research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 2-{4-[(3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadeemabad2018@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 11 October 2018; accepted 15 October 2018; online 23 October 2018)

The mol­ecule of the title compound, C16H17N5O3, is build up from two fused six-membered rings linked to a 1,2,3-triazole ring, which is attached to an ethyl azido-acetate group. The di­hydro­qinoxalinone portion is planar to within 0.0512 (12) Å and is oriented at a dihedral angle of 87.83 (5)° with respect to the pendant triazole ring. In the crystal, a combination of inter­molecular C—H⋯O and C—H⋯N hydrogen bonds together with slipped π-stacking [centroid–centroid distance = 3.7772 (12) Å] and C—H⋯π (ring) inter­actions lead to the formation of chains extending along the c-axis direction. Additional C—H⋯O hydrogen bonds link these chains into layers parallel to the bc plane and the layers are tied together by complementary π-stacking [centroid–centroid distance = 3.5444 (12) Å] inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.5%), H⋯O/O⋯H (18.8%), H⋯N/N⋯H (17.0%) and H⋯C/C⋯H (10.4%) inter­actions.

1. Chemical context

Quinoxaline derivatives, especially quinoxalinone, are of great importance in medicinal chemistry (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]; Ramli et al., 2017[Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.]) and can be used for the synthesis of numerous heterocyclic compounds with various biological activities such as anti­bacterial (Griffith et al., 1992[Griffith, R. K., Chittur, S. V. & Chen, Y. C. (1992). Med. Chem. Res. 2, 467-473.]), HIV (Loriga et al., 1997[Loriga, M., Piras, S., Sanna, P. & Paglietti, G. (1997). Farmaco, 52, 157-166.]), anti­microbial (Badran et al., 2003[Badran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. 26, 107-113.]), anti-inflammatory (Wagle et al., 2008[Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Ind. J. Chem. 47, 439-448.]), anti­protozoal (Hui et al., 2006[Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815-820.]), and anti­cancer (Carta et al., 2006[Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113-122.]). In a continuation of our research work devoted to the study of cyclo­addition reactions involving quinoxaline derivatives (Ramli et al., 2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.], 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.]; Abad et al., 2018[Abad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018). IUCrData, 3, x180482.]; Sebbar et al., 2016[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah, Z., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1-11.]), we report in this work the synthesis, using 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinoxalin-2(1H)-one as dipolarophile and ethyl azido acetate as 1,3-dipole, and crystal structure of ethyl 2-{4-[(3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate, C16H17N5O3 (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

2. Structural commentary

The mol­ecule of the title compound is build up from two fused six-membered rings linked to a 1,2,3-triazole ring which is attached to ethyl azido­acetate group (Fig. 1[link]) (Sebbar et al., 2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116.]; Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]).

[Scheme 1]

Atoms C8 and N2 are displaced from the mean plane through the di­hydro­quinoxalinone unit by 0.0367 (13) and −0.0512 (12) Å, respectively, with the remaining atoms within 0.0222 (15) Å of the plane (r.m.s deviation of the fitted atoms is 0.0234 Å). The pendant triazole ring is inclined to this plane by 87.83 (5)°.

3. Supra­molecular features

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, C—HDhyqnx⋯OEthazac, C—HEthazac⋯ODhyqnx, C5—HDhyqnx⋯NEthazac and C—HTrz⋯NDhyqnx (Dhyqnx = di­hydro­quinoxalin, Ethazac = ethyl azido­acetate and Trz = triazol) hydrogen bonds (Table 1[link]) form chains extending along the c-axis direction (Figs. 2[link] and 3[link]). These are reinforced by slipped π-stacking inter­actions between inversion-related A (N1/N2/C1/C6–C8) rings [centroid–centroid distance = 3.7772 (12) Å] and by complementary C—HDhyqnxCg3 inter­actions [Cg3 is the centroid of the benzene ring B (C1–C6)] (Table 1[link] and Fig. 2[link]). The chains are linked into layers parallel to the bc plane by sets of four C—HDhyqnx⋯OEthazac hydrogen bonds (Table 1[link] and Fig. 3[link]) with the layers linked along the a-axis direction by inversion-related slipped π-stacking inter­actions between the A and B rings [centroid–centroid distance = 3.5444 (12) Å] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the benzene (C1–C6) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N4xi 0.974 (19) 2.48 (2) 3.401 (3) 157.9 (15)
C9—H9B⋯O2iv 0.97 (2) 2.59 (2) 3.508 (3) 156.9 (18)
C12—H12⋯N1iv 0.935 (18) 2.431 (19) 3.365 (2) 177.6 (16)
C13—H13A⋯O1i 0.99 (2) 2.36 (2) 3.318 (2) 162.5 (16)
C13—H13B⋯N3i 1.027 (18) 2.672 (19) 3.481 (2) 135.6 (13)
C9—H9CCg3iv 1.00 (2) 2.67 (2) 3.430 (2) 132.0 (15)
Symmetry codes: (i) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (xi) x, y, z+1.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions viewed along the b-axis direction. C—H⋯O and N—H⋯O hydrogen bonds are shown, respectively, by black and purple dashed lines. Slipped π-stacking and C—H⋯π (ring) inter­actions are shown, respectively, by orange and green dashed lines.
[Figure 3]
Figure 3
Plane view of one layer along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

Visualization and exploration of inter­molecular close contacts in the crystal structure of the title compound is invaluable. Thus, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to investigate the locations of atom–atom short contacts with the potential to form hydrogen bonds and the qu­anti­tative ratios of these inter­actions as well as those of the π-stacking inter­actions. In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, while the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1, O2, N1, N3 and hydrogen atoms H5, H4, H9B and H12 indicate their roles as the respective donors and acceptors in the dominant C—H⋯O and C—H⋯N hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2685 to 1.3470 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

The shape-index of the HS is a tool to visualize ππ stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggest that there are ππ inter­actions present in the title compound.

[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot is shown in Fig. 7[link]a and those delineated into H⋯H, H⋯O/O⋯H, H⋯N/N⋯H, H⋯C/C⋯ H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O and N⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link]bi, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 44.5% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The wide peak in the centre at de = di = 1.18 Å in Fig. 7[link]b is due to the short inter­atomic H⋯H contacts (Table 2[link]). In the fingerprint plot delineated into H⋯O/O⋯H contacts Fig. 7[link]c, the 18.8% contribution to the HS arises from the inter­molecular C—H⋯O hydrogen bonding (Table 1[link]) besides the H⋯O/O⋯H contacts (Table 2[link]) and is viewed as pair of spikes with the tips at de + di ∼ 2.27 Å. The H⋯N/N⋯H contacts in the structure with 17.0% contribution to the HS have a symmetrical distribution of points, Fig. 7[link]d, with the tips at de + di ∼ 2.30 Å arising from the short inter­atomic C—H⋯N hydrogen bonding (Table 1[link]) as well as from the H⋯N/N⋯H contacts (Table 3[link]). The presence of a weak C—H⋯π inter­action (Table 1[link]) results in two pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts with a 10.4% contribution to the HS, Fig. 7[link]e, while the two pairs of thin and thick edges at de + di ∼ 2.77 and 2.67 Å, respectively, result from the inter­atomic H⋯C/C⋯H contacts (Table 2[link]). The inter­atomic C⋯C contacts (Table 2[link]) with a 3.6% contribution to the HS appear as an arrow-shaped distribution of points in Fig. 7[link]f, with the vertex at de = di = 1.71 Å. Finally, the C⋯N/N⋯C (Fig. 7[link]g) contacts (Table 3[link]) in the structure, with a 3.2% contribution to the HS, have a symmetrical distribution of points, with a pair of wings appearing at de = di = 1.67 Å. The Hirshfeld surfaces mapped over dnorm plotted are shown for the H⋯H, H⋯O/O⋯H, H⋯N/N⋯H, H⋯C/C⋯H, C⋯C and C⋯N/N⋯C inter­actions in Fig. 8[link]af, respectively.

Table 2
Selected interatomic distances (Å)

O1⋯C11 3.394 (3) N3⋯H13Bi 2.672 (19)
O1⋯C13i 3.318 (3) N4⋯C5ix 3.401 (3)
O1⋯C15ii 3.116 (3) N4⋯H5ix 2.48 (2)
O1⋯C16ii 3.360 (3) C1⋯C6vii 3.521 (3)
O1⋯H9A 2.74 (3) C1⋯C12 3.519 (3)
O1⋯H10A 2.35 (2) C2⋯C7vii 3.459 (3)
O1⋯H13Ai 2.36 (2) C2⋯C11 3.397 (3)
O1⋯H15Aii 2.61 (2) C2⋯H10B 2.63 (2)
O1⋯H16Aii 2.71 (2) C3⋯C9vii 3.574 (3)
O2⋯N5 2.772 (2) C3⋯H9Avii 2.81 (2)
O2⋯C4iii 3.409 (3) C4⋯C8vii 3.569 (3)
O2⋯C12 3.186 (2) C5⋯C8vii 3.545 (3)
O2⋯H4iii 2.55 (2) C5⋯C10vii 3.548 (3)
O2⋯H9Biv 2.59 (2) C6⋯C7iv 3.420 (3)
O2⋯H15A 2.72 (2) C8⋯C12 3.533 (3)
O2⋯H15B 2.56 (2) C10⋯H2 2.61 (2)
O2⋯H16Bv 2.76 (2) C11⋯C13i 3.421 (3)
O3⋯H15Avi 2.84 (3) C11⋯H2 2.92 (2)
N1⋯N2 2.806 (3) C11⋯H13Bi 2.88 (2)
N1⋯C12iv 3.365 (3) C14⋯H16Cvi 2.95 (2)
N1⋯H12iv 2.431 (19) H2⋯H10B 2.17 (2)
N2⋯C6vii 3.389 (3) H3⋯H9Ax 2.51 (2)
N2⋯H12 2.85 (2) H10B⋯H13Bv 2.45 (3)
N3⋯H10Aviii 2.73 (2)    
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y-1, z; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) -x+2, -y+2, -z; (vii) -x, -y+1, -z+1; (viii) -x, -y+1, -z; (ix) x, y, z-1; (x) x, y+1, z.

Table 3
Experimental details

Crystal data
Chemical formula C16H17N5O3
Mr 327.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.2061 (15), 10.237 (2), 10.694 (2)
α, β, γ (°) 95.356 (3), 92.867 (3), 100.291 (3)
V3) 771.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.24 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.97, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 14566, 14566, 7794
Rint 0.026
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.151, 1.01
No. of reflections 14566
No. of parameters 286
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.90, −0.53
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, , SAINT and SADABS. Bruker AXS. Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯N/N⋯H, (e) H⋯C/C⋯H, (f) C⋯C, (g) C⋯N/N⋯C, (h) O⋯C/C⋯O and (i) N⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 8]
Figure 8
Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H, (c) H⋯N/N⋯H, (d) H⋯C/C⋯H, (e) C⋯C and (f) C⋯N/N⋯C inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H, H⋯ N/N⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

To a solution of 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinox­alin-2(1H)-one (0.65 mmol) in ethanol (20 mL) was added ethyl azido­acetate (1.04 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using as eluent a hexa­ne/ethyl acetate (9/1) mixture. Crystals were obtained when the solvent was allowed to evaporate. The solid product isolated was recrystallized from ethanol to afford yellow crystals in 75% yield.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were located in a difference-Fourier map and were refined freely. Eleven reflections appearing near the top of the frames on which they were recorded were omitted from the final refinement as they appeared to have been partially obscured by the nozzle of the low-temperature attachment.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-{4-[(3-methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)methyl]-1H-1,2,3-triazol-1-yl}acetate top
Crystal data top
C16H17N5O3Z = 2
Mr = 327.34F(000) = 344
Triclinic, P1Dx = 1.410 Mg m3
a = 7.2061 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.237 (2) ÅCell parameters from 4358 reflections
c = 10.694 (2) Åθ = 2.7–29.1°
α = 95.356 (3)°µ = 0.10 mm1
β = 92.867 (3)°T = 100 K
γ = 100.291 (3)°Block, gold
V = 771.0 (3) Å30.25 × 0.24 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
14566 independent reflections
Radiation source: fine-focus sealed tube7794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.9°
ω scansh = 99
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1413
Tmin = 0.97, Tmax = 0.99l = 1414
14566 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.151All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0726P)2]
where P = (Fo2 + 2Fc2)/3
14566 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used. Analysis of 226 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 176° rotation about the real axis 1,-0.8,-0.11. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21097 (18)0.29218 (12)0.26556 (12)0.0221 (3)
O20.72802 (18)0.89513 (13)0.19527 (13)0.0253 (3)
O30.99442 (17)0.86498 (12)0.10490 (12)0.0236 (3)
N10.2861 (2)0.44465 (14)0.58072 (14)0.0167 (3)
N20.1816 (2)0.50319 (14)0.33885 (14)0.0149 (3)
N30.2293 (2)0.62469 (15)0.02167 (14)0.0190 (4)
N40.3912 (2)0.67146 (15)0.02467 (14)0.0195 (4)
N50.5294 (2)0.66253 (14)0.06255 (13)0.0163 (3)
C10.2076 (2)0.60425 (17)0.43915 (16)0.0149 (4)
C20.1859 (3)0.73515 (18)0.42255 (19)0.0197 (4)
H20.156 (3)0.760 (2)0.3418 (19)0.026 (6)*
C30.2093 (3)0.82977 (19)0.5254 (2)0.0232 (4)
H30.198 (3)0.919 (2)0.5132 (18)0.027 (5)*
C40.2543 (3)0.79803 (19)0.64554 (19)0.0221 (4)
H40.266 (3)0.864 (2)0.7164 (19)0.025 (5)*
C50.2805 (3)0.67017 (19)0.66222 (18)0.0193 (4)
H50.317 (3)0.6456 (19)0.7445 (18)0.021 (5)*
C60.2587 (2)0.57244 (17)0.55919 (17)0.0156 (4)
C70.2689 (2)0.35448 (17)0.48562 (17)0.0154 (4)
C80.2200 (2)0.37824 (17)0.35441 (17)0.0156 (4)
C90.2950 (3)0.21591 (19)0.5043 (2)0.0219 (4)
H9A0.175 (3)0.153 (2)0.472 (2)0.041 (6)*
H9B0.320 (3)0.207 (2)0.593 (2)0.038 (6)*
H9C0.401 (3)0.190 (2)0.455 (2)0.039 (6)*
C100.1103 (3)0.52580 (19)0.21316 (17)0.0177 (4)
H10A0.045 (3)0.439 (2)0.1700 (18)0.024 (5)*
H10B0.014 (3)0.5837 (18)0.2229 (17)0.018 (5)*
C110.2664 (2)0.58684 (16)0.13786 (16)0.0158 (4)
C120.4569 (3)0.61031 (17)0.16447 (17)0.0176 (4)
H120.531 (3)0.5937 (18)0.2336 (18)0.019 (5)*
C130.7253 (3)0.70767 (18)0.03953 (18)0.0179 (4)
H13A0.733 (3)0.7257 (19)0.0493 (19)0.023 (5)*
H13B0.803 (2)0.6349 (19)0.0549 (17)0.017 (5)*
C140.8116 (3)0.83408 (17)0.12354 (17)0.0167 (4)
C151.0986 (3)0.98897 (18)0.1738 (2)0.0227 (4)
H15A1.045 (3)1.065 (2)0.1445 (18)0.023 (5)*
H15B1.075 (3)0.9888 (19)0.2649 (19)0.021 (5)*
C161.3022 (3)0.9965 (2)0.1468 (2)0.0294 (5)
H16A1.372 (3)1.081 (3)0.191 (2)0.050 (7)*
H16B1.354 (3)0.922 (2)0.1786 (19)0.035 (6)*
H16C1.322 (3)0.992 (2)0.053 (2)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0273 (8)0.0180 (7)0.0193 (7)0.0028 (5)0.0020 (6)0.0040 (5)
O20.0247 (7)0.0203 (7)0.0289 (8)0.0022 (6)0.0064 (6)0.0064 (6)
O30.0190 (7)0.0187 (7)0.0296 (8)0.0013 (5)0.0034 (6)0.0070 (6)
N10.0147 (8)0.0181 (8)0.0175 (8)0.0030 (6)0.0013 (6)0.0029 (6)
N20.0155 (8)0.0154 (7)0.0133 (8)0.0015 (6)0.0005 (6)0.0017 (6)
N30.0214 (9)0.0182 (8)0.0162 (8)0.0012 (6)0.0011 (6)0.0017 (6)
N40.0222 (9)0.0193 (8)0.0157 (8)0.0009 (6)0.0021 (6)0.0020 (6)
N50.0188 (8)0.0148 (7)0.0137 (8)0.0002 (6)0.0009 (6)0.0002 (6)
C10.0116 (9)0.0159 (9)0.0161 (9)0.0008 (7)0.0009 (7)0.0006 (7)
C20.0179 (10)0.0178 (9)0.0235 (11)0.0032 (7)0.0003 (8)0.0044 (8)
C30.0181 (10)0.0146 (9)0.0366 (12)0.0036 (7)0.0019 (8)0.0006 (8)
C40.0173 (10)0.0194 (10)0.0267 (11)0.0008 (7)0.0031 (8)0.0085 (8)
C50.0145 (9)0.0233 (10)0.0182 (10)0.0000 (7)0.0023 (8)0.0016 (8)
C60.0121 (9)0.0161 (9)0.0179 (9)0.0013 (7)0.0015 (7)0.0005 (7)
C70.0119 (9)0.0153 (9)0.0190 (10)0.0017 (7)0.0028 (7)0.0029 (7)
C80.0134 (9)0.0148 (9)0.0179 (10)0.0004 (7)0.0022 (7)0.0013 (7)
C90.0231 (11)0.0178 (10)0.0255 (12)0.0045 (8)0.0026 (9)0.0045 (8)
C100.0168 (10)0.0203 (9)0.0151 (9)0.0020 (7)0.0035 (7)0.0016 (7)
C110.0213 (10)0.0124 (8)0.0127 (9)0.0027 (7)0.0017 (7)0.0009 (7)
C120.0221 (10)0.0158 (9)0.0142 (9)0.0026 (7)0.0013 (8)0.0014 (7)
C130.0192 (10)0.0170 (9)0.0163 (10)0.0011 (7)0.0017 (8)0.0004 (7)
C140.0201 (10)0.0137 (8)0.0164 (9)0.0028 (7)0.0007 (7)0.0025 (7)
C150.0231 (11)0.0156 (9)0.0262 (12)0.0012 (8)0.0010 (9)0.0046 (8)
C160.0220 (11)0.0218 (11)0.0419 (14)0.0008 (8)0.0017 (10)0.0017 (10)
Geometric parameters (Å, º) top
O1—C81.225 (2)C5—C61.400 (2)
O2—C141.197 (2)C5—H50.974 (19)
O3—C141.328 (2)C7—C81.482 (2)
O3—C151.466 (2)C7—C91.494 (2)
N1—C71.293 (2)C9—H9A1.00 (2)
N1—C61.396 (2)C9—H9B0.97 (2)
N2—C81.379 (2)C9—H9C1.00 (2)
N2—C11.400 (2)C10—C111.496 (2)
N2—C101.468 (2)C10—H10A0.99 (2)
N3—N41.318 (2)C10—H10B0.992 (18)
N3—C111.363 (2)C11—C121.362 (3)
N4—N51.3511 (19)C12—H120.935 (18)
N5—C121.346 (2)C13—C141.519 (2)
N5—C131.446 (2)C13—H13A0.99 (2)
C1—C61.401 (3)C13—H13B1.027 (18)
C1—C21.403 (2)C15—C161.500 (3)
C2—C31.378 (3)C15—H15A0.997 (19)
C2—H20.95 (2)C15—H15B0.996 (19)
C3—C41.391 (3)C16—H16A0.99 (3)
C3—H30.95 (2)C16—H16B0.99 (2)
C4—C51.382 (3)C16—H16C1.02 (2)
C4—H40.96 (2)
O1···C113.394 (3)N3···H13Bi2.672 (19)
O1···C13i3.318 (3)N4···C5ix3.401 (3)
O1···C15ii3.116 (3)N4···H5ix2.48 (2)
O1···C16ii3.360 (3)C1···C6vii3.521 (3)
O1···H9A2.74 (3)C1···C123.519 (3)
O1···H10A2.35 (2)C2···C7vii3.459 (3)
O1···H13Ai2.36 (2)C2···C113.397 (3)
O1···H15Aii2.61 (2)C2···H10B2.63 (2)
O1···H16Aii2.71 (2)C3···C9vii3.574 (3)
O2···N52.772 (2)C3···H9Avii2.81 (2)
O2···C4iii3.409 (3)C4···C8vii3.569 (3)
O2···C123.186 (2)C5···C8vii3.545 (3)
O2···H4iii2.55 (2)C5···C10vii3.548 (3)
O2···H9Biv2.59 (2)C6···C7iv3.420 (3)
O2···H15A2.72 (2)C8···C123.533 (3)
O2···H15B2.56 (2)C10···H22.61 (2)
O2···H16Bv2.76 (2)C11···C13i3.421 (3)
O3···H15Avi2.84 (3)C11···H22.92 (2)
N1···N22.806 (3)C11···H13Bi2.88 (2)
N1···C12iv3.365 (3)C14···H16Cvi2.95 (2)
N1···H12iv2.431 (19)H2···H10B2.17 (2)
N2···C6vii3.389 (3)H3···H9Ax2.51 (2)
N2···H122.85 (2)H10B···H13Bv2.45 (3)
N3···H10Aviii2.73 (2)
C14—O3—C15116.32 (14)C7—C9—H9B111.1 (13)
C7—N1—C6118.44 (15)H9C—C9—H9B109.7 (17)
C8—N2—C1121.42 (15)H9A—C9—H9B108.8 (17)
C8—N2—C10117.40 (15)N2—C10—C11111.65 (14)
C1—N2—C10121.18 (14)N2—C10—H10A107.9 (11)
N4—N3—C11108.51 (14)C11—C10—H10A110.2 (11)
N3—N4—N5106.77 (14)N2—C10—H10B108.6 (10)
C12—N5—N4111.21 (15)C11—C10—H10B110.9 (10)
C12—N5—C13128.71 (16)H10A—C10—H10B107.5 (15)
N4—N5—C13120.08 (14)C12—C11—N3109.00 (16)
N2—C1—C6118.25 (15)C12—C11—C10129.83 (16)
N2—C1—C2122.11 (16)N3—C11—C10121.13 (16)
C6—C1—C2119.63 (16)N5—C12—C11104.50 (16)
C3—C2—C1119.48 (18)N5—C12—H12123.8 (11)
C3—C2—H2119.1 (12)C11—C12—H12131.7 (11)
C1—C2—H2121.4 (12)N5—C13—C14111.72 (15)
C2—C3—C4121.25 (18)N5—C13—H13A108.9 (11)
C2—C3—H3119.0 (12)C14—C13—H13A108.9 (11)
C4—C3—H3119.7 (12)N5—C13—H13B110.3 (10)
C5—C4—C3119.61 (18)C14—C13—H13B108.8 (10)
C5—C4—H4120.3 (12)H13A—C13—H13B108.1 (15)
C3—C4—H4120.1 (12)O2—C14—O3125.75 (16)
C4—C5—C6120.24 (18)O2—C14—C13125.31 (17)
C4—C5—H5121.7 (11)O3—C14—C13108.93 (15)
C6—C5—H5118.0 (11)O3—C15—C16106.61 (16)
N1—C6—C5118.17 (16)O3—C15—H15A108.2 (11)
N1—C6—C1122.09 (16)C16—C15—H15A112.8 (11)
C5—C6—C1119.73 (17)O3—C15—H15B109.3 (11)
N1—C7—C8123.89 (16)C16—C15—H15B113.9 (11)
N1—C7—C9120.33 (16)H15A—C15—H15B106.0 (15)
C8—C7—C9115.77 (16)C15—C16—H16A106.9 (14)
O1—C8—N2121.94 (16)C15—C16—H16B111.6 (12)
O1—C8—C7122.44 (16)H16A—C16—H16B108.6 (19)
N2—C8—C7115.60 (15)C15—C16—H16C112.4 (13)
C7—C9—H9C111.2 (13)H16A—C16—H16C110.6 (19)
C7—C9—H9A108.0 (13)H16B—C16—H16C106.7 (18)
H9C—C9—H9A107.9 (18)
C11—N3—N4—N50.12 (18)C1—N2—C8—C76.6 (2)
N3—N4—N5—C120.01 (19)C10—N2—C8—C7172.74 (14)
N3—N4—N5—C13179.45 (14)N1—C7—C8—O1177.45 (16)
C8—N2—C1—C65.3 (2)C9—C7—C8—O13.6 (2)
C10—N2—C1—C6174.01 (15)N1—C7—C8—N23.7 (3)
C8—N2—C1—C2174.05 (16)C9—C7—C8—N2175.18 (15)
C10—N2—C1—C26.7 (2)C8—N2—C10—C1195.05 (18)
N2—C1—C2—C3178.61 (16)C1—N2—C10—C1185.64 (19)
C6—C1—C2—C32.1 (3)N4—N3—C11—C120.20 (19)
C1—C2—C3—C40.1 (3)N4—N3—C11—C10178.25 (15)
C2—C3—C4—C51.5 (3)N2—C10—C11—C127.1 (3)
C3—C4—C5—C61.1 (3)N2—C10—C11—N3175.33 (15)
C7—N1—C6—C5179.00 (16)N4—N5—C12—C110.13 (19)
C7—N1—C6—C12.1 (2)C13—N5—C12—C11179.27 (16)
C4—C5—C6—N1179.82 (16)N3—C11—C12—N50.20 (19)
C4—C5—C6—C10.9 (3)C10—C11—C12—N5178.02 (17)
N2—C1—C6—N10.7 (3)C12—N5—C13—C1469.5 (2)
C2—C1—C6—N1178.63 (15)N4—N5—C13—C14109.82 (17)
N2—C1—C6—C5178.19 (15)C15—O3—C14—O23.5 (3)
C2—C1—C6—C52.5 (3)C15—O3—C14—C13176.85 (15)
C6—N1—C7—C80.5 (3)N5—C13—C14—O24.2 (3)
C6—N1—C7—C9179.40 (15)N5—C13—C14—O3175.41 (14)
C1—N2—C8—O1174.62 (15)C14—O3—C15—C16175.25 (16)
C10—N2—C8—O16.1 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+2, y+2, z; (vii) x, y+1, z+1; (viii) x, y+1, z; (ix) x, y, z1; (x) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the benzene (C1–C6) ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···N4xi0.974 (19)2.48 (2)3.401 (3)157.9 (15)
C9—H9B···O2iv0.97 (2)2.59 (2)3.508 (3)156.9 (18)
C12—H12···N1iv0.935 (18)2.431 (19)3.365 (2)177.6 (16)
C13—H13A···O1i0.99 (2)2.36 (2)3.318 (2)162.5 (16)
C13—H13B···N3i1.027 (18)2.672 (19)3.481 (2)135.6 (13)
C9—H9C···Cg3iv1.00 (2)2.67 (2)3.430 (2)132.0 (15)
Symmetry codes: (i) x+1, y+1, z; (iv) x+1, y+1, z+1; (xi) x, y, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAbad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018). IUCrData, 3, x180482.  Google Scholar
First citationBadran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. 26, 107–113.  Web of Science CrossRef PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, , SAINT and SADABS. Bruker AXS. Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122.  CrossRef PubMed CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGriffith, R. K., Chittur, S. V. & Chen, Y. C. (1992). Med. Chem. Res. 2, 467–473.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationLoriga, M., Piras, S., Sanna, P. & Paglietti, G. (1997). Farmaco, 52, 157–166.  CAS PubMed Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.  Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah, Z., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1–11.  Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Ind. J. Chem. 47, 439–448.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds