research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-[(4,7-di­methyl­quinolin-2-yl)methyl­­idene]semicarbazide dihydrate

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, bT.R. Ministry of Forestry and Water Affairs, 11th Regional Directorate, 55030, Ilkadım-Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, dVan Yüzüncü Yıl University, Faculty of Education, Department of Sciences, Van, Turkey, and eTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: gaidaisv77@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 1 October 2018; accepted 22 October 2018; online 31 October 2018)

In the title compound, C13H14N4O·2H2O, the organic mol­ecule is almost planar. In the crystal, the mol­ecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (10[\overline{1}]). Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (55.4%), H⋯O/O⋯H (14.8%), H⋯C/C⋯H (11.7%) and H⋯N/N⋯H (8.3%) inter­actions.

1. Chemical context

Semicarbazones are important inter­mediates in organic synthesis, mainly for obtaining heterocyclic rings such as oxa­diazo­les and pyrazolidones (Arfan & Rukiah, 2015[Arfan, A. & Rukiah, M. (2015). Acta Cryst. E71, 168-172.]). Furthermore, they are used for the isolation, purification and characterization of aldehydes and ketones as well as for the protection of carbonyl groups. They possess a wide range of bioactivities and pharmacological applications (Jadon et al., 2011[Jadon, S., Khedr, A. M., Kumar, S., Yadav, S., Kumar, V. & Gupta, K. C. (2011). Asian J. Chem. 23, 4209-4211.]). The chemistry of semicarbazones is inter­esting because of their special role in biological applications, exhibiting anti-proliferative, anti-tumoral, anti­convulsant, anti-trypanosomal, herbicidal and biocidal activities (Arfan & Rukiah, 2015[Arfan, A. & Rukiah, M. (2015). Acta Cryst. E71, 168-172.]). Beside these, a number of semicarbazones have also been reported to possess anti­fungal, anti­bacterial and anti­tubercular activities (Jadon et al., 2011[Jadon, S., Khedr, A. M., Kumar, S., Yadav, S., Kumar, V. & Gupta, K. C. (2011). Asian J. Chem. 23, 4209-4211.]). Semicarbazones are commonly used as ligands in coordination chemistry and are biologically active compounds. Their complexation with different metals increases the bioactivity of these mol­ecules (Nasrullah et al., 2013[Nasrullah, M., Khan, M. A., Khan, M. N., Humphrey, M. G., Farooq, U., Aslam, S., Ahmad, M., Munawar, M. A., Maqbool, T. & Lin, W.-O. (2013). Asian J. Chem. 25, 7293-7296.], Afrasiabi et al., 2005[Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526-1531.]).

Semicarbazones exist predominantly in the amido form in the solid state whereas due to the inter­actions of the solvent mol­ecules they can exhibit a amido–iminol tautomerism in solution state (Casas et al., 2000[Casas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]).

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the C3–C6/C11/N4 ring [r.m.s. deviation 0.0054 Å, maximum deviation of 0.0080 (12) Å for N4] is inclined to the C6–C11 aromatic ring by 1.75 (8)°. While these rings are almost co-planar, the N2—N3—C2—C3 torsion angle of −179.41 (16)° also indicates the general planarity of the mol­ecule. The aromatic C—C distances for the title compound range from 1.356 (3) Å to 1.500 (3) Å. The C2–N3 bond length [1.272 (2) Å] is in agreement with that for a double bond. The C1—N1 [1.316 (2) Å] and C3—N4 [1.319 (2) Å] bond lengths are essentially the same, as are the C1—N2 and C11—N4 distances[1.360 (2) and 1.372 (2) Å, respectively]. The organic mol­ecule and the two water mol­ecules in the asymmetric unit are linked by O—H⋯O hydrogen bonds (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.08 2.9277 (18) 171
N2—H2⋯O1ii 0.86 2.01 2.867 (2) 175
O2—H2B⋯O3i 0.85 2.03 2.814 154
O2—H2C⋯O1 0.85 1.92 2.769 175
O3—H3A⋯O2 0.85 1.83 2.665 169
O3—H3B⋯N4ii 0.85 2.02 2.8706 (1) 176
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

3. Supra­molecular features

The crystal packing of the title compound features four inter­molecular (O—H⋯O, N—H⋯O and O—H⋯N) hydrogen bonds (Table 1[link] and Fig. 2[link]) as well as those already mentioned, forming a two-dimensional network parallel to (10[\overline{1}]). All three O atoms of the compound are involved in hydrogen bonds.

[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Dashed lines denote hydrogen bonds (Table 1[link]).

4. Hirshfeld surface analysis

Hirshfeld surface was used to investigate and qu­antify the inter­molecular inter­actions in the title structure (CrystalExplorer; Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.]). The Hirshfeld surfaces were plotted using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.578 (red) to 1.362 (blue) a.u. The red spots on the surfaces indicate the inter­molecular contacts involved in the hydrogen bonds (Sen et al., 2018[Sen, P., Kansiz, S., Golenya, I. A. & Dege, N. (2018). Acta Cryst. E74, 1147-1150.]; Kansiz et al., 2018[Kansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217-220.]; Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280-290.]). Those in Figs. 3[link] and 4[link] correspond to the near-type H⋯O and H⋯N contacts resulting from O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds (Table 1[link]).

[Figure 3]
Figure 3
The Hirshfeld surfaces of the title compound mapped over dnorm, di and de.
[Figure 4]
Figure 4
Hirshfeld surfaces mapped over dnorm to visualize the inter­molecular inter­actions.

Fig. 5[link] shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. Fig. 6[link]a (H⋯H) shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.2 Å, which indicates the presence of the H⋯H contacts in this study (55.4%). Fig. 6[link]b represents the O⋯H/H⋯O contacts (14.8%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface and has two symmetrical points at the top, bottom left and right, de + di = 1.9 Å. These data are characteristic of O—H⋯O and N—H⋯O hydrogen bonds. Fig. 6[link]c shows the contacts (C⋯H/H⋯C = 11.7%) between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa. There are two symmetrical wings on the left and right sides. In Fig. 6[link]d, the two symmetrical points at the top, bottom left and right, de + di = 1.8 Å, indicate the presence of H⋯N/N⋯H (8.3%) contacts. These data are characteristic of O—H⋯N hydrogen bonds (Table 1[link]).

[Figure 5]
Figure 5
The overall fingerprint plot for the title compound.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots with a dnorm view of the (a) H⋯H (55.4%), (b) H⋯O/O⋯H (14.8%), (c) H⋯C/C⋯H (11.7%) and (d) H⋯N/N⋯H (8.3%) contacts in the title compound.

5. Synthesis and crystallization

The title compound was synthesised following a reported procedure by (Aydemir & Kaban, 2018[Aydemir, E. & Kaban, Ş. (2018). Asian J. Chem. 30, 1460-1464.]). A hot ethano­lic solution (5 mL) of of semicarbazide hydro­chloride (1 mmol) and (0.1 mol) of sodium acetate trihidrate (1.5 mmol) in 2 mL water was slowly added to a solution of 2,7-di­methyl­quinoline-2-carboxaldehyde (1.0 mmol) in 10 mL of hot ethanol. The mixture was refluxed on a steam bath for 2 h until the colour changed. On completion of the reaction (monitored by TLC) the mixture was allowed to cool to room temperature. The separated solid was filtered and washed with cold water, ethanol and diethyl ether and then single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resultant compound in acetonitrile; colourless prismatic crystals were obtained in 83% yield, m.p. 503.5 K (deca­ying).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were geometrically positioned with C—H distances of 0.93–0.96 Å. and refined as riding, with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in difference-Fourier maps and refined isotropically. The water H atoms were located in a difference-Fourier map and refined isotropically subject to a restraint of O—H = 0.85±2 Å.

Table 2
Experimental details

Crystal data
Chemical formula C13H14N4O·2H2O
Mr 278.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.4731 (7), 7.4612 (5), 18.4906 (14)
β (°) 94.201 (6)
V3) 1441.01 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.72 × 0.41 × 0.25
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.953, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 9088, 2981, 1564
Rint 0.049
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 0.86
No. of reflections 2981
No. of parameters 189
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.17
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-1-[(4,7-Dimethylquinolin-2-yl)methylidene]semicarbazide dihydrate top
Crystal data top
C13H14N4O·2H2OF(000) = 592
Mr = 278.31Dx = 1.283 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4731 (7) ÅCell parameters from 7023 reflections
b = 7.4612 (5) Åθ = 2.0–29.9°
c = 18.4906 (14) ŵ = 0.09 mm1
β = 94.201 (6)°T = 296 K
V = 1441.01 (18) Å3Prism, colorless
Z = 40.72 × 0.41 × 0.25 mm
Data collection top
Stoe IPDS 2
diffractometer
2981 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1564 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.049
rotation method scansθmax = 26.5°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1313
Tmin = 0.953, Tmax = 0.984k = 97
9088 measured reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
2981 reflectionsΔρmax = 0.21 e Å3
189 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05531 (11)0.4361 (2)0.59020 (6)0.0639 (4)
N40.46860 (13)0.2933 (2)0.41455 (7)0.0520 (4)
O31.41681 (15)0.7083 (2)0.72180 (7)0.0809 (5)
H3A1.3589850.6287480.7235130.121*
H3B1.4492650.7030150.6810410.121*
N30.73918 (13)0.3228 (2)0.53869 (7)0.0512 (4)
N20.86130 (13)0.3854 (2)0.53533 (8)0.0563 (4)
H20.8841640.4329810.4959380.068*
N10.90821 (15)0.2915 (2)0.65190 (8)0.0666 (5)
H1A0.9597160.2800220.6900280.080*
H1B0.8315680.2499050.6515160.080*
C10.94666 (17)0.3726 (3)0.59415 (9)0.0513 (5)
C30.53144 (15)0.2811 (2)0.47886 (9)0.0478 (5)
C110.34215 (16)0.2435 (3)0.40929 (10)0.0514 (5)
O21.21793 (18)0.4846 (3)0.71357 (9)0.1137 (7)
H2B1.1962270.4065260.7438270.170*
H2C1.1698600.4756720.6746500.170*
C40.47587 (17)0.2176 (3)0.54060 (10)0.0533 (5)
H40.5247500.2118720.5846050.064*
C50.35095 (17)0.1640 (2)0.53701 (9)0.0526 (5)
C20.66482 (16)0.3413 (3)0.48165 (9)0.0507 (5)
H2A0.6957720.3942340.4408800.061*
C60.27988 (16)0.1782 (2)0.46867 (10)0.0515 (5)
C100.27452 (18)0.2618 (3)0.34094 (10)0.0636 (6)
H100.3172540.3035770.3019310.076*
C70.14862 (18)0.1346 (3)0.45653 (12)0.0661 (6)
H70.1044350.0911120.4946850.079*
C90.14763 (19)0.2196 (3)0.33076 (12)0.0662 (6)
C120.2915 (2)0.0934 (3)0.60264 (11)0.0734 (6)
H12A0.3549990.0882460.6427360.110*
H12B0.2581780.0246660.5926650.110*
H12C0.2231360.1712920.6145330.110*
C80.08617 (19)0.1551 (3)0.39019 (14)0.0737 (7)
H80.0001750.1253760.3840020.088*
C130.0751 (2)0.2446 (4)0.25749 (13)0.0981 (9)
H13A0.1289000.3045200.2252740.147*
H13B0.0001000.3153380.2630380.147*
H13C0.0505530.1295860.2377300.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0413 (7)0.0946 (11)0.0541 (8)0.0070 (7)0.0073 (6)0.0052 (7)
N40.0431 (8)0.0643 (11)0.0476 (8)0.0022 (7)0.0039 (7)0.0041 (7)
O30.0725 (10)0.1144 (14)0.0546 (8)0.0238 (9)0.0030 (7)0.0119 (8)
N30.0423 (8)0.0593 (11)0.0507 (8)0.0027 (7)0.0040 (7)0.0028 (7)
N20.0411 (8)0.0792 (12)0.0473 (8)0.0071 (8)0.0054 (7)0.0062 (8)
N10.0537 (9)0.0907 (14)0.0534 (9)0.0120 (9)0.0100 (7)0.0138 (9)
C10.0453 (11)0.0588 (13)0.0485 (10)0.0021 (9)0.0067 (8)0.0030 (9)
C30.0446 (10)0.0517 (12)0.0462 (10)0.0008 (8)0.0036 (8)0.0055 (8)
C110.0424 (10)0.0546 (13)0.0560 (11)0.0008 (9)0.0044 (8)0.0088 (9)
O20.1052 (13)0.164 (2)0.0684 (10)0.0673 (13)0.0153 (10)0.0070 (11)
C40.0527 (11)0.0583 (13)0.0481 (10)0.0030 (9)0.0030 (8)0.0031 (9)
C50.0520 (11)0.0513 (12)0.0548 (10)0.0021 (9)0.0057 (9)0.0027 (9)
C20.0451 (10)0.0591 (12)0.0471 (9)0.0022 (9)0.0015 (8)0.0027 (8)
C60.0455 (10)0.0461 (12)0.0629 (11)0.0018 (9)0.0041 (9)0.0066 (9)
C100.0510 (11)0.0831 (16)0.0553 (11)0.0025 (10)0.0063 (9)0.0080 (10)
C70.0488 (11)0.0660 (15)0.0835 (14)0.0096 (10)0.0060 (10)0.0029 (11)
C90.0500 (11)0.0723 (15)0.0740 (14)0.0004 (11)0.0113 (11)0.0139 (12)
C120.0686 (13)0.0830 (17)0.0703 (13)0.0015 (12)0.0163 (11)0.0085 (11)
C80.0430 (11)0.0739 (16)0.1022 (17)0.0071 (10)0.0098 (12)0.0148 (13)
C130.0682 (15)0.128 (2)0.0921 (17)0.0009 (14)0.0359 (13)0.0158 (15)
Geometric parameters (Å, º) top
O1—C11.240 (2)C4—H40.9300
N4—C31.3193 (19)C5—C61.423 (2)
N4—C111.372 (2)C5—C121.500 (3)
O3—H3A0.8500C2—H2A0.9300
O3—H3B0.8500C6—C71.414 (3)
N3—C21.2719 (19)C10—C91.365 (3)
N3—N21.3673 (19)C10—H100.9300
N2—C11.360 (2)C7—C81.356 (3)
N2—H20.8600C7—H70.9300
N1—C11.316 (2)C9—C81.399 (3)
N1—H1A0.8600C9—C131.515 (3)
N1—H1B0.8600C12—H12A0.9600
C3—C41.401 (2)C12—H12B0.9600
C3—C21.465 (2)C12—H12C0.9600
C11—C61.405 (3)C8—H80.9300
C11—C101.409 (2)C13—H13A0.9600
O2—H2B0.8500C13—H13B0.9600
O2—H2C0.8501C13—H13C0.9600
C4—C51.365 (2)
C3—N4—C11117.43 (16)C11—C6—C7117.21 (17)
H3A—O3—H3B109.5C11—C6—C5118.53 (15)
C2—N3—N2116.30 (15)C7—C6—C5124.24 (19)
C1—N2—N3120.14 (16)C9—C10—C11121.4 (2)
C1—N2—H2119.9C9—C10—H10119.3
N3—N2—H2119.9C11—C10—H10119.3
C1—N1—H1A120.0C8—C7—C6121.1 (2)
C1—N1—H1B120.0C8—C7—H7119.5
H1A—N1—H1B120.0C6—C7—H7119.5
O1—C1—N1124.08 (15)C10—C9—C8118.05 (18)
O1—C1—N2118.59 (17)C10—C9—C13120.9 (2)
N1—C1—N2117.33 (17)C8—C9—C13121.01 (19)
N4—C3—C4123.22 (15)C5—C12—H12A109.5
N4—C3—C2114.97 (16)C5—C12—H12B109.5
C4—C3—C2121.80 (14)H12A—C12—H12B109.5
N4—C11—C6122.64 (15)C5—C12—H12C109.5
N4—C11—C10117.17 (18)H12A—C12—H12C109.5
C6—C11—C10120.19 (16)H12B—C12—H12C109.5
H2B—O2—H2C109.5C7—C8—C9122.02 (18)
C5—C4—C3120.88 (15)C7—C8—H8119.0
C5—C4—H4119.6C9—C8—H8119.0
C3—C4—H4119.6C9—C13—H13A109.5
C4—C5—C6117.28 (17)C9—C13—H13B109.5
C4—C5—C12121.14 (16)H13A—C13—H13B109.5
C6—C5—C12121.58 (17)C9—C13—H13C109.5
N3—C2—C3121.35 (17)H13A—C13—H13C109.5
N3—C2—H2A119.3H13B—C13—H13C109.5
C3—C2—H2A119.3
C2—N3—N2—C1179.33 (17)N4—C11—C6—C50.3 (3)
N3—N2—C1—O1177.53 (16)C10—C11—C6—C5179.15 (17)
N3—N2—C1—N12.9 (3)C4—C5—C6—C110.9 (3)
C11—N4—C3—C41.1 (3)C12—C5—C6—C11179.24 (19)
C11—N4—C3—C2178.14 (16)C4—C5—C6—C7177.62 (18)
C3—N4—C11—C61.3 (3)C12—C5—C6—C72.3 (3)
C3—N4—C11—C10178.17 (17)N4—C11—C10—C9178.52 (18)
N4—C3—C4—C50.0 (3)C6—C11—C10—C90.9 (3)
C2—C3—C4—C5179.24 (18)C11—C6—C7—C80.1 (3)
C3—C4—C5—C61.0 (3)C5—C6—C7—C8178.57 (19)
C3—C4—C5—C12179.09 (19)C11—C10—C9—C80.8 (3)
N2—N3—C2—C3179.41 (16)C11—C10—C9—C13178.36 (19)
N4—C3—C2—N3174.01 (17)C6—C7—C8—C90.1 (3)
C4—C3—C2—N36.7 (3)C10—C9—C8—C70.2 (3)
N4—C11—C6—C7178.87 (18)C13—C9—C8—C7178.9 (2)
C10—C11—C6—C70.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.082.9277 (18)171
N2—H2···O1ii0.862.012.867 (2)175
O2—H2B···O3i0.852.032.814154
O2—H2C···O10.851.922.769175
O3—H3A···O20.851.832.665169
O3—H3B···N4ii0.852.022.8706 (1)176
Symmetry codes: (i) x+5/2, y1/2, z+3/2; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAfrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526–1531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationArfan, A. & Rukiah, M. (2015). Acta Cryst. E71, 168–172.  CrossRef IUCr Journals Google Scholar
First citationAydemir, E. & Kaban, Ş. (2018). Asian J. Chem. 30, 1460–1464.  CrossRef Google Scholar
First citationCasas, J. S., García-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationJadon, S., Khedr, A. M., Kumar, S., Yadav, S., Kumar, V. & Gupta, K. C. (2011). Asian J. Chem. 23, 4209–4211.  Google Scholar
First citationKansiz, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasrullah, M., Khan, M. A., Khan, M. N., Humphrey, M. G., Farooq, U., Aslam, S., Ahmad, M., Munawar, M. A., Maqbool, T. & Lin, W.-O. (2013). Asian J. Chem. 25, 7293–7296.  CrossRef Google Scholar
First citationSen, P., Kansiz, S., Golenya, I. A. & Dege, N. (2018). Acta Cryst. E74, 1147–1150.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds