research communications
H-1,2,3-triazol-1-yl}acetate
and Hirshfeld surface analysis of ethyl 2-{4-[(3-methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)methyl]-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadeemabad2018@gmail.com
The molecule of the title compound, C16H17N5O3, is build up from two fused six-membered rings linked to a 1,2,3-triazole ring, which is attached to an ethyl azido-acetate group. The dihydroqinoxalinone portion is planar to within 0.0512 (12) Å and is oriented at a dihedral angle of 87.83 (5)° with respect to the pendant triazole ring. In the crystal, a combination of intermolecular C—H⋯O and C—H⋯N hydrogen bonds together with slipped π-stacking [centroid–centroid distance = 3.7772 (12) Å] and C—H⋯π (ring) interactions lead to the formation of chains extending along the c-axis direction. Additional C—H⋯O hydrogen bonds link these chains into layers parallel to the bc plane and the layers are tied together by complementary π-stacking [centroid–centroid distance = 3.5444 (12) Å] interactions. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (44.5%), H⋯O/O⋯H (18.8%), H⋯N/N⋯H (17.0%) and H⋯C/C⋯H (10.4%) interactions.
CCDC reference: 1873385
1. Chemical context
Quinoxaline derivatives, especially quinoxalinone, are of great importance in medicinal chemistry (Ramli & Essassi, 2015; Ramli et al., 2017) and can be used for the synthesis of numerous with various biological activities such as antibacterial (Griffith et al., 1992), HIV (Loriga et al., 1997), antimicrobial (Badran et al., 2003), anti-inflammatory (Wagle et al., 2008), antiprotozoal (Hui et al., 2006), and anticancer (Carta et al., 2006). In a continuation of our research work devoted to the study of cycloaddition reactions involving quinoxaline derivatives (Ramli et al., 2011, 2013; Abad et al., 2018; Sebbar et al., 2016), we report in this work the synthesis, using 3-methyl-1-(prop-2-ynyl)-3,4-dihydroquinoxalin-2(1H)-one as dipolarophile and ethyl azido acetate as 1,3-dipole, and of ethyl 2-{4-[(3-methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)methyl]-1H-1,2,3-triazol-1-yl}acetate, C16H17N5O3 (Fig. 1).
2. Structural commentary
The molecule of the title compound is build up from two fused six-membered rings linked to a 1,2,3-triazole ring which is attached to ethyl azidoacetate group (Fig. 1) (Sebbar et al., 2014; Ellouz et al., 2015).
Atoms C8 and N2 are displaced from the mean plane through the dihydroquinoxalinone unit by 0.0367 (13) and −0.0512 (12) Å, respectively, with the remaining atoms within 0.0222 (15) Å of the plane (r.m.s deviation of the fitted atoms is 0.0234 Å). The pendant triazole ring is inclined to this plane by 87.83 (5)°.
3. Supramolecular features
Hydrogen bonding and van der Waals contacts are the dominant interactions in the crystal packing. In the crystal, C—HDhyqnx⋯OEthazac, C—HEthazac⋯ODhyqnx, C5—HDhyqnx⋯NEthazac and C—HTrz⋯NDhyqnx (Dhyqnx = dihydroquinoxalin, Ethazac = ethyl azidoacetate and Trz = triazol) hydrogen bonds (Table 1) form chains extending along the c-axis direction (Figs. 2 and 3). These are reinforced by slipped π-stacking interactions between inversion-related A (N1/N2/C1/C6–C8) rings [centroid–centroid distance = 3.7772 (12) Å] and by complementary C—HDhyqnx⋯Cg3 interactions [Cg3 is the centroid of the benzene ring B (C1–C6)] (Table 1 and Fig. 2). The chains are linked into layers parallel to the bc plane by sets of four C—HDhyqnx⋯OEthazac hydrogen bonds (Table 1 and Fig. 3) with the layers linked along the a-axis direction by inversion-related slipped π-stacking interactions between the A and B rings [centroid–centroid distance = 3.5444 (12) Å] (Fig. 2).
4. Hirshfeld surface analysis
Visualization and exploration of intermolecular close contacts in the ; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017) to investigate the locations of atom–atom short contacts with the potential to form hydrogen bonds and the quantitative ratios of these interactions as well as those of the π-stacking interactions. In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, while the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1, O2, N1, N3 and hydrogen atoms H5, H4, H9B and H12 indicate their roles as the respective donors and acceptors in the dominant C—H⋯O and C—H⋯N hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).
of the title compound is invaluable. Thus, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977The shape-index of the HS is a tool to visualize π–π stacking interactions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggest that there are π–π interactions present in the title compound.
The overall two-dimensional fingerprint plot is shown in Fig. 7a and those delineated into H⋯H, H⋯O/O⋯H, H⋯N/N⋯H, H⋯C/C⋯ H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O and N⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–i, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 44.5% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule. The wide peak in the centre at de = di = 1.18 Å in Fig. 7b is due to the short interatomic H⋯H contacts (Table 2). In the fingerprint plot delineated into H⋯O/O⋯H contacts Fig. 7c, the 18.8% contribution to the HS arises from the intermolecular C—H⋯O hydrogen bonding (Table 1) besides the H⋯O/O⋯H contacts (Table 2) and is viewed as pair of spikes with the tips at de + di ∼ 2.27 Å. The H⋯N/N⋯H contacts in the structure with 17.0% contribution to the HS have a symmetrical distribution of points, Fig. 7d, with the tips at de + di ∼ 2.30 Å arising from the short interatomic C—H⋯N hydrogen bonding (Table 1) as well as from the H⋯N/N⋯H contacts (Table 3). The presence of a weak C—H⋯π interaction (Table 1) results in two pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts with a 10.4% contribution to the HS, Fig. 7e, while the two pairs of thin and thick edges at de + di ∼ 2.77 and 2.67 Å, respectively, result from the interatomic H⋯C/C⋯H contacts (Table 2). The interatomic C⋯C contacts (Table 2) with a 3.6% contribution to the HS appear as an arrow-shaped distribution of points in Fig. 7f, with the vertex at de = di = 1.71 Å. Finally, the C⋯N/N⋯C (Fig. 7g) contacts (Table 3) in the structure, with a 3.2% contribution to the HS, have a symmetrical distribution of points, with a pair of wings appearing at de = di = 1.67 Å. The Hirshfeld surfaces mapped over dnorm plotted are shown for the H⋯H, H⋯O/O⋯H, H⋯N/N⋯H, H⋯C/C⋯H, C⋯C and C⋯N/N⋯C interactions in Fig. 8a–f, respectively.
|
|
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H, H⋯ N/N⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Synthesis and crystallization
To a solution of 3-methyl-1-(prop-2-ynyl)-3,4-dihydroquinoxalin-2(1H)-one (0.65 mmol) in ethanol (20 mL) was added ethyl azidoacetate (1.04 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by on silica gel by using as a hexane/ethyl acetate (9/1) mixture. Crystals were obtained when the solvent was allowed to evaporate. The solid product isolated was recrystallized from ethanol to afford yellow crystals in 75% yield.
6. Refinement
Crystal data, data collection and structure . H atoms were located in a difference-Fourier map and were refined freely. Eleven reflections appearing near the top of the frames on which they were recorded were omitted from the final as they appeared to have been partially obscured by the nozzle of the low-temperature attachment.
details are summarized in Table 3Supporting information
CCDC reference: 1873385
https://doi.org/10.1107/S2056989018014561/xu5945sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018014561/xu5945Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018014561/xu5945Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018014561/xu5945Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H17N5O3 | Z = 2 |
Mr = 327.34 | F(000) = 344 |
Triclinic, P1 | Dx = 1.410 Mg m−3 |
a = 7.2061 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.237 (2) Å | Cell parameters from 4358 reflections |
c = 10.694 (2) Å | θ = 2.7–29.1° |
α = 95.356 (3)° | µ = 0.10 mm−1 |
β = 92.867 (3)° | T = 100 K |
γ = 100.291 (3)° | Block, gold |
V = 771.0 (3) Å3 | 0.25 × 0.24 × 0.13 mm |
Bruker SMART APEX CCD diffractometer | 14566 independent reflections |
Radiation source: fine-focus sealed tube | 7794 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.2°, θmin = 1.9° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = −14→13 |
Tmin = 0.97, Tmax = 0.99 | l = −14→14 |
14566 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.151 | All H-atom parameters refined |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0726P)2] where P = (Fo2 + 2Fc2)/3 |
14566 reflections | (Δ/σ)max < 0.001 |
286 parameters | Δρmax = 0.90 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used. Analysis of 226 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 176° rotation about the real axis 1,-0.8,-0.11. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.21097 (18) | 0.29218 (12) | 0.26556 (12) | 0.0221 (3) | |
O2 | 0.72802 (18) | 0.89513 (13) | 0.19527 (13) | 0.0253 (3) | |
O3 | 0.99442 (17) | 0.86498 (12) | 0.10490 (12) | 0.0236 (3) | |
N1 | 0.2861 (2) | 0.44465 (14) | 0.58072 (14) | 0.0167 (3) | |
N2 | 0.1816 (2) | 0.50319 (14) | 0.33885 (14) | 0.0149 (3) | |
N3 | 0.2293 (2) | 0.62469 (15) | 0.02167 (14) | 0.0190 (4) | |
N4 | 0.3912 (2) | 0.67146 (15) | −0.02467 (14) | 0.0195 (4) | |
N5 | 0.5294 (2) | 0.66253 (14) | 0.06255 (13) | 0.0163 (3) | |
C1 | 0.2076 (2) | 0.60425 (17) | 0.43915 (16) | 0.0149 (4) | |
C2 | 0.1859 (3) | 0.73515 (18) | 0.42255 (19) | 0.0197 (4) | |
H2 | 0.156 (3) | 0.760 (2) | 0.3418 (19) | 0.026 (6)* | |
C3 | 0.2093 (3) | 0.82977 (19) | 0.5254 (2) | 0.0232 (4) | |
H3 | 0.198 (3) | 0.919 (2) | 0.5132 (18) | 0.027 (5)* | |
C4 | 0.2543 (3) | 0.79803 (19) | 0.64554 (19) | 0.0221 (4) | |
H4 | 0.266 (3) | 0.864 (2) | 0.7164 (19) | 0.025 (5)* | |
C5 | 0.2805 (3) | 0.67017 (19) | 0.66222 (18) | 0.0193 (4) | |
H5 | 0.317 (3) | 0.6456 (19) | 0.7445 (18) | 0.021 (5)* | |
C6 | 0.2587 (2) | 0.57244 (17) | 0.55919 (17) | 0.0156 (4) | |
C7 | 0.2689 (2) | 0.35448 (17) | 0.48562 (17) | 0.0154 (4) | |
C8 | 0.2200 (2) | 0.37824 (17) | 0.35441 (17) | 0.0156 (4) | |
C9 | 0.2950 (3) | 0.21591 (19) | 0.5043 (2) | 0.0219 (4) | |
H9A | 0.175 (3) | 0.153 (2) | 0.472 (2) | 0.041 (6)* | |
H9B | 0.320 (3) | 0.207 (2) | 0.593 (2) | 0.038 (6)* | |
H9C | 0.401 (3) | 0.190 (2) | 0.455 (2) | 0.039 (6)* | |
C10 | 0.1103 (3) | 0.52580 (19) | 0.21316 (17) | 0.0177 (4) | |
H10A | 0.045 (3) | 0.439 (2) | 0.1700 (18) | 0.024 (5)* | |
H10B | 0.014 (3) | 0.5837 (18) | 0.2229 (17) | 0.018 (5)* | |
C11 | 0.2664 (2) | 0.58684 (16) | 0.13786 (16) | 0.0158 (4) | |
C12 | 0.4569 (3) | 0.61031 (17) | 0.16447 (17) | 0.0176 (4) | |
H12 | 0.531 (3) | 0.5937 (18) | 0.2336 (18) | 0.019 (5)* | |
C13 | 0.7253 (3) | 0.70767 (18) | 0.03953 (18) | 0.0179 (4) | |
H13A | 0.733 (3) | 0.7257 (19) | −0.0493 (19) | 0.023 (5)* | |
H13B | 0.803 (2) | 0.6349 (19) | 0.0549 (17) | 0.017 (5)* | |
C14 | 0.8116 (3) | 0.83408 (17) | 0.12354 (17) | 0.0167 (4) | |
C15 | 1.0986 (3) | 0.98897 (18) | 0.1738 (2) | 0.0227 (4) | |
H15A | 1.045 (3) | 1.065 (2) | 0.1445 (18) | 0.023 (5)* | |
H15B | 1.075 (3) | 0.9888 (19) | 0.2649 (19) | 0.021 (5)* | |
C16 | 1.3022 (3) | 0.9965 (2) | 0.1468 (2) | 0.0294 (5) | |
H16A | 1.372 (3) | 1.081 (3) | 0.191 (2) | 0.050 (7)* | |
H16B | 1.354 (3) | 0.922 (2) | 0.1786 (19) | 0.035 (6)* | |
H16C | 1.322 (3) | 0.992 (2) | 0.053 (2) | 0.041 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0273 (8) | 0.0180 (7) | 0.0193 (7) | 0.0028 (5) | 0.0020 (6) | −0.0040 (5) |
O2 | 0.0247 (7) | 0.0203 (7) | 0.0289 (8) | 0.0022 (6) | 0.0064 (6) | −0.0064 (6) |
O3 | 0.0190 (7) | 0.0187 (7) | 0.0296 (8) | −0.0013 (5) | 0.0034 (6) | −0.0070 (6) |
N1 | 0.0147 (8) | 0.0181 (8) | 0.0175 (8) | 0.0030 (6) | 0.0013 (6) | 0.0029 (6) |
N2 | 0.0155 (8) | 0.0154 (7) | 0.0133 (8) | 0.0015 (6) | −0.0005 (6) | 0.0017 (6) |
N3 | 0.0214 (9) | 0.0182 (8) | 0.0162 (8) | 0.0012 (6) | −0.0011 (6) | 0.0017 (6) |
N4 | 0.0222 (9) | 0.0193 (8) | 0.0157 (8) | 0.0009 (6) | −0.0021 (6) | 0.0020 (6) |
N5 | 0.0188 (8) | 0.0148 (7) | 0.0137 (8) | 0.0002 (6) | −0.0009 (6) | −0.0002 (6) |
C1 | 0.0116 (9) | 0.0159 (9) | 0.0161 (9) | 0.0008 (7) | 0.0009 (7) | −0.0006 (7) |
C2 | 0.0179 (10) | 0.0178 (9) | 0.0235 (11) | 0.0032 (7) | −0.0003 (8) | 0.0044 (8) |
C3 | 0.0181 (10) | 0.0146 (9) | 0.0366 (12) | 0.0036 (7) | 0.0019 (8) | −0.0006 (8) |
C4 | 0.0173 (10) | 0.0194 (10) | 0.0267 (11) | 0.0008 (7) | 0.0031 (8) | −0.0085 (8) |
C5 | 0.0145 (9) | 0.0233 (10) | 0.0182 (10) | 0.0000 (7) | 0.0023 (8) | −0.0016 (8) |
C6 | 0.0121 (9) | 0.0161 (9) | 0.0179 (9) | 0.0013 (7) | 0.0015 (7) | 0.0005 (7) |
C7 | 0.0119 (9) | 0.0153 (9) | 0.0190 (10) | 0.0017 (7) | 0.0028 (7) | 0.0029 (7) |
C8 | 0.0134 (9) | 0.0148 (9) | 0.0179 (10) | 0.0004 (7) | 0.0022 (7) | 0.0013 (7) |
C9 | 0.0231 (11) | 0.0178 (10) | 0.0255 (12) | 0.0045 (8) | 0.0026 (9) | 0.0045 (8) |
C10 | 0.0168 (10) | 0.0203 (9) | 0.0151 (9) | 0.0020 (7) | −0.0035 (7) | 0.0016 (7) |
C11 | 0.0213 (10) | 0.0124 (8) | 0.0127 (9) | 0.0027 (7) | −0.0017 (7) | −0.0009 (7) |
C12 | 0.0221 (10) | 0.0158 (9) | 0.0142 (9) | 0.0026 (7) | −0.0013 (8) | 0.0014 (7) |
C13 | 0.0192 (10) | 0.0170 (9) | 0.0163 (10) | 0.0011 (7) | 0.0017 (8) | −0.0004 (7) |
C14 | 0.0201 (10) | 0.0137 (8) | 0.0164 (9) | 0.0028 (7) | 0.0007 (7) | 0.0025 (7) |
C15 | 0.0231 (11) | 0.0156 (9) | 0.0262 (12) | −0.0012 (8) | −0.0010 (9) | −0.0046 (8) |
C16 | 0.0220 (11) | 0.0218 (11) | 0.0419 (14) | 0.0008 (8) | −0.0017 (10) | −0.0017 (10) |
O1—C8 | 1.225 (2) | C5—C6 | 1.400 (2) |
O2—C14 | 1.197 (2) | C5—H5 | 0.974 (19) |
O3—C14 | 1.328 (2) | C7—C8 | 1.482 (2) |
O3—C15 | 1.466 (2) | C7—C9 | 1.494 (2) |
N1—C7 | 1.293 (2) | C9—H9A | 1.00 (2) |
N1—C6 | 1.396 (2) | C9—H9B | 0.97 (2) |
N2—C8 | 1.379 (2) | C9—H9C | 1.00 (2) |
N2—C1 | 1.400 (2) | C10—C11 | 1.496 (2) |
N2—C10 | 1.468 (2) | C10—H10A | 0.99 (2) |
N3—N4 | 1.318 (2) | C10—H10B | 0.992 (18) |
N3—C11 | 1.363 (2) | C11—C12 | 1.362 (3) |
N4—N5 | 1.3511 (19) | C12—H12 | 0.935 (18) |
N5—C12 | 1.346 (2) | C13—C14 | 1.519 (2) |
N5—C13 | 1.446 (2) | C13—H13A | 0.99 (2) |
C1—C6 | 1.401 (3) | C13—H13B | 1.027 (18) |
C1—C2 | 1.403 (2) | C15—C16 | 1.500 (3) |
C2—C3 | 1.378 (3) | C15—H15A | 0.997 (19) |
C2—H2 | 0.95 (2) | C15—H15B | 0.996 (19) |
C3—C4 | 1.391 (3) | C16—H16A | 0.99 (3) |
C3—H3 | 0.95 (2) | C16—H16B | 0.99 (2) |
C4—C5 | 1.382 (3) | C16—H16C | 1.02 (2) |
C4—H4 | 0.96 (2) | ||
O1···C11 | 3.394 (3) | N3···H13Bi | 2.672 (19) |
O1···C13i | 3.318 (3) | N4···C5ix | 3.401 (3) |
O1···C15ii | 3.116 (3) | N4···H5ix | 2.48 (2) |
O1···C16ii | 3.360 (3) | C1···C6vii | 3.521 (3) |
O1···H9A | 2.74 (3) | C1···C12 | 3.519 (3) |
O1···H10A | 2.35 (2) | C2···C7vii | 3.459 (3) |
O1···H13Ai | 2.36 (2) | C2···C11 | 3.397 (3) |
O1···H15Aii | 2.61 (2) | C2···H10B | 2.63 (2) |
O1···H16Aii | 2.71 (2) | C3···C9vii | 3.574 (3) |
O2···N5 | 2.772 (2) | C3···H9Avii | 2.81 (2) |
O2···C4iii | 3.409 (3) | C4···C8vii | 3.569 (3) |
O2···C12 | 3.186 (2) | C5···C8vii | 3.545 (3) |
O2···H4iii | 2.55 (2) | C5···C10vii | 3.548 (3) |
O2···H9Biv | 2.59 (2) | C6···C7iv | 3.420 (3) |
O2···H15A | 2.72 (2) | C8···C12 | 3.533 (3) |
O2···H15B | 2.56 (2) | C10···H2 | 2.61 (2) |
O2···H16Bv | 2.76 (2) | C11···C13i | 3.421 (3) |
O3···H15Avi | 2.84 (3) | C11···H2 | 2.92 (2) |
N1···N2 | 2.806 (3) | C11···H13Bi | 2.88 (2) |
N1···C12iv | 3.365 (3) | C14···H16Cvi | 2.95 (2) |
N1···H12iv | 2.431 (19) | H2···H10B | 2.17 (2) |
N2···C6vii | 3.389 (3) | H3···H9Ax | 2.51 (2) |
N2···H12 | 2.85 (2) | H10B···H13Bv | 2.45 (3) |
N3···H10Aviii | 2.73 (2) | ||
C14—O3—C15 | 116.32 (14) | C7—C9—H9B | 111.1 (13) |
C7—N1—C6 | 118.44 (15) | H9C—C9—H9B | 109.7 (17) |
C8—N2—C1 | 121.42 (15) | H9A—C9—H9B | 108.8 (17) |
C8—N2—C10 | 117.40 (15) | N2—C10—C11 | 111.65 (14) |
C1—N2—C10 | 121.18 (14) | N2—C10—H10A | 107.9 (11) |
N4—N3—C11 | 108.51 (14) | C11—C10—H10A | 110.2 (11) |
N3—N4—N5 | 106.77 (14) | N2—C10—H10B | 108.6 (10) |
C12—N5—N4 | 111.21 (15) | C11—C10—H10B | 110.9 (10) |
C12—N5—C13 | 128.71 (16) | H10A—C10—H10B | 107.5 (15) |
N4—N5—C13 | 120.08 (14) | C12—C11—N3 | 109.00 (16) |
N2—C1—C6 | 118.25 (15) | C12—C11—C10 | 129.83 (16) |
N2—C1—C2 | 122.11 (16) | N3—C11—C10 | 121.13 (16) |
C6—C1—C2 | 119.63 (16) | N5—C12—C11 | 104.50 (16) |
C3—C2—C1 | 119.48 (18) | N5—C12—H12 | 123.8 (11) |
C3—C2—H2 | 119.1 (12) | C11—C12—H12 | 131.7 (11) |
C1—C2—H2 | 121.4 (12) | N5—C13—C14 | 111.72 (15) |
C2—C3—C4 | 121.25 (18) | N5—C13—H13A | 108.9 (11) |
C2—C3—H3 | 119.0 (12) | C14—C13—H13A | 108.9 (11) |
C4—C3—H3 | 119.7 (12) | N5—C13—H13B | 110.3 (10) |
C5—C4—C3 | 119.61 (18) | C14—C13—H13B | 108.8 (10) |
C5—C4—H4 | 120.3 (12) | H13A—C13—H13B | 108.1 (15) |
C3—C4—H4 | 120.1 (12) | O2—C14—O3 | 125.75 (16) |
C4—C5—C6 | 120.24 (18) | O2—C14—C13 | 125.31 (17) |
C4—C5—H5 | 121.7 (11) | O3—C14—C13 | 108.93 (15) |
C6—C5—H5 | 118.0 (11) | O3—C15—C16 | 106.61 (16) |
N1—C6—C5 | 118.17 (16) | O3—C15—H15A | 108.2 (11) |
N1—C6—C1 | 122.09 (16) | C16—C15—H15A | 112.8 (11) |
C5—C6—C1 | 119.73 (17) | O3—C15—H15B | 109.3 (11) |
N1—C7—C8 | 123.89 (16) | C16—C15—H15B | 113.9 (11) |
N1—C7—C9 | 120.33 (16) | H15A—C15—H15B | 106.0 (15) |
C8—C7—C9 | 115.77 (16) | C15—C16—H16A | 106.9 (14) |
O1—C8—N2 | 121.94 (16) | C15—C16—H16B | 111.6 (12) |
O1—C8—C7 | 122.44 (16) | H16A—C16—H16B | 108.6 (19) |
N2—C8—C7 | 115.60 (15) | C15—C16—H16C | 112.4 (13) |
C7—C9—H9C | 111.2 (13) | H16A—C16—H16C | 110.6 (19) |
C7—C9—H9A | 108.0 (13) | H16B—C16—H16C | 106.7 (18) |
H9C—C9—H9A | 107.9 (18) | ||
C11—N3—N4—N5 | 0.12 (18) | C1—N2—C8—C7 | 6.6 (2) |
N3—N4—N5—C12 | 0.01 (19) | C10—N2—C8—C7 | −172.74 (14) |
N3—N4—N5—C13 | −179.45 (14) | N1—C7—C8—O1 | 177.45 (16) |
C8—N2—C1—C6 | −5.3 (2) | C9—C7—C8—O1 | −3.6 (2) |
C10—N2—C1—C6 | 174.01 (15) | N1—C7—C8—N2 | −3.7 (3) |
C8—N2—C1—C2 | 174.05 (16) | C9—C7—C8—N2 | 175.18 (15) |
C10—N2—C1—C2 | −6.7 (2) | C8—N2—C10—C11 | −95.05 (18) |
N2—C1—C2—C3 | 178.61 (16) | C1—N2—C10—C11 | 85.64 (19) |
C6—C1—C2—C3 | −2.1 (3) | N4—N3—C11—C12 | −0.20 (19) |
C1—C2—C3—C4 | 0.1 (3) | N4—N3—C11—C10 | −178.25 (15) |
C2—C3—C4—C5 | 1.5 (3) | N2—C10—C11—C12 | 7.1 (3) |
C3—C4—C5—C6 | −1.1 (3) | N2—C10—C11—N3 | −175.33 (15) |
C7—N1—C6—C5 | −179.00 (16) | N4—N5—C12—C11 | −0.13 (19) |
C7—N1—C6—C1 | 2.1 (2) | C13—N5—C12—C11 | 179.27 (16) |
C4—C5—C6—N1 | −179.82 (16) | N3—C11—C12—N5 | 0.20 (19) |
C4—C5—C6—C1 | −0.9 (3) | C10—C11—C12—N5 | 178.02 (17) |
N2—C1—C6—N1 | 0.7 (3) | C12—N5—C13—C14 | −69.5 (2) |
C2—C1—C6—N1 | −178.63 (15) | N4—N5—C13—C14 | 109.82 (17) |
N2—C1—C6—C5 | −178.19 (15) | C15—O3—C14—O2 | −3.5 (3) |
C2—C1—C6—C5 | 2.5 (3) | C15—O3—C14—C13 | 176.85 (15) |
C6—N1—C7—C8 | −0.5 (3) | N5—C13—C14—O2 | −4.2 (3) |
C6—N1—C7—C9 | −179.40 (15) | N5—C13—C14—O3 | 175.41 (14) |
C1—N2—C8—O1 | −174.62 (15) | C14—O3—C15—C16 | 175.25 (16) |
C10—N2—C8—O1 | 6.1 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y−1, z; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) −x+2, −y+2, −z; (vii) −x, −y+1, −z+1; (viii) −x, −y+1, −z; (ix) x, y, z−1; (x) x, y+1, z. |
Cg3 is the centroid of the benzene (C1–C6) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N4xi | 0.974 (19) | 2.48 (2) | 3.401 (3) | 157.9 (15) |
C9—H9B···O2iv | 0.97 (2) | 2.59 (2) | 3.508 (3) | 156.9 (18) |
C12—H12···N1iv | 0.935 (18) | 2.431 (19) | 3.365 (2) | 177.6 (16) |
C13—H13A···O1i | 0.99 (2) | 2.36 (2) | 3.318 (2) | 162.5 (16) |
C13—H13B···N3i | 1.027 (18) | 2.672 (19) | 3.481 (2) | 135.6 (13) |
C9—H9C···Cg3iv | 1.00 (2) | 2.67 (2) | 3.430 (2) | 132.0 (15) |
Symmetry codes: (i) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (xi) x, y, z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Abad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018). IUCrData, 3, x180482. Google Scholar
Badran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. 26, 107–113. Web of Science CrossRef PubMed Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, , SAINT and SADABS. Bruker AXS. Inc., Madison, Wisconsin, USA. Google Scholar
Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122. CrossRef PubMed CAS Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. Web of Science CSD CrossRef IUCr Journals Google Scholar
Griffith, R. K., Chittur, S. V. & Chen, Y. C. (1992). Med. Chem. Res. 2, 467–473. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820. Web of Science CrossRef PubMed CAS Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Loriga, M., Piras, S., Sanna, P. & Paglietti, G. (1997). Farmaco, 52, 157–166. CAS PubMed Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160. Google Scholar
Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321. CSD CrossRef IUCr Journals Google Scholar
Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424. Google Scholar
Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah, Z., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1–11. Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Ind. J. Chem. 47, 439–448. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.