene. The iron complex had been prepared according to a literature protocol (Davies et al., 1997[Davies, S. C., Hughes, D. L., Leigh, G. J., Sanders, J. R. & de Souza, J. S. (1997). J. Chem. Soc. Dalton Trans. pp. 1981-1988.]). After the reaction mixture had been stirred at room temperature overnight, the solution was concentrated under vacuum to 15 ml. The precipitate was filtered off, washed with toluene and dried under vacuum. The product was obtained as a light-brown solid (145 mg). Colourless crystals suitable for single-crystal X-ray diffraction were grown by diffusion of diethyl ether into a methanol solution of the product. Presumably, the protonation of the central carbene unit results from the crystallization process in protic methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms were located in difference maps but were refined using a riding model with idealized positions [Uiso(H) = 1.2Ueq(C) with C—H = 0.95 Å for aromatic and 0.99 Å for methyl­ene H atoms]. In the first stage of structure refinement, the hydrogen atom bound to the carbene C1 atom was clearly discernible in a difference map and was refined with varying coordinates and varying isotropic displacement parameters to prove that the carbene C atom is definitely protonated. Some very weak residual electron density peaks were present after the final refinement, indicating disordered solvent mol­ecules. Since the disorder could not be resolved by various split models and the nature and number of solvent mol­ecules (diethyl ether, methanol) could not be determined, all electron density associated with the solvent mol­ecule(s) was removed using the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The volume of the solvent-accessible voids amounts to 734.2 Å3 per unit cell; the calculated number of electrons within the voids is 173.4. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

Table 3
Experimental details

Crystal data
Chemical formula [Fe2Cl6(C31H31N2P2)2]
Mr 1311.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 13.5685 (3), 11.0227 (1), 24.1575 (5)
β (°) 100.142 (2)
V3) 3556.58 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.15 × 0.12 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.840, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 54486, 8468, 7787
Rint 0.037
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.07
No. of reflections 8468
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.34
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{µ-1,3-bis[2-(diphenylphosphanyl)ethyl]-1H-imidazole-κ2P:P'}bis[trichloridoiron(III)] top
Crystal data top
[Fe2Cl6(C31H31N2P2)2]F(000) = 1352
Mr = 1311.44Dx = 1.225 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5685 (3) ÅCell parameters from 54486 reflections
b = 11.0227 (1) Åθ = 1.7–28.0°
c = 24.1575 (5) ŵ = 0.76 mm1
β = 100.142 (2)°T = 170 K
V = 3556.58 (11) Å3Block, colorless
Z = 20.15 × 0.12 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
7787 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
θmax = 28.0°, θmin = 1.7°
Tmin = 0.840, Tmax = 0.949h = 1717
54486 measured reflectionsk = 1314
8468 independent reflectionsl = 3131
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0386P)2 + 1.7166P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
8468 reflectionsΔρmax = 0.37 e Å3
352 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.63910 (2)0.28699 (2)0.60806 (2)0.03183 (7)
Cl10.51169 (3)0.14406 (4)0.59404 (2)0.04101 (10)
Cl20.63279 (4)0.45216 (4)0.54744 (2)0.04799 (12)
Cl30.78456 (3)0.28478 (4)0.67715 (2)0.04270 (11)
C10.55808 (12)0.69486 (15)0.61066 (7)0.0340 (3)
H10.56640.63440.58390.041*
N10.59768 (10)0.69243 (13)0.66511 (6)0.0343 (3)
C20.56772 (15)0.79492 (17)0.69012 (7)0.0445 (4)
H20.58460.81590.72880.053*
C30.50986 (15)0.86009 (17)0.64948 (7)0.0448 (4)
H30.47850.93560.65410.054*
N20.50507 (11)0.79597 (13)0.60010 (6)0.0350 (3)
C40.66873 (12)0.60071 (16)0.69286 (7)0.0367 (3)
H4A0.72290.64240.71870.044*
H4B0.69950.55880.66390.044*
C50.62115 (12)0.50624 (16)0.72590 (7)0.0351 (3)
H5A0.57820.54840.74890.042*
H5B0.67490.46430.75200.042*
C60.45503 (12)0.83335 (16)0.54351 (6)0.0360 (3)
H6A0.48090.78430.51490.043*
H6B0.47040.91960.53730.043*
C70.34257 (12)0.81690 (16)0.53670 (7)0.0355 (3)
H7A0.31580.87780.56030.043*
H7B0.32860.73560.55090.043*
P10.54491 (3)0.39123 (4)0.68183 (2)0.03175 (9)
C110.42554 (12)0.46751 (16)0.65615 (7)0.0355 (3)
C120.38523 (15)0.5591 (2)0.68493 (8)0.0479 (4)
H120.42050.58570.72030.057*
C130.29422 (16)0.6119 (2)0.66253 (9)0.0551 (5)
H130.26740.67400.68270.066*
C140.24243 (14)0.5746 (2)0.61094 (8)0.0470 (4)
H140.17930.60940.59610.056*
C150.28280 (14)0.4868 (2)0.58128 (8)0.0466 (4)
H150.24810.46250.54540.056*
C160.37388 (13)0.43355 (18)0.60342 (7)0.0418 (4)
H160.40120.37330.58240.050*
C210.51823 (12)0.28897 (16)0.73749 (7)0.0364 (3)
C220.45819 (15)0.3229 (2)0.77591 (8)0.0468 (4)
H220.42490.39910.77200.056*
C230.44646 (16)0.2461 (2)0.82003 (9)0.0548 (5)
H230.40570.27020.84630.066*
C240.49388 (16)0.1350 (2)0.82568 (9)0.0548 (5)
H240.48600.08280.85590.066*
C250.55305 (16)0.0996 (2)0.78729 (9)0.0510 (5)
H250.58540.02280.79100.061*
C260.56500 (14)0.17639 (18)0.74351 (8)0.0412 (4)
H260.60570.15180.71730.049*
P20.27552 (3)0.83192 (4)0.46365 (2)0.03108 (9)
C310.25966 (12)0.99424 (15)0.45051 (7)0.0329 (3)
C320.29258 (13)1.08429 (17)0.48956 (8)0.0410 (4)
H320.32471.06280.52640.049*
C330.27869 (14)1.20583 (18)0.47496 (9)0.0467 (4)
H330.30251.26680.50180.056*
C340.23076 (14)1.23876 (17)0.42205 (9)0.0435 (4)
H340.21991.32200.41270.052*
C350.19850 (15)1.14984 (18)0.38268 (8)0.0455 (4)
H350.16581.17200.34600.055*
C360.21367 (15)1.02863 (17)0.39651 (7)0.0421 (4)
H360.19260.96820.36890.051*
C410.15144 (13)0.78454 (16)0.47522 (7)0.0360 (3)
C420.09715 (15)0.85216 (19)0.50838 (9)0.0469 (4)
H420.12250.92780.52350.056*
C430.00641 (16)0.8097 (2)0.51940 (10)0.0557 (5)
H430.03020.85600.54200.067*
C440.03052 (16)0.7005 (2)0.49754 (10)0.0584 (6)
H440.09270.67140.50510.070*
C450.02225 (17)0.6330 (2)0.46464 (10)0.0568 (5)
H450.00380.55750.44970.068*
C460.11314 (14)0.67456 (18)0.45325 (8)0.0443 (4)
H460.14910.62780.43040.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03217 (12)0.03458 (13)0.02699 (11)0.00087 (9)0.00044 (8)0.00086 (9)
Cl10.0426 (2)0.0440 (2)0.0352 (2)0.00998 (17)0.00339 (16)0.00436 (16)
Cl20.0718 (3)0.0384 (2)0.0373 (2)0.0130 (2)0.0192 (2)0.00647 (17)
Cl30.0369 (2)0.0575 (3)0.02998 (19)0.00243 (18)0.00435 (15)0.00324 (17)
C10.0352 (8)0.0361 (8)0.0286 (7)0.0002 (6)0.0004 (6)0.0016 (6)
N10.0364 (7)0.0341 (7)0.0294 (6)0.0017 (6)0.0029 (5)0.0011 (5)
C20.0590 (11)0.0406 (9)0.0289 (8)0.0068 (8)0.0060 (7)0.0050 (7)
C30.0604 (11)0.0392 (9)0.0310 (8)0.0110 (8)0.0026 (8)0.0040 (7)
N20.0390 (7)0.0374 (7)0.0258 (6)0.0033 (6)0.0023 (5)0.0004 (5)
C40.0326 (8)0.0376 (8)0.0364 (8)0.0004 (7)0.0038 (6)0.0037 (7)
C50.0362 (8)0.0393 (8)0.0272 (7)0.0025 (7)0.0017 (6)0.0003 (6)
C60.0385 (8)0.0417 (9)0.0244 (7)0.0027 (7)0.0036 (6)0.0020 (6)
C70.0386 (8)0.0408 (9)0.0255 (7)0.0022 (7)0.0013 (6)0.0002 (6)
P10.03150 (19)0.0367 (2)0.02601 (18)0.00026 (16)0.00210 (14)0.00051 (15)
C110.0336 (8)0.0417 (9)0.0308 (8)0.0006 (7)0.0045 (6)0.0016 (7)
C120.0437 (10)0.0584 (12)0.0391 (9)0.0106 (9)0.0006 (7)0.0086 (8)
C130.0479 (11)0.0642 (13)0.0519 (11)0.0175 (10)0.0055 (9)0.0080 (10)
C140.0342 (8)0.0597 (12)0.0461 (10)0.0093 (8)0.0048 (7)0.0047 (9)
C150.0383 (9)0.0598 (12)0.0384 (9)0.0017 (8)0.0025 (7)0.0002 (8)
C160.0385 (9)0.0491 (10)0.0360 (8)0.0041 (8)0.0017 (7)0.0039 (7)
C210.0344 (8)0.0431 (9)0.0302 (8)0.0043 (7)0.0014 (6)0.0013 (7)
C220.0449 (10)0.0556 (11)0.0418 (10)0.0023 (8)0.0123 (8)0.0028 (8)
C230.0510 (11)0.0728 (14)0.0441 (10)0.0108 (10)0.0175 (9)0.0049 (10)
C240.0535 (11)0.0652 (13)0.0452 (10)0.0149 (10)0.0073 (9)0.0167 (10)
C250.0522 (11)0.0494 (11)0.0488 (11)0.0055 (9)0.0020 (9)0.0129 (9)
C260.0408 (9)0.0458 (10)0.0355 (8)0.0025 (8)0.0024 (7)0.0052 (7)
P20.03107 (19)0.0346 (2)0.02607 (18)0.00111 (15)0.00082 (14)0.00094 (15)
C310.0301 (7)0.0356 (8)0.0321 (7)0.0008 (6)0.0033 (6)0.0015 (6)
C320.0381 (8)0.0426 (9)0.0384 (9)0.0021 (7)0.0037 (7)0.0054 (7)
C330.0417 (9)0.0389 (9)0.0565 (11)0.0006 (7)0.0007 (8)0.0098 (8)
C340.0407 (9)0.0352 (9)0.0560 (11)0.0023 (7)0.0125 (8)0.0038 (8)
C350.0512 (10)0.0451 (10)0.0395 (9)0.0064 (8)0.0064 (8)0.0071 (8)
C360.0529 (10)0.0395 (9)0.0319 (8)0.0021 (8)0.0020 (7)0.0007 (7)
C410.0350 (8)0.0396 (9)0.0325 (8)0.0017 (7)0.0034 (6)0.0024 (7)
C420.0443 (10)0.0476 (11)0.0513 (11)0.0003 (8)0.0157 (8)0.0051 (8)
C430.0471 (11)0.0623 (13)0.0622 (13)0.0046 (10)0.0218 (10)0.0033 (10)
C440.0430 (10)0.0674 (14)0.0682 (14)0.0082 (10)0.0190 (10)0.0003 (11)
C450.0531 (11)0.0568 (12)0.0632 (13)0.0166 (10)0.0174 (10)0.0089 (10)
C460.0432 (9)0.0472 (10)0.0435 (9)0.0059 (8)0.0106 (8)0.0060 (8)
Geometric parameters (Å, º) top
Fe1—Cl12.3193 (5)C15—H150.9500
Fe1—Cl22.3285 (5)C16—H160.9500
Fe1—Cl32.3499 (4)C21—C221.390 (3)
Fe1—P2i2.6014 (5)C21—C261.390 (3)
Fe1—P12.6329 (5)C22—C231.392 (3)
C1—N21.327 (2)C22—H220.9500
C1—N11.331 (2)C23—C241.379 (3)
C1—H10.9500C23—H230.9500
N1—C21.376 (2)C24—C251.385 (3)
N1—C41.474 (2)C24—H240.9500
C2—C31.351 (2)C25—C261.387 (3)
C2—H20.9500C25—H250.9500
C3—N21.378 (2)C26—H260.9500
C3—H30.9500P2—C311.8233 (17)
N2—C61.4740 (19)P2—C411.8306 (18)
C4—C51.523 (2)P2—Fe1i2.6013 (5)
C4—H4A0.9900C31—C321.388 (2)
C4—H4B0.9900C31—C361.396 (2)
C5—P11.8500 (17)C32—C331.390 (3)
C5—H5A0.9900C32—H320.9500
C5—H5B0.9900C33—C341.377 (3)
C6—C71.517 (2)C33—H330.9500
C6—H6A0.9900C34—C351.382 (3)
C6—H6B0.9900C34—H340.9500
C7—P21.8450 (16)C35—C361.384 (3)
C7—H7A0.9900C35—H350.9500
C7—H7B0.9900C36—H360.9500
P1—C111.8334 (17)C41—C461.387 (3)
P1—C211.8387 (18)C41—C421.395 (3)
C11—C121.391 (3)C42—C431.386 (3)
C11—C161.393 (2)C42—H420.9500
C12—C131.386 (3)C43—C441.373 (3)
C12—H120.9500C43—H430.9500
C13—C141.381 (3)C44—C451.378 (3)
C13—H130.9500C44—H440.9500
C14—C151.373 (3)C45—C461.388 (3)
C14—H140.9500C45—H450.9500
C15—C161.388 (3)C46—H460.9500
Cl1—Fe1—Cl2119.70 (2)C14—C15—C16120.46 (18)
Cl1—Fe1—Cl3127.439 (19)C14—C15—H15119.8
Cl2—Fe1—Cl3112.83 (2)C16—C15—H15119.8
Cl1—Fe1—P2i88.188 (16)C15—C16—C11120.62 (17)
Cl2—Fe1—P2i86.935 (16)C15—C16—H16119.7
Cl3—Fe1—P2i92.918 (16)C11—C16—H16119.7
Cl1—Fe1—P187.544 (16)C22—C21—C26118.75 (17)
Cl2—Fe1—P196.663 (17)C22—C21—P1122.51 (15)
Cl3—Fe1—P188.327 (16)C26—C21—P1118.61 (13)
P2i—Fe1—P1175.405 (17)C21—C22—C23120.5 (2)
N2—C1—N1108.54 (15)C21—C22—H22119.8
N2—C1—H1125.7C23—C22—H22119.8
N1—C1—H1125.7C24—C23—C22120.1 (2)
C1—N1—C2108.56 (14)C24—C23—H23119.9
C1—N1—C4125.54 (15)C22—C23—H23119.9
C2—N1—C4125.71 (14)C23—C24—C25119.97 (19)
C3—C2—N1107.24 (15)C23—C24—H24120.0
C3—C2—H2126.4C25—C24—H24120.0
N1—C2—H2126.4C24—C25—C26119.8 (2)
C2—C3—N2106.81 (16)C24—C25—H25120.1
C2—C3—H3126.6C26—C25—H25120.1
N2—C3—H3126.6C25—C26—C21120.84 (19)
C1—N2—C3108.85 (14)C25—C26—H26119.6
C1—N2—C6123.97 (14)C21—C26—H26119.6
C3—N2—C6127.10 (15)C31—P2—C41102.89 (8)
N1—C4—C5113.80 (14)C31—P2—C7106.13 (8)
N1—C4—H4A108.8C41—P2—C798.06 (8)
C5—C4—H4A108.8C31—P2—Fe1i115.55 (5)
N1—C4—H4B108.8C41—P2—Fe1i119.17 (6)
C5—C4—H4B108.8C7—P2—Fe1i112.91 (6)
H4A—C4—H4B107.7C32—C31—C36118.58 (16)
C4—C5—P1114.37 (11)C32—C31—P2124.71 (13)
C4—C5—H5A108.7C36—C31—P2116.67 (13)
P1—C5—H5A108.7C31—C32—C33120.26 (17)
C4—C5—H5B108.7C31—C32—H32119.9
P1—C5—H5B108.7C33—C32—H32119.9
H5A—C5—H5B107.6C34—C33—C32120.70 (18)
N2—C6—C7110.95 (14)C34—C33—H33119.7
N2—C6—H6A109.4C32—C33—H33119.7
C7—C6—H6A109.4C33—C34—C35119.51 (18)
N2—C6—H6B109.4C33—C34—H34120.2
C7—C6—H6B109.4C35—C34—H34120.2
H6A—C6—H6B108.0C34—C35—C36120.19 (18)
C6—C7—P2114.23 (11)C34—C35—H35119.9
C6—C7—H7A108.7C36—C35—H35119.9
P2—C7—H7A108.7C35—C36—C31120.73 (17)
C6—C7—H7B108.7C35—C36—H36119.6
P2—C7—H7B108.7C31—C36—H36119.6
H7A—C7—H7B107.6C46—C41—C42119.10 (17)
C11—P1—C21104.64 (8)C46—C41—P2118.91 (14)
C11—P1—C5104.57 (8)C42—C41—P2121.86 (14)
C21—P1—C599.29 (8)C43—C42—C41120.41 (19)
C11—P1—Fe1118.44 (5)C43—C42—H42119.8
C21—P1—Fe1114.14 (6)C41—C42—H42119.8
C5—P1—Fe1113.56 (6)C44—C43—C42119.9 (2)
C12—C11—C16118.24 (16)C44—C43—H43120.0
C12—C11—P1124.42 (13)C42—C43—H43120.0
C16—C11—P1117.30 (13)C43—C44—C45120.2 (2)
C13—C12—C11120.75 (18)C43—C44—H44119.9
C13—C12—H12119.6C45—C44—H44119.9
C11—C12—H12119.6C44—C45—C46120.4 (2)
C14—C13—C12120.26 (19)C44—C45—H45119.8
C14—C13—H13119.9C46—C45—H45119.8
C12—C13—H13119.9C41—C46—C45119.92 (19)
C15—C14—C13119.60 (17)C41—C46—H46120.0
C15—C14—H14120.2C45—C46—H46120.0
C13—C14—H14120.2
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3ii0.952.653.4710 (18)145
C3—H3···Cl1iii0.952.803.406 (2)123
C4—H4A···Cl3ii0.992.983.6985 (18)130
C6—H6A···Cl1i0.992.773.4402 (17)126
C6—H6B···Cl1iii0.992.843.6716 (19)143
C16—H16···Cl10.952.933.726 (2)143
C32—H32···Cl1iii0.952.913.6057 (17)131
C1—H1···Cl20.952.433.3260 (17)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBestgen, S., Gamer, M. T., Lebedkin, S., Kappes, M. M. & Roesky, P. W. (2015). Chem. Eur. J. 21, 601–614.  CrossRef PubMed Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurgess, B. K. & Lowe, D. J. (1996). Chem. Rev. 96, 2983–3012.  CrossRef PubMed CAS Web of Science Google Scholar
First citationChiu, P. L. & Lee, H. M. (2005). Organometallics, 24, 1692–1702.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, S. C., Hughes, D. L., Leigh, G. J., Sanders, J. R. & de Souza, J. S. (1997). J. Chem. Soc. Dalton Trans. pp. 1981–1988.  CSD CrossRef Web of Science Google Scholar
First citationDel Castillo, T. J., Thompson, N. B. & Peters, J. C. (2016). J. Am. Chem. Soc. 138, 5341–5350.  CrossRef PubMed Google Scholar
First citationFeng, X., Hwang, S. J., Liu, J.-L., Chen, Y.-C., Tong, M.-L. & Nocera, D. G. (2017). J. Am. Chem. Soc. 139, 16474–16477.  CrossRef PubMed Google Scholar
First citationGradert, C., Krahmer, J., Sönnichsen, F. D., Näther, C. & Tuczek, F. (2013). Eur. J. Inorg. Chem. pp. 3943–3955.  CrossRef Google Scholar
First citationGradert, C., Stucke, N., Krahmer, J., Näther, C. & Tuczek, F. (2015). Chem. Eur. J. 21, 1130–1137.  CrossRef PubMed Google Scholar
First citationHoffman, B. M., Dean, D. R. & Seefeldt, L. C. (2009). Acc. Chem. Res. 42, 609–619.  CrossRef PubMed Google Scholar
First citationHoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. (2014). Chem. Rev. 114, 4041–4062.  CrossRef PubMed Google Scholar
First citationLancaster, K. M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M. W., Neese, F., Bergmann, U. & DeBeer, S. (2011). Science, 334, 974–977.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, H. M., Zeng, J. Y., Hu, C.-H. & Lee, M.-T. (2004). Inorg. Chem. 43, 6822–6829.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., Weber, S., Rees, D. C. & Einsle, O. (2011). Science, 334, 940–940.  CrossRef PubMed Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStucke, N., Flöser, B. M., Weyrich, T. & Tuczek, F. (2018). Eur. J. Inorg. Chem. pp. 1337–1355.  CrossRef Google Scholar
First citationWalker, J. D. & Poli, R. (1989). Inorg. Chem. 28, 1793–1801.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, L., Xiao, J. & Deng, L. (2011). Organometallics, 30, 2018–2025.  CrossRef Google Scholar
First citationYandulov, D. V. & Schrock, R. R. (2003). Science, 301, 76–78.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, J. Y., Hsieh, M.-H. & Lee, H. M. (2005). J. Organomet. Chem. 690, 5662–5671.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds