research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structural characterization of four di­chlorido­bis­­(cyclo­propyl­alkynyl­amidine)­metal complexes

CROSSMARK_Color_square_no_text.svg

aChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Zeller, Purdue University, USA (Received 17 October 2018; accepted 21 October 2018; online 26 October 2018)

Deliberate hydrolysis of lithium cyclo­propyl­alkynylamidinates, Li[c-C3H5—C≡C(NR′)2] [R′ = iPr, Cy = cyclo­hex­yl)], afforded the hitherto unknown neutral cyclo­propyl­alkynyl­amidine derivatives c-C3H5—C≡C—C(NR′)(NHR′) [R′ = iPr (1), Cy (2)]. Subsequent reactions of 1 or 2 with metal(II) chlorides, MCl2 (M = Mn, Fe, Co), provided the title complexes di­chlorido­bis­(3-cyclo­propyl-N,N′-diisopropyl­prop-2-ynamidine)­manganese(II), [MnCl2(C12H20N2)2], (3), di­chlorido­bis­(3-cyclo­propyl-N,N′-diisopropyl­prop-2-ynamidine)­iron(II), [FeCl2(C12H20N2)2], (4), di­chlorido­bis­(N,N′-di­cyclo­hexyl-3-cyclo­propyl­prop-2-ynamidine)­iron(II), [FeCl2(C18H28N2)2], (5), and di­chlorido­bis­(N,N′-di­cyclo­hexyl-3-cyclo­propyl­prop-2-ynamidine)­cobalt(II), [CoCl2(C18H28N2)2], (6), or more generally MCl2[c-C3H5—C≡C—C(NR′)(NHR′)]2 [R′ = iPr, M = Mn (3), Fe (4); R′ = Cy, M = Fe (5), Co (6)] in moderate yields (30–39%). Besides their spectroscopic data (IR and MS) and elemental analyses, all complexes 36 were structurally characterized. The two isopropyl-substituted complexes 3 and 4 are isotypic, and so are the cyclo­hexyl-substituted complexes 5 and 6. In all cases, the central metal atom is coordinated by two Cl atoms and two N atoms in a distorted-tetra­hedral fashion, and the structure is supported by intra­molecular N—H⋯Cl hydrogen bonds.

1. Chemical context

Over the past three decades, chelating anionic 1,3-di­aza­allyl-type ligands such as amidinates, [RC(NR′)2], and guanidin­ates, [R2NC(NR′)2], have gained tremendous importance in various fields of organometallic and coordination chemistry. These highly versatile N-chelating ligands are generally regarded as steric equivalents of the ubiquitous cyclo­penta­dienyl ligands (Collins, 2011[Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.]; Edelmann, 2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.], 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]). Unlike the closely related carboxyl­ate anions, [RCO2], the steric properties of amidinate anions can be tuned in a wide range by introducing different substituents at all three atoms of the NCN 1,3-di­aza­allyl unit. A rather inter­esting and potentially useful variation of the amidinate group is the use of alkinyl groups at the central C atom. Alkinyl­amidines of the composition RC≡C—C(=NR′)(NR′) are of inter­est because of their applications in organic synthesis (Ong et al., 2006[Ong, T.-G., O'Brien, J. S., Korobkov, I. & Richeson, D. S. (2006). Organometallics, 25, 4728-4730.]; Xu et al., 2008[Xu, X., Gao, D., Cheng, D., Li, J., Qiang, G. & Guo, H. (2008). Adv. Synth. Catal. 350, 61-64.]; Weingärtner & Maas, 2012[Weingärtner, W. & Maas, G. (2012). Eur. J. Org. Chem. pp. 6372-6382.]) and in biological and pharmacological systems (Rowley et al., 2005[Rowley, C. N., DiLabio, G. A. & Barry, S. T. (2005). Inorg. Chem. 44, 1983-1991.]; Sienkiewicz et al., 2005[Sienkiewicz, P., Bielawski, K., Bielawska, A. & Pałka, J. (2005). Environ. Toxicol. Pharmacol. 20, 118-124.]). Moreover, alkinylamidinate complexes of transition metals and lanthanides effectively catalyze the addition of C—H, N—H and P—H bonds to carbodi­imides as well as the polymerization of polar monomers such as -caprolactone. Previously used alkynylamidinate anions have mainly included the C-phenyl and C-tri­methyl­silyl derivatives [R—C≡C—C(NR′)2] (R = Ph, SiMe3; R′ = iPr, Cy; Dröse et al., 2010a[Dröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474.],b[Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953-1956.]; Seidel et al., 2012[Seidel, W. W., Dachtler, W. & Pape, T. (2012). Z. Anorg. Allg. Chem. 638, 116-121.]; Xu et al., 2013[Xu, L., Wang, Y.-C., Zhang, W.-X. & Xi, Z. (2013). Dalton Trans. 42, 16466-16469.]).

We recently began with an investigation of alkinylamidinate ligands and complexes derived from cyclo­propyl­acetyl­ene. The cyclo­propyl group was selected because of its well-established electron-donating ability to an adjacent electron-deficient center. This way it is possible to electronically modify the amidinate ligand system rather than just changing its steric demand. In a first study, we described the synthesis and characterization of a series of lithium cyclo­propyl­ethinyl­amidinates, Li[c-C3H5—C≡C—C(NR′)2] [R′ = iPr, Cy (= cyclo­hex­yl)], which are readily accessible on a large scale using commercially available starting materials (cyclo­propyl­acetyl­ene, N,N′-diorganocarbodi­imides; Sroor et al., 2013[Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390-2394.]). Subsequently, these ligands have been employed for the preparation of new di- and trivalent lanthanide complexes (Sroor et al., 2015a[Sroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595-7601.],b[Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2015b). Z. Anorg. Allg. Chem. 641, 2041-2046.],c[Sroor, F. M., Hrib, C. G., Hilfert, K., Hartenstein, L., Roesky, P. W. & Edelmann, F. T. (2015c). J. Organomet. Chem. 799-800, 160-165.],d[Sroor, F. M., Hrib, C. G., Hilfert, L., Jones, P. G. & Edelmann, F. T. (2015d). J. Organomet. Chem. 785, 1-10.], 2016[Sroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). Dalton Trans. 45, 13332-13346.]; Wang et al., 2016[Wang, S., Sroor, F. M., Liebing, P., Lorenz, V., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1229-1233.]). More recently, we became inter­ested in the chemistry of 3d metal complexes containing cyclo­propyl­ethinylamidinate ligands. In the course of this work, we occasionally observed and structurally characterized hydrolysis products of the composition MCl2[c-C3H5—C≡C—C(NR′)(NHR′)] (M = Mn, Fe, Co; R′ = iPr, Cy), which contain the neutral amidines c-C3H5-C≡C—C(NR′)(NHR′) as new ligands. Neutral amidines are highly versatile ligands in coordination chemistry in their own right (Barker & Kilner, 1994[Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219-300.]; Coles, 2006[Coles, M. P. (2006). Dalton Trans. pp. 985-1001.]). We report here the deliberate synthesis of two new cylo­propyl­alkynyl­amidines, c-C3H5—C≡C—C(NR′)(NHR′) (R′ = iPr, Cy) as well as the preparation and structural characterization of four first-row transition metal complexes of the type MCl2[c-C3H5—C≡C—C(NR′)(NHR′)] (M = Mn, Fe, Co; R′ = iPr, Cy).

The title compounds were first discovered serendipitously when studying reactions of anhydrous metal(II) chlorides MCl2 (M = Mn, Fe, Co) with 2 equiv. of the lithium cyclo­propyl­ethinylamidinates, Li[c-C3H5—C≡C—C(NR′)2] (R′ = iPr, Cy) in THF solution. Occasionally, small amounts of well-formed crystals were obtained, which turned out (by X-ray diffraction studies) to be the aforementioned hydrolysis products MCl2[c-C3H5—C≡C—C(NR′)(NHR′)] (M = Mn, Fe, Co; R′ = iPr, Cy). We then decided to prepare these complexes in a deliberate manner. As illustrated in Fig. 1[link], the bottom-up synthesis starts with the readily available lithium cyclo­propyl­ethinylamidinates, Li[c-C3H5—C≡C—C(NR′)2] (R′ = iPr, Cy; Sroor et al., 2013[Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390-2394.]), which were made by addition of c-C3H5—C≡C—Li (prepared in situ from cyclo­propyl­acetyl­ene and nBuLi) to the carbodiimides R′—N=C=N—R′ (R = iPr, Cy). The lithium amidinate inter­mediates were then carefully hydrolyzed under controlled conditions to afford the neutral amidines c-C3H5—C≡C—C(NR′)(NHR′) [R′ = iPr (1), Cy (2)] in >70% isolated yields. Both compounds form yellow oils, which were characterized by the usual set of spectroscopic data (MS, 1H NMR, 13C NMR, IR) and elemental analysis. With the free amidine ligands in hand, the metal complexes with first-row transition metals could easily be prepared by treatment of metal(II) chlorides MCl2 (M = Mn, Fe, Co) with 2 equiv. of either 1 or 2 in THF solution. The manganese(II) complex 3 as well as the two iron(II) complexes 4 and 5 form colourless crystals, while the cobalt(II) complex 6 is blue. The compositions of all four products as 1:2 complexes were confirmed by elemental analyses. The title compounds 36 were also characterized by their IR and mass spectra. The mass spectra showed a number of readily inter­pretable peaks resulting e.g. from loss of one amidine ligand or one or both chlorine atoms. IR bands in the region above ca 3100 cm−1 could be assigned to the ν(N—H) vibrations, while strong bands around 1570 cm−1 were characteristic for the C=N double bond in the amidine ligands. In the far-infrared region, the M—Cl bands could be clearly assigned by comparison with literature values (Clark & Williams, 1965[Clark, J. H. & Williams, C. S. (1965). Inorg. Chem. 4, 350-357.]; Takemoto et al., 1974[Takemoto, J. H., Streusand, B. & Hutchinson, B. (1974). Spectrochim. Acta A, 30, 827-834.]) and IR spectra of the respective anhydrous metal(II) chlorides, MCl2 (M = Mn, Fe, Co; for details see the Synthesis and crystallization section).

[Scheme 1]
[Figure 1]
Figure 1
Bottom-up synthesis of the title compounds 36 starting from cyclo­propyl­acetyl­ene.

2. Structural commentary

MnCl2[c-C3H5—C≡C—C(NiPr)(NHiPr)]2 (3; Fig. 2[link]) and FeCl2 [c-C3H5—C≡C—C(NiPr)(NHiPr)]2 (4; Fig. 3[link]) crystallize isotypic­ally in the ortho­rhom­bic space group Fdd2. The metal atom is situated on a crystallographic twofold axis and is surrounded by two symmetry-equivalent chlorido ligands and two symmetry-equivalent amidine ligands. The latter are attached to the metal atom in a monodentate κN mode via the non-protonated nitro­gen atom (N1). The N—H moiety is involved in an intra­molecular N—H⋯Cl bond (Tables 1[link] and 2[link]). The crystal structures of FeCl2[c-C3H5—C≡C—C(NCy)(NHCy)]2 (5; Fig. 4[link]) and CoCl2[c-C3H5-C≡C—C(NCy)(NHCy)]2 (6; Fig. 5[link]) are isotypic in the monoclinic space group P21/c. In this case, the two amidine ligands are not symmetry-equivalent, but nonetheless the mol­ecular structures resemble those of 3 and 4.

Table 1
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl 0.85 (2) 2.36 (2) 3.197 (3) 170 (3)
C8—H9⋯Cli 0.98 2.88 3.776 (4) 152
C5—H4⋯Clii 0.99 2.95 3.931 (4) 172
C10—H14⋯Clii 1.00 2.93 3.643 (3) 129
C4—H2⋯Cliii 1.00 2.67 3.516 (3) 143
Symmetry codes: (i) -x+1, -y+1, z; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z+{\script{3\over 4}}].

Table 2
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl 0.87 (2) 2.32 (3) 3.175 (3) 169 (4)
C8—H9⋯Cli 0.98 2.84 3.728 (5) 151
C5—H4⋯Clii 0.99 2.98 3.963 (5) 172
C10—H14⋯Clii 1.00 2.98 3.679 (4) 128
C4—H2⋯Cliii 1.00 2.68 3.510 (4) 140
Symmetry codes: (i) -x+1, -y+1, z; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z+{\script{3\over 4}}].
[Figure 2]
Figure 2
Mol­ecular structure of 3 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity. Symmetry code: (′) 1 − x, 1 − y, z.
[Figure 3]
Figure 3
Mol­ecular structure of 4 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity. Symmetry code: (′) 1 − x, 1 − y, z.
[Figure 4]
Figure 4
Mol­ecular structure of 5 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity.
[Figure 5]
Figure 5
Mol­ecular structure of 6 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity.

Compound 3 represents a rare example of a complex of tetra-coordinated manganese with nitro­gen ligands, while a larger number of the corresponding iron and cobalt complexes are known. The Mn—N bond length in 3 is 2.160 (2) Å and therefore comparable with literature data (Handley et al., 2001[Handley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 314, 14-21.]; Wang, 2009[Wang, X. (2009). Acta Cryst. E65, m1659.]). In the iron complexes, the Fe—N distances are very similar at 2.088 (3) Å (4), and 2.073 (2)–2.079 (2) Å (5). These values are in the range of Fe—N distances usually observed in MCl2L2-type complexes, where L is a ligand with an sp2-hybridized nitro­gen donor (Benson et al., 2010[Benson, E. E., Rheingold, A. L. & Kubiak, C. P. (2010). Inorg. Chem. 49, 1458-1464.]; Xiao et al., 2011[Xiao, T., Zhang, S., Kehr, G., Hao, X., Erker, G. & Sun, W.-H. (2011). Organometallics, 30, 3658-3665.]; Batcup et al., 2014[Batcup, R., Annibale, V. T. & Song, D. (2014). Dalton Trans. 43, 8951-8958.]). The same is true for the cobalt complex 6, having Co—N bond lengths of 2.041 (2) and 2.043 (2) Å (Riggio et al.; 2001[Riggio, I., van Albada, G. A., Ellis, D. D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). Polyhedron, 20, 2659-2666.]; Jian et al., 2003[Jian, F. F., Bei, F. L. & Wang, X. (2003). Pol. J. Chem. 77, 821-828.]; Xiao et al., 2011[Xiao, T., Zhang, S., Kehr, G., Hao, X., Erker, G. & Sun, W.-H. (2011). Organometallics, 30, 3658-3665.]). The set of C—N bond lengths within the NCN group of the amidine ligands is virtually equal in 36, including one formal C=N double bond at 1.309 (2)–1.315 (4) Å, and one formal C—N single bond at 1.337 (4)–1.340 (2) Å. The small difference between single- and double-bond length may indicate some degree of delocalization of the π-electron density. The observed values are consistent with other metal complexes having metal-coordinated amidine moieties (Dröse et al., 2010a[Dröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474.],b[Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953-1956.]; Harmgarth et al., 2014[Harmgarth, N., Gräsing, D., Dröse, P., Hrib, C. G., Jones, P. G., Lorenz, V., Hilfert, L., Busse, S. & Edelmann, F. T. (2014). Dalton Trans. 43, 5001-5013.], 2017a[Harmgarth, N., Liebing, P., Förster, A., Hilfert, L., Busse, S. & Edelmann, F. T. (2017a). Eur. J. Inorg. Chem. pp. 4473-4479.],b[Harmgarth, N., Liebing, P., Hillebrand, P., Busse, S. & Edelmann, F. T. (2017b). Acta Cryst. E73, 1443-1448.]; Hillebrand et al., 2014[Hillebrand, P., Hrib, C. G., Harmgarth, N., Jones, P. G., Lorenz, V., Kühling, M. & Edelmann, F. T. (2014). Inorg. Chem. Commun. 46, 127-129.]). The hydrogen-bonded N⋯Cl separations are similar in 36, being in the narrow range of 3.175 (3)–3.251 (2) Å (Tables 1[link]–4[link][link][link]).

Table 3
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl2 0.84 (2) 2.42 (2) 3.2511 (19) 169 (2)
N4—H29⋯Cl1 0.85 (2) 2.41 (2) 3.2459 (18) 170 (2)
C22—H30⋯Cl1i 1.00 2.90 3.744 (3) 143
C35—H53⋯Cl1i 0.99 3.05 3.613 (2) 118
C28—H40⋯Cl2ii 0.99 2.91 3.699 (2) 138
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for 6[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl2 0.85 (2) 2.37 (2) 3.1979 (16) 166 (2)
N4—H29⋯Cl1 0.86 (2) 2.35 (2) 3.1917 (15) 168 (2)
C22—H30⋯Cl1i 1.00 2.95 3.800 (2) 144
C33—H49⋯Cl1i 0.99 3.09 3.628 (2) 115
C28—H40⋯Cl2ii 0.99 2.96 3.758 (2) 139
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

All four title compounds 36 display weak intra- and inter­molecular C—H⋯Cl contacts (Tables 1[link]–4[link][link][link]) involving the cyclo-propyl and iso-propyl or cyclo-hexyl groups, respectively.

4. Chemistry of related structures

For reviews on the coordination chemistry of neutral amidines, see Barker & Kilner (1994[Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219-300.]) and Coles (2006[Coles, M. P. (2006). Dalton Trans. pp. 985-1001.]).

5. Synthesis and crystallization

General Procedures: All reactions were carried out in oven-dried or flame-dried glassware in an inert atmosphere of dry argon employing standard Schlenk and glovebox techniques. The solvent THF was distilled from sodium/benzo­phenone in a nitro­gen atmosphere prior to use. n-Butyl­lithium (1.6 M in hexa­nes) was purchased from Sigma–Aldrich. 1H NMR (400 MHz) and 13C NMR (100.6 MHz) spectra were recorded in THF-d8 solutions using a Bruker DPX 400 spectrometer at 298 K. Chemical shifts are referenced to tetra­methyl­silane. IR spectra were measured with a Bruker Vertex 70V spectrom­eter equipped with a diamond ATR unit between 4000 and 50 cm−1. The relative intensities of the absorption bands are given as very strong (vs), strong (s), medium (m), weak (w) and shoulder (sh). Electron impact mass spectra were measured on a MAT95 spectrometer with an ionization energy of 70 eV. Microanalyses of the compounds were performed using a vario EL cube apparatus from Elementar Analysensysteme GmbH.

Synthesis of 3-cyclo­propyl-N,N-diiso­propyl­propynamidine, c-C3H5—CC—C(NiPr)(NHiPr) (1): A THF (80 ml) solution of cyclo­propyl­acetyl­ene (4.2 ml, 50 mmol) in a Schlenk flask (250 ml) was cooled to 253 K and treated slowly with n-butyl­lithium (50 mmol, 1.6 M solution in hexa­nes). After 30 min, neat N,N′-diiso­propyl­carbodi­imide (7.8 ml, 50 mmol) was added and the mixture was stirred for 15 min at 253 K. The solution was warmed to room temperature and stirred for 1 h. During this time, the solution colour turned yellow. 20 ml of distilled water were added and stirring was continued for 30 min. The solution was separated using a separatory funnel and allowed to stand overnight after adding 3.0 g of anhydrous magnesium sulfate to remove the remaining water. The solvents were removed under vacuum to obtain 1 as a yellow oil. Yield: 6.9 g, 72%. Elemental analysis for C12H20N2 (192.30 g mol−1): C, 74.95; H, 10.48; N, 14.57; found C, 74.74; H, 10.46; N, 14.58. MS (EI, M = 192.30): m/z (%) 107.04 (10) [M – 2iPr]+, 149.11 (68) [M − iPr]+, 164.12 (47) [M − 2CH3]+, 177.13 (100) [M − CH3]+, 191.14 (43) [M]+. 1H NMR (400.1 MHz, THF-d8, 298 K): δ (ppm) 4.71–4.78 (br, 1H, NH, NHCN), 3.72–3.88 (s, 2H, CH, iPr), 1.31–1.38 (m, 1H, CH, c-C3H5), 0.97–1.04 (d, 12H, CH3, iPr), 0.79–0.84 (m, 4H, CH2, c-C3H5), 0.66–0.69 (m, 4H, CH2, c-C3H5). 13C NMR (100.6 MHz, THF-d8, 298 K): δ (ppm) 140.5 (NHCN), 96.6 (CH—C≡C), 69.2 (C≡C—C), 67.8 (CH, iPr), 26.8 (CH3, iPr), 9.83 (CH2, c-C3H5), 0.37 (CH, c-C3H5). IR (ATR): ν (cm−1) 3440 (w, N—H), 3415 (w, N—H), 3096 (w), 3014 (w), 2963 (s, C—H), 2931 (m), 2867 (m, C—H), 2614 (w), 2226 (m), 1606 (vs, N=C), 1487 (m), 1466 (m), 1453 (m), 1375 (m), 1360 (m), 1344 (m), 1317 (m), 1263 (m), 1178 (m), 1132 (m), 1088 (w), 1055 (w), 1031 (w), 970 (w), 943 (m), 880 (w), 849 (w), 812 (w), 685 (m), 616 (w), 472 (w), 424 (w), 254 (w), 105 (w), 71 (w), 60 (w).

Synthesis of 3-cyclo­propyl-N,N-di­cyclo­hexyl­propyn­amid­ine, c-C3H5—CC—C(NCy)(NHCy) (2): A THF (100 ml) solution of cyclo­propyl­acetyl­ene (4.2 ml, 50 mmol) in a Schlenk flask (250 ml) was cooled to 253 K and treated slowly with n-butyl­lithium (50 mmol, 1.6 M solution in hexa­nes). After 30 min, N,N′-di­cyclo­hexyl­carbodi­imide (10.3 g, 50 mmol) was added and the rest of the reaction mixture was worked up as described for 1. The solvent was removed under vacuum to obtain 2 as a yellow oil. Yield: 10.1 g, 74%. Elemental analysis for C18H28N2 (272.43 g mol−1): C, 79.36; H, 10.36; N, 10.28; found C, 79.36; H, 10.30; N, 10.38. MS (EI, M = 272.40): m/z (%) 109.06 (19) [M − 2Cy]+, 189.13 (75) [M − Cy]+, 272.23 (79) [M]+. 1H NMR (400.1 MHz, THF-d8, 293 K): δ (ppm) 4.87–4.95 (s, 1H, NHCN), 1.69–1.06 (m, 20H, CH2, Cy), 1.40–1.34 (m, 1H, CH, c-C3H5), 0.79–0.86 (m, 2H, CH2, c-C3H5), 0.61–0.69 (m, 2H, CH2, c-C3H5). 13C NMR (100.6 MHz, THF-d8, 298 K): δ (ppm) 141.5 (NHCN), 95.6 (CH—C≡C), 69.2 (C≡C—C), 64.5 (CH, Cy), 25.1–26.8 (CH2, Cy), 8.83 (CH2, c-C3H5), 0.37 (CH, c-C3H5). IR (ATR): ν (cm−1) 3351 (w, N—H), 3062 (w), 2960 (vs, C—H), 2925 (s), 2866 (m, C—H), 2225 (w), 2116 (w), 1917 (w), 1855 (w), 1796 (w), 1661 (w), 1626 (m, N=C), 1601 (m), 1591 (m), 1530 (w), 1382 (m), 1361 (m), 1330 (m), 1314 (m), 1255 (s), 1177 (m), 1162 (m), 1146 (m), 1107 (m), 1058 (m), 1043 (m), 972 (w), 956 (w), 923 (m), 888 (w), 865 (w), 839 (w), 819 (m), 794 (s), 753 (vs), 706 (w), 678 (m), 622 (w), 601 (w), 577 (w), 527 (w), 519 (w), 465 (w), 441 (m), 416 (m), 326 (s), 275 (s), 169 (m), 152 (m), 114 (m), 88 (m), 57 (w).

Synthesis of di­chlorido­bis­(3-cyclo­propyl-N,N′-diiso­propyl­prop-2-ynamidine)­manganese(II), MnCl2[c-C3H5—CC—C(NiPr)(NHiPr)]2 (3): A solution of anhydrous MnCl2 (0.33 g, 2.6 mmol) in 30 ml of THF was added to a solution of 1 (1.0 g, 5.2 mmol) in 50 ml of THF. The reaction mixture was heated to 333 K by water bath and stirred at room temperature for 12 h, resulting in a brown suspension. The filtrate was concentrated to ca 10 ml. Crystallization at r.t. afforded 3 as colourless crystals. Yield: 0.52 g, 39%. M.p. = 395 K. Elemental analysis for C24H40Cl2MnN4 (510.45 g mol−1): C, 56.47; H, 7.90; N, 10.98; found C, 56.49; H, 7.93; N, 10.98. MS (EI, M = 510.45): m/z (%) 425.2 (50) [M − 2Cl − CH3]+, 433.2 (2) [M − Cl – iPr]+, 498.2 (100) [M − CH2 + 2H]+. IR (ATR): ν (cm−1) 3411 (w, N—H), 3239 (m, N—H), 3129 (w, N—H), 2967 (m), 2930 (w), 2872 (w), 2217 (s), 1628 (w), 1571 (vs, N=C), 1464 (s), 1432 (vs), 1382 (w), 1363 (m), 1330 (m), 1313 (m), 1243 (m), 1172 (m), 1132 (vs), 1061 (w), 1032 (w), 963 (s), 940 (w), 879 (w), 843 (m), 831 (m), 705 (s), 658 (m), 603 (w), 520 (w), 489 (w), 460 (w), 387 (w), 333 (m), 279 (vs, Mn—Cl), 207 (m), 173 (m), 128 (vs).

Synthesis of di­chlorido­bis­(3-cyclo­propyl-N,N′-diiso­propyl­prop-2-ynamidine)­iron(II), FeCl2[c-C3H5—CC—C(NiPr)(NHiPr)]2 (4): A solution of anhydrous FeCl2 (0.33 g, 2.6 mmol) in 30 ml of THF was added to a solution of 1 (1.0 g, 5.2 mmol) in 50 ml of THF following the procedure given for 3. Crystallization at room temperature afforded 4 as colourless crystals. Yield: 0.40 g, 30%. M.p. = 400 K. Elemental analysis for C24H40Cl2FeN4 (511.35 g mol−1): C, 56.37; H, 7.88; N, 10.96; found C, 56.34; H, 7.75; N, 10.98%. MS (EI, M = 511.35): m/z (%) 432.4 (100) [M − Cl − iPr]+, 439.1 (40) [M − 2Cl]+, 475.4 (63) [M − Cl]+, 501.0 (100) [M − CH2 + 2H]+. IR (ATR): ν (cm−1) 3290 (w, N—H), 3222 (w, N—H), 3119 (w, N—H), 2976 (m, C—H), 2933 (w), 2874 (w, C—H), 2225 (m), 1619 (s), 1568 (m, N=C), 1485 (w), 1463 (w), 1429 (w), 1392 (w), 1372 (w), 1309 (w), 1244 (w), 1169 (m), 1129 (m), 1062 (w), 1033 (w), 963 (m), 939 (m), 879 (m), 846 (m), 818 (w), 793 (w), 709 (s), 691 (s), 649 (s), 599 (s), 520 (s), 460 (s), 353 (vs), 313 (vs), 280 (vs), 211 (vs, Fe—Cl), 134 (s), 68 (s).

Synthesis of di­chlorido­bis­(N,N′-di­cyclo­hexyl-3-cyclo­prop­yl­prop-2-ynamidine)­iron(II), FeCl2[c-C3H5-CC—C(NCy)(NHCy)]2 (5): A solution of anhydrous FeCl2 (0.23 g, 1.8 mmol) in 30 ml of THF was added to a solution of 2 (1.0 g, 3.6 mmol) in 50 ml of THF. The reaction mixture was heated to 333 K by water bath and stirred at room temperature for 12 h, resulting in a brown suspension. The filtrate was concentrated to ca 10 ml. Crystallization at 278 K afforded 5 in the form of colorless crystals. Yield: 0.45 g, 37%. M.p. = 405 K. Elemental analysis for C36H56Cl2FeN4 (671.61 g mol−1): C, 65.66; H, 8.21; N, 8.57; found C, 64.38; H, 8.40; N, 8.34%. MS (EI, M = 671.61): m/z (%) 363.17 (24) [M − c-C3H5—C≡C—C(NCy)(NHCy) − Cl]+, 457.08 (74) [M − 3C3H7 − C6H11]+, 540.13 (100) [M − 3C3H7]+. IR (ATR): ν (cm−1) 3214 (w, N—H), 2928 (s, C—H), 2852 (s, C—H), 2227 (s), 1573 (vs, N=C), 1448 (s), 1365 (m), 1347 (w), 1308 (w), 1245 (m), 1188 (w), 1154 (w), 1062 (w), 1031 (w), 974 (m), 891 (w), 858 (w), 842 (w), 814 (w), 702 (m), 603 (w), 549 (w), 474 (w), 443 (w), 279 (s), 198 (vs, Fe—Cl), 140 (s), 121 (s), 107 (s), 89 (m).

Synthesis of di­chlorido­bis­(N,N'-di­cyclo­hexyl-3-cyclo­propyl­prop-2-ynamidine)­cobalt(II), CoCl2[c-C3H5-CC—C(NCy)(NHCy)]2CoCl2 (6): A solution of anhydrous CoCl2 (0.23 g, 1.8 mmol) in 30 ml of THF was added to a solution of 2 (1.0 g, 3.6 mmol) in 50 ml of THF following the procedure given for 5. Crystallization at 278 K afforded 6 in the form of blue crystals. Yield: 0.45 g, 37%. M.p. = 399 K. Elemental analysis for C36H56Cl2CoN4 (674.69 g mol−1): C, 64.09; H, 8.37; N, 8.30; found C, 63.69; H, 8.31; N, 9.26%. MS (EI, M = 674.69): m/z (%) 402.23 (24) [M − c-C3H5—C≡C—C(NCy)(NHCy)]+, 461.32 (89) [M − 3C3H7 − C6H11]+, 544.39 (15) [M − 3C3H7]+. IR (ATR): ν (cm−1) 3440 (w, N—H), 3212 (w, N—H), 3128 (w, N—H), 3090 (w), 3008 (w), 2925 (vs, C—H), 2850 (s, C—H), 2662 (w), 2228 (m), 1690 (w), 1635 (w), 1605 (m), 1575 (N=C), 1486 (m), 1447 (vs), 1433 (s), 1363 (s), 1346 (m), 1300 (w), 1257 (m), 1221 (w), 1188 (w), 1157 (w), 1090 (w), 1064 (m), 1031 (m), 973 (m), 889 (w), 858 (m), 841 (w), 815 (w), 788 (w), 701 (s), 656 (m), 549 (w), 475 (w), 444 (w), 430 (w), 392 (w), 349 (w), 292 (vs, Co—Cl), 228 (m), 204 (w), 166 (w), 127 (vs), 74 (w).

For comparison, the far infrared spectra of the anhydrous metal dichlorides MCl2 (M = Mn, Fe, Co) were also measured:

IR (KBr): ν MnCl2 (cm−1) 1064 (w), 1230 (w), 492 (w), 434 (w), 318 (w), 163 (vs, Mn—Cl) , 83 (s), 64 (s).

IR (KBr): ν FeCl2 (cm−1) 3461 (w), 2977 (w), 2113 (w), 1993 (w), 1599 (w), 1389 (w), 1096 (w), 931 (w), 812 (w), 330 (w), 144 (vs, Fe—Cl), 54 (s).

IR (KBr): ν CoCl2 (cm−1) 1599 (w), 615 (w), 348 (w), 189 (vs, Co—Cl).

X-ray quality single crystals of complexes 36 were obtained at r.t. from concentrated solutions in THF.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. H atoms attached to C atoms were fixed geometrically and refined using a riding model. The CH3 groups in 3 and 4 were allowed to rotate freely around the C—C vector, the corresponding C—H distances were constrained to 0.98 Å. C—H distances within CH2 groups were constrained to 0.99 Å, C—H distances within CH groups to 1.00 Å. H atoms attached to N atoms were located in the difference-Fourier map and refined, the N—H distances were restrained to 0.88 (2) Å. The Uiso(H) values were set at 1.5Ueq(C) for the methyl groups in 3 and 4, and at 1.2Ueq(X) (X = C, N) in all other cases. For 6, the reflections (011) and (002) disagreed strongly with the structural model and were therefore omitted from the refinement.

Table 5
Experimental details

  3 4 5 6
Crystal data
Chemical formula [MnCl2(C12H20N2)2] [FeCl2(C12H20N2)2] [FeCl2(C18H28N2)2] [CoCl2(C18H28N2)2]
Mr 510.44 511.35 671.59 674.67
Crystal system, space group Orthorhombic, Fdd2 Orthorhombic, Fdd2 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 153 153 100 153
a, b, c (Å) 17.6701 (10), 30.9809 (19), 10.1452 (5) 17.5703 (9), 30.9167 (12), 10.1110 (6) 13.905 (7), 12.500 (6), 20.742 (11) 13.8898 (3), 12.5574 (3), 20.8394 (5)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 92.24 (4), 90 90, 91.717 (2), 90
V3) 5553.8 (5) 5492.5 (5) 3603 (3) 3633.17 (15)
Z 8 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.69 0.76 0.60 0.65
Crystal size (mm) 0.33 × 0.24 × 0.10 0.27 × 0.25 × 0.25 0.26 × 0.19 × 0.12 0.39 × 0.19 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Numerical X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Numerical X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Numerical X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Numerical X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.851, 0.932 0.837, 0.888 0.838, 0.908 0.807, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 5371, 2432, 2203 5377, 2495, 2239 18866, 7036, 6355 22018, 7124, 5922
Rint 0.030 0.037 0.029 0.042
(sin θ/λ)max−1) 0.617 0.616 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.054, 0.98 0.033, 0.074, 1.01 0.033, 0.075, 1.14 0.035, 0.083, 1.03
No. of reflections 2432 2495 7036 7124
No. of parameters 148 148 395 394
No. of restraints 2 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.16 0.21, −0.42 0.40, −0.33 0.65, −0.36
Absolute structure Flack x determined using 804 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 846 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.005 (17) −0.03 (3)
Computer programs: X-AREA X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Diamond (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) top
Crystal data top
[MnCl2(C12H20N2)2]Dx = 1.221 Mg m3
Mr = 510.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 5371 reflections
a = 17.6701 (10) Åθ = 2.4–26.0°
b = 30.9809 (19) ŵ = 0.69 mm1
c = 10.1452 (5) ÅT = 153 K
V = 5553.8 (5) Å3Plate, colorless
Z = 80.33 × 0.24 × 0.10 mm
F(000) = 2168
Data collection top
Stoe IPDS 2T
diffractometer
2432 independent reflections
Radiation source: fine-focus sealed tube2203 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.030
area detector scansθmax = 26.0°, θmin = 2.4°
Absorption correction: numerical
X-Area and X-Red (Stoe & Cie, 2002)
h = 2119
Tmin = 0.851, Tmax = 0.932k = 3836
5371 measured reflectionsl = 1012
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0295P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.17 e Å3
2432 reflectionsΔρmin = 0.16 e Å3
148 parametersAbsolute structure: Flack x determined using 804 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
2 restraintsAbsolute structure parameter: 0.005 (17)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36882 (15)0.54929 (8)0.4904 (3)0.0249 (6)
C20.33550 (15)0.58031 (8)0.5793 (3)0.0275 (6)
C30.30913 (16)0.60729 (9)0.6494 (3)0.0302 (7)
C40.28074 (18)0.63992 (9)0.7356 (3)0.0356 (7)
H20.3190530.6531540.7958550.043*
C50.20206 (19)0.63718 (12)0.7899 (4)0.0499 (9)
H40.1705880.6122380.7630790.060*
H30.1937440.6472160.8813900.060*
C60.2193 (2)0.66970 (11)0.6900 (4)0.0533 (10)
H50.2218010.7002140.7186200.064*
H60.1986440.6652360.6003060.064*
C70.48948 (16)0.58097 (9)0.5311 (3)0.0306 (7)
H70.4599360.5943920.6044750.037*
C80.5092 (2)0.61607 (9)0.4321 (4)0.0483 (9)
H80.4625500.6291380.3983100.072*
H90.5377690.6034410.3587990.072*
H100.5399790.6382620.4752500.072*
C90.55984 (19)0.56063 (11)0.5888 (5)0.0523 (10)
H110.5454230.5364650.6458230.078*
H120.5874720.5821830.6405760.078*
H130.5922420.5500580.5173310.078*
C100.24079 (15)0.51535 (9)0.4664 (3)0.0309 (6)
H140.2316150.5285950.5548610.037*
C110.1891 (2)0.53643 (15)0.3699 (5)0.0730 (14)
H150.1986310.5675890.3687670.110*
H160.1364170.5310900.3955770.110*
H170.1980920.5244860.2818360.110*
C120.2262 (2)0.46796 (10)0.4771 (5)0.0589 (11)
H180.2636220.4549040.5361610.088*
H190.2301230.4547250.3896060.088*
H200.1752700.4631850.5124370.088*
Cl0.40889 (4)0.46957 (2)0.20903 (8)0.03750 (19)
N10.44187 (12)0.54779 (6)0.4682 (2)0.0244 (5)
N20.32035 (14)0.52226 (8)0.4319 (3)0.0329 (6)
H10.3386 (17)0.5071 (10)0.370 (3)0.039*
Mn0.5000000.5000000.35079 (6)0.02229 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0270 (13)0.0210 (12)0.0267 (16)0.0043 (11)0.0022 (12)0.0021 (10)
C20.0233 (13)0.0260 (13)0.0333 (18)0.0001 (11)0.0014 (13)0.0054 (12)
C30.0241 (14)0.0314 (14)0.0350 (17)0.0011 (12)0.0005 (13)0.0042 (12)
C40.0299 (15)0.0393 (15)0.038 (2)0.0014 (12)0.0019 (15)0.0162 (14)
C50.0372 (19)0.056 (2)0.057 (2)0.0006 (17)0.0173 (18)0.0191 (17)
C60.054 (2)0.052 (2)0.055 (3)0.0212 (17)0.0009 (19)0.0145 (18)
C70.0229 (15)0.0293 (14)0.0396 (18)0.0019 (12)0.0027 (13)0.0124 (12)
C80.045 (2)0.0315 (15)0.068 (3)0.0095 (14)0.0084 (19)0.0053 (15)
C90.0413 (17)0.0463 (17)0.069 (3)0.0074 (15)0.020 (2)0.024 (2)
C100.0228 (14)0.0325 (13)0.0372 (18)0.0001 (11)0.0046 (15)0.0029 (12)
C110.0348 (18)0.099 (3)0.085 (4)0.014 (2)0.005 (2)0.044 (3)
C120.0396 (18)0.0394 (17)0.098 (4)0.0071 (15)0.008 (2)0.005 (2)
Cl0.0345 (4)0.0426 (4)0.0354 (4)0.0088 (3)0.0083 (4)0.0170 (3)
N10.0231 (11)0.0225 (10)0.0276 (14)0.0023 (8)0.0001 (11)0.0048 (10)
N20.0239 (12)0.0346 (12)0.0402 (17)0.0013 (10)0.0060 (11)0.0183 (11)
Mn0.0229 (3)0.0206 (2)0.0234 (3)0.0048 (3)0.0000.000
Geometric parameters (Å, º) top
C1—N11.311 (3)C8—H90.9800
C1—N21.337 (4)C8—H100.9800
C1—C21.444 (4)C9—H110.9800
C2—C31.192 (4)C9—H120.9800
C3—C41.428 (4)C9—H130.9800
C4—C51.498 (4)C10—N21.465 (3)
C4—C61.498 (5)C10—C111.491 (5)
C4—H21.0000C10—C121.494 (4)
C5—C61.461 (6)C10—H141.0000
C5—H40.9900C11—H150.9800
C5—H30.9900C11—H160.9800
C6—H50.9900C11—H170.9800
C6—H60.9900C12—H180.9800
C7—N11.473 (3)C12—H190.9800
C7—C91.512 (4)C12—H200.9800
C7—C81.521 (5)Cl—Mn2.3556 (8)
C7—H71.0000N1—Mn2.160 (2)
C8—H80.9800N2—H10.85 (2)
N1—C1—N2122.2 (2)C7—C9—H12109.5
N1—C1—C2122.2 (2)H11—C9—H12109.5
N2—C1—C2115.7 (2)C7—C9—H13109.5
C3—C2—C1177.2 (3)H11—C9—H13109.5
C2—C3—C4177.5 (3)H12—C9—H13109.5
C3—C4—C5120.7 (3)N2—C10—C11111.6 (3)
C3—C4—C6120.1 (3)N2—C10—C12109.1 (2)
C5—C4—C658.4 (2)C11—C10—C12111.9 (3)
C3—C4—H2115.3N2—C10—H14108.1
C5—C4—H2115.3C11—C10—H14108.1
C6—C4—H2115.3C12—C10—H14108.1
C6—C5—C460.8 (2)C10—C11—H15109.5
C6—C5—H4117.7C10—C11—H16109.5
C4—C5—H4117.7H15—C11—H16109.5
C6—C5—H3117.7C10—C11—H17109.5
C4—C5—H3117.7H15—C11—H17109.5
H4—C5—H3114.8H16—C11—H17109.5
C5—C6—C460.8 (2)C10—C12—H18109.5
C5—C6—H5117.7C10—C12—H19109.5
C4—C6—H5117.7H18—C12—H19109.5
C5—C6—H6117.7C10—C12—H20109.5
C4—C6—H6117.7H18—C12—H20109.5
H5—C6—H6114.8H19—C12—H20109.5
N1—C7—C9110.3 (2)C1—N1—C7117.6 (2)
N1—C7—C8110.1 (3)C1—N1—Mn125.95 (18)
C9—C7—C8111.4 (3)C7—N1—Mn116.44 (16)
N1—C7—H7108.3C1—N2—C10126.9 (2)
C9—C7—H7108.3C1—N2—H1116 (2)
C8—C7—H7108.3C10—N2—H1117 (2)
C7—C8—H8109.5N1—Mn—N1i113.06 (13)
C7—C8—H9109.5N1—Mn—Cl106.62 (6)
H8—C8—H9109.5N1i—Mn—Cl112.79 (6)
C7—C8—H10109.5N1—Mn—Cli112.80 (6)
H8—C8—H10109.5N1i—Mn—Cli106.62 (6)
H9—C8—H10109.5Cl—Mn—Cli104.74 (5)
C7—C9—H11109.5
C3—C4—C5—C6108.6 (4)C8—C7—N1—C1100.7 (3)
C3—C4—C6—C5109.7 (3)C9—C7—N1—Mn42.7 (3)
N2—C1—N1—C7176.0 (3)C8—C7—N1—Mn80.7 (2)
C2—C1—N1—C73.8 (4)N1—C1—N2—C10167.7 (3)
N2—C1—N1—Mn5.5 (4)C2—C1—N2—C1012.5 (4)
C2—C1—N1—Mn174.66 (19)C11—C10—N2—C1104.8 (4)
C9—C7—N1—C1135.9 (3)C12—C10—N2—C1131.2 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl0.85 (2)2.36 (2)3.197 (3)170 (3)
C8—H9···Cli0.982.883.776 (4)152
C5—H4···Clii0.992.953.931 (4)172
C10—H14···Clii1.002.933.643 (3)129
C4—H2···Cliii1.002.673.516 (3)143
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1, z+1/2; (iii) x+3/4, y+1/4, z+3/4.
Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) top
Crystal data top
[FeCl2(C12H20N2)2]Dx = 1.237 Mg m3
Mr = 511.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 5377 reflections
a = 17.5703 (9) Åθ = 2.4–26.0°
b = 30.9167 (12) ŵ = 0.76 mm1
c = 10.1110 (6) ÅT = 153 K
V = 5492.5 (5) Å3Block, colorless
Z = 80.27 × 0.25 × 0.25 mm
F(000) = 2176
Data collection top
Stoe IPDS 2T
diffractometer
2495 independent reflections
Radiation source: fine-focus sealed tube2239 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.037
area detector scansθmax = 26.0°, θmin = 2.4°
Absorption correction: numerical
X-Area and X-Red (Stoe & Cie, 2002)
h = 2021
Tmin = 0.837, Tmax = 0.888k = 3836
5377 measured reflectionsl = 1012
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.21 e Å3
2495 reflectionsΔρmin = 0.42 e Å3
148 parametersAbsolute structure: Flack x determined using 846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
2 restraintsAbsolute structure parameter: 0.03 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3709 (2)0.54820 (11)0.4918 (4)0.0256 (7)
C20.3378 (2)0.57953 (11)0.5794 (4)0.0295 (8)
C30.3110 (2)0.60671 (12)0.6491 (4)0.0311 (8)
C40.2823 (2)0.63943 (13)0.7355 (4)0.0370 (9)
H20.3207080.6525580.7965140.044*
C50.2031 (3)0.63654 (17)0.7896 (5)0.0516 (12)
H40.1715140.6116170.7619980.062*
H30.1946000.6464160.8815370.062*
C60.2208 (3)0.66945 (15)0.6897 (5)0.0506 (12)
H50.2233920.6999700.7189860.061*
H60.2003050.6651700.5994440.061*
C70.4920 (2)0.58015 (12)0.5319 (4)0.0309 (8)
H70.4622080.5934790.6057170.037*
C80.5106 (3)0.61521 (13)0.4324 (6)0.0506 (12)
H80.4633120.6286500.4014410.076*
H90.5376630.6024880.3571850.076*
H100.5427560.6371760.4743310.076*
C90.5635 (2)0.56028 (15)0.5897 (6)0.0531 (13)
H110.5495670.5365380.6491370.080*
H120.5916350.5823340.6391980.080*
H130.5954720.5491280.5179650.080*
C100.24171 (19)0.51490 (12)0.4677 (4)0.0313 (8)
H140.2328410.5276480.5572560.038*
C110.1912 (3)0.5375 (2)0.3711 (7)0.0717 (17)
H150.2042790.5682650.3682590.108*
H160.1379830.5341830.3985710.108*
H170.1980340.5247790.2830940.108*
C120.2255 (3)0.46742 (15)0.4745 (7)0.0597 (14)
H180.2617810.4535560.5346490.090*
H190.2304430.4547380.3860810.090*
H200.1735900.4628740.5072080.090*
Cl0.41255 (5)0.47033 (3)0.20952 (10)0.0389 (3)
N10.44457 (15)0.54633 (9)0.4699 (3)0.0251 (6)
N20.32222 (17)0.52105 (11)0.4330 (4)0.0323 (7)
H10.341 (2)0.5058 (13)0.369 (4)0.039*
Fe0.5000000.5000000.35458 (7)0.02332 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (17)0.0242 (16)0.0243 (19)0.0046 (15)0.0015 (14)0.0018 (14)
C20.0241 (17)0.0299 (18)0.035 (2)0.0018 (15)0.0011 (15)0.0040 (16)
C30.0289 (19)0.0305 (19)0.034 (2)0.0010 (17)0.0009 (16)0.0044 (16)
C40.0326 (19)0.040 (2)0.038 (2)0.0020 (17)0.0027 (17)0.0109 (18)
C50.041 (2)0.062 (3)0.051 (3)0.001 (2)0.016 (2)0.020 (2)
C60.051 (3)0.053 (3)0.047 (3)0.021 (2)0.001 (2)0.013 (2)
C70.0254 (19)0.0298 (19)0.038 (2)0.0034 (16)0.0001 (16)0.0123 (15)
C80.048 (3)0.033 (2)0.071 (3)0.0063 (19)0.011 (2)0.005 (2)
C90.041 (2)0.051 (2)0.067 (4)0.008 (2)0.023 (2)0.024 (3)
C100.0236 (17)0.0345 (18)0.036 (2)0.0011 (15)0.0012 (17)0.0033 (16)
C110.037 (2)0.099 (4)0.080 (4)0.016 (3)0.001 (3)0.039 (4)
C120.039 (2)0.043 (2)0.097 (5)0.010 (2)0.002 (3)0.001 (3)
Cl0.0359 (5)0.0484 (5)0.0324 (5)0.0061 (4)0.0068 (4)0.0161 (4)
N10.0225 (13)0.0273 (14)0.0257 (16)0.0020 (12)0.0005 (12)0.0032 (13)
N20.0243 (15)0.0359 (16)0.037 (2)0.0002 (13)0.0039 (13)0.0130 (13)
Fe0.0243 (3)0.0243 (3)0.0214 (3)0.0044 (3)0.0000.000
Geometric parameters (Å, º) top
C1—N11.315 (4)C8—H90.9800
C1—N21.337 (5)C8—H100.9800
C1—C21.435 (5)C9—H110.9800
C2—C31.193 (5)C9—H120.9800
C3—C41.429 (5)C9—H130.9800
C4—C51.497 (6)C10—N21.470 (4)
C4—C61.498 (6)C10—C111.493 (6)
C4—H21.0000C10—C121.497 (6)
C5—C61.467 (7)C10—H141.0000
C5—H40.9900C11—H150.9800
C5—H30.9900C11—H160.9800
C6—H50.9900C11—H170.9800
C6—H60.9900C12—H180.9800
C7—N11.477 (5)C12—H190.9800
C7—C81.514 (6)C12—H200.9800
C7—C91.515 (6)Cl—Fe2.3139 (10)
C7—H71.0000N1—Fe2.088 (3)
C8—H80.9800N2—H10.87 (2)
N1—C1—N2121.8 (3)C7—C9—H12109.5
N1—C1—C2122.1 (3)H11—C9—H12109.5
N2—C1—C2116.1 (3)C7—C9—H13109.5
C3—C2—C1177.6 (4)H11—C9—H13109.5
C2—C3—C4177.3 (4)H12—C9—H13109.5
C3—C4—C5120.6 (4)N2—C10—C11110.8 (4)
C3—C4—C6120.3 (4)N2—C10—C12108.7 (3)
C5—C4—C658.6 (3)C11—C10—C12112.0 (4)
C3—C4—H2115.2N2—C10—H14108.4
C5—C4—H2115.2C11—C10—H14108.4
C6—C4—H2115.2C12—C10—H14108.4
C6—C5—C460.7 (3)C10—C11—H15109.5
C6—C5—H4117.7C10—C11—H16109.5
C4—C5—H4117.7H15—C11—H16109.5
C6—C5—H3117.7C10—C11—H17109.5
C4—C5—H3117.7H15—C11—H17109.5
H4—C5—H3114.8H16—C11—H17109.5
C5—C6—C460.7 (3)C10—C12—H18109.5
C5—C6—H5117.7C10—C12—H19109.5
C4—C6—H5117.7H18—C12—H19109.5
C5—C6—H6117.7C10—C12—H20109.5
C4—C6—H6117.7H18—C12—H20109.5
H5—C6—H6114.8H19—C12—H20109.5
N1—C7—C8110.2 (3)C1—N1—C7116.9 (3)
N1—C7—C9110.1 (3)C1—N1—Fe125.7 (2)
C8—C7—C9111.6 (4)C7—N1—Fe117.4 (2)
N1—C7—H7108.3C1—N2—C10126.2 (3)
C8—C7—H7108.3C1—N2—H1115 (3)
C9—C7—H7108.3C10—N2—H1118 (3)
C7—C8—H8109.5N1i—Fe—N1112.13 (17)
C7—C8—H9109.5N1i—Fe—Cl113.06 (9)
H8—C8—H9109.5N1—Fe—Cl108.42 (8)
C7—C8—H10109.5N1i—Fe—Cli108.42 (8)
H8—C8—H10109.5N1—Fe—Cli113.06 (9)
H9—C8—H10109.5Cl—Fe—Cli101.32 (6)
C7—C9—H11109.5
C3—C4—C5—C6109.0 (5)C9—C7—N1—C1137.1 (4)
C3—C4—C6—C5109.5 (4)C8—C7—N1—Fe80.4 (3)
N2—C1—N1—C7175.2 (3)C9—C7—N1—Fe43.2 (4)
C2—C1—N1—C74.4 (5)N1—C1—N2—C10168.1 (4)
N2—C1—N1—Fe4.5 (5)C2—C1—N2—C1012.3 (6)
C2—C1—N1—Fe175.9 (3)C11—C10—N2—C1102.8 (5)
C8—C7—N1—C199.4 (4)C12—C10—N2—C1133.6 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl0.87 (2)2.32 (3)3.175 (3)169 (4)
C8—H9···Cli0.982.843.728 (5)151
C5—H4···Clii0.992.983.963 (5)172
C10—H14···Clii1.002.983.679 (4)128
C4—H2···Cliii1.002.683.510 (4)140
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1, z+1/2; (iii) x+3/4, y+1/4, z+3/4.
Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) top
Crystal data top
[FeCl2(C18H28N2)2]F(000) = 1440
Mr = 671.59Dx = 1.238 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.905 (7) ÅCell parameters from 17648 reflections
b = 12.500 (6) Åθ = 1.9–25.4°
c = 20.742 (11) ŵ = 0.60 mm1
β = 92.24 (4)°T = 100 K
V = 3603 (3) Å3Plate, colorless
Z = 40.26 × 0.19 × 0.12 mm
Data collection top
Stoe IPDS 2T
diffractometer
7036 independent reflections
Radiation source: fine-focus sealed tube6355 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.029
area detector scansθmax = 26.0°, θmin = 1.9°
Absorption correction: numerical
X-Area and X-Red (Stoe & Cie, 2002)
h = 1716
Tmin = 0.838, Tmax = 0.908k = 1415
18866 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0293P)2 + 1.8416P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.40 e Å3
7036 reflectionsΔρmin = 0.33 e Å3
395 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0028 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18374 (11)0.73239 (12)0.51035 (7)0.0161 (3)
C20.18720 (11)0.66376 (13)0.45462 (7)0.0168 (3)
C30.19066 (11)0.60813 (13)0.40810 (7)0.0170 (3)
C40.19602 (12)0.54251 (13)0.35178 (8)0.0177 (3)
H20.1398090.5466810.3203040.021*
C50.24578 (12)0.43512 (13)0.35720 (8)0.0212 (3)
H30.2733240.4138110.4000260.025*
H40.2190250.3755460.3306580.025*
C60.29280 (13)0.52459 (14)0.32327 (8)0.0244 (4)
H50.2952580.5203790.2757010.029*
H60.3495450.5586350.3450530.029*
C70.34866 (11)0.69174 (12)0.53244 (7)0.0155 (3)
H70.3318810.6241870.5087550.019*
C80.40490 (12)0.76358 (13)0.48786 (8)0.0194 (3)
H80.4202750.8319570.5100380.023*
H90.3647450.7798170.4486150.023*
C90.49799 (12)0.70959 (15)0.46867 (8)0.0231 (4)
H100.4821710.6468330.4411340.028*
H110.5356780.7602590.4430400.028*
C100.55896 (12)0.67335 (16)0.52738 (8)0.0261 (4)
H120.6144160.6312830.5128640.031*
H130.5844140.7369670.5508000.031*
C110.50120 (12)0.60571 (14)0.57284 (8)0.0214 (3)
H140.5413380.5892080.6120530.026*
H150.4836120.5372320.5515010.026*
C120.41006 (11)0.66312 (13)0.59209 (7)0.0173 (3)
H160.3729950.6163360.6205560.021*
H170.4274490.7290270.6163120.021*
C130.01049 (11)0.75831 (13)0.48221 (7)0.0171 (3)
H180.0263490.7399010.4369250.020*
C140.05565 (12)0.85514 (13)0.47973 (8)0.0196 (3)
H190.0230730.9155400.4587470.024*
H200.0702520.8771390.5241450.024*
C150.14923 (12)0.82858 (14)0.44199 (8)0.0210 (3)
H210.1932050.8907600.4432570.025*
H220.1350370.8148250.3963270.025*
C160.19864 (12)0.73113 (15)0.46954 (8)0.0234 (4)
H230.2564680.7135870.4422260.028*
H240.2198390.7478810.5134240.028*
C170.13164 (13)0.63472 (14)0.47271 (9)0.0246 (4)
H250.1160380.6128200.4284570.030*
H260.1642960.5740630.4933830.030*
C180.03899 (12)0.66161 (13)0.51117 (8)0.0225 (3)
H270.0540450.6771240.5564820.027*
H280.0049690.5993260.5110270.027*
C190.34950 (11)0.72475 (12)0.75081 (7)0.0143 (3)
C200.35781 (11)0.64968 (12)0.80354 (7)0.0165 (3)
C210.35957 (11)0.58263 (13)0.84443 (7)0.0179 (3)
C220.35866 (13)0.50039 (14)0.89235 (8)0.0246 (4)
H300.4228550.4714090.9070680.030*
C230.28235 (16)0.50218 (17)0.94202 (9)0.0337 (4)
H310.3006380.4771980.9861070.040*
H320.2354510.5617900.9401360.040*
C240.27579 (14)0.42104 (15)0.88987 (9)0.0289 (4)
H330.2250230.4304240.8555350.035*
H340.2902460.3457860.9015320.035*
C250.19047 (11)0.65995 (12)0.72937 (7)0.0161 (3)
H350.2170770.5933270.7499380.019*
C260.12855 (12)0.71616 (14)0.77799 (8)0.0212 (3)
H360.1679930.7315200.8176820.025*
H370.1056250.7851920.7597450.025*
C270.04233 (13)0.64810 (16)0.79503 (8)0.0278 (4)
H380.0016600.6885250.8246670.033*
H390.0650540.5824470.8175560.033*
C280.01730 (12)0.61746 (16)0.73466 (8)0.0263 (4)
H400.0711530.5706050.7466310.032*
H410.0448640.6826960.7141500.032*
C290.04498 (12)0.55937 (14)0.68713 (8)0.0226 (4)
H420.0058340.5419350.6476390.027*
H430.0684260.4914010.7065560.027*
C300.13082 (11)0.62796 (13)0.66927 (7)0.0173 (3)
H440.1715690.5873520.6397780.021*
H450.1075230.6930730.6464110.021*
C310.51602 (11)0.78749 (12)0.78087 (7)0.0154 (3)
H460.5013790.7706730.8265900.018*
C320.55969 (12)0.89931 (13)0.77874 (8)0.0198 (3)
H470.5145860.9512590.7971830.024*
H480.5691240.9196830.7333020.024*
C330.65602 (12)0.90446 (13)0.81646 (8)0.0212 (3)
H490.6846910.9762510.8111040.025*
H500.6452310.8938170.8629180.025*
C340.72569 (12)0.82016 (14)0.79387 (8)0.0220 (3)
H510.7854010.8223570.8214400.026*
H520.7428910.8358460.7489730.026*
C350.68131 (12)0.70902 (14)0.79694 (8)0.0223 (4)
H530.6698350.6906030.8424190.027*
H540.7267010.6558470.7800540.027*
C360.58615 (12)0.70403 (13)0.75741 (8)0.0211 (3)
H550.5983010.7167850.7113240.025*
H560.5575960.6318880.7613410.025*
N10.25819 (9)0.74443 (10)0.55028 (6)0.0152 (3)
N20.10047 (10)0.78421 (11)0.51761 (7)0.0183 (3)
H10.0964 (14)0.8248 (14)0.5499 (8)0.022*
N30.27221 (9)0.72905 (10)0.71271 (6)0.0152 (3)
N40.42557 (10)0.78865 (11)0.74247 (6)0.0164 (3)
H290.4208 (14)0.8347 (14)0.7126 (8)0.020*
Fe0.25601 (2)0.83290 (2)0.63472 (2)0.01437 (8)
Cl10.37746 (3)0.95842 (3)0.62727 (2)0.02006 (10)
Cl20.11601 (3)0.92675 (3)0.64870 (2)0.02200 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (8)0.0150 (7)0.0144 (7)0.0004 (6)0.0018 (6)0.0015 (6)
C20.0155 (7)0.0178 (8)0.0171 (8)0.0012 (6)0.0000 (6)0.0017 (6)
C30.0161 (7)0.0175 (8)0.0172 (8)0.0000 (6)0.0004 (6)0.0018 (6)
C40.0191 (8)0.0179 (8)0.0159 (7)0.0001 (6)0.0013 (6)0.0025 (6)
C50.0242 (8)0.0186 (8)0.0209 (8)0.0027 (7)0.0011 (7)0.0009 (6)
C60.0272 (9)0.0245 (9)0.0218 (8)0.0012 (7)0.0064 (7)0.0033 (7)
C70.0165 (7)0.0159 (7)0.0140 (7)0.0021 (6)0.0020 (6)0.0008 (6)
C80.0212 (8)0.0210 (8)0.0163 (8)0.0007 (7)0.0034 (6)0.0032 (6)
C90.0222 (8)0.0286 (9)0.0188 (8)0.0022 (7)0.0062 (7)0.0037 (7)
C100.0164 (8)0.0380 (10)0.0240 (9)0.0031 (7)0.0026 (7)0.0010 (8)
C110.0214 (8)0.0267 (9)0.0161 (8)0.0074 (7)0.0001 (6)0.0011 (7)
C120.0186 (8)0.0191 (8)0.0142 (7)0.0023 (6)0.0015 (6)0.0009 (6)
C130.0162 (8)0.0187 (8)0.0162 (7)0.0004 (6)0.0005 (6)0.0011 (6)
C140.0190 (8)0.0174 (8)0.0223 (8)0.0017 (6)0.0003 (6)0.0005 (6)
C150.0168 (8)0.0241 (8)0.0220 (8)0.0028 (7)0.0002 (6)0.0005 (7)
C160.0176 (8)0.0324 (10)0.0201 (8)0.0038 (7)0.0013 (6)0.0010 (7)
C170.0259 (9)0.0227 (9)0.0252 (9)0.0072 (7)0.0003 (7)0.0012 (7)
C180.0248 (8)0.0197 (8)0.0229 (8)0.0007 (7)0.0013 (7)0.0031 (7)
C190.0177 (7)0.0127 (7)0.0125 (7)0.0012 (6)0.0028 (6)0.0017 (6)
C200.0162 (7)0.0178 (8)0.0154 (7)0.0016 (6)0.0004 (6)0.0014 (6)
C210.0180 (8)0.0205 (8)0.0153 (7)0.0008 (6)0.0019 (6)0.0019 (6)
C220.0275 (9)0.0249 (9)0.0213 (8)0.0021 (7)0.0000 (7)0.0084 (7)
C230.0471 (12)0.0335 (10)0.0215 (9)0.0152 (9)0.0115 (8)0.0009 (8)
C240.0387 (10)0.0209 (9)0.0272 (9)0.0069 (8)0.0034 (8)0.0049 (7)
C250.0173 (7)0.0163 (7)0.0147 (7)0.0029 (6)0.0016 (6)0.0001 (6)
C260.0208 (8)0.0270 (9)0.0161 (8)0.0055 (7)0.0036 (6)0.0053 (7)
C270.0257 (9)0.0401 (11)0.0180 (8)0.0120 (8)0.0067 (7)0.0055 (7)
C280.0200 (8)0.0377 (10)0.0215 (8)0.0109 (8)0.0040 (7)0.0023 (7)
C290.0246 (9)0.0267 (9)0.0164 (8)0.0093 (7)0.0002 (7)0.0010 (7)
C300.0196 (8)0.0186 (8)0.0138 (7)0.0028 (6)0.0021 (6)0.0018 (6)
C310.0164 (7)0.0163 (7)0.0134 (7)0.0024 (6)0.0002 (6)0.0001 (6)
C320.0197 (8)0.0163 (8)0.0232 (8)0.0018 (6)0.0007 (6)0.0011 (6)
C330.0207 (8)0.0182 (8)0.0244 (8)0.0044 (7)0.0025 (7)0.0009 (7)
C340.0179 (8)0.0270 (9)0.0210 (8)0.0029 (7)0.0012 (6)0.0022 (7)
C350.0208 (8)0.0210 (8)0.0247 (8)0.0039 (7)0.0025 (7)0.0027 (7)
C360.0213 (8)0.0196 (8)0.0221 (8)0.0007 (7)0.0023 (7)0.0042 (7)
N10.0154 (6)0.0160 (6)0.0141 (6)0.0015 (5)0.0010 (5)0.0004 (5)
N20.0179 (7)0.0204 (7)0.0166 (7)0.0026 (6)0.0017 (5)0.0047 (5)
N30.0168 (6)0.0157 (6)0.0133 (6)0.0012 (5)0.0020 (5)0.0011 (5)
N40.0179 (7)0.0172 (7)0.0140 (6)0.0023 (5)0.0006 (5)0.0040 (5)
Fe0.01670 (12)0.01337 (12)0.01306 (12)0.00048 (9)0.00100 (8)0.00022 (8)
Cl10.0227 (2)0.01594 (18)0.02139 (19)0.00324 (15)0.00072 (15)0.00174 (14)
Cl20.0226 (2)0.0198 (2)0.0237 (2)0.00596 (15)0.00141 (15)0.00294 (15)
Geometric parameters (Å, º) top
C1—N11.309 (2)C20—C211.192 (2)
C1—N21.340 (2)C21—C221.430 (2)
C1—C21.442 (2)C22—C231.508 (3)
C2—C31.192 (2)C22—C241.520 (3)
C3—C41.432 (2)C22—H301.0000
C4—C61.508 (2)C23—C241.483 (3)
C4—C51.512 (2)C23—H310.9900
C4—H21.0000C23—H320.9900
C5—C61.486 (2)C24—H330.9900
C5—H30.9900C24—H340.9900
C5—H40.9900C25—N31.479 (2)
C6—H50.9900C25—C261.523 (2)
C6—H60.9900C25—C301.524 (2)
C7—N11.480 (2)C25—H351.0000
C7—C121.518 (2)C26—C271.523 (2)
C7—C81.526 (2)C26—H360.9900
C7—H71.0000C26—H370.9900
C8—C91.526 (2)C27—C281.524 (2)
C8—H80.9900C27—H380.9900
C8—H90.9900C27—H390.9900
C9—C101.525 (2)C28—C291.522 (3)
C9—H100.9900C28—H400.9900
C9—H110.9900C28—H410.9900
C10—C111.519 (2)C29—C301.527 (2)
C10—H120.9900C29—H420.9900
C10—H130.9900C29—H430.9900
C11—C121.523 (2)C30—H440.9900
C11—H140.9900C30—H450.9900
C11—H150.9900C31—N41.462 (2)
C12—H160.9900C31—C361.521 (2)
C12—H170.9900C31—C321.525 (2)
C13—N21.462 (2)C31—H461.0000
C13—C141.520 (2)C32—C331.526 (2)
C13—C181.526 (2)C32—H470.9900
C13—H181.0000C32—H480.9900
C14—C151.529 (2)C33—C341.518 (2)
C14—H190.9900C33—H490.9900
C14—H200.9900C33—H500.9900
C15—C161.521 (2)C34—C351.522 (2)
C15—H210.9900C34—H510.9900
C15—H220.9900C34—H520.9900
C16—C171.523 (3)C35—C361.531 (2)
C16—H230.9900C35—H530.9900
C16—H240.9900C35—H540.9900
C17—C181.526 (2)C36—H550.9900
C17—H250.9900C36—H560.9900
C17—H260.9900N1—Fe2.0727 (15)
C18—H270.9900N2—H10.844 (15)
C18—H280.9900N3—Fe2.0795 (15)
C19—N31.310 (2)N4—H290.847 (15)
C19—N41.342 (2)Fe—Cl22.3009 (10)
C19—C201.442 (2)Fe—Cl12.3147 (9)
N1—C1—N2122.59 (15)C23—C22—H30116.1
N1—C1—C2121.70 (15)C24—C22—H30116.1
N2—C1—C2115.70 (14)C24—C23—C2261.07 (13)
C3—C2—C1179.10 (18)C24—C23—H31117.7
C2—C3—C4179.02 (18)C22—C23—H31117.7
C3—C4—C6118.74 (14)C24—C23—H32117.7
C3—C4—C5119.09 (14)C22—C23—H32117.7
C6—C4—C558.96 (11)H31—C23—H32114.8
C3—C4—H2116.0C23—C24—C2260.26 (13)
C6—C4—H2116.0C23—C24—H33117.7
C5—C4—H2116.0C22—C24—H33117.7
C6—C5—C460.36 (11)C23—C24—H34117.7
C6—C5—H3117.7C22—C24—H34117.7
C4—C5—H3117.7H33—C24—H34114.9
C6—C5—H4117.7N3—C25—C26110.16 (13)
C4—C5—H4117.7N3—C25—C30111.15 (13)
H3—C5—H4114.9C26—C25—C30111.04 (13)
C5—C6—C460.67 (11)N3—C25—H35108.1
C5—C6—H5117.7C26—C25—H35108.1
C4—C6—H5117.7C30—C25—H35108.1
C5—C6—H6117.7C27—C26—C25111.50 (14)
C4—C6—H6117.7C27—C26—H36109.3
H5—C6—H6114.8C25—C26—H36109.3
N1—C7—C12110.96 (13)C27—C26—H37109.3
N1—C7—C8110.50 (13)C25—C26—H37109.3
C12—C7—C8110.32 (13)H36—C26—H37108.0
N1—C7—H7108.3C26—C27—C28110.96 (14)
C12—C7—H7108.3C26—C27—H38109.4
C8—C7—H7108.3C28—C27—H38109.4
C7—C8—C9110.96 (14)C26—C27—H39109.4
C7—C8—H8109.4C28—C27—H39109.4
C9—C8—H8109.4H38—C27—H39108.0
C7—C8—H9109.4C29—C28—C27110.32 (15)
C9—C8—H9109.4C29—C28—H40109.6
H8—C8—H9108.0C27—C28—H40109.6
C10—C9—C8111.94 (14)C29—C28—H41109.6
C10—C9—H10109.2C27—C28—H41109.6
C8—C9—H10109.2H40—C28—H41108.1
C10—C9—H11109.2C28—C29—C30111.05 (14)
C8—C9—H11109.2C28—C29—H42109.4
H10—C9—H11107.9C30—C29—H42109.4
C11—C10—C9111.72 (14)C28—C29—H43109.4
C11—C10—H12109.3C30—C29—H43109.4
C9—C10—H12109.3H42—C29—H43108.0
C11—C10—H13109.3C25—C30—C29110.77 (13)
C9—C10—H13109.3C25—C30—H44109.5
H12—C10—H13107.9C29—C30—H44109.5
C10—C11—C12111.46 (14)C25—C30—H45109.5
C10—C11—H14109.3C29—C30—H45109.5
C12—C11—H14109.3H44—C30—H45108.1
C10—C11—H15109.3N4—C31—C36112.40 (13)
C12—C11—H15109.3N4—C31—C32108.07 (13)
H14—C11—H15108.0C36—C31—C32111.00 (14)
C7—C12—C11110.16 (13)N4—C31—H46108.4
C7—C12—H16109.6C36—C31—H46108.4
C11—C12—H16109.6C32—C31—H46108.4
C7—C12—H17109.6C31—C32—C33111.49 (13)
C11—C12—H17109.6C31—C32—H47109.3
H16—C12—H17108.1C33—C32—H47109.3
N2—C13—C14110.21 (13)C31—C32—H48109.3
N2—C13—C18111.59 (13)C33—C32—H48109.3
C14—C13—C18111.26 (14)H47—C32—H48108.0
N2—C13—H18107.9C34—C33—C32111.75 (14)
C14—C13—H18107.9C34—C33—H49109.3
C18—C13—H18107.9C32—C33—H49109.3
C13—C14—C15110.26 (13)C34—C33—H50109.3
C13—C14—H19109.6C32—C33—H50109.3
C15—C14—H19109.6H49—C33—H50107.9
C13—C14—H20109.6C33—C34—C35110.85 (14)
C15—C14—H20109.6C33—C34—H51109.5
H19—C14—H20108.1C35—C34—H51109.5
C16—C15—C14111.69 (14)C33—C34—H52109.5
C16—C15—H21109.3C35—C34—H52109.5
C14—C15—H21109.3H51—C34—H52108.1
C16—C15—H22109.3C34—C35—C36110.99 (14)
C14—C15—H22109.3C34—C35—H53109.4
H21—C15—H22107.9C36—C35—H53109.4
C15—C16—C17111.43 (14)C34—C35—H54109.4
C15—C16—H23109.3C36—C35—H54109.4
C17—C16—H23109.3H53—C35—H54108.0
C15—C16—H24109.3C31—C36—C35110.63 (13)
C17—C16—H24109.3C31—C36—H55109.5
H23—C16—H24108.0C35—C36—H55109.5
C16—C17—C18110.53 (14)C31—C36—H56109.5
C16—C17—H25109.5C35—C36—H56109.5
C18—C17—H25109.5H55—C36—H56108.1
C16—C17—H26109.5C1—N1—C7116.72 (13)
C18—C17—H26109.5C1—N1—Fe123.97 (11)
H25—C17—H26108.1C7—N1—Fe119.30 (10)
C13—C18—C17110.69 (14)C1—N2—C13124.24 (14)
C13—C18—H27109.5C1—N2—H1117.7 (14)
C17—C18—H27109.5C13—N2—H1116.7 (14)
C13—C18—H28109.5C19—N3—C25117.06 (13)
C17—C18—H28109.5C19—N3—Fe123.80 (11)
H27—C18—H28108.1C25—N3—Fe119.04 (10)
N3—C19—N4122.01 (14)C19—N4—C31126.11 (13)
N3—C19—C20121.58 (14)C19—N4—H29117.3 (13)
N4—C19—C20116.41 (14)C31—N4—H29116.6 (13)
C21—C20—C19174.78 (17)N1—Fe—N3108.64 (6)
C20—C21—C22177.90 (18)N1—Fe—Cl2114.76 (5)
C21—C22—C23119.33 (16)N3—Fe—Cl2106.66 (5)
C21—C22—C24118.22 (15)N1—Fe—Cl1105.69 (5)
C23—C22—C2458.66 (12)N3—Fe—Cl1114.71 (5)
C21—C22—H30116.1Cl2—Fe—Cl1106.61 (4)
C3—C4—C5—C6107.90 (17)C31—C32—C33—C3454.38 (19)
C3—C4—C6—C5108.49 (17)C32—C33—C34—C3554.99 (19)
N1—C7—C8—C9179.50 (13)C33—C34—C35—C3656.42 (19)
C12—C7—C8—C957.43 (17)N4—C31—C36—C35177.45 (13)
C7—C8—C9—C1053.92 (19)C32—C31—C36—C3556.28 (18)
C8—C9—C10—C1152.2 (2)C34—C35—C36—C3157.25 (19)
C9—C10—C11—C1254.00 (19)N2—C1—N1—C7173.40 (14)
N1—C7—C12—C11178.12 (13)C2—C1—N1—C75.2 (2)
C8—C7—C12—C1159.07 (18)N2—C1—N1—Fe5.9 (2)
C10—C11—C12—C757.54 (18)C2—C1—N1—Fe175.49 (11)
N2—C13—C14—C15179.28 (13)C12—C7—N1—C1151.55 (14)
C18—C13—C14—C1556.38 (18)C8—C7—N1—C185.76 (17)
C13—C14—C15—C1655.25 (19)C12—C7—N1—Fe29.09 (16)
C14—C15—C16—C1755.31 (19)C8—C7—N1—Fe93.61 (13)
C15—C16—C17—C1855.58 (19)N1—C1—N2—C13167.61 (15)
N2—C13—C18—C17178.89 (14)C2—C1—N2—C1313.7 (2)
C14—C13—C18—C1757.55 (18)C14—C13—N2—C1156.41 (15)
C16—C17—C18—C1356.52 (19)C18—C13—N2—C179.44 (19)
C21—C22—C23—C24107.03 (19)N4—C19—N3—C25175.90 (14)
C21—C22—C24—C23108.9 (2)C20—C19—N3—C255.0 (2)
N3—C25—C26—C27178.69 (13)N4—C19—N3—Fe0.3 (2)
C30—C25—C26—C2755.11 (18)C20—C19—N3—Fe178.76 (11)
C25—C26—C27—C2855.9 (2)C26—C25—N3—C1985.50 (17)
C26—C27—C28—C2956.7 (2)C30—C25—N3—C19150.99 (14)
C27—C28—C29—C3057.4 (2)C26—C25—N3—Fe90.90 (14)
N3—C25—C30—C29178.35 (13)C30—C25—N3—Fe32.62 (16)
C26—C25—C30—C2955.34 (18)N3—C19—N4—C31177.79 (14)
C28—C29—C30—C2556.85 (19)C20—C19—N4—C311.3 (2)
N4—C31—C32—C33178.60 (13)C36—C31—N4—C1984.39 (19)
C36—C31—C32—C3354.92 (18)C32—C31—N4—C19152.79 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl20.84 (2)2.42 (2)3.2511 (19)169 (2)
N4—H29···Cl10.85 (2)2.41 (2)3.2459 (18)170 (2)
C22—H30···Cl1i1.002.903.744 (3)143
C35—H53···Cl1i0.993.053.613 (2)118
C28—H40···Cl2ii0.992.913.699 (2)138
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2.
Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) top
Crystal data top
[CoCl2(C18H28N2)2]F(000) = 1444
Mr = 674.67Dx = 1.233 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8898 (3) ÅCell parameters from 25049 reflections
b = 12.5574 (3) Åθ = 1.9–27.3°
c = 20.8394 (5) ŵ = 0.65 mm1
β = 91.717 (2)°T = 153 K
V = 3633.17 (15) Å3Rod, blue
Z = 40.39 × 0.19 × 0.10 mm
Data collection top
Stoe IPDS 2T
diffractometer
7124 independent reflections
Radiation source: fine-focus sealed tube5922 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.042
area detector scansθmax = 26.0°, θmin = 2.2°
Absorption correction: numerical
X-Area and X-Red (Stoe & Cie, 2002)
h = 1517
Tmin = 0.807, Tmax = 0.938k = 1515
22018 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0426P)2 + 1.0094P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7124 reflectionsΔρmax = 0.65 e Å3
394 parametersΔρmin = 0.36 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68127 (13)0.26772 (14)0.01098 (8)0.0221 (4)
C20.68620 (13)0.33626 (15)0.04462 (8)0.0246 (4)
C30.69022 (13)0.39139 (14)0.09095 (8)0.0238 (4)
C40.69597 (14)0.45734 (15)0.14694 (8)0.0255 (4)
H20.6396220.4538850.1778780.031*
C50.74656 (15)0.56342 (15)0.14185 (9)0.0314 (4)
H30.7201640.6230370.1680120.038*
H40.7743400.5843060.0993890.038*
C60.79318 (16)0.47400 (17)0.17614 (10)0.0357 (5)
H50.8497340.4395180.1548640.043*
H60.7955490.4782550.2234990.043*
C70.84593 (13)0.30851 (14)0.03345 (8)0.0216 (4)
H70.8291470.3751670.0093580.026*
C80.90582 (13)0.33917 (15)0.09268 (8)0.0242 (4)
H80.9232340.2744190.1175210.029*
H90.8677500.3862190.1203800.029*
C90.99708 (14)0.39662 (17)0.07312 (9)0.0311 (4)
H110.9793700.4642540.0514000.037*
H101.0366060.4140830.1120280.037*
C101.05599 (15)0.3288 (2)0.02837 (10)0.0386 (5)
H131.1116080.3707330.0138200.046*
H121.0813420.2660230.0521290.046*
C110.99668 (15)0.29143 (18)0.02980 (9)0.0344 (5)
H151.0352680.2408720.0548710.041*
H140.9809100.3533000.0576180.041*
C120.90331 (14)0.23711 (15)0.01041 (8)0.0275 (4)
H170.8638100.2200940.0493990.033*
H160.9188310.1694660.0120030.033*
C130.50831 (13)0.24230 (15)0.01777 (8)0.0251 (4)
H180.5252350.2599810.0628420.030*
C140.44241 (14)0.14592 (16)0.01981 (9)0.0293 (4)
H190.4271830.1245190.0244700.035*
H200.4753770.0855980.0404370.035*
C150.34929 (14)0.17201 (16)0.05751 (9)0.0303 (4)
H220.3641370.1849130.1030200.036*
H210.3051300.1102510.0558810.036*
C160.29970 (14)0.26938 (18)0.03075 (9)0.0345 (5)
H240.2421650.2864110.0580180.041*
H230.2778780.2534510.0130140.041*
C170.36628 (16)0.36497 (17)0.02816 (10)0.0369 (5)
H250.3332400.4256820.0079930.044*
H260.3826140.3860120.0723020.044*
C180.45860 (15)0.33863 (16)0.01048 (10)0.0328 (4)
H270.5026520.4005970.0100980.039*
H280.4427840.3237830.0556140.039*
C190.84880 (13)0.27434 (14)0.25053 (8)0.0213 (4)
C200.85597 (13)0.34902 (14)0.30319 (8)0.0236 (4)
C210.85812 (14)0.41499 (15)0.34448 (8)0.0259 (4)
C220.85834 (17)0.49612 (17)0.39270 (9)0.0364 (5)
H300.9229870.5229000.4076810.044*
C230.7774 (2)0.57704 (18)0.39069 (11)0.0444 (6)
H310.7933510.6513300.4028580.053*
H320.7271110.5697520.3563060.053*
C240.7808 (2)0.4955 (2)0.44195 (11)0.0510 (7)
H340.7325340.4375500.4394890.061*
H330.7987580.5191090.4860290.061*
C250.68956 (13)0.33810 (15)0.22933 (8)0.0235 (4)
H350.7159590.4037730.2505270.028*
C260.63157 (14)0.37183 (15)0.16962 (8)0.0255 (4)
H370.6075570.3078630.1464450.031*
H360.6734320.4120410.1405940.031*
C270.54659 (15)0.44134 (17)0.18814 (9)0.0336 (5)
H380.5709960.5081030.2079740.040*
H390.5081230.4603390.1490460.040*
C280.48268 (16)0.3839 (2)0.23505 (10)0.0408 (5)
H400.4295480.4315740.2473950.049*
H410.4540340.3201530.2140980.049*
C290.54070 (16)0.3506 (2)0.29479 (10)0.0420 (6)
H430.4988000.3104580.3238240.050*
H420.5643400.4148120.3178820.050*
C300.62621 (14)0.28122 (17)0.27699 (9)0.0310 (4)
H440.6649160.2637460.3162450.037*
H450.6023240.2136720.2578870.037*
C311.01589 (13)0.21371 (14)0.28045 (8)0.0223 (4)
H461.0003890.2289540.3260940.027*
C321.08503 (14)0.29842 (16)0.25785 (9)0.0296 (4)
H471.0554500.3696280.2625190.036*
H481.0978140.2872150.2118650.036*
C331.17997 (15)0.29393 (16)0.29703 (10)0.0319 (4)
H501.2248390.3481280.2806920.038*
H491.1677460.3108260.3424640.038*
C341.22609 (14)0.18423 (17)0.29290 (10)0.0323 (4)
H521.2440670.1701040.2480860.039*
H511.2855340.1823710.3203000.039*
C351.15711 (15)0.09852 (16)0.31466 (10)0.0311 (4)
H531.1456010.1077160.3609820.037*
H541.1868020.0276820.3086570.037*
C361.06089 (14)0.10306 (15)0.27715 (9)0.0289 (4)
H561.0711260.0842130.2317300.035*
H551.0161550.0501500.2950160.035*
N10.75490 (11)0.25596 (12)0.05117 (7)0.0213 (3)
N20.59761 (11)0.21671 (13)0.01815 (7)0.0262 (3)
H10.5925 (16)0.1765 (16)0.0506 (9)0.031*
N30.77203 (11)0.26909 (11)0.21253 (7)0.0211 (3)
N40.92585 (11)0.21171 (13)0.24215 (7)0.0232 (3)
H290.9211 (16)0.1646 (15)0.2125 (9)0.028*
Co0.75507 (2)0.17118 (2)0.13474 (2)0.02071 (7)
Cl10.87506 (4)0.04756 (3)0.12921 (2)0.02899 (11)
Cl20.61692 (4)0.07705 (4)0.14621 (2)0.03201 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0268 (9)0.0219 (8)0.0176 (8)0.0004 (7)0.0012 (7)0.0010 (6)
C20.0229 (9)0.0268 (9)0.0240 (9)0.0021 (8)0.0024 (7)0.0011 (7)
C30.0233 (9)0.0248 (9)0.0234 (9)0.0012 (7)0.0011 (7)0.0010 (7)
C40.0279 (10)0.0252 (9)0.0232 (8)0.0019 (8)0.0026 (7)0.0047 (7)
C50.0367 (11)0.0265 (10)0.0310 (10)0.0053 (9)0.0014 (8)0.0010 (8)
C60.0396 (12)0.0349 (11)0.0330 (10)0.0008 (10)0.0105 (9)0.0058 (9)
C70.0220 (9)0.0234 (9)0.0196 (8)0.0034 (7)0.0007 (7)0.0013 (7)
C80.0263 (9)0.0264 (9)0.0199 (8)0.0044 (8)0.0012 (7)0.0021 (7)
C90.0273 (10)0.0412 (11)0.0248 (9)0.0108 (9)0.0008 (7)0.0020 (8)
C100.0245 (10)0.0573 (14)0.0342 (11)0.0047 (10)0.0040 (8)0.0021 (10)
C110.0308 (11)0.0451 (12)0.0277 (9)0.0036 (9)0.0081 (8)0.0068 (9)
C120.0285 (10)0.0314 (10)0.0227 (9)0.0033 (8)0.0038 (7)0.0042 (7)
C130.0232 (9)0.0290 (9)0.0227 (8)0.0016 (8)0.0029 (7)0.0026 (7)
C140.0273 (10)0.0281 (10)0.0323 (10)0.0023 (8)0.0014 (8)0.0014 (8)
C150.0238 (9)0.0354 (10)0.0316 (10)0.0052 (8)0.0024 (8)0.0019 (8)
C160.0248 (10)0.0504 (13)0.0282 (10)0.0069 (9)0.0013 (8)0.0012 (9)
C170.0363 (12)0.0352 (11)0.0389 (11)0.0105 (10)0.0014 (9)0.0026 (9)
C180.0343 (11)0.0303 (10)0.0335 (10)0.0003 (9)0.0027 (8)0.0062 (8)
C190.0250 (9)0.0219 (8)0.0171 (8)0.0009 (7)0.0027 (7)0.0018 (6)
C200.0242 (9)0.0256 (9)0.0211 (8)0.0020 (8)0.0006 (7)0.0014 (7)
C210.0282 (10)0.0280 (9)0.0214 (8)0.0023 (8)0.0002 (7)0.0014 (7)
C220.0416 (12)0.0371 (11)0.0304 (10)0.0013 (10)0.0008 (9)0.0133 (9)
C230.0635 (16)0.0295 (11)0.0404 (12)0.0109 (11)0.0054 (11)0.0069 (9)
C240.0733 (18)0.0509 (14)0.0297 (11)0.0245 (13)0.0150 (11)0.0016 (10)
C250.0246 (9)0.0261 (9)0.0200 (8)0.0056 (8)0.0010 (7)0.0001 (7)
C260.0274 (10)0.0292 (9)0.0201 (8)0.0069 (8)0.0017 (7)0.0026 (7)
C270.0367 (11)0.0393 (11)0.0247 (9)0.0175 (9)0.0003 (8)0.0022 (8)
C280.0305 (11)0.0610 (15)0.0313 (10)0.0196 (11)0.0069 (8)0.0055 (10)
C290.0371 (12)0.0635 (15)0.0260 (10)0.0199 (11)0.0098 (9)0.0089 (10)
C300.0280 (10)0.0415 (11)0.0238 (9)0.0102 (9)0.0046 (8)0.0091 (8)
C310.0243 (9)0.0239 (8)0.0185 (8)0.0026 (7)0.0019 (7)0.0002 (7)
C320.0300 (10)0.0267 (9)0.0318 (10)0.0011 (8)0.0043 (8)0.0069 (8)
C330.0287 (10)0.0299 (10)0.0366 (10)0.0046 (9)0.0070 (8)0.0046 (8)
C340.0242 (10)0.0399 (11)0.0324 (10)0.0027 (9)0.0030 (8)0.0040 (8)
C350.0306 (10)0.0259 (9)0.0365 (10)0.0079 (8)0.0057 (8)0.0002 (8)
C360.0280 (10)0.0233 (9)0.0353 (10)0.0018 (8)0.0021 (8)0.0022 (8)
N10.0217 (8)0.0223 (7)0.0198 (7)0.0024 (6)0.0009 (6)0.0000 (6)
N20.0230 (8)0.0312 (8)0.0242 (7)0.0041 (7)0.0040 (6)0.0077 (6)
N30.0236 (8)0.0213 (7)0.0183 (7)0.0027 (6)0.0003 (6)0.0023 (6)
N40.0241 (8)0.0253 (8)0.0200 (7)0.0034 (7)0.0027 (6)0.0052 (6)
Co0.02311 (13)0.02012 (12)0.01881 (12)0.00067 (10)0.00071 (9)0.00079 (9)
Cl10.0338 (3)0.0225 (2)0.0304 (2)0.00481 (19)0.00324 (18)0.00277 (17)
Cl20.0329 (3)0.0295 (2)0.0336 (2)0.0093 (2)0.00000 (19)0.00584 (18)
Geometric parameters (Å, º) top
C1—N11.311 (2)C20—C211.194 (3)
C1—N21.339 (2)C21—C221.431 (3)
C1—C21.447 (2)C22—C241.510 (3)
C2—C31.191 (3)C22—C231.515 (3)
C3—C41.435 (2)C22—H301.0000
C4—C51.508 (3)C23—C241.479 (3)
C4—C61.512 (3)C23—H310.9900
C4—H21.0000C23—H320.9900
C5—C61.490 (3)C24—H340.9900
C5—H30.9900C24—H330.9900
C5—H40.9900C25—N31.487 (2)
C6—H50.9900C25—C261.522 (2)
C6—H60.9900C25—C301.524 (2)
C7—N11.483 (2)C25—H351.0000
C7—C81.517 (2)C26—C271.527 (3)
C7—C121.523 (2)C26—H370.9900
C7—H71.0000C26—H360.9900
C8—C91.525 (3)C27—C281.522 (3)
C8—H80.9900C27—H380.9900
C8—H90.9900C27—H390.9900
C9—C101.520 (3)C28—C291.521 (3)
C9—H110.9900C28—H400.9900
C9—H100.9900C28—H410.9900
C10—C111.519 (3)C29—C301.528 (3)
C10—H130.9900C29—H430.9900
C10—H120.9900C29—H420.9900
C11—C121.530 (3)C30—H440.9900
C11—H150.9900C30—H450.9900
C11—H140.9900C31—N41.463 (2)
C12—H170.9900C31—C321.517 (3)
C12—H160.9900C31—C361.526 (3)
C13—N21.465 (2)C31—H461.0000
C13—C141.517 (3)C32—C331.531 (3)
C13—C181.520 (3)C32—H470.9900
C13—H181.0000C32—H480.9900
C14—C151.529 (3)C33—C341.523 (3)
C14—H190.9900C33—H500.9900
C14—H200.9900C33—H490.9900
C15—C161.518 (3)C34—C351.519 (3)
C15—H220.9900C34—H520.9900
C15—H210.9900C34—H510.9900
C16—C171.515 (3)C35—C361.529 (3)
C16—H240.9900C35—H530.9900
C16—H230.9900C35—H540.9900
C17—C181.530 (3)C36—H560.9900
C17—H250.9900C36—H550.9900
C17—H260.9900N1—Co2.0412 (14)
C18—H270.9900N2—H10.848 (15)
C18—H280.9900N3—Co2.0426 (14)
C19—N31.311 (2)N4—H290.856 (15)
C19—N41.344 (2)Co—Cl22.2725 (5)
C19—C201.445 (2)Co—Cl12.2830 (5)
N1—C1—N2122.55 (16)C24—C22—H30116.2
N1—C1—C2121.60 (16)C23—C22—H30116.2
N2—C1—C2115.85 (16)C24—C23—C2260.54 (15)
C3—C2—C1179.04 (19)C24—C23—H31117.7
C2—C3—C4179.4 (2)C22—C23—H31117.7
C3—C4—C5119.33 (16)C24—C23—H32117.7
C3—C4—C6118.63 (17)C22—C23—H32117.7
C5—C4—C659.10 (13)H31—C23—H32114.8
C3—C4—H2116.0C23—C24—C2260.89 (16)
C5—C4—H2116.0C23—C24—H34117.7
C6—C4—H2116.0C22—C24—H34117.7
C6—C5—C460.58 (13)C23—C24—H33117.7
C6—C5—H3117.7C22—C24—H33117.7
C4—C5—H3117.7H34—C24—H33114.8
C6—C5—H4117.7N3—C25—C26111.25 (14)
C4—C5—H4117.7N3—C25—C30110.13 (15)
H3—C5—H4114.8C26—C25—C30111.19 (16)
C5—C6—C460.33 (13)N3—C25—H35108.0
C5—C6—H5117.7C26—C25—H35108.0
C4—C6—H5117.7C30—C25—H35108.0
C5—C6—H6117.7C25—C26—C27110.28 (14)
C4—C6—H6117.7C25—C26—H37109.6
H5—C6—H6114.9C27—C26—H37109.6
N1—C7—C8111.17 (13)C25—C26—H36109.6
N1—C7—C12110.67 (14)C27—C26—H36109.6
C8—C7—C12110.71 (15)H37—C26—H36108.1
N1—C7—H7108.1C28—C27—C26111.21 (17)
C8—C7—H7108.1C28—C27—H38109.4
C12—C7—H7108.1C26—C27—H38109.4
C7—C8—C9110.03 (14)C28—C27—H39109.4
C7—C8—H8109.7C26—C27—H39109.4
C9—C8—H8109.7H38—C27—H39108.0
C7—C8—H9109.7C29—C28—C27110.56 (19)
C9—C8—H9109.7C29—C28—H40109.5
H8—C8—H9108.2C27—C28—H40109.5
C10—C9—C8111.47 (17)C29—C28—H41109.5
C10—C9—H11109.3C27—C28—H41109.5
C8—C9—H11109.3H40—C28—H41108.1
C10—C9—H10109.3C28—C29—C30110.79 (16)
C8—C9—H10109.3C28—C29—H43109.5
H11—C9—H10108.0C30—C29—H43109.5
C11—C10—C9111.94 (18)C28—C29—H42109.5
C11—C10—H13109.2C30—C29—H42109.5
C9—C10—H13109.2H43—C29—H42108.1
C11—C10—H12109.2C25—C30—C29111.05 (17)
C9—C10—H12109.2C25—C30—H44109.4
H13—C10—H12107.9C29—C30—H44109.4
C10—C11—C12111.75 (16)C25—C30—H45109.4
C10—C11—H15109.3C29—C30—H45109.4
C12—C11—H15109.3H44—C30—H45108.0
C10—C11—H14109.3N4—C31—C32112.41 (14)
C12—C11—H14109.3N4—C31—C36107.71 (15)
H15—C11—H14107.9C32—C31—C36111.12 (16)
C7—C12—C11111.04 (16)N4—C31—H46108.5
C7—C12—H17109.4C32—C31—H46108.5
C11—C12—H17109.4C36—C31—H46108.5
C7—C12—H16109.4C31—C32—C33110.59 (15)
C11—C12—H16109.4C31—C32—H47109.5
H17—C12—H16108.0C33—C32—H47109.5
N2—C13—C14109.88 (15)C31—C32—H48109.5
N2—C13—C18111.35 (15)C33—C32—H48109.5
C14—C13—C18111.41 (16)H47—C32—H48108.1
N2—C13—H18108.0C34—C33—C32111.12 (16)
C14—C13—H18108.0C34—C33—H50109.4
C18—C13—H18108.0C32—C33—H50109.4
C13—C14—C15110.11 (16)C34—C33—H49109.4
C13—C14—H19109.6C32—C33—H49109.4
C15—C14—H19109.6H50—C33—H49108.0
C13—C14—H20109.6C35—C34—C33110.73 (16)
C15—C14—H20109.6C35—C34—H52109.5
H19—C14—H20108.2C33—C34—H52109.5
C16—C15—C14111.73 (16)C35—C34—H51109.5
C16—C15—H22109.3C33—C34—H51109.5
C14—C15—H22109.3H52—C34—H51108.1
C16—C15—H21109.3C34—C35—C36111.74 (16)
C14—C15—H21109.3C34—C35—H53109.3
H22—C15—H21107.9C36—C35—H53109.3
C17—C16—C15111.59 (16)C34—C35—H54109.3
C17—C16—H24109.3C36—C35—H54109.3
C15—C16—H24109.3H53—C35—H54107.9
C17—C16—H23109.3C31—C36—C35111.34 (16)
C15—C16—H23109.3C31—C36—H56109.4
H24—C16—H23108.0C35—C36—H56109.4
C16—C17—C18110.40 (17)C31—C36—H55109.4
C16—C17—H25109.6C35—C36—H55109.4
C18—C17—H25109.6H56—C36—H55108.0
C16—C17—H26109.6C1—N1—C7116.47 (14)
C18—C17—H26109.6C1—N1—Co125.79 (12)
H25—C17—H26108.1C7—N1—Co117.74 (11)
C13—C18—C17110.58 (16)C1—N2—C13124.21 (15)
C13—C18—H27109.5C1—N2—H1117.9 (16)
C17—C18—H27109.5C13—N2—H1116.6 (16)
C13—C18—H28109.5C19—N3—C25116.56 (14)
C17—C18—H28109.5C19—N3—Co125.60 (12)
H27—C18—H28108.1C25—N3—Co117.81 (11)
N3—C19—N4121.93 (16)C19—N4—C31126.16 (15)
N3—C19—C20121.86 (16)C19—N4—H29117.0 (15)
N4—C19—C20116.20 (16)C31—N4—H29116.8 (15)
C21—C20—C19175.8 (2)N1—Co—N3111.12 (6)
C20—C21—C22178.0 (2)N1—Co—Cl2112.43 (4)
C21—C22—C24119.2 (2)N3—Co—Cl2107.90 (4)
C21—C22—C23118.18 (19)N1—Co—Cl1107.08 (4)
C24—C22—C2358.57 (15)N3—Co—Cl1112.48 (4)
C21—C22—H30116.2Cl2—Co—Cl1105.76 (2)
C3—C4—C5—C6107.7 (2)C31—C32—C33—C3457.3 (2)
C3—C4—C6—C5108.88 (19)C32—C33—C34—C3556.4 (2)
N1—C7—C8—C9177.91 (15)C33—C34—C35—C3655.0 (2)
C12—C7—C8—C958.6 (2)N4—C31—C36—C35178.57 (15)
C7—C8—C9—C1057.1 (2)C32—C31—C36—C3555.0 (2)
C8—C9—C10—C1154.2 (2)C34—C35—C36—C3154.4 (2)
C9—C10—C11—C1252.3 (3)N2—C1—N1—C7173.79 (16)
N1—C7—C12—C11179.12 (15)C2—C1—N1—C75.4 (2)
C8—C7—C12—C1157.1 (2)N2—C1—N1—Co5.6 (2)
C10—C11—C12—C753.7 (2)C2—C1—N1—Co175.14 (12)
N2—C13—C14—C15179.74 (15)C8—C7—N1—C1150.77 (16)
C18—C13—C14—C1556.4 (2)C12—C7—N1—C185.76 (19)
C13—C14—C15—C1655.0 (2)C8—C7—N1—Co29.76 (18)
C14—C15—C16—C1755.4 (2)C12—C7—N1—Co93.71 (15)
C15—C16—C17—C1855.7 (2)N1—C1—N2—C13167.74 (17)
N2—C13—C18—C17179.27 (16)C2—C1—N2—C1313.0 (3)
C14—C13—C18—C1757.7 (2)C14—C13—N2—C1156.28 (17)
C16—C17—C18—C1356.6 (2)C18—C13—N2—C179.8 (2)
C21—C22—C23—C24108.7 (2)N4—C19—N3—C25176.46 (15)
C21—C22—C24—C23107.0 (2)C20—C19—N3—C254.6 (2)
N3—C25—C26—C27179.25 (16)N4—C19—N3—Co1.4 (2)
C30—C25—C26—C2756.1 (2)C20—C19—N3—Co177.62 (12)
C25—C26—C27—C2856.9 (2)C26—C25—N3—C19149.59 (16)
C26—C27—C28—C2957.3 (2)C30—C25—N3—C1986.66 (19)
C27—C28—C29—C3056.5 (3)C26—C25—N3—Co32.41 (18)
N3—C25—C30—C29179.81 (16)C30—C25—N3—Co91.34 (15)
C26—C25—C30—C2956.0 (2)N3—C19—N4—C31177.89 (16)
C28—C29—C30—C2556.0 (3)C20—C19—N4—C311.1 (3)
N4—C31—C32—C33177.17 (15)C32—C31—N4—C1983.8 (2)
C36—C31—C32—C3356.4 (2)C36—C31—N4—C19153.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl20.85 (2)2.37 (2)3.1979 (16)166 (2)
N4—H29···Cl10.86 (2)2.35 (2)3.1917 (15)168 (2)
C22—H30···Cl1i1.002.953.800 (2)144
C33—H49···Cl1i0.993.093.628 (2)115
C28—H40···Cl2ii0.992.963.758 (2)139
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Funding information

SW gratefully acknowledges the award of a PhD scholarship from the China Scholarship Council (CSC) (File No. 201508080111). We also thank the Otto-von-Guericke-Universität Magdeburg for general financial support.

References

First citationBarker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219–300.  CrossRef CAS Web of Science Google Scholar
First citationBatcup, R., Annibale, V. T. & Song, D. (2014). Dalton Trans. 43, 8951–8958.  Web of Science CrossRef PubMed Google Scholar
First citationBenson, E. E., Rheingold, A. L. & Kubiak, C. P. (2010). Inorg. Chem. 49, 1458–1464.  Web of Science CrossRef PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, J. H. & Williams, C. S. (1965). Inorg. Chem. 4, 350–357.  CrossRef Web of Science Google Scholar
First citationColes, M. P. (2006). Dalton Trans. pp. 985–1001.  Web of Science CrossRef Google Scholar
First citationCollins, S. (2011). Coord. Chem. Rev. 255, 118–138.  Web of Science CrossRef CAS Google Scholar
First citationDröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953–1956.  Google Scholar
First citationEdelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEdelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.  Web of Science CrossRef CAS Google Scholar
First citationHandley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 314, 14–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarmgarth, N., Gräsing, D., Dröse, P., Hrib, C. G., Jones, P. G., Lorenz, V., Hilfert, L., Busse, S. & Edelmann, F. T. (2014). Dalton Trans. 43, 5001–5013.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHarmgarth, N., Liebing, P., Förster, A., Hilfert, L., Busse, S. & Edelmann, F. T. (2017a). Eur. J. Inorg. Chem. pp. 4473–4479.  Web of Science CrossRef Google Scholar
First citationHarmgarth, N., Liebing, P., Hillebrand, P., Busse, S. & Edelmann, F. T. (2017b). Acta Cryst. E73, 1443–1448.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHillebrand, P., Hrib, C. G., Harmgarth, N., Jones, P. G., Lorenz, V., Kühling, M. & Edelmann, F. T. (2014). Inorg. Chem. Commun. 46, 127–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationJian, F. F., Bei, F. L. & Wang, X. (2003). Pol. J. Chem. 77, 821–828.  Google Scholar
First citationOng, T.-G., O'Brien, J. S., Korobkov, I. & Richeson, D. S. (2006). Organometallics, 25, 4728–4730.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRiggio, I., van Albada, G. A., Ellis, D. D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). Polyhedron, 20, 2659–2666.  Web of Science CrossRef CAS Google Scholar
First citationRowley, C. N., DiLabio, G. A. & Barry, S. T. (2005). Inorg. Chem. 44, 1983–1991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeidel, W. W., Dachtler, W. & Pape, T. (2012). Z. Anorg. Allg. Chem. 638, 116–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSienkiewicz, P., Bielawski, K., Bielawska, A. & Pałka, J. (2005). Environ. Toxicol. Pharmacol. 20, 118–124.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595–7601.  Web of Science CSD CrossRef CAS Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390–2394.  Web of Science CSD CrossRef CAS Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2015b). Z. Anorg. Allg. Chem. 641, 2041–2046.  Web of Science CrossRef Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, K., Hartenstein, L., Roesky, P. W. & Edelmann, F. T. (2015c). J. Organomet. Chem. 799–800, 160–165.  Web of Science CrossRef Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L., Jones, P. G. & Edelmann, F. T. (2015d). J. Organomet. Chem. 785, 1–10.  Web of Science CrossRef Google Scholar
First citationSroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). Dalton Trans. 45, 13332–13346.  Web of Science CrossRef PubMed Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTakemoto, J. H., Streusand, B. & Hutchinson, B. (1974). Spectrochim. Acta A, 30, 827–834.  CrossRef Web of Science Google Scholar
First citationWang, X. (2009). Acta Cryst. E65, m1659.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, S., Sroor, F. M., Liebing, P., Lorenz, V., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1229–1233.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeingärtner, W. & Maas, G. (2012). Eur. J. Org. Chem. pp. 6372–6382.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, T., Zhang, S., Kehr, G., Hao, X., Erker, G. & Sun, W.-H. (2011). Organometallics, 30, 3658–3665.  Web of Science CrossRef Google Scholar
First citationXu, X., Gao, D., Cheng, D., Li, J., Qiang, G. & Guo, H. (2008). Adv. Synth. Catal. 350, 61–64.  Web of Science CrossRef Google Scholar
First citationXu, L., Wang, Y.-C., Zhang, W.-X. & Xi, Z. (2013). Dalton Trans. 42, 16466–16469.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds