research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (4Z)-1-butyl-4-(2-oxo­propyl­­idene)-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, University of Pittsburgh, Pennsylvania, PA 15260, USA, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: chkiratekarim@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 October 2018; accepted 19 October 2018; online 26 October 2018)

The asymmetric unit of the title compound, C16H20N2O2, consists of two independent mol­ecules differing slightly in the conformations of the seven-membered rings and the butyl substituents, where the benzene rings are oriented at a dihedral angle of 34.56 (3)°. In the crystal, pairwise inter­molecular C—H⋯O and complementary intra­molecular C—H⋯O hydrogen bonds form twisted strips extending parallel to (012). These strips are connected into layers parallel to (111) by additional inter­molecular C—H⋯O hydrogen bonds. The layers are further joined by C—H⋯π inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (65.5%), H⋯C/C⋯H (16.0%) and H⋯O/O⋯H (15.8%) inter­actions.

1. Chemical context

1,5-Benzodiazepine derivatives constituted an important class of heterocyclic compounds possessing a wide spectrum of biological properties. They exhibit anti-inflammatory (Roma et al., 1991[Roma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489-496.]), hypnotic (Kudo et al., 1982[Kudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49-64.]), anti-HIV-1 (Di Braccio et al., 2001[Di Braccio, M., Grossi, G. C., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935-949.]), anti­convulsant (De Sarro et al., 1996[De Sarro, G., Gitto, R., Rizzo, M., Zappia, M. & De Sarro, A. (1996). Gen. Pharmacol. 27, 935-941.]), anti­microbial (Kumar et al., 2007[Kumar, R. & Joshi, Y. C. (2007). Arkivoc. XIII, 142-149.]) and anti­tumor (Kamal et al., 2008[Kamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, X. (2008). Bioorg. Med. Chem. Lett. 18, 2434-2439.]) activities. The present work is a continuation of the synthesis of the N-substituted 1,5-benzodiazepines derivatives performed recently by our team (Sebhaoui et al., 2016[Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161696.], 2017[Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171057.]; Chkirate et al., 2018[Chkirate, K., Sebbar, N. K., Karrouchi, K. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 1-27.]). In this work, we prepared the title compound, for an investigation of its biological activities, by reacting (Z)-4-(2-oxo­propyl­idene)-4,5-di­hydro-1H-benzo[b][1,5]diazepin-2(3H)-one with 1-bromo­butane, under liquid–liquid phase-transfer catalysis (PTC) conditions using tetra n-butyl ammonium bromide (TBAB) as catalyst and an aqueous solution of potassium hydroxide as base in di­chloro­methane (Fig. 1[link]). We report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

[Figure 1]
Figure 1
The asymmetric unit with the labelling scheme and 50% probability ellipsoids. N—H⋯O and C—H⋯O hydrogen bonds are indicated by blue and black dashed lines, respectively.

2. Structural commentary

The asymmetric unit of the title compound consists of two independent mol­ecules differing modestly in the conformations of the seven-membered B (N1/N2/C1/C6–C9) and D (N3/N4/C17/C22–C25) rings and the n-butyl substituents, where the benzene A (C1–C6) and C (C17–C22) rings are oriented at a dihedral angle of 34.56 (3)°. Rings B and D have boat conformations with slightly different Cremer–Pople puckering parameters [for ring B: Q(2) = 0.8872 (13) Å, Q(3) = 0.2030 (13) Å, φ(2) = 28.49 (8)° and φ(3) = 138.6 (4)°, QT = 0.9102 (13) Å and for ring D: Q(2) = 0.8631 (13) Å, Q(3) = 0.2113 (13) Å, φ(2) = 24.61 (8)° and φ(3) = 136.8 (3)°, QT = 0.8886 (13) Å]. In the n-butyl substituents, the C13—C14—C15—C16 [177.96 (13)°] and C29—C30—C31—C32 [174.97 (12)°] chains also have slightly different torsion angles. The conformation of the 2-oxo­propyl­idene units are partially determined by the intra­molecular N—H⋯O hydrogen bonds (Table 1[link], Fig. 1[link]) The r.m.s. deviation of the overlay of two molecules is 0.1367 Å.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of benzene ring A (C1–C6).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.927 (17) 1.834 (17) 2.5998 (14) 138.2 (13)
N3—H3A⋯O4 0.898 (17) 1.901 (17) 2.6349 (14) 137.6 (14)
C2—H2⋯O1ii 0.964 (15) 2.469 (16) 3.4235 (17) 170.6 (11)
C3—H3⋯O3vi 0.968 (15) 2.420 (17) 3.3714 (16) 166.0 (11)
C5—H5⋯O4 0.998 (16) 2.456 (15) 3.4086 (17) 159.3 (11)
C18—H18⋯O3v 0.961 (14) 2.556 (15) 3.5165 (16) 176.4 (11)
C19—H19⋯O1i 1.001 (15) 2.330 (15) 3.3273 (15) 177.0 (12)
C21—H21⋯O2 0.986 (15) 2.277 (15) 3.1933 (16) 154.1 (11)
C28—H28C⋯O4vi 0.98 2.48 3.4342 (18) 164
C12—H12ACg1x 0.999 (19) 2.921 (19) 3.9047 (16) 167.8 (13)
C30—H30ACg1xii 1.007 (16) 2.903 (15) 3.8016 (15) 149.0 (11)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (v) -x+1, -y+2, -z; (vi) -x+2, -y+1, -z; (x) x-1, y, z; (xii) x, y+1, z.

3. Supra­molecular features

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, pairwise inter­molecular C—HBnz⋯OOxoprp (Bnz = Benzene and Oxoprp = 2-oxo­propyl­idene) and complementary intra­molecular C—HBnz⋯OBnzdzp (Bnzdzp = 1,5-benzodiazepin-2-one) hydrogen bonds (Table 1[link]) form twisted strips extending parallel to (012) (Fig. 2[link]). These strips are connected into layers parallel to (111) (Fig. 3[link]) by inter­molecular C—HBnz⋯OOxoprp and C—HBnzdzp⋯OBnzdzp hydrogen bonds (Table 1[link]). The layers are further joined by C—HBnzdzpπ and C—HBtyπ (Bty = n-but­yl) inter­actions (Table 1[link] and Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Detail of inter­molecular C—H⋯O hydrogen bonding (black dashed lines) and C—H⋯π (ring) inter­actions (green dashed lines) viewed along the a-axis direction.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal. Explorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1, O2, O3 and hydrogen atoms H18, H19 and H28C indicate their roles as the respective donors and acceptors in the dominant C—H⋯O and N—H⋯O hydrogen bonds. The shape-index of the HS is a tool for visualizing ππ stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are no ππ inter­actions.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2745 to 1.3634 a.u.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, O⋯C/C⋯O, N⋯C/C⋯N and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 6[link]bh, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 65.5% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen-atom content of the mol­ecule. The wide peak in the centre at de = di = 1.16 Å in Fig. 6[link]b is due to the short inter­atomic H⋯H contacts (Table 2[link]). In the presence of weak C—H⋯π inter­actions (Table 1[link]) in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 6[link]c, the 16.0% contribution to the HS is viewed as pair of spikes with the tips at de + di ∼ 2.73 Å. The H⋯O/O⋯H contacts in the structure, with 15.8% contribution to the HS, have a symmetrical distribution of points, Fig. 6[link]d, with the tips at de + di ∼2.24 Å arising from the short intra- and/or inter­atomic C—H⋯O and N—H⋯O hydrogen bonding (Table 1[link]) as well as from the H⋯O/O⋯H contacts (Table 2[link]). Finally, the H⋯N/N⋯H (Fig. 6[link]e) contacts (Table 2[link]) in the structure, with a 1.4% contribution to the HS, have a symmetrical distribution of points, with a pair of wings appearing at de = di = 2.67 Å. The Hirshfeld surface representations for dnorm are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 7[link]ac, respectively.

Table 2
Selected interatomic distances (Å)

O1⋯H19i 2.328 (16) C11⋯H26iv 2.976 (14)
O1⋯H13Aii 2.878 (18) C13⋯H2 2.746 (15)
O1⋯H2ii 2.468 (15) C17⋯H24B 2.635 (14)
O1⋯H13B 2.242 (15) C17⋯H30B 2.810 (15)
O1⋯H8Biii 2.858 (15) C18⋯H29B 2.688 (14)
O2⋯H21 2.277 (15) C21⋯H14Bix 2.961 (17)
O2⋯H12Ci 2.627 (18) C21⋯H28Aiv 2.94
O2⋯H1 1.834 (17) C22⋯H24B 2.679 (14)
O2⋯H26iv 2.780 (14) C25⋯H29Bv 2.815 (14)
O3⋯H18v 2.556 (15) C26⋯H4vi 2.988 (16)
O3⋯H3vi 2.424 (15) C27⋯H3A 2.459 (17)
O3⋯H29Bv 2.637 (15) C29⋯H18 2.768 (15)
O3⋯H29A 2.300 (14) H1⋯H5 2.48 (2)
O4⋯H3A 1.901 (18) H2⋯H13A 2.26 (2)
O4⋯H24Biv 2.761 (14) H2⋯H13Bii 2.51 (2)
O4⋯H5 2.456 (15) H3A⋯H21 2.39 (2)
O4⋯H28Cvi 2.48 H8B⋯H10 2.40 (2)
N1⋯H24Aiv 2.775 (15) H10⋯H12A 2.50 (2)
N1⋯H15A 2.858 (17) H12A⋯H14Ax 2.49 (2)
N2⋯H13Aii 2.828 (16) H13B⋯H32Aix 2.54 (2)
N2⋯H15A 2.704 (16) H13B⋯H15B 2.57 (2)
N3⋯H31B 2.915 (17) H14A⋯H16A 2.52 (2)
N4⋯H31B 2.705 (17) H15B⋯H32Aix 2.54 (2)
C1⋯H8A 2.669 (16) H18⋯H29B 2.21 (2)
C1⋯H14A 2.818 (15) H24A⋯H26 2.34 (2)
C2⋯H13A 2.790 (16) H26⋯H28A 2.33
C2⋯H30Avii 2.970 (14) H28B⋯H32Cvi 2.50
C3⋯H12Aviii 2.833 (19) H29A⋯H31A 2.54 (2)
C3⋯H30Avii 2.852 (15) H29A⋯H32Bxi 2.58 (2)
C6⋯H8A 2.652 (15) H30A⋯H32B 2.50 (2)
C9⋯H13Aii 2.828 (17) H31A⋯H31Axi 2.55 (2)
C10⋯H20i 2.871 (15) H31A⋯H32Bxi 2.57 (2)
C11⋯H1 2.424 (17) H32C⋯H28Bvi 2.50
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z; (v) -x+1, -y+2, -z; (vi) -x+2, -y+1, -z; (vii) x, y-1, z; (viii) x+1, y, z; (ix) -x+2, -y+1, -z+1; (x) x-1, y, z; (xi) -x+2, -y+2, -z.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) O⋯C/C⋯O, (g) N⋯C/C⋯N and (h) C⋯C inter­actions. di and de are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 7]
Figure 7
Hirshfeld surface representations of dnorm for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

To a solution of (Z)-4-(2-oxo­propyl­idene)-4,5-di­hydro-1H-benzo[b][1,5]diazepin-2(3H)-one (2.38 mmol) in 15 ml of di­chloro­methane were added 1.5 eq of 1-bromo­butane, (3.57 mmol) of potassium hydroxide dissolved in water and 0.23 mmol of tetra-n-butyl ammonium bromide (BTBA). The mixture was kept under magnetic stirring at room temperature for 48 h. A little water was added and then the organic phase was extracted. The mixture obtained was chromatographed on a column of silica gel (eluent hexa­ne/ethyl acetate 8/2) to give three products. The title compound was isolated as the major product in a yield of 77%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to C28 did not give a satisfactory geometry so they were positioned geometrically with C—H = 0.98 Å, and refined as riding with Uiso(H) = 1.5Ueq(C). The remaining H atoms were located in a difference-Fourier map and were freely refined. The crystal studied was twinned.

Table 3
Experimental details

Crystal data
Chemical formula C16H20N2O2
Mr 272.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.1132 (6), 12.6676 (9), 12.8164 (9)
α, β, γ (°) 91.344 (1), 99.537 (1), 96.340 (1)
V3) 1448.87 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.29 × 0.25
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.97, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 51542, 51542, 40020
Rint 0.029
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.08
No. of reflections 51542
No. of parameters 511
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.32
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(4Z)-1-Butyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one top
Crystal data top
C16H20N2O2Z = 4
Mr = 272.34F(000) = 584
Triclinic, P1Dx = 1.249 Mg m3
a = 9.1132 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6676 (9) ÅCell parameters from 9901 reflections
c = 12.8164 (9) Åθ = 2.2–29.6°
α = 91.344 (1)°µ = 0.08 mm1
β = 99.537 (1)°T = 100 K
γ = 96.340 (1)°Block, colourless
V = 1448.87 (17) Å30.34 × 0.28 × 0.25 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
51542 independent reflections
Radiation source: fine-focus sealed tube40020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 29.7°, θmin = 1.6°
φ and ω scansh = 1212
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1717
Tmin = 0.97, Tmax = 0.98l = 1717
51542 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0382P]
where P = (Fo2 + 2Fc2)/3
51542 reflections(Δ/σ)max = 0.001
511 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 641 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the reciprocal axis [111]. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin. Individual refinement of the H-atoms attached to C28 did not give a satisfactory geometry so these were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72177 (11)0.04051 (8)0.54430 (7)0.0238 (2)
O20.56968 (10)0.43831 (7)0.35257 (7)0.0215 (2)
N10.72935 (12)0.28280 (9)0.33604 (8)0.0158 (2)
H10.7127 (18)0.3534 (13)0.3296 (12)0.032 (4)*
N20.89478 (12)0.13227 (8)0.46108 (8)0.0165 (2)
C10.93805 (14)0.17354 (10)0.36609 (9)0.0157 (3)
C21.06770 (15)0.14365 (11)0.33411 (10)0.0185 (3)
H21.1192 (17)0.0914 (12)0.3745 (11)0.023 (4)*
C31.11875 (15)0.18668 (11)0.24671 (11)0.0204 (3)
H31.2087 (17)0.1646 (11)0.2263 (11)0.023 (4)*
C41.04086 (15)0.26135 (11)0.18968 (11)0.0208 (3)
H41.0748 (17)0.2907 (12)0.1285 (12)0.023 (4)*
C50.91218 (15)0.29138 (11)0.21946 (10)0.0185 (3)
H50.8544 (18)0.3453 (12)0.1809 (12)0.026 (4)*
C60.85894 (14)0.24746 (10)0.30730 (9)0.0155 (3)
C70.61586 (14)0.22068 (10)0.36742 (9)0.0151 (3)
C80.63211 (15)0.10416 (10)0.37404 (10)0.0178 (3)
H8A0.6596 (17)0.0781 (12)0.3060 (11)0.023 (4)*
H8B0.5373 (17)0.0641 (12)0.3867 (11)0.023 (4)*
C90.75241 (15)0.08784 (10)0.46686 (10)0.0169 (3)
C100.49225 (14)0.26264 (10)0.39233 (9)0.0162 (3)
H100.4120 (17)0.2170 (12)0.4145 (11)0.023 (4)*
C110.47391 (14)0.37296 (10)0.38320 (9)0.0171 (3)
C120.33482 (16)0.41213 (12)0.41142 (12)0.0235 (3)
H12A0.243 (2)0.3606 (15)0.3887 (14)0.046 (5)*
H12B0.321 (2)0.4819 (14)0.3787 (13)0.038 (5)*
H12C0.348 (2)0.4220 (14)0.4879 (14)0.045 (5)*
C131.01107 (16)0.13553 (11)0.55643 (10)0.0214 (3)
H13A1.086 (2)0.0890 (13)0.5451 (13)0.038 (5)*
H13B0.9588 (16)0.1036 (11)0.6123 (11)0.019 (4)*
C141.08024 (16)0.24803 (11)0.59066 (11)0.0214 (3)
H14A1.1376 (17)0.2780 (12)0.5385 (11)0.023 (4)*
H14B1.1531 (19)0.2442 (12)0.6570 (13)0.031 (4)*
C150.96927 (17)0.32465 (11)0.60967 (12)0.0246 (3)
H15A0.899 (2)0.3314 (13)0.5431 (13)0.038 (5)*
H15B0.9065 (19)0.2921 (13)0.6622 (13)0.036 (4)*
C161.0457 (2)0.43481 (13)0.64748 (14)0.0331 (4)
H16A1.109 (2)0.4651 (14)0.5958 (14)0.045 (5)*
H16B1.113 (2)0.4355 (15)0.7181 (15)0.051 (5)*
H16C0.973 (2)0.4854 (15)0.6559 (13)0.044 (5)*
O30.58897 (11)0.87290 (7)0.13509 (7)0.0202 (2)
O40.79438 (11)0.48603 (7)0.05767 (7)0.0237 (2)
N30.63297 (12)0.64210 (9)0.08256 (8)0.0159 (2)
H3A0.690 (2)0.5925 (14)0.1094 (13)0.035 (5)*
N40.58830 (12)0.86428 (8)0.04194 (8)0.0145 (2)
C170.54349 (14)0.81037 (10)0.13050 (9)0.0148 (3)
C180.47824 (15)0.86709 (11)0.20216 (10)0.0182 (3)
H180.4569 (16)0.9382 (12)0.1862 (11)0.020 (4)*
C190.44752 (16)0.82329 (11)0.29503 (10)0.0218 (3)
H190.4001 (18)0.8658 (12)0.3443 (12)0.028 (4)*
C200.48108 (16)0.72094 (11)0.31750 (10)0.0216 (3)
H200.4601 (18)0.6882 (12)0.3839 (12)0.028 (4)*
C210.54102 (15)0.66222 (11)0.24625 (10)0.0189 (3)
H210.5639 (17)0.5889 (12)0.2591 (11)0.025 (4)*
C220.57102 (14)0.70569 (10)0.15174 (9)0.0152 (3)
C230.59693 (14)0.63618 (10)0.02420 (9)0.0157 (3)
C240.48707 (15)0.70842 (10)0.07315 (10)0.0169 (3)
H24A0.4620 (17)0.6921 (11)0.1483 (12)0.022 (4)*
H24B0.3985 (17)0.7000 (11)0.0395 (11)0.018 (4)*
C250.55790 (13)0.82264 (10)0.05945 (10)0.0152 (3)
C260.65922 (15)0.56812 (10)0.08471 (10)0.0180 (3)
H260.6285 (17)0.5668 (11)0.1622 (11)0.020 (4)*
C270.76044 (14)0.49577 (10)0.03993 (11)0.0198 (3)
C280.82882 (17)0.42914 (12)0.11377 (12)0.0292 (3)
H28A0.7731930.4306960.1859290.044*
H28B0.8241510.3556810.0910770.044*
H28C0.9335850.4577120.1123210.044*
C290.68172 (15)0.96788 (10)0.06506 (11)0.0178 (3)
H29A0.6920 (15)0.9984 (11)0.0031 (11)0.013 (3)*
H29B0.6320 (16)1.0178 (11)0.1058 (11)0.018 (4)*
C300.83516 (15)0.95516 (11)0.12782 (11)0.0189 (3)
H30A0.8940 (17)1.0277 (12)0.1407 (11)0.025 (4)*
H30B0.8225 (17)0.9296 (11)0.2017 (11)0.021 (4)*
C310.92392 (15)0.88366 (11)0.07175 (12)0.0223 (3)
H31A0.9269 (17)0.9081 (12)0.0022 (12)0.026 (4)*
H31B0.8703 (18)0.8104 (13)0.0616 (12)0.028 (4)*
C321.08216 (17)0.87977 (14)0.13147 (14)0.0300 (3)
H32A1.080 (2)0.8497 (14)0.2012 (15)0.045 (5)*
H32B1.1370 (19)0.9530 (14)0.1406 (12)0.034 (4)*
H32C1.1392 (19)0.8371 (13)0.0902 (13)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0278 (5)0.0238 (5)0.0237 (5)0.0096 (4)0.0103 (4)0.0092 (4)
O20.0236 (5)0.0172 (5)0.0250 (5)0.0042 (4)0.0056 (4)0.0058 (4)
N10.0169 (5)0.0140 (5)0.0174 (5)0.0042 (4)0.0037 (4)0.0030 (4)
N20.0200 (6)0.0153 (5)0.0140 (5)0.0031 (4)0.0011 (4)0.0020 (4)
C10.0178 (6)0.0144 (6)0.0138 (6)0.0003 (5)0.0010 (5)0.0004 (5)
C20.0174 (6)0.0151 (6)0.0219 (7)0.0024 (5)0.0002 (5)0.0013 (5)
C30.0162 (6)0.0208 (7)0.0239 (7)0.0001 (5)0.0044 (5)0.0056 (5)
C40.0212 (7)0.0220 (7)0.0184 (6)0.0035 (5)0.0050 (5)0.0009 (5)
C50.0199 (6)0.0176 (7)0.0168 (6)0.0005 (5)0.0006 (5)0.0014 (5)
C60.0152 (6)0.0149 (6)0.0159 (6)0.0013 (5)0.0019 (5)0.0015 (5)
C70.0176 (6)0.0156 (6)0.0112 (5)0.0020 (5)0.0006 (5)0.0010 (5)
C80.0192 (6)0.0150 (6)0.0192 (6)0.0015 (5)0.0036 (5)0.0008 (5)
C90.0220 (7)0.0123 (6)0.0181 (6)0.0065 (5)0.0056 (5)0.0006 (5)
C100.0164 (6)0.0167 (6)0.0150 (6)0.0015 (5)0.0015 (5)0.0014 (5)
C110.0192 (6)0.0196 (7)0.0123 (6)0.0040 (5)0.0007 (5)0.0009 (5)
C120.0220 (7)0.0217 (7)0.0282 (8)0.0067 (6)0.0061 (6)0.0003 (6)
C130.0241 (7)0.0225 (7)0.0169 (6)0.0073 (6)0.0019 (6)0.0028 (5)
C140.0189 (7)0.0242 (7)0.0198 (7)0.0021 (5)0.0001 (6)0.0001 (5)
C150.0246 (7)0.0225 (7)0.0254 (7)0.0026 (6)0.0013 (6)0.0023 (6)
C160.0341 (9)0.0256 (8)0.0373 (9)0.0006 (7)0.0024 (8)0.0083 (7)
O30.0272 (5)0.0192 (5)0.0164 (4)0.0063 (4)0.0071 (4)0.0050 (4)
O40.0235 (5)0.0206 (5)0.0277 (5)0.0055 (4)0.0039 (4)0.0050 (4)
N30.0187 (5)0.0137 (5)0.0155 (5)0.0040 (4)0.0016 (4)0.0022 (4)
N40.0161 (5)0.0137 (5)0.0139 (5)0.0013 (4)0.0028 (4)0.0030 (4)
C170.0141 (6)0.0161 (6)0.0134 (6)0.0004 (5)0.0014 (5)0.0028 (5)
C180.0182 (6)0.0169 (7)0.0192 (6)0.0017 (5)0.0028 (5)0.0006 (5)
C190.0222 (7)0.0262 (8)0.0172 (6)0.0012 (6)0.0059 (6)0.0024 (5)
C200.0236 (7)0.0259 (7)0.0141 (6)0.0027 (6)0.0032 (5)0.0031 (5)
C210.0204 (7)0.0178 (7)0.0165 (6)0.0013 (5)0.0005 (5)0.0032 (5)
C220.0134 (6)0.0164 (6)0.0145 (6)0.0001 (5)0.0003 (5)0.0002 (5)
C230.0157 (6)0.0131 (6)0.0171 (6)0.0018 (5)0.0014 (5)0.0025 (5)
C240.0171 (6)0.0178 (7)0.0148 (6)0.0017 (5)0.0002 (5)0.0008 (5)
C250.0136 (6)0.0162 (6)0.0168 (6)0.0060 (5)0.0023 (5)0.0027 (5)
C260.0196 (6)0.0165 (6)0.0174 (6)0.0010 (5)0.0034 (5)0.0003 (5)
C270.0159 (6)0.0154 (6)0.0271 (7)0.0025 (5)0.0043 (5)0.0005 (5)
C280.0256 (7)0.0271 (8)0.0362 (8)0.0070 (6)0.0071 (6)0.0053 (6)
C290.0202 (6)0.0132 (6)0.0206 (6)0.0013 (5)0.0056 (5)0.0016 (5)
C300.0185 (6)0.0180 (7)0.0191 (6)0.0017 (5)0.0024 (5)0.0002 (5)
C310.0185 (7)0.0195 (7)0.0289 (8)0.0015 (5)0.0047 (6)0.0005 (6)
C320.0204 (7)0.0333 (9)0.0368 (9)0.0054 (7)0.0036 (7)0.0089 (7)
Geometric parameters (Å, º) top
O1—C91.2269 (14)O3—C251.2271 (14)
O2—C111.2532 (15)O4—C271.2503 (16)
N1—C71.3504 (16)N3—C231.3515 (16)
N1—C61.4086 (15)N3—C221.4095 (15)
N1—H10.927 (17)N3—H3A0.898 (17)
N2—C91.3704 (16)N4—C251.3637 (15)
N2—C11.4333 (15)N4—C171.4316 (14)
N2—C131.4755 (17)N4—C291.4786 (16)
C1—C21.3998 (17)C17—C181.3993 (17)
C1—C61.4023 (18)C17—C221.4011 (17)
C2—C31.3833 (18)C18—C191.3820 (18)
C2—H20.964 (15)C18—H180.961 (14)
C3—C41.3935 (19)C19—C201.3905 (19)
C3—H30.968 (15)C19—H191.001 (15)
C4—C51.3804 (18)C20—C211.3816 (18)
C4—H40.958 (14)C20—H200.993 (14)
C5—C61.4012 (17)C21—C221.3974 (16)
C5—H50.998 (16)C21—H210.986 (15)
C7—C101.3772 (17)C23—C261.3746 (17)
C7—C81.5025 (17)C23—C241.5014 (17)
C8—C91.5131 (19)C24—C251.5118 (18)
C8—H8A1.005 (14)C24—H24A0.964 (15)
C8—H8B0.992 (15)C24—H24B0.974 (14)
C10—C111.4309 (17)C26—C271.4339 (18)
C10—H100.966 (15)C26—H260.986 (14)
C11—C121.5054 (18)C27—C281.5068 (18)
C12—H12A0.999 (19)C28—H28A0.9800
C12—H12B0.999 (17)C28—H28B0.9800
C12—H12C0.971 (18)C28—H28C0.9800
C13—C141.5170 (19)C29—C301.5203 (19)
C13—H13A0.979 (17)C29—H29A0.977 (13)
C13—H13B0.993 (13)C29—H29B1.002 (14)
C14—C151.5204 (19)C30—C311.5215 (18)
C14—H14A0.974 (14)C30—H30A1.007 (16)
C14—H14B0.994 (17)C30—H30B1.028 (14)
C15—C161.520 (2)C31—C321.523 (2)
C15—H15A0.990 (18)C31—H31A1.008 (14)
C15—H15B1.020 (16)C31—H31B0.995 (16)
C16—H16A1.005 (18)C32—H32A0.982 (17)
C16—H16B1.00 (2)C32—H32B0.998 (18)
C16—H16C0.986 (19)C32—H32C0.990 (17)
O1···H19i2.328 (16)C11···H26iv2.976 (14)
O1···H13Aii2.878 (18)C13···H22.746 (15)
O1···H2ii2.468 (15)C17···H24B2.635 (14)
O1···H13B2.242 (15)C17···H30B2.810 (15)
O1···H8Biii2.858 (15)C18···H29B2.688 (14)
O2···H212.277 (15)C21···H14Bix2.961 (17)
O2···H12Ci2.627 (18)C21···H28Aiv2.94
O2···H11.834 (17)C22···H24B2.679 (14)
O2···H26iv2.780 (14)C25···H29Bv2.815 (14)
O3···H18v2.556 (15)C26···H4vi2.988 (16)
O3···H3vi2.424 (15)C27···H3A2.459 (17)
O3···H29Bv2.637 (15)C29···H182.768 (15)
O3···H29A2.300 (14)H1···H52.48 (2)
O4···H3A1.901 (18)H2···H13A2.26 (2)
O4···H24Biv2.761 (14)H2···H13Bii2.51 (2)
O4···H52.456 (15)H3A···H212.39 (2)
O4···H28Cvi2.48H8B···H102.40 (2)
N1···H24Aiv2.775 (15)H10···H12A2.50 (2)
N1···H15A2.858 (17)H12A···H14Ax2.49 (2)
N2···H13Aii2.828 (16)H13B···H32Aix2.54 (2)
N2···H15A2.704 (16)H13B···H15B2.57 (2)
N3···H31B2.915 (17)H14A···H16A2.52 (2)
N4···H31B2.705 (17)H15B···H32Aix2.54 (2)
C1···H8A2.669 (16)H18···H29B2.21 (2)
C1···H14A2.818 (15)H24A···H262.34 (2)
C2···H13A2.790 (16)H26···H28A2.33
C2···H30Avii2.970 (14)H28B···H32Cvi2.50
C3···H12Aviii2.833 (19)H29A···H31A2.54 (2)
C3···H30Avii2.852 (15)H29A···H32Bxi2.58 (2)
C6···H8A2.652 (15)H30A···H32B2.50 (2)
C9···H13Aii2.828 (17)H31A···H31Axi2.55 (2)
C10···H20i2.871 (15)H31A···H32Bxi2.57 (2)
C11···H12.424 (17)H32C···H28Bvi2.50
C7—N1—C6125.71 (11)C23—N3—C22125.86 (11)
C7—N1—H1113.8 (10)C23—N3—H3A114.1 (10)
C6—N1—H1120.3 (10)C22—N3—H3A119.2 (10)
C9—N2—C1123.36 (10)C25—N4—C17123.89 (10)
C9—N2—C13118.67 (10)C25—N4—C29119.17 (10)
C1—N2—C13117.95 (10)C17—N4—C29116.80 (10)
C2—C1—C6118.91 (11)C18—C17—C22118.86 (11)
C2—C1—N2119.06 (11)C18—C17—N4118.36 (11)
C6—C1—N2121.94 (10)C22—C17—N4122.65 (10)
C3—C2—C1120.99 (12)C19—C18—C17121.09 (12)
C3—C2—H2121.3 (8)C19—C18—H18120.4 (8)
C1—C2—H2117.7 (8)C17—C18—H18118.5 (8)
C2—C3—C4119.77 (12)C18—C19—C20119.57 (12)
C2—C3—H3119.3 (8)C18—C19—H19119.0 (8)
C4—C3—H3121.0 (8)C20—C19—H19121.4 (8)
C5—C4—C3120.16 (12)C21—C20—C19120.30 (12)
C5—C4—H4119.6 (9)C21—C20—H20118.9 (9)
C3—C4—H4120.2 (9)C19—C20—H20120.7 (9)
C4—C5—C6120.43 (13)C20—C21—C22120.39 (13)
C4—C5—H5122.2 (8)C20—C21—H21122.3 (8)
C6—C5—H5117.4 (8)C22—C21—H21117.3 (8)
C5—C6—C1119.73 (11)C21—C22—C17119.69 (11)
C5—C6—N1118.21 (11)C21—C22—N3117.74 (11)
C1—C6—N1122.02 (11)C17—C22—N3122.54 (11)
N1—C7—C10121.39 (11)N3—C23—C26121.48 (12)
N1—C7—C8116.55 (11)N3—C23—C24116.67 (11)
C10—C7—C8122.07 (11)C26—C23—C24121.85 (11)
C7—C8—C9109.20 (11)C23—C24—C25109.99 (10)
C7—C8—H8A108.7 (8)C23—C24—H24A109.3 (9)
C9—C8—H8A110.6 (9)C25—C24—H24A106.8 (9)
C7—C8—H8B110.3 (9)C23—C24—H24B109.5 (8)
C9—C8—H8B107.5 (8)C25—C24—H24B109.8 (8)
H8A—C8—H8B110.5 (12)H24A—C24—H24B111.4 (13)
O1—C9—N2122.40 (12)O3—C25—N4122.76 (11)
O1—C9—C8121.18 (11)O3—C25—C24121.48 (11)
N2—C9—C8116.38 (11)N4—C25—C24115.73 (10)
C7—C10—C11122.38 (12)C23—C26—C27123.00 (12)
C7—C10—H10120.3 (9)C23—C26—H26118.0 (8)
C11—C10—H10117.3 (9)C27—C26—H26118.9 (8)
O2—C11—C10122.32 (11)O4—C27—C26122.69 (11)
O2—C11—C12118.72 (12)O4—C27—C28118.82 (12)
C10—C11—C12118.95 (12)C26—C27—C28118.50 (12)
C11—C12—H12A112.7 (10)C27—C28—H28A109.5
C11—C12—H12B109.2 (10)C27—C28—H28B109.5
H12A—C12—H12B110.0 (15)H28A—C28—H28B109.5
C11—C12—H12C108.3 (11)C27—C28—H28C109.5
H12A—C12—H12C107.4 (14)H28A—C28—H28C109.5
H12B—C12—H12C109.1 (15)H28B—C28—H28C109.5
N2—C13—C14112.25 (11)N4—C29—C30111.51 (10)
N2—C13—H13A110.0 (10)N4—C29—H29A106.9 (8)
C14—C13—H13A112.2 (10)C30—C29—H29A110.2 (8)
N2—C13—H13B105.2 (8)N4—C29—H29B111.1 (8)
C14—C13—H13B110.1 (8)C30—C29—H29B108.8 (8)
H13A—C13—H13B106.6 (12)H29A—C29—H29B108.2 (11)
C13—C14—C15114.98 (12)C29—C30—C31113.61 (11)
C13—C14—H14A110.6 (9)C29—C30—H30A108.1 (9)
C15—C14—H14A107.9 (9)C31—C30—H30A108.5 (8)
C13—C14—H14B107.6 (9)C29—C30—H30B108.9 (8)
C15—C14—H14B109.0 (9)C31—C30—H30B112.1 (8)
H14A—C14—H14B106.4 (13)H30A—C30—H30B105.2 (11)
C16—C15—C14112.47 (13)C30—C31—C32112.70 (13)
C16—C15—H15A108.2 (10)C30—C31—H31A109.6 (8)
C14—C15—H15A109.5 (10)C32—C31—H31A110.4 (9)
C16—C15—H15B111.8 (9)C30—C31—H31B109.8 (9)
C14—C15—H15B108.1 (9)C32—C31—H31B109.4 (9)
H15A—C15—H15B106.6 (14)H31A—C31—H31B104.6 (12)
C15—C16—H16A111.0 (11)C31—C32—H32A110.7 (11)
C15—C16—H16B113.0 (11)C31—C32—H32B109.7 (10)
H16A—C16—H16B107.2 (16)H32A—C32—H32B109.6 (14)
C15—C16—H16C112.3 (11)C31—C32—H32C110.6 (10)
H16A—C16—H16C107.2 (14)H32A—C32—H32C109.8 (14)
H16B—C16—H16C105.7 (14)H32B—C32—H32C106.4 (13)
C9—N2—C1—C2131.39 (13)C25—N4—C17—C18133.96 (13)
C13—N2—C1—C246.95 (15)C29—N4—C17—C1850.34 (15)
C9—N2—C1—C652.13 (16)C25—N4—C17—C2250.23 (17)
C13—N2—C1—C6129.53 (13)C29—N4—C17—C22125.47 (13)
C6—C1—C2—C30.67 (19)C22—C17—C18—C193.05 (19)
N2—C1—C2—C3175.92 (11)N4—C17—C18—C19172.93 (12)
C1—C2—C3—C40.34 (19)C17—C18—C19—C200.4 (2)
C2—C3—C4—C50.78 (19)C18—C19—C20—C211.7 (2)
C3—C4—C5—C60.20 (19)C19—C20—C21—C221.1 (2)
C4—C5—C6—C10.82 (19)C20—C21—C22—C171.57 (19)
C4—C5—C6—N1178.38 (12)C20—C21—C22—N3179.63 (12)
C2—C1—C6—C51.24 (18)C18—C17—C22—C213.61 (18)
N2—C1—C6—C5175.25 (11)N4—C17—C22—C21172.18 (11)
C2—C1—C6—N1178.70 (11)C18—C17—C22—N3178.43 (12)
N2—C1—C6—N12.21 (18)N4—C17—C22—N35.78 (19)
C7—N1—C6—C5138.62 (13)C23—N3—C22—C21140.48 (13)
C7—N1—C6—C143.88 (18)C23—N3—C22—C1741.51 (19)
C6—N1—C7—C10178.93 (12)C22—N3—C23—C26177.17 (12)
C6—N1—C7—C81.32 (18)C22—N3—C23—C243.50 (18)
N1—C7—C8—C970.83 (13)N3—C23—C24—C2569.03 (14)
C10—C7—C8—C9108.91 (13)C26—C23—C24—C25110.29 (13)
C1—N2—C9—O1170.18 (11)C17—N4—C25—O3175.20 (11)
C13—N2—C9—O18.15 (17)C29—N4—C25—O39.19 (17)
C1—N2—C9—C812.36 (16)C17—N4—C25—C246.60 (16)
C13—N2—C9—C8169.31 (10)C29—N4—C25—C24169.00 (10)
C7—C8—C9—O1113.48 (13)C23—C24—C25—O3110.58 (13)
C7—C8—C9—N264.01 (13)C23—C24—C25—N467.64 (13)
N1—C7—C10—C112.17 (19)N3—C23—C26—C272.88 (19)
C8—C7—C10—C11178.09 (11)C24—C23—C26—C27177.82 (11)
C7—C10—C11—O20.45 (19)C23—C26—C27—O43.2 (2)
C7—C10—C11—C12179.61 (12)C23—C26—C27—C28176.60 (12)
C9—N2—C13—C14121.28 (12)C25—N4—C29—C30109.33 (12)
C1—N2—C13—C1460.30 (14)C17—N4—C29—C3066.58 (13)
N2—C13—C14—C1555.44 (16)N4—C29—C30—C3159.09 (14)
C13—C14—C15—C16177.96 (13)C29—C30—C31—C32174.97 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+2, z; (vi) x+2, y+1, z; (vii) x, y1, z; (viii) x+1, y, z; (ix) x+2, y+1, z+1; (x) x1, y, z; (xi) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of benzene ring A (C1–C6).
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.927 (17)1.834 (17)2.5998 (14)138.2 (13)
N3—H3A···O40.898 (17)1.901 (17)2.6349 (14)137.6 (14)
C2—H2···O1ii0.964 (15)2.469 (16)3.4235 (17)170.6 (11)
C3—H3···O3vi0.968 (15)2.420 (17)3.3714 (16)166.0 (11)
C5—H5···O40.998 (16)2.456 (15)3.4086 (17)159.3 (11)
C18—H18···O3v0.961 (14)2.556 (15)3.5165 (16)176.4 (11)
C19—H19···O1i1.001 (15)2.330 (15)3.3273 (15)177.0 (12)
C21—H21···O20.986 (15)2.277 (15)3.1933 (16)154.1 (11)
C28—H28C···O4vi0.982.483.4342 (18)164
C12—H12A···Cg1x0.999 (19)2.921 (19)3.9047 (16)167.8 (13)
C30—H30A···Cg1xii1.007 (16)2.903 (15)3.8016 (15)149.0 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (v) x+1, y+2, z; (vi) x+2, y+1, z; (x) x1, y, z; (xii) x, y+1, z.
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Sebbar, N. K., Karrouchi, K. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 1–27.  Google Scholar
First citationDe Sarro, G., Gitto, R., Rizzo, M., Zappia, M. & De Sarro, A. (1996). Gen. Pharmacol. 27, 935–941.  CrossRef PubMed Web of Science Google Scholar
First citationDi Braccio, M., Grossi, G. C., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, X. (2008). Bioorg. Med. Chem. Lett. 18, 2434–2439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49–64.  CrossRef PubMed Web of Science Google Scholar
First citationKumar, R. & Joshi, Y. C. (2007). Arkivoc. XIII, 142–149.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationRoma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496.  CrossRef CAS Web of Science Google Scholar
First citationSebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161696.  Google Scholar
First citationSebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171057.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal. Explorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds