research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-hydroxido-bis­­{aqua­[ethyl (1,10-phenanthrolin-3-yl)phospho­nato-κ2N,N′]copper(II)} hepta­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Moscow State University, Leninskie Gory, GSP-3, Moscow 119991, Russian Federation, and bICMUB, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
*Correspondence e-mail: yoann.rousselin@u-bourgogne.fr

Edited by A. M. Chippindale, University of Reading, England (Received 19 September 2018; accepted 6 November 2018; online 9 November 2018)

In the title compound, [Cu2(OH)2{C12H7N2(PO3C2H5)}2(H2O)2]·7H2O, two Cu2+ cations are bridged by two hydroxide groups, forming a centrosymmetric binuclear complex. Each Cu2+cation is further coordinated by the N atoms of a bidentate ethyl (1,10-phenanthrolin-3-yl)phospho­nate anion and a water mol­ecule in a square-pyramidal geometry. In the crystal, a network of O—H⋯O hydrogen bonds involving the P(O)(O)(OEt) groups, bridging hydroxyl groups, coordinated and uncoordinated water mol­ecules generates a three-dimensional supra­molecular structure. The ethyl group exhibits disorder and was modelled over three sites with occupancies of 0.455, 0.384 and 0.161.

1. Chemical context

Although there are only a few examples reporting the synthesis of three-dimensional coordination polymers from mono­alkyl­phospho­nates in the literature, the known examples have inter­esting properties including enhanced water stability (Taylor et al., 2012[Taylor, J. M., Vaidhyanathan, R., Iremonger, S. S. & Shimizu, G. K. H. (2012). J. Am. Chem. Soc. 134, 14338-14340.]) and oxygen absorption (Iremonger et al., 2011[Iremonger, S. S., Liang, J., Vaidhyanathan, R., Martens, I., Shimizu, G. K. H., Daff, T. D., Aghaji, M. Z., Yeganegi, S. & Woo, T. K. (2011). J. Am. Chem. Soc. 133, 20048-20051.]). Recently, we have synthesized a new class of phenanthroline ligands bearing di­eth­oxy­phosphoryl groups (Mitrofanov et al., 2012[Mitrofanov, A. Yu., Bessmertnykh Lemeune, A., Stern, C., Guilard, R., Gulyukina, N. S. & Beletskaya, I. P. (2012). Synthesis, 44, 3805-3810.]) and found that they form different supra­molecular architectures, such as dimers and one-dimensional polymers with copper(II) cations, in which the metal can coordinate to both the nitro­gen atoms of the phenanthroline core and the oxygen atoms of the di­eth­oxy­phosphoryl group (Mitrofanov et al., 2016[Mitrofanov, A. Yu., Rousselin, Y., Guilard, R., Brandès, S., Bessmertnykh-Lemeune, A. G., Uvarova, M. A. & Nefedov, S. E. (2016). New J. Chem. 40, 5896-5905.]). As part of a systematic study to generate stable supra­molecular architectures based on copper(II) cations and phosphoryl-1,10-phenanthrolines, we decided to investigate the use of monoesters of phosphoryl-1,10-phenanthrolines as ligands. During these studies, the title compound, which contains centrosymmetric copper(II)-based dimers and uncoordinated water mol­ecules was obtained unexpectedly.

[Scheme 1]

2. Structural commentary

The title complex crystallizes in the monoclinic crystal system in space group C2/c. The asymmetric unit of the compound (Fig. 1[link]) contains one copper(II) cation, one coordinated water mol­ecule, one hydroxyl bridging group, one phenanthroline mol­ecule and 3.5 water mol­ecules. The copper(II) cation has a square-pyramidal geometry with pseudo-C4v symmetry (Fig. 2[link]). The spherical square-pyramidal geometry was confirmed by shape analysis using SHAPE software (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. University of Barcelona, Spain.]). The basal plane of the square-based pyramid is formed by coordination of the Cu2+ ion to two nitro­gen atoms of the phenanthroline ligand (N1, N2) and to the oxygen atoms of two symmetry-related hydroxyl groups (O2). The coordination of the copper atom is completed by the oxygen atom from a water mol­ecule at the apex of the square pyramid (O1). The axial Cu1—O1 distance [2.198 (2) Å] is rather longer than the equatorial Cu1—O2 bond lengths [1.948 (2) and 1.945 (2) Å], as expected from the Jahn–Teller theorem. Two of the copper centres are connected through the two bridging hydroxyl groups to form the centrosymmetric complex (Fig. 3[link]). The pair of copper centres forms a four-cornered, planar Cu2O2 core. The two 1,10-phenanthroline mol­ecules are trans oriented with respect to the Cu2O2 core, forming five-membered chelate rings with the Cu atoms.

[Figure 1]
Figure 1
ORTEP view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the title compound showing the coordination polyhedra around the copper atoms in the dimer. Only the highest occupancy components of the disordered ethyl groups (C13 and C14) are shown.
[Figure 3]
Figure 3
ORTEP view of the hydrogen-bonding inter­actions (dashed lines; see Table 1[link]) in the title compound. Displacement ellipsoids are drawn at the 50% probability level.

An inter­esting feature of the title complex is the short inter­metallic distance between the copper atoms in the dimer [2.8915 (9) Å]. This value is amongst the shortest CuII⋯CuII distances reported in the CSD ((version 5.39, updatel May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes of this type [mean value of 2.904 (13) Å for the structures reported by Zhang et al. (2005[Zhang, H.-M., Lu, L.-P., Feng, S.-S., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, m1027-m1029.]); Li et al. (2008[Li, X., Cheng, D., Lin, J., Li, Z. & Zheng, Y. (2008). Cryst. Growth Des. 8, 2853-2861.]); Lu et al. (2003[Lu, L. P., Zhu, M. L. & Yang, P. (2003). J. Inorg. Biochem. 95, 31-36.], 2004[Lu, L.-P., Qin, S.-D., Yang, P. & Zhu, M.-L. (2004). Acta Cryst. E60, m950-m952.]); Arias-Zárate et al. (2015[Arias-Zárate, D., Ballesteros-Rivas, M. F., Toscano, R. A. & Valdés-Martínez, J. (2015). Acta Cryst. E71, 360-362.]); Zheng et al. (2000a[Zheng, Y. Q., Sun, J. & Lin, J. L. (2000a). Z. Anorg. Allg. Chem. 626, 613-615.],b[Zheng, Y. Q., Sun, J. & Lin, J. L. (2000b). Z. Kristallogr. New Cryst. Struct. 215, 533-534.]); Maldonado et al. (2010[Maldonado, C. R., Quirós, M. & Salas, J. M. (2010). Inorg. Chem. Commun. 13, 399-403.]); Iglesias et al. (2003[Iglesias, S., Castillo, O., Luque, A. & Román, P. (2003). Inorg. Chim. Acta, 349, 273-278.]); Tu et al. (2009[Tu, B. T., Ren, Y. T., Ju, L., Chen, J. Y., Chen, Y. & Chen, J. Z. (2009). Z. Kristallogr. New Cryst. Struct. 224, 727-728.]); Iqbal et al. (2017[Iqbal, M., Ali, S., Tahir, M. N. & Shah, N. A. (2017). J. Mol. Struct. 1143, 23-30.]); Sun et al. (2008[Sun, Y. H., Yi, Y. J., Gao, H. L. & Cui, J. Z. (2008). Wuji Huaxue Xuebao (Chinese J. Inorg. Chem.) 24, 161-162.])].

The elongation of the apical bond length in these complexes is of comparable magnitude to that observed in the previously reported complexes. The N1—Cu—N2 angle, corresponding to the angle formed by the copper ion and the two N atoms of the 1,10-phenanthroline unit, is 82.06 (10)° for the title complex and is similar to the value for complexes of copper(II) with ligands having N and O donor atoms [mean value of 82.1 (5)° for the above-mentioned structures in the CSD].

3. Supra­molecular features

The crystal structure features a three-dimensional network of hydrogen bonds (Table 1[link]) involving the complex mol­ecules and uncoordinated water mol­ecules (Figs. 3[link] and 4[link]). Atom O1 of the coordinating water mol­ecule acts as a hydrogen-bond donor to O7 of a water mol­ecule and O3 of the phospho­nate group. The bridging hydroxide group (O2) acts as a hydrogen-bond donor to atom O9 of an uncoordinated water mol­ecule and a hydrogen-bond acceptor with water oxygen atom O6. The phospho­nate atoms O3 and O4 both form hydrogen bonds with two water mol­ecules, namely O1 and O9, and O7 and O8, respectively. The uncoordinated water mol­ecules also form hydrogen bonds with each other: oxygen atoms O6 with O7, and O9 with O8.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.89 2.04 2.759 (3) 138
O1—H1B⋯O7ii 0.89 1.91 2.733 (3) 154
O8—H8A⋯O4iii 0.86 (2) 1.85 (2) 2.709 (3) 175 (4)
O7—H7A⋯O4iii 0.87 1.85 2.697 (3) 166
O7—H7B⋯O6iv 0.87 1.91 2.731 (4) 157
O6—H6A⋯O2v 0.87 1.88 2.747 (3) 177
O6—H6B⋯O7 0.87 1.95 2.812 (4) 173
O9—H9A⋯O8 0.87 1.93 2.793 (4) 171
O9—H9B⋯O3vi 0.87 1.89 2.736 (3) 164
O2—H2⋯O9vii 0.84 (2) 1.89 (2) 2.727 (3) 173 (4)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) -x+1, -y+1, -z+1; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 4]
Figure 4
View of the hydrogen-bonded network along the b axis.

4. Synthesis and crystallization

The lithium salt of monoethyl 1,10-phenanthrolin-3-yl­phospho­nate was obtained from diethyl 1,10-phenanthrolin-3-yl­phospho­nate by monode­alkyl­ation with lithium bromide in 2-hexa­none at 353 K according to a literature procedure (Krawczyk, 1997[Krawczyk, H. (1997). Synth. Commun. 27, 3151-3161.]). The lithium salt (29.4 mg, 0.1 mmol) was stirred with copper(I) iodide (19.1 mg, 0.1 mmol) in 1 ml of distilled water in air at room temperature. The resulting mixture was left overnight without stirring after which time, clear blue prismatic crystals were formed. The yield could not be determined because of the poor stability of the crystals out of solution.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The ethyl group linked to O5 exhibits disorder and was modelled over three sites with occupancies of 0.455, 0.384 and 0.161 for C13/C14, C13A/C14A and C13B/C14B, respectively. The geometric parameters of the disordered components in each group were restrained by using SADI (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) restraints. Similar Ueq constraints were applied within the disordered parts to maintain a reasonable model with two free variable (see res file included in the CIF). Anisotropic thermal parameters were used for non-hydrogen atoms, except for the disordered ethyl group.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(OH)2(C14H12N2PO3)2(H2O)2]·7H2O
Mr 897.69
Crystal system, space group Monoclinic, C2/c
Temperature (K) 115
a, b, c (Å) 13.3883 (4), 14.0448 (4), 20.1547 (5)
β (°) 98.702 (2)
V3) 3746.18 (18)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.89
Crystal size (mm) 0.09 × 0.09 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Numerical (SADABS; Bruker, 2012[Bruker (2012-2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.866, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 25890, 3420, 2681
Rint 0.073
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.03
No. of reflections 3420
No. of parameters 261
No. of restraints 8
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2013[Bruker (2012-2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

All C-bound H atoms were placed at calculated positions [C—H = 0.95 Å (aromatic), C—H = 0.98 Å (meth­yl), and C—H = 0.99 Å (methyl­ene)] and refined using a riding model with Uiso(H) = 1.2Ueq(CH), 1.5Ueq(CH3) or 1.2Ueq(CH2). All water mol­ecules were included as rigid groups (H—O—H 104.5° and O—H 0.87 Å). The lattice water mol­ecules were allowed to refine using AFIX 6 refinement (rotation around the O pivot atom and riding of the H atoms on the O atom for translations) whereas the refinement of coordinating water mol­ecules were handled by AFIX 7 (perpendicular rotation of the group around the Cu—O axis).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-hydroxido-bis{aqua[ethyl (1,10-phenanthrolin-3-yl)phosphonato-κ2N,N']copper(II)} heptahydrate top
Crystal data top
[Cu2(OH)2(C14H12N2PO3)2(H2O)2]·7H2OF(000) = 1856
Mr = 897.69Dx = 1.592 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 13.3883 (4) ÅCell parameters from 8438 reflections
b = 14.0448 (4) Åθ = 4.4–68.5°
c = 20.1547 (5) ŵ = 2.89 mm1
β = 98.702 (2)°T = 115 K
V = 3746.18 (18) Å3Prism, clear light blue
Z = 40.09 × 0.09 × 0.05 mm
Data collection top
Bruker D8 VENTURE
diffractometer
3420 independent reflections
Radiation source: sealed X-ray tube, high brilliance microfocus sealed tube, Cu2681 reflections with I > 2σ(I)
QUAZAR MX multilayer optics monochromatorRint = 0.073
Detector resolution: 1024 x 1024 pixels mm-1θmax = 68.6°, θmin = 4.4°
φ and ω scans'h = 1516
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 1616
Tmin = 0.866, Tmax = 0.949l = 2424
25890 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0515P)2 + 6.7842P]
where P = (Fo2 + 2Fc2)/3
3420 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.44 e Å3
8 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.03103 (3)0.41046 (3)0.47418 (2)0.01350 (14)
P10.27188 (6)0.43021 (6)0.25570 (4)0.0173 (2)
O10.09774 (17)0.38520 (18)0.39462 (12)0.0323 (6)
H1A0.1184160.4395420.3745880.048*
H1B0.1509060.3656810.4123980.048*
O20.04580 (15)0.54561 (15)0.45701 (10)0.0154 (5)
O50.35128 (17)0.50141 (17)0.29638 (13)0.0345 (6)
O30.18536 (16)0.48343 (16)0.21787 (11)0.0228 (5)
O40.32843 (15)0.36193 (16)0.21808 (11)0.0220 (5)
N10.04576 (18)0.27507 (18)0.50768 (12)0.0146 (5)
N20.12688 (18)0.36346 (18)0.41193 (12)0.0150 (5)
C10.0039 (2)0.2325 (2)0.55522 (15)0.0188 (7)
H10.0405430.2682260.5781560.023*
C20.0223 (2)0.1370 (2)0.57317 (16)0.0218 (7)
H2A0.0092160.1089990.6075970.026*
C30.0863 (2)0.0842 (2)0.54049 (16)0.0211 (7)
H30.1002620.0196700.5525960.025*
C40.1310 (2)0.1267 (2)0.48893 (15)0.0186 (7)
C50.1968 (2)0.0780 (2)0.45050 (16)0.0227 (7)
H50.2119780.0127830.4596380.027*
C60.2380 (2)0.1226 (2)0.40129 (16)0.0227 (7)
H60.2816810.0884640.3767810.027*
C70.2161 (2)0.2204 (2)0.38619 (15)0.0182 (7)
C110.1522 (2)0.2701 (2)0.42314 (14)0.0149 (6)
C120.1089 (2)0.2228 (2)0.47470 (15)0.0152 (6)
C80.2541 (2)0.2716 (2)0.33540 (15)0.0189 (7)
H80.2987790.2413540.3096310.023*
C90.2272 (2)0.3647 (2)0.32278 (15)0.0166 (7)
C100.1627 (2)0.4086 (2)0.36289 (14)0.0156 (6)
H100.1442600.4732700.3543520.019*
C130.3287 (6)0.5938 (5)0.3131 (4)0.0271 (14)*0.455
H13A0.2831630.5920400.3474490.033*0.455
H13B0.2921950.6259090.2728000.033*0.455
C13A0.3581 (7)0.5981 (5)0.2864 (5)0.0271 (14)*0.384
H13C0.2948560.6298150.2942410.033*0.384
H13D0.3685330.6111610.2396850.033*0.384
C13B0.4066 (15)0.5715 (12)0.2717 (9)0.0271 (14)*0.161
H13E0.3735580.5892540.2261410.033*0.161
H13F0.4746890.5464340.2679980.033*0.161
C140.4208 (7)0.6507 (7)0.3394 (5)0.0302 (17)*0.455
H14A0.4504360.6768940.3017780.045*0.455
H14B0.4702430.6095230.3664700.045*0.455
H14C0.4019680.7029080.3673570.045*0.455
C14A0.4457 (7)0.6355 (9)0.3347 (6)0.0302 (17)*0.384
H14D0.4534520.7039040.3271700.045*0.384
H14E0.5075690.6022610.3275870.045*0.384
H14F0.4333390.6248650.3807970.045*0.384
C14B0.417 (2)0.6584 (16)0.3153 (13)0.0302 (17)*0.161
H14G0.3700250.7074720.2952100.045*0.161
H14H0.4865490.6825700.3191430.045*0.161
H14I0.4020660.6421060.3599710.045*0.161
O80.5000000.2589 (2)0.2500000.0229 (7)
H8A0.553 (2)0.294 (3)0.262 (2)0.050*
O70.72197 (18)0.30341 (18)0.41005 (12)0.0306 (6)
H7A0.7006190.3128810.3676160.046*
H7B0.7256460.2417730.4141480.046*
O60.76479 (17)0.37808 (19)0.54072 (12)0.0291 (6)
H6A0.8240290.4031920.5400610.044*
H6B0.7467270.3567380.5001650.044*
O90.47342 (19)0.10011 (18)0.32888 (12)0.0319 (6)
H9A0.4761580.1524120.3060160.048*
H9B0.4230420.0686690.3067000.048*
H20.019 (3)0.562 (3)0.4182 (12)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0137 (2)0.0102 (2)0.0171 (2)0.00096 (18)0.00396 (17)0.00079 (18)
P10.0160 (4)0.0198 (5)0.0162 (4)0.0010 (3)0.0029 (3)0.0025 (3)
O10.0231 (12)0.0371 (16)0.0335 (14)0.0104 (11)0.0058 (11)0.0135 (12)
O20.0168 (11)0.0105 (11)0.0200 (11)0.0005 (9)0.0063 (9)0.0020 (9)
O50.0291 (13)0.0209 (14)0.0499 (17)0.0018 (11)0.0057 (12)0.0066 (12)
O30.0230 (12)0.0242 (13)0.0215 (12)0.0051 (10)0.0041 (9)0.0003 (10)
O40.0191 (11)0.0271 (14)0.0206 (12)0.0040 (10)0.0052 (9)0.0044 (10)
N10.0142 (12)0.0137 (14)0.0154 (13)0.0014 (10)0.0005 (10)0.0011 (11)
N20.0135 (12)0.0145 (14)0.0162 (13)0.0012 (10)0.0006 (10)0.0022 (11)
C10.0192 (16)0.0160 (18)0.0215 (17)0.0016 (13)0.0039 (13)0.0012 (13)
C20.0248 (17)0.0188 (18)0.0204 (17)0.0055 (14)0.0009 (14)0.0045 (14)
C30.0265 (17)0.0126 (17)0.0219 (17)0.0003 (14)0.0037 (13)0.0018 (14)
C40.0197 (16)0.0147 (17)0.0187 (16)0.0009 (13)0.0061 (13)0.0009 (13)
C50.0279 (17)0.0132 (18)0.0248 (17)0.0089 (14)0.0029 (14)0.0016 (14)
C60.0260 (17)0.0193 (18)0.0221 (17)0.0104 (14)0.0010 (14)0.0065 (14)
C70.0179 (15)0.0191 (18)0.0164 (16)0.0049 (13)0.0007 (12)0.0039 (13)
C110.0136 (14)0.0138 (17)0.0158 (15)0.0026 (12)0.0023 (12)0.0021 (12)
C120.0145 (14)0.0135 (16)0.0158 (15)0.0000 (12)0.0041 (12)0.0029 (12)
C80.0155 (15)0.0223 (19)0.0178 (16)0.0051 (13)0.0012 (12)0.0041 (13)
C90.0140 (15)0.0193 (18)0.0157 (15)0.0007 (13)0.0007 (12)0.0022 (13)
C100.0158 (15)0.0141 (17)0.0165 (15)0.0005 (13)0.0008 (12)0.0005 (13)
O80.0186 (16)0.0176 (18)0.0324 (19)0.0000.0035 (14)0.000
O70.0300 (13)0.0324 (15)0.0275 (13)0.0102 (12)0.0021 (11)0.0124 (11)
O60.0241 (12)0.0289 (15)0.0348 (14)0.0055 (11)0.0061 (11)0.0057 (12)
O90.0456 (15)0.0265 (15)0.0209 (12)0.0161 (12)0.0041 (11)0.0073 (11)
Geometric parameters (Å, º) top
Cu1—Cu1i2.8915 (9)C7—C81.408 (4)
Cu1—O12.198 (2)C11—C121.428 (4)
Cu1—O21.945 (2)C8—H80.9500
Cu1—O2i1.948 (2)C8—C91.369 (4)
Cu1—N12.018 (3)C9—C101.411 (4)
Cu1—N22.036 (2)C10—H100.9500
P1—O51.593 (2)C13—H13A0.9900
P1—O31.488 (2)C13—H13B0.9900
P1—O41.497 (2)C13—C141.498 (8)
P1—C91.810 (3)C13A—H13C0.9900
O1—H1A0.8878C13A—H13D0.9900
O1—H1B0.8874C13A—C14A1.501 (8)
O2—H20.844 (19)C13B—H13E0.9900
O5—C131.386 (6)C13B—H13F0.9900
O5—C13A1.378 (7)C13B—C14B1.498 (10)
O5—C13B1.369 (9)C14—H14A0.9800
N1—C11.324 (4)C14—H14B0.9800
N1—C121.366 (4)C14—H14C0.9800
N2—C111.365 (4)C14A—H14D0.9800
N2—C101.324 (4)C14A—H14E0.9800
C1—H10.9500C14A—H14F0.9800
C1—C21.401 (5)C14B—H14G0.9800
C2—H2A0.9500C14B—H14H0.9800
C2—C31.374 (5)C14B—H14I0.9800
C3—H30.9500O8—H8A0.861 (18)
C3—C41.408 (5)O8—H8Aii0.861 (18)
C4—C51.432 (5)O7—H7A0.8699
C4—C121.402 (4)O7—H7B0.8703
C5—H50.9500O6—H6A0.8699
C5—C61.359 (5)O6—H6B0.8697
C6—H60.9500O9—H9A0.8708
C6—C71.428 (5)O9—H9B0.8709
C7—C111.402 (4)
O2i—Cu1—O197.47 (9)C7—C11—C12120.2 (3)
O2—Cu1—O196.74 (9)N1—C12—C4123.0 (3)
O2—Cu1—O2i84.05 (9)N1—C12—C11117.0 (3)
O2—Cu1—N1166.41 (9)C4—C12—C11120.0 (3)
O2i—Cu1—N195.49 (9)C7—C8—H8119.7
O2—Cu1—N296.68 (9)C9—C8—C7120.6 (3)
O2i—Cu1—N2172.59 (9)C9—C8—H8119.7
N1—Cu1—O196.78 (10)C8—C9—P1121.1 (2)
N1—Cu1—N282.06 (10)C8—C9—C10118.5 (3)
N2—Cu1—O189.77 (9)C10—C9—P1120.4 (2)
O5—P1—C9101.82 (14)N2—C10—C9122.7 (3)
O3—P1—O5110.82 (14)N2—C10—H10118.6
O3—P1—O4118.44 (13)C9—C10—H10118.6
O3—P1—C9108.57 (13)O5—C13—H13A109.0
O4—P1—O5108.27 (13)O5—C13—H13B109.0
O4—P1—C9107.58 (14)O5—C13—C14112.8 (7)
Cu1—O1—H1A110.4H13A—C13—H13B107.8
Cu1—O1—H1B110.1C14—C13—H13A109.0
H1A—O1—H1B103.6C14—C13—H13B109.0
Cu1—O2—Cu1i95.95 (9)O5—C13A—H13C110.0
Cu1—O2—H2113 (3)O5—C13A—H13D110.0
Cu1i—O2—H2112 (3)O5—C13A—C14A108.2 (7)
C13—O5—P1124.0 (3)H13C—C13A—H13D108.4
C13A—O5—P1126.7 (4)C14A—C13A—H13C110.0
C13B—O5—P1128.3 (9)C14A—C13A—H13D110.0
C1—N1—Cu1129.6 (2)O5—C13B—H13E109.1
C1—N1—C12118.1 (3)O5—C13B—H13F109.1
C12—N1—Cu1112.35 (19)O5—C13B—C14B112.4 (15)
C11—N2—Cu1111.9 (2)H13E—C13B—H13F107.8
C10—N2—Cu1129.7 (2)C14B—C13B—H13E109.1
C10—N2—C11118.3 (3)C14B—C13B—H13F109.1
N1—C1—H1118.6C13—C14—H14A109.5
N1—C1—C2122.8 (3)C13—C14—H14B109.5
C2—C1—H1118.6C13—C14—H14C109.5
C1—C2—H2A120.3H14A—C14—H14B109.5
C3—C2—C1119.4 (3)H14A—C14—H14C109.5
C3—C2—H2A120.3H14B—C14—H14C109.5
C2—C3—H3120.3C13A—C14A—H14D109.5
C2—C3—C4119.4 (3)C13A—C14A—H14E109.5
C4—C3—H3120.3C13A—C14A—H14F109.5
C3—C4—C5124.2 (3)H14D—C14A—H14E109.5
C12—C4—C3117.3 (3)H14D—C14A—H14F109.5
C12—C4—C5118.5 (3)H14E—C14A—H14F109.5
C4—C5—H5119.1C13B—C14B—H14G109.5
C6—C5—C4121.7 (3)C13B—C14B—H14H109.5
C6—C5—H5119.1C13B—C14B—H14I109.5
C5—C6—H6119.8H14G—C14B—H14H109.5
C5—C6—C7120.4 (3)H14G—C14B—H14I109.5
C7—C6—H6119.8H14H—C14B—H14I109.5
C11—C7—C6119.2 (3)H8A—O8—H8Aii110 (6)
C11—C7—C8116.7 (3)H7A—O7—H7B104.5
C8—C7—C6124.2 (3)H6A—O6—H6B104.5
N2—C11—C7123.1 (3)H9A—O9—H9B104.3
N2—C11—C12116.7 (3)
Cu1—N1—C1—C2179.6 (2)C2—C3—C4—C121.4 (4)
Cu1—N1—C12—C4179.9 (2)C3—C4—C5—C6179.9 (3)
Cu1—N1—C12—C110.6 (3)C3—C4—C12—N11.0 (4)
Cu1—N2—C11—C7179.1 (2)C3—C4—C12—C11179.7 (3)
Cu1—N2—C11—C120.0 (3)C4—C5—C6—C70.3 (5)
Cu1—N2—C10—C9178.3 (2)C5—C4—C12—N1178.9 (3)
P1—O5—C13—C14169.0 (5)C5—C4—C12—C110.4 (4)
P1—O5—C13A—C14A178.3 (6)C5—C6—C7—C110.5 (5)
P1—O5—C13B—C14B142.2 (16)C5—C6—C7—C8178.9 (3)
P1—C9—C10—N2179.1 (2)C6—C7—C11—N2179.7 (3)
O5—P1—C9—C8108.2 (3)C6—C7—C11—C120.7 (4)
O5—P1—C9—C1072.5 (3)C6—C7—C8—C9178.1 (3)
O3—P1—O5—C1320.3 (5)C7—C11—C12—N1178.7 (3)
O3—P1—O5—C13A16.6 (7)C7—C11—C12—C40.6 (4)
O3—P1—O5—C13B61.9 (12)C7—C8—C9—P1177.8 (2)
O3—P1—C9—C8134.9 (2)C7—C8—C9—C101.6 (4)
O3—P1—C9—C1044.5 (3)C11—N2—C10—C91.2 (4)
O4—P1—O5—C13151.7 (5)C11—C7—C8—C91.3 (4)
O4—P1—O5—C13A114.9 (6)C12—N1—C1—C20.5 (4)
O4—P1—O5—C13B69.5 (12)C12—C4—C5—C60.2 (5)
O4—P1—C9—C85.5 (3)C8—C7—C11—N20.3 (4)
O4—P1—C9—C10173.8 (2)C8—C7—C11—C12178.8 (3)
N1—C1—C2—C30.0 (5)C8—C9—C10—N20.3 (4)
N2—C11—C12—N10.4 (4)C9—P1—O5—C1395.1 (5)
N2—C11—C12—C4179.7 (3)C9—P1—O5—C13A131.9 (6)
C1—N1—C12—C40.1 (4)C9—P1—O5—C13B177.3 (12)
C1—N1—C12—C11179.3 (3)C10—N2—C11—C71.5 (4)
C1—C2—C3—C41.0 (4)C10—N2—C11—C12177.6 (3)
C2—C3—C4—C5178.4 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3iii0.892.042.759 (3)138
O1—H1B···O7iv0.891.912.733 (3)154
O8—H8A···O4ii0.86 (2)1.85 (2)2.709 (3)175 (4)
O7—H7A···O4ii0.871.852.697 (3)166
O7—H7B···O6v0.871.912.731 (4)157
O6—H6A···O2vi0.871.882.747 (3)177
O6—H6B···O70.871.952.812 (4)173
O9—H9A···O80.871.932.793 (4)171
O9—H9B···O3vii0.871.892.736 (3)164
O2—H2···O9viii0.84 (2)1.89 (2)2.727 (3)173 (4)
Symmetry codes: (ii) x+1, y, z+1/2; (iii) x, y, z+1/2; (iv) x1, y, z; (v) x+3/2, y+1/2, z+1; (vi) x+1, y+1, z+1; (vii) x+1/2, y1/2, z+1/2; (viii) x1/2, y+1/2, z.
 

Acknowledgements

This work was carried out in the frame of the Inter­national Associated French–Russian (LIA) Laboratory of Macrocycle Systems and Related Materials (LAMREM) of CNRS and RAS.

Funding information

AYuM thanks the Russian Foundation for Basic Research for financial support (grant No. 16–33-60207).

References

First citationArias-Zárate, D., Ballesteros-Rivas, M. F., Toscano, R. A. & Valdés-Martínez, J. (2015). Acta Cryst. E71, 360–362.  CrossRef IUCr Journals Google Scholar
First citationBruker (2012–2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIglesias, S., Castillo, O., Luque, A. & Román, P. (2003). Inorg. Chim. Acta, 349, 273–278.  Web of Science CrossRef CAS Google Scholar
First citationIqbal, M., Ali, S., Tahir, M. N. & Shah, N. A. (2017). J. Mol. Struct. 1143, 23–30.  CrossRef Google Scholar
First citationIremonger, S. S., Liang, J., Vaidhyanathan, R., Martens, I., Shimizu, G. K. H., Daff, T. D., Aghaji, M. Z., Yeganegi, S. & Woo, T. K. (2011). J. Am. Chem. Soc. 133, 20048–20051.  CrossRef PubMed Google Scholar
First citationKrawczyk, H. (1997). Synth. Commun. 27, 3151–3161.  CrossRef Google Scholar
First citationLi, X., Cheng, D., Lin, J., Li, Z. & Zheng, Y. (2008). Cryst. Growth Des. 8, 2853–2861.  CrossRef Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. University of Barcelona, Spain.  Google Scholar
First citationLu, L.-P., Qin, S.-D., Yang, P. & Zhu, M.-L. (2004). Acta Cryst. E60, m950–m952.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLu, L. P., Zhu, M. L. & Yang, P. (2003). J. Inorg. Biochem. 95, 31–36.  CrossRef PubMed Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2010). Inorg. Chem. Commun. 13, 399–403.  CrossRef Google Scholar
First citationMitrofanov, A. Yu., Bessmertnykh Lemeune, A., Stern, C., Guilard, R., Gulyukina, N. S. & Beletskaya, I. P. (2012). Synthesis, 44, 3805–3810.  Google Scholar
First citationMitrofanov, A. Yu., Rousselin, Y., Guilard, R., Brandès, S., Bessmertnykh-Lemeune, A. G., Uvarova, M. A. & Nefedov, S. E. (2016). New J. Chem. 40, 5896–5905.  CrossRef Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y. H., Yi, Y. J., Gao, H. L. & Cui, J. Z. (2008). Wuji Huaxue Xuebao (Chinese J. Inorg. Chem.) 24, 161-162.  Google Scholar
First citationTaylor, J. M., Vaidhyanathan, R., Iremonger, S. S. & Shimizu, G. K. H. (2012). J. Am. Chem. Soc. 134, 14338–14340.  CrossRef PubMed Google Scholar
First citationTu, B. T., Ren, Y. T., Ju, L., Chen, J. Y., Chen, Y. & Chen, J. Z. (2009). Z. Kristallogr. New Cryst. Struct. 224, 727–728.  Google Scholar
First citationZhang, H.-M., Lu, L.-P., Feng, S.-S., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, m1027–m1029.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZheng, Y. Q., Sun, J. & Lin, J. L. (2000a). Z. Anorg. Allg. Chem. 626, 613–615.  CrossRef Google Scholar
First citationZheng, Y. Q., Sun, J. & Lin, J. L. (2000b). Z. Kristallogr. New Cryst. Struct. 215, 533–534.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds