research communications
μ-hydroxido-bis{aqua[ethyl (1,10-phenanthrolin-3-yl)phosphonato-κ2N,N′]copper(II)} heptahydrate
of di-aDepartment of Chemistry, Moscow State University, Leninskie Gory, GSP-3, Moscow 119991, Russian Federation, and bICMUB, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
*Correspondence e-mail: yoann.rousselin@u-bourgogne.fr
In the title compound, [Cu2(OH)2{C12H7N2(PO3C2H5)}2(H2O)2]·7H2O, two Cu2+ cations are bridged by two hydroxide groups, forming a centrosymmetric binuclear complex. Each Cu2+cation is further coordinated by the N atoms of a bidentate ethyl (1,10-phenanthrolin-3-yl)phosphonate anion and a water molecule in a square-pyramidal geometry. In the crystal, a network of O—H⋯O hydrogen bonds involving the P(O)(O−)(OEt) groups, bridging hydroxyl groups, coordinated and uncoordinated water molecules generates a three-dimensional supramolecular structure. The ethyl group exhibits disorder and was modelled over three sites with occupancies of 0.455, 0.384 and 0.161.
Keywords: crystal structure; ethyl 1,10-phenanthrolin-3-yl-phosphonate; copper(II); hydrogen bonding.
CCDC reference: 1877346
1. Chemical context
Although there are only a few examples reporting the synthesis of three-dimensional coordination polymers from monoalkylphosphonates in the literature, the known examples have interesting properties including enhanced water stability (Taylor et al., 2012) and oxygen absorption (Iremonger et al., 2011). Recently, we have synthesized a new class of phenanthroline ligands bearing diethoxyphosphoryl groups (Mitrofanov et al., 2012) and found that they form different supramolecular architectures, such as dimers and one-dimensional polymers with copper(II) cations, in which the metal can coordinate to both the nitrogen atoms of the phenanthroline core and the oxygen atoms of the diethoxyphosphoryl group (Mitrofanov et al., 2016). As part of a systematic study to generate stable supramolecular architectures based on copper(II) cations and phosphoryl-1,10-phenanthrolines, we decided to investigate the use of monoesters of phosphoryl-1,10-phenanthrolines as ligands. During these studies, the title compound, which contains centrosymmetric copper(II)-based dimers and uncoordinated water molecules was obtained unexpectedly.
2. Structural commentary
The title complex crystallizes in the monoclinic C2/c. The of the compound (Fig. 1) contains one copper(II) cation, one coordinated water molecule, one hydroxyl bridging group, one phenanthroline molecule and 3.5 water molecules. The copper(II) cation has a square-pyramidal geometry with pseudo-C4v symmetry (Fig. 2). The spherical square-pyramidal geometry was confirmed by shape analysis using SHAPE software (Llunell et al., 2013). The basal plane of the square-based pyramid is formed by coordination of the Cu2+ ion to two nitrogen atoms of the phenanthroline ligand (N1, N2) and to the oxygen atoms of two symmetry-related hydroxyl groups (O2). The coordination of the copper atom is completed by the oxygen atom from a water molecule at the apex of the square pyramid (O1). The axial Cu1—O1 distance [2.198 (2) Å] is rather longer than the equatorial Cu1—O2 bond lengths [1.948 (2) and 1.945 (2) Å], as expected from the Jahn–Teller theorem. Two of the copper centres are connected through the two bridging hydroxyl groups to form the centrosymmetric complex (Fig. 3). The pair of copper centres forms a four-cornered, planar Cu2O2 core. The two 1,10-phenanthroline molecules are trans oriented with respect to the Cu2O2 core, forming five-membered chelate rings with the Cu atoms.
inAn interesting feature of the title complex is the short intermetallic distance between the copper atoms in the dimer [2.8915 (9) Å]. This value is amongst the shortest CuII⋯CuII distances reported in the CSD ((version 5.39, updatel May 2018; Groom et al., 2016) for complexes of this type [mean value of 2.904 (13) Å for the structures reported by Zhang et al. (2005); Li et al. (2008); Lu et al. (2003, 2004); Arias-Zárate et al. (2015); Zheng et al. (2000a,b); Maldonado et al. (2010); Iglesias et al. (2003); Tu et al. (2009); Iqbal et al. (2017); Sun et al. (2008)].
The elongation of the apical bond length in these complexes is of comparable magnitude to that observed in the previously reported complexes. The N1—Cu—N2 angle, corresponding to the angle formed by the copper ion and the two N atoms of the 1,10-phenanthroline unit, is 82.06 (10)° for the title complex and is similar to the value for complexes of copper(II) with ligands having N and O donor atoms [mean value of 82.1 (5)° for the above-mentioned structures in the CSD].
3. Supramolecular features
The ) involving the complex molecules and uncoordinated water molecules (Figs. 3 and 4). Atom O1 of the coordinating water molecule acts as a hydrogen-bond donor to O7 of a water molecule and O3 of the phosphonate group. The bridging hydroxide group (O2) acts as a hydrogen-bond donor to atom O9 of an uncoordinated water molecule and a hydrogen-bond acceptor with water oxygen atom O6. The phosphonate atoms O3 and O4 both form hydrogen bonds with two water molecules, namely O1 and O9, and O7 and O8, respectively. The uncoordinated water molecules also form hydrogen bonds with each other: oxygen atoms O6 with O7, and O9 with O8.
features a three-dimensional network of hydrogen bonds (Table 14. Synthesis and crystallization
The lithium salt of monoethyl 1,10-phenanthrolin-3-ylphosphonate was obtained from diethyl 1,10-phenanthrolin-3-ylphosphonate by monodealkylation with lithium bromide in 2-hexanone at 353 K according to a literature procedure (Krawczyk, 1997). The lithium salt (29.4 mg, 0.1 mmol) was stirred with copper(I) iodide (19.1 mg, 0.1 mmol) in 1 ml of distilled water in air at room temperature. The resulting mixture was left overnight without stirring after which time, clear blue prismatic crystals were formed. The yield could not be determined because of the poor stability of the crystals out of solution.
5. details
Crystal data, data collection and structure . The ethyl group linked to O5 exhibits disorder and was modelled over three sites with occupancies of 0.455, 0.384 and 0.161 for C13/C14, C13A/C14A and C13B/C14B, respectively. The geometric parameters of the disordered components in each group were restrained by using SADI (Sheldrick, 2015) restraints. Similar Ueq constraints were applied within the disordered parts to maintain a reasonable model with two free variable (see res file included in the CIF). Anisotropic thermal parameters were used for non-hydrogen atoms, except for the disordered ethyl group.
details are summarized in Table 2
|
All C-bound H atoms were placed at calculated positions [C—H = 0.95 Å (aromatic), C—H = 0.98 Å (methyl), and C—H = 0.99 Å (methylene)] and refined using a riding model with Uiso(H) = 1.2Ueq(CH), 1.5Ueq(CH3) or 1.2Ueq(CH2). All water molecules were included as rigid groups (H—O—H 104.5° and O—H 0.87 Å). The lattice water molecules were allowed to refine using AFIX 6 (rotation around the O pivot atom and riding of the H atoms on the O atom for translations) whereas the of coordinating water molecules were handled by AFIX 7 (perpendicular rotation of the group around the Cu—O axis).
Supporting information
CCDC reference: 1877346
https://doi.org/10.1107/S2056989018015724/cq2028sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018015724/cq2028Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015724/cq2028Isup3.cdx
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu2(OH)2(C14H12N2PO3)2(H2O)2]·7H2O | F(000) = 1856 |
Mr = 897.69 | Dx = 1.592 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
a = 13.3883 (4) Å | Cell parameters from 8438 reflections |
b = 14.0448 (4) Å | θ = 4.4–68.5° |
c = 20.1547 (5) Å | µ = 2.89 mm−1 |
β = 98.702 (2)° | T = 115 K |
V = 3746.18 (18) Å3 | Prism, clear light blue |
Z = 4 | 0.09 × 0.09 × 0.05 mm |
Bruker D8 VENTURE diffractometer | 3420 independent reflections |
Radiation source: sealed X-ray tube, high brilliance microfocus sealed tube, Cu | 2681 reflections with I > 2σ(I) |
QUAZAR MX multilayer optics monochromator | Rint = 0.073 |
Detector resolution: 1024 x 1024 pixels mm-1 | θmax = 68.6°, θmin = 4.4° |
φ and ω scans' | h = −15→16 |
Absorption correction: numerical (SADABS; Bruker, 2012) | k = −16→16 |
Tmin = 0.866, Tmax = 0.949 | l = −24→24 |
25890 measured reflections |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Primary atom site location: iterative |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0515P)2 + 6.7842P] where P = (Fo2 + 2Fc2)/3 |
3420 reflections | (Δ/σ)max = 0.001 |
261 parameters | Δρmax = 0.44 e Å−3 |
8 restraints | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.03103 (3) | 0.41046 (3) | 0.47418 (2) | 0.01350 (14) | |
P1 | 0.27188 (6) | 0.43021 (6) | 0.25570 (4) | 0.0173 (2) | |
O1 | −0.09774 (17) | 0.38520 (18) | 0.39462 (12) | 0.0323 (6) | |
H1A | −0.118416 | 0.439542 | 0.374588 | 0.048* | |
H1B | −0.150906 | 0.365681 | 0.412398 | 0.048* | |
O2 | 0.04580 (15) | 0.54561 (15) | 0.45701 (10) | 0.0154 (5) | |
O5 | 0.35128 (17) | 0.50141 (17) | 0.29638 (13) | 0.0345 (6) | |
O3 | 0.18536 (16) | 0.48343 (16) | 0.21787 (11) | 0.0228 (5) | |
O4 | 0.32843 (15) | 0.36193 (16) | 0.21808 (11) | 0.0220 (5) | |
N1 | 0.04576 (18) | 0.27507 (18) | 0.50768 (12) | 0.0146 (5) | |
N2 | 0.12688 (18) | 0.36346 (18) | 0.41193 (12) | 0.0150 (5) | |
C1 | 0.0039 (2) | 0.2325 (2) | 0.55522 (15) | 0.0188 (7) | |
H1 | −0.040543 | 0.268226 | 0.578156 | 0.023* | |
C2 | 0.0223 (2) | 0.1370 (2) | 0.57317 (16) | 0.0218 (7) | |
H2A | −0.009216 | 0.108999 | 0.607597 | 0.026* | |
C3 | 0.0863 (2) | 0.0842 (2) | 0.54049 (16) | 0.0211 (7) | |
H3 | 0.100262 | 0.019670 | 0.552596 | 0.025* | |
C4 | 0.1310 (2) | 0.1267 (2) | 0.48893 (15) | 0.0186 (7) | |
C5 | 0.1968 (2) | 0.0780 (2) | 0.45050 (16) | 0.0227 (7) | |
H5 | 0.211978 | 0.012783 | 0.459638 | 0.027* | |
C6 | 0.2380 (2) | 0.1226 (2) | 0.40129 (16) | 0.0227 (7) | |
H6 | 0.281681 | 0.088464 | 0.376781 | 0.027* | |
C7 | 0.2161 (2) | 0.2204 (2) | 0.38619 (15) | 0.0182 (7) | |
C11 | 0.1522 (2) | 0.2701 (2) | 0.42314 (14) | 0.0149 (6) | |
C12 | 0.1089 (2) | 0.2228 (2) | 0.47470 (15) | 0.0152 (6) | |
C8 | 0.2541 (2) | 0.2716 (2) | 0.33540 (15) | 0.0189 (7) | |
H8 | 0.298779 | 0.241354 | 0.309631 | 0.023* | |
C9 | 0.2272 (2) | 0.3647 (2) | 0.32278 (15) | 0.0166 (7) | |
C10 | 0.1627 (2) | 0.4086 (2) | 0.36289 (14) | 0.0156 (6) | |
H10 | 0.144260 | 0.473270 | 0.354352 | 0.019* | |
C13 | 0.3287 (6) | 0.5938 (5) | 0.3131 (4) | 0.0271 (14)* | 0.455 |
H13A | 0.283163 | 0.592040 | 0.347449 | 0.033* | 0.455 |
H13B | 0.292195 | 0.625909 | 0.272800 | 0.033* | 0.455 |
C13A | 0.3581 (7) | 0.5981 (5) | 0.2864 (5) | 0.0271 (14)* | 0.384 |
H13C | 0.294856 | 0.629815 | 0.294241 | 0.033* | 0.384 |
H13D | 0.368533 | 0.611161 | 0.239685 | 0.033* | 0.384 |
C13B | 0.4066 (15) | 0.5715 (12) | 0.2717 (9) | 0.0271 (14)* | 0.161 |
H13E | 0.373558 | 0.589254 | 0.226141 | 0.033* | 0.161 |
H13F | 0.474689 | 0.546434 | 0.267998 | 0.033* | 0.161 |
C14 | 0.4208 (7) | 0.6507 (7) | 0.3394 (5) | 0.0302 (17)* | 0.455 |
H14A | 0.450436 | 0.676894 | 0.301778 | 0.045* | 0.455 |
H14B | 0.470243 | 0.609523 | 0.366470 | 0.045* | 0.455 |
H14C | 0.401968 | 0.702908 | 0.367357 | 0.045* | 0.455 |
C14A | 0.4457 (7) | 0.6355 (9) | 0.3347 (6) | 0.0302 (17)* | 0.384 |
H14D | 0.453452 | 0.703904 | 0.327170 | 0.045* | 0.384 |
H14E | 0.507569 | 0.602261 | 0.327587 | 0.045* | 0.384 |
H14F | 0.433339 | 0.624865 | 0.380797 | 0.045* | 0.384 |
C14B | 0.417 (2) | 0.6584 (16) | 0.3153 (13) | 0.0302 (17)* | 0.161 |
H14G | 0.370025 | 0.707472 | 0.295210 | 0.045* | 0.161 |
H14H | 0.486549 | 0.682570 | 0.319143 | 0.045* | 0.161 |
H14I | 0.402066 | 0.642106 | 0.359971 | 0.045* | 0.161 |
O8 | 0.500000 | 0.2589 (2) | 0.250000 | 0.0229 (7) | |
H8A | 0.553 (2) | 0.294 (3) | 0.262 (2) | 0.050* | |
O7 | 0.72197 (18) | 0.30341 (18) | 0.41005 (12) | 0.0306 (6) | |
H7A | 0.700619 | 0.312881 | 0.367616 | 0.046* | |
H7B | 0.725646 | 0.241773 | 0.414148 | 0.046* | |
O6 | 0.76479 (17) | 0.37808 (19) | 0.54072 (12) | 0.0291 (6) | |
H6A | 0.824029 | 0.403192 | 0.540061 | 0.044* | |
H6B | 0.746727 | 0.356738 | 0.500165 | 0.044* | |
O9 | 0.47342 (19) | 0.10011 (18) | 0.32888 (12) | 0.0319 (6) | |
H9A | 0.476158 | 0.152412 | 0.306016 | 0.048* | |
H9B | 0.423042 | 0.068669 | 0.306700 | 0.048* | |
H2 | 0.019 (3) | 0.562 (3) | 0.4182 (12) | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0137 (2) | 0.0102 (2) | 0.0171 (2) | 0.00096 (18) | 0.00396 (17) | 0.00079 (18) |
P1 | 0.0160 (4) | 0.0198 (5) | 0.0162 (4) | 0.0010 (3) | 0.0029 (3) | −0.0025 (3) |
O1 | 0.0231 (12) | 0.0371 (16) | 0.0335 (14) | −0.0104 (11) | −0.0058 (11) | 0.0135 (12) |
O2 | 0.0168 (11) | 0.0105 (11) | 0.0200 (11) | 0.0005 (9) | 0.0063 (9) | 0.0020 (9) |
O5 | 0.0291 (13) | 0.0209 (14) | 0.0499 (17) | −0.0018 (11) | −0.0057 (12) | −0.0066 (12) |
O3 | 0.0230 (12) | 0.0242 (13) | 0.0215 (12) | 0.0051 (10) | 0.0041 (9) | −0.0003 (10) |
O4 | 0.0191 (11) | 0.0271 (14) | 0.0206 (12) | 0.0040 (10) | 0.0052 (9) | −0.0044 (10) |
N1 | 0.0142 (12) | 0.0137 (14) | 0.0154 (13) | 0.0014 (10) | 0.0005 (10) | −0.0011 (11) |
N2 | 0.0135 (12) | 0.0145 (14) | 0.0162 (13) | 0.0012 (10) | −0.0006 (10) | −0.0022 (11) |
C1 | 0.0192 (16) | 0.0160 (18) | 0.0215 (17) | −0.0016 (13) | 0.0039 (13) | −0.0012 (13) |
C2 | 0.0248 (17) | 0.0188 (18) | 0.0204 (17) | −0.0055 (14) | −0.0009 (14) | 0.0045 (14) |
C3 | 0.0265 (17) | 0.0126 (17) | 0.0219 (17) | −0.0003 (14) | −0.0037 (13) | −0.0018 (14) |
C4 | 0.0197 (16) | 0.0147 (17) | 0.0187 (16) | 0.0009 (13) | −0.0061 (13) | −0.0009 (13) |
C5 | 0.0279 (17) | 0.0132 (18) | 0.0248 (17) | 0.0089 (14) | −0.0029 (14) | −0.0016 (14) |
C6 | 0.0260 (17) | 0.0193 (18) | 0.0221 (17) | 0.0104 (14) | 0.0010 (14) | −0.0065 (14) |
C7 | 0.0179 (15) | 0.0191 (18) | 0.0164 (16) | 0.0049 (13) | −0.0007 (12) | −0.0039 (13) |
C11 | 0.0136 (14) | 0.0138 (17) | 0.0158 (15) | 0.0026 (12) | −0.0023 (12) | −0.0021 (12) |
C12 | 0.0145 (14) | 0.0135 (16) | 0.0158 (15) | 0.0000 (12) | −0.0041 (12) | −0.0029 (12) |
C8 | 0.0155 (15) | 0.0223 (19) | 0.0178 (16) | 0.0051 (13) | −0.0012 (12) | −0.0041 (13) |
C9 | 0.0140 (15) | 0.0193 (18) | 0.0157 (15) | 0.0007 (13) | −0.0007 (12) | −0.0022 (13) |
C10 | 0.0158 (15) | 0.0141 (17) | 0.0165 (15) | 0.0005 (13) | 0.0008 (12) | −0.0005 (13) |
O8 | 0.0186 (16) | 0.0176 (18) | 0.0324 (19) | 0.000 | 0.0035 (14) | 0.000 |
O7 | 0.0300 (13) | 0.0324 (15) | 0.0275 (13) | −0.0102 (12) | −0.0021 (11) | 0.0124 (11) |
O6 | 0.0241 (12) | 0.0289 (15) | 0.0348 (14) | −0.0055 (11) | 0.0061 (11) | 0.0057 (12) |
O9 | 0.0456 (15) | 0.0265 (15) | 0.0209 (12) | −0.0161 (12) | −0.0041 (11) | 0.0073 (11) |
Cu1—Cu1i | 2.8915 (9) | C7—C8 | 1.408 (4) |
Cu1—O1 | 2.198 (2) | C11—C12 | 1.428 (4) |
Cu1—O2 | 1.945 (2) | C8—H8 | 0.9500 |
Cu1—O2i | 1.948 (2) | C8—C9 | 1.369 (4) |
Cu1—N1 | 2.018 (3) | C9—C10 | 1.411 (4) |
Cu1—N2 | 2.036 (2) | C10—H10 | 0.9500 |
P1—O5 | 1.593 (2) | C13—H13A | 0.9900 |
P1—O3 | 1.488 (2) | C13—H13B | 0.9900 |
P1—O4 | 1.497 (2) | C13—C14 | 1.498 (8) |
P1—C9 | 1.810 (3) | C13A—H13C | 0.9900 |
O1—H1A | 0.8878 | C13A—H13D | 0.9900 |
O1—H1B | 0.8874 | C13A—C14A | 1.501 (8) |
O2—H2 | 0.844 (19) | C13B—H13E | 0.9900 |
O5—C13 | 1.386 (6) | C13B—H13F | 0.9900 |
O5—C13A | 1.378 (7) | C13B—C14B | 1.498 (10) |
O5—C13B | 1.369 (9) | C14—H14A | 0.9800 |
N1—C1 | 1.324 (4) | C14—H14B | 0.9800 |
N1—C12 | 1.366 (4) | C14—H14C | 0.9800 |
N2—C11 | 1.365 (4) | C14A—H14D | 0.9800 |
N2—C10 | 1.324 (4) | C14A—H14E | 0.9800 |
C1—H1 | 0.9500 | C14A—H14F | 0.9800 |
C1—C2 | 1.401 (5) | C14B—H14G | 0.9800 |
C2—H2A | 0.9500 | C14B—H14H | 0.9800 |
C2—C3 | 1.374 (5) | C14B—H14I | 0.9800 |
C3—H3 | 0.9500 | O8—H8A | 0.861 (18) |
C3—C4 | 1.408 (5) | O8—H8Aii | 0.861 (18) |
C4—C5 | 1.432 (5) | O7—H7A | 0.8699 |
C4—C12 | 1.402 (4) | O7—H7B | 0.8703 |
C5—H5 | 0.9500 | O6—H6A | 0.8699 |
C5—C6 | 1.359 (5) | O6—H6B | 0.8697 |
C6—H6 | 0.9500 | O9—H9A | 0.8708 |
C6—C7 | 1.428 (5) | O9—H9B | 0.8709 |
C7—C11 | 1.402 (4) | ||
O2i—Cu1—O1 | 97.47 (9) | C7—C11—C12 | 120.2 (3) |
O2—Cu1—O1 | 96.74 (9) | N1—C12—C4 | 123.0 (3) |
O2—Cu1—O2i | 84.05 (9) | N1—C12—C11 | 117.0 (3) |
O2—Cu1—N1 | 166.41 (9) | C4—C12—C11 | 120.0 (3) |
O2i—Cu1—N1 | 95.49 (9) | C7—C8—H8 | 119.7 |
O2—Cu1—N2 | 96.68 (9) | C9—C8—C7 | 120.6 (3) |
O2i—Cu1—N2 | 172.59 (9) | C9—C8—H8 | 119.7 |
N1—Cu1—O1 | 96.78 (10) | C8—C9—P1 | 121.1 (2) |
N1—Cu1—N2 | 82.06 (10) | C8—C9—C10 | 118.5 (3) |
N2—Cu1—O1 | 89.77 (9) | C10—C9—P1 | 120.4 (2) |
O5—P1—C9 | 101.82 (14) | N2—C10—C9 | 122.7 (3) |
O3—P1—O5 | 110.82 (14) | N2—C10—H10 | 118.6 |
O3—P1—O4 | 118.44 (13) | C9—C10—H10 | 118.6 |
O3—P1—C9 | 108.57 (13) | O5—C13—H13A | 109.0 |
O4—P1—O5 | 108.27 (13) | O5—C13—H13B | 109.0 |
O4—P1—C9 | 107.58 (14) | O5—C13—C14 | 112.8 (7) |
Cu1—O1—H1A | 110.4 | H13A—C13—H13B | 107.8 |
Cu1—O1—H1B | 110.1 | C14—C13—H13A | 109.0 |
H1A—O1—H1B | 103.6 | C14—C13—H13B | 109.0 |
Cu1—O2—Cu1i | 95.95 (9) | O5—C13A—H13C | 110.0 |
Cu1—O2—H2 | 113 (3) | O5—C13A—H13D | 110.0 |
Cu1i—O2—H2 | 112 (3) | O5—C13A—C14A | 108.2 (7) |
C13—O5—P1 | 124.0 (3) | H13C—C13A—H13D | 108.4 |
C13A—O5—P1 | 126.7 (4) | C14A—C13A—H13C | 110.0 |
C13B—O5—P1 | 128.3 (9) | C14A—C13A—H13D | 110.0 |
C1—N1—Cu1 | 129.6 (2) | O5—C13B—H13E | 109.1 |
C1—N1—C12 | 118.1 (3) | O5—C13B—H13F | 109.1 |
C12—N1—Cu1 | 112.35 (19) | O5—C13B—C14B | 112.4 (15) |
C11—N2—Cu1 | 111.9 (2) | H13E—C13B—H13F | 107.8 |
C10—N2—Cu1 | 129.7 (2) | C14B—C13B—H13E | 109.1 |
C10—N2—C11 | 118.3 (3) | C14B—C13B—H13F | 109.1 |
N1—C1—H1 | 118.6 | C13—C14—H14A | 109.5 |
N1—C1—C2 | 122.8 (3) | C13—C14—H14B | 109.5 |
C2—C1—H1 | 118.6 | C13—C14—H14C | 109.5 |
C1—C2—H2A | 120.3 | H14A—C14—H14B | 109.5 |
C3—C2—C1 | 119.4 (3) | H14A—C14—H14C | 109.5 |
C3—C2—H2A | 120.3 | H14B—C14—H14C | 109.5 |
C2—C3—H3 | 120.3 | C13A—C14A—H14D | 109.5 |
C2—C3—C4 | 119.4 (3) | C13A—C14A—H14E | 109.5 |
C4—C3—H3 | 120.3 | C13A—C14A—H14F | 109.5 |
C3—C4—C5 | 124.2 (3) | H14D—C14A—H14E | 109.5 |
C12—C4—C3 | 117.3 (3) | H14D—C14A—H14F | 109.5 |
C12—C4—C5 | 118.5 (3) | H14E—C14A—H14F | 109.5 |
C4—C5—H5 | 119.1 | C13B—C14B—H14G | 109.5 |
C6—C5—C4 | 121.7 (3) | C13B—C14B—H14H | 109.5 |
C6—C5—H5 | 119.1 | C13B—C14B—H14I | 109.5 |
C5—C6—H6 | 119.8 | H14G—C14B—H14H | 109.5 |
C5—C6—C7 | 120.4 (3) | H14G—C14B—H14I | 109.5 |
C7—C6—H6 | 119.8 | H14H—C14B—H14I | 109.5 |
C11—C7—C6 | 119.2 (3) | H8A—O8—H8Aii | 110 (6) |
C11—C7—C8 | 116.7 (3) | H7A—O7—H7B | 104.5 |
C8—C7—C6 | 124.2 (3) | H6A—O6—H6B | 104.5 |
N2—C11—C7 | 123.1 (3) | H9A—O9—H9B | 104.3 |
N2—C11—C12 | 116.7 (3) | ||
Cu1—N1—C1—C2 | −179.6 (2) | C2—C3—C4—C12 | 1.4 (4) |
Cu1—N1—C12—C4 | −179.9 (2) | C3—C4—C5—C6 | −179.9 (3) |
Cu1—N1—C12—C11 | −0.6 (3) | C3—C4—C12—N1 | −1.0 (4) |
Cu1—N2—C11—C7 | 179.1 (2) | C3—C4—C12—C11 | 179.7 (3) |
Cu1—N2—C11—C12 | 0.0 (3) | C4—C5—C6—C7 | −0.3 (5) |
Cu1—N2—C10—C9 | −178.3 (2) | C5—C4—C12—N1 | 178.9 (3) |
P1—O5—C13—C14 | −169.0 (5) | C5—C4—C12—C11 | −0.4 (4) |
P1—O5—C13A—C14A | −178.3 (6) | C5—C6—C7—C11 | 0.5 (5) |
P1—O5—C13B—C14B | 142.2 (16) | C5—C6—C7—C8 | −178.9 (3) |
P1—C9—C10—N2 | 179.1 (2) | C6—C7—C11—N2 | −179.7 (3) |
O5—P1—C9—C8 | −108.2 (3) | C6—C7—C11—C12 | −0.7 (4) |
O5—P1—C9—C10 | 72.5 (3) | C6—C7—C8—C9 | 178.1 (3) |
O3—P1—O5—C13 | 20.3 (5) | C7—C11—C12—N1 | −178.7 (3) |
O3—P1—O5—C13A | −16.6 (7) | C7—C11—C12—C4 | 0.6 (4) |
O3—P1—O5—C13B | −61.9 (12) | C7—C8—C9—P1 | −177.8 (2) |
O3—P1—C9—C8 | 134.9 (2) | C7—C8—C9—C10 | 1.6 (4) |
O3—P1—C9—C10 | −44.5 (3) | C11—N2—C10—C9 | −1.2 (4) |
O4—P1—O5—C13 | 151.7 (5) | C11—C7—C8—C9 | −1.3 (4) |
O4—P1—O5—C13A | 114.9 (6) | C12—N1—C1—C2 | 0.5 (4) |
O4—P1—O5—C13B | 69.5 (12) | C12—C4—C5—C6 | 0.2 (5) |
O4—P1—C9—C8 | 5.5 (3) | C8—C7—C11—N2 | −0.3 (4) |
O4—P1—C9—C10 | −173.8 (2) | C8—C7—C11—C12 | 178.8 (3) |
N1—C1—C2—C3 | 0.0 (5) | C8—C9—C10—N2 | −0.3 (4) |
N2—C11—C12—N1 | 0.4 (4) | C9—P1—O5—C13 | −95.1 (5) |
N2—C11—C12—C4 | 179.7 (3) | C9—P1—O5—C13A | −131.9 (6) |
C1—N1—C12—C4 | 0.1 (4) | C9—P1—O5—C13B | −177.3 (12) |
C1—N1—C12—C11 | 179.3 (3) | C10—N2—C11—C7 | 1.5 (4) |
C1—C2—C3—C4 | −1.0 (4) | C10—N2—C11—C12 | −177.6 (3) |
C2—C3—C4—C5 | −178.4 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3iii | 0.89 | 2.04 | 2.759 (3) | 138 |
O1—H1B···O7iv | 0.89 | 1.91 | 2.733 (3) | 154 |
O8—H8A···O4ii | 0.86 (2) | 1.85 (2) | 2.709 (3) | 175 (4) |
O7—H7A···O4ii | 0.87 | 1.85 | 2.697 (3) | 166 |
O7—H7B···O6v | 0.87 | 1.91 | 2.731 (4) | 157 |
O6—H6A···O2vi | 0.87 | 1.88 | 2.747 (3) | 177 |
O6—H6B···O7 | 0.87 | 1.95 | 2.812 (4) | 173 |
O9—H9A···O8 | 0.87 | 1.93 | 2.793 (4) | 171 |
O9—H9B···O3vii | 0.87 | 1.89 | 2.736 (3) | 164 |
O2—H2···O9viii | 0.84 (2) | 1.89 (2) | 2.727 (3) | 173 (4) |
Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) −x, y, −z+1/2; (iv) x−1, y, z; (v) −x+3/2, −y+1/2, −z+1; (vi) −x+1, −y+1, −z+1; (vii) −x+1/2, y−1/2, −z+1/2; (viii) x−1/2, y+1/2, z. |
Acknowledgements
This work was carried out in the frame of the International Associated French–Russian (LIA) Laboratory of Macrocycle Systems and Related Materials (LAMREM) of CNRS and RAS.
Funding information
AYuM thanks the Russian Foundation for Basic Research for financial support (grant No. 16–33-60207).
References
Arias-Zárate, D., Ballesteros-Rivas, M. F., Toscano, R. A. & Valdés-Martínez, J. (2015). Acta Cryst. E71, 360–362. CrossRef IUCr Journals Google Scholar
Bruker (2012–2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iglesias, S., Castillo, O., Luque, A. & Román, P. (2003). Inorg. Chim. Acta, 349, 273–278. Web of Science CrossRef CAS Google Scholar
Iqbal, M., Ali, S., Tahir, M. N. & Shah, N. A. (2017). J. Mol. Struct. 1143, 23–30. CrossRef Google Scholar
Iremonger, S. S., Liang, J., Vaidhyanathan, R., Martens, I., Shimizu, G. K. H., Daff, T. D., Aghaji, M. Z., Yeganegi, S. & Woo, T. K. (2011). J. Am. Chem. Soc. 133, 20048–20051. CrossRef PubMed Google Scholar
Krawczyk, H. (1997). Synth. Commun. 27, 3151–3161. CrossRef Google Scholar
Li, X., Cheng, D., Lin, J., Li, Z. & Zheng, Y. (2008). Cryst. Growth Des. 8, 2853–2861. CrossRef Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. University of Barcelona, Spain. Google Scholar
Lu, L.-P., Qin, S.-D., Yang, P. & Zhu, M.-L. (2004). Acta Cryst. E60, m950–m952. Web of Science CrossRef IUCr Journals Google Scholar
Lu, L. P., Zhu, M. L. & Yang, P. (2003). J. Inorg. Biochem. 95, 31–36. CrossRef PubMed Google Scholar
Maldonado, C. R., Quirós, M. & Salas, J. M. (2010). Inorg. Chem. Commun. 13, 399–403. CrossRef Google Scholar
Mitrofanov, A. Yu., Bessmertnykh Lemeune, A., Stern, C., Guilard, R., Gulyukina, N. S. & Beletskaya, I. P. (2012). Synthesis, 44, 3805–3810. Google Scholar
Mitrofanov, A. Yu., Rousselin, Y., Guilard, R., Brandès, S., Bessmertnykh-Lemeune, A. G., Uvarova, M. A. & Nefedov, S. E. (2016). New J. Chem. 40, 5896–5905. CrossRef Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Y. H., Yi, Y. J., Gao, H. L. & Cui, J. Z. (2008). Wuji Huaxue Xuebao (Chinese J. Inorg. Chem.) 24, 161-162. Google Scholar
Taylor, J. M., Vaidhyanathan, R., Iremonger, S. S. & Shimizu, G. K. H. (2012). J. Am. Chem. Soc. 134, 14338–14340. CrossRef PubMed Google Scholar
Tu, B. T., Ren, Y. T., Ju, L., Chen, J. Y., Chen, Y. & Chen, J. Z. (2009). Z. Kristallogr. New Cryst. Struct. 224, 727–728. Google Scholar
Zhang, H.-M., Lu, L.-P., Feng, S.-S., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, m1027–m1029. Web of Science CrossRef IUCr Journals Google Scholar
Zheng, Y. Q., Sun, J. & Lin, J. L. (2000a). Z. Anorg. Allg. Chem. 626, 613–615. CrossRef Google Scholar
Zheng, Y. Q., Sun, J. & Lin, J. L. (2000b). Z. Kristallogr. New Cryst. Struct. 215, 533–534. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.