research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Binary charge-transfer complexes using pyromellitic acid dianhydride featuring C—H⋯O hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 28 September 2018; accepted 5 November 2018; online 9 November 2018)

Four binary charge-transfer complexes were made using pyromellitic acid dianhydride (pmda), those being pmda–naphthalene (1/1), C10H2O6·C10H8, (I), pmda–fluoranthene (1/1), C10H2O6·C16H10, (II), pmda–9-methyl­anthracene (1/1), C10H2O6·C15H12, (III), and pmda–ethyl anthracene-9-carboxyl­ate (1/2), C10H2O6·2C17H12O3, (IV). All charge-transfer complexes show alternating donor and acceptor stacks, which have weak C—H⋯O hydrogen bonds connecting the donor and acceptor mol­ecules. In addition, complex (I) has Z′ = 1/2, complex (II) has a Z′ = 2 and complex (IV) has half mol­ecule of pyromellitic acid dianhydride in the asymmetric unit.

1. Chemical context

Crystal engineering, the conception and synthesis of mol­ecular solid state structures, is fundamentally based upon the discernment and subsequent exploitation of inter­molecular inter­actions. Consequently, non-covalent bonding inter­actions are primarily used to achieve the organization of mol­ecules and ions in the solid state in order to produce materials with desired properties. and this understanding using a variety of inter­molecular inter­actions is at the very heart of crystal engineering. Recently, it has been shown that one can synthesize supra­molecular assemblies that contain anywhere from three to six different mol­ecular moieties (Paul et al., 2018[Paul, M., Chakraborty, S. & Desiraju, G. R. (2018). J. Am. Chem. Soc. 140, 2309-2315.]). Supra­molecular synthesis chiefly uses the hydrogen-bond inter­action as the most directional of the known inter­molecular inter­actions (Aakeröy & Beatty, 2001[Aakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409-421.]). An equally important inter­action is that of charge transfer (CT) between an electron-rich π-system (donor) and an electron-poor π-system (acceptor) (Herbstein, 2005[Herbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds: Structures and Principles. Oxford University Press.]). Classic donor mol­ecules (polycyclic aromatic hydro­carbons) generally have an electron-rich π-system. On the other hand, aromatic hydro­carbons with strongly polarizing groups, such as 1,3,5-tri­nitro­benzene (TNB), have an electron-poor π-system and are classified as the acceptor mol­ecule (Hill et al., 2018a[Hill, T., Levendis, D. C. & Lemmerer, A. (2018a). Acta Cryst. E74, 113-118.],b[Hill, T., Levendis, D. C. & Lemmerer, A. (2018b). J. Mol. Struct. 1168, 28-38.]). Another common acceptor mol­ecule is pyromellitic acid dianhydride (pmda), which has electron-withdrawing O atoms of the carb­oxy­lic acid dianhydride groups. (pmda)·(pyrene) complexes have been investigated for order–disorder transitions as a function of temperature using infrared and Raman spectroscopy (Isaac et al., 2018[Isaac, R., Goetz, K. P., Roberts, D., Jurchescu, O. D. & McNeil, L. E. (2018). AIP ADVANCES 8, 025117-1-6.]), (pmda)·(naphthalene) has been studied via Raman spectroscopy for having orientational disorder (Macfarlane & Ushioda, 1977[Macfarlane, R. M. & Ushioda, S. (1977). J. Chem. Phys. 67, 3214-3220.]), disorder in (pmda)·(perylene) via computer simulation (Boeyens & Levendis, 1986[Boeyens, J. C. A. & Levendis, D. C. (1986). J. Chem. Phys. 84, 3986-3992.]), and photoconductivity and magentoconductance in pmda·(pyrene) (Kato et al., 2017[Kato, K., Hagi, S., Hinoshita, M., Shikoh, E. & Teki, Y. (2017). Phys. Chem. Chem. Phys. 19, 18845-18853.]). To this end, we have synthesized four new charge-transfer co-crystals that show no disorder: (pmda)·(naphthalene) (I)[link], (pmda)·(fluoranthene) (II)[link], (pmda)·(9-methyl­anthracene) (III)[link], and (pmda)2·(9-ethyl ester anthracene) (IV)[link].

[Scheme 1]

2. Structural commentary

The asymmetric units and atom-labelling schemes are shown in Fig. 1[link], together with their displacement ellipsoids, for all charge-transfer complexes. As a result of the strong polarizing effect of the carb­oxy­lic acid dianhydride groups, pmda has an electron-poor π-system and functions as an acceptor. On the other side, the donor mol­ecules comprising polycyclic aromatic hydro­carbons have an electron-rich π-system. The packing of the mol­ecules of the four complexes follows a donor (D) acceptor (A) ππ inter­action, which is the major driving force in the formation of these complexes, as seen in Figs. 2[link] and 3[link] (donor mol­ecules shown in blue/yellow and acceptor in green/red), resulting in a general face-to-face π-stacking, with Table 1[link] summarizing the closest centroid–centroid distances between the pmda acceptor and aromatic donor systems. The inter­molecular inter­actions of the DA stacks can be qu­anti­fied using Hirshfeld surface analysis as well as the resulting fingerprint plots using the programme CrystalExplorer 17.5 (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). Table 2[link] summarizes the percentages for all combinations of contacts between C, H and O atoms and the relevant fingerprint plots are given in the supporting information. In the paper by Chen et al. (2017[Chen, P. Y., Zhang, L., Zhu, S. G., Cheng, G. B. & Li, N. R. (2017). J. Mol. Struct. 1128, 629-635.]), the authors describe that regions of blue and red triangles on the Hirshfeld surface using the shape index as evidence of ππ inter­actions. Fig. 4[link] shows such surfaces plotted for the pmda mol­ecules in (I)–(IV), and for comparison the shape index of the pmda mol­ecule in its unimolecular crystal structure. The red triangles show concave regions indicative of ring carbons of the π stacked mol­ecule above it. Complexes (I)–(IV) display a high number of triangles, which reveals the increased proportion of ππ stacking observed for the four structures.. The shape index of pmda shows no such pattern [Fig. 4[link](a)]. This π stacking can be qu­anti­fied by looking at the contribution of the C⋯C contacts contained in the fingerprint plots, which vary only slightly from 19.9 to 21.0%. The greatest contribution to the Hirshfeld surfaces are seen in the H⋯O contacts, which vary from 48.5 to 58.4%. In comparison, the C⋯C contacts only make up 0.2% in pmda⋯pmda and the C⋯O contacts have the greatest single contribution at 43%. In summary, the introduction of an aromatic polycylic changes the biggest contributor from C⋯O in pmda to H⋯O in pmda-aromatic polycyclics.

Table 1
Centroid distances (Å) between the pmda and the ring centroids (Cg) of the aromatic polycyclics

Structure Acceptor Cg Donor Cg CgCg Symmetry Operator
(I) C1–O1 (Cg3) C4–C6 (Cg6) 3.3724 (2) x + [{1\over 2}], y − [{1\over 2}], −z
(II) O1–C10 (Cg5) C11–C19 (Cg14) 3.3193 (5) x, y, z
(III) C2–C9 (Cg3) C11–C24 (Cg10) 3.2994 (4) x − 1, y, z
(IV) C1–O1 (Cg9) C11–C24 (Cg3) 3.3280 (3) 1 − x, −y, 1 − z

Table 2
Proportion (%) of inter­molecular contacts between donor and acceptor (pmda) mol­ecules in the Hirshfeld fingerprint plots

Structure C⋯C H⋯H C⋯H O⋯O O⋯H C⋯O
(pmda) 0.2 8.0 1.0 29.9 17.9 43.0
(I) 19.8 6.6 3.9 9.5 58.4 1.7
(IIA) 21.0 8.6 5.4 5.5 52.8 6.6
(IIB) 20.6 11.7 6.2 7.1 48.5 5.9
(III) 20.2 9.5 4.1 4.2 56.8 5.2
(IV) 20.9 10.8 2.7 4.4 53.9 7.3
[Figure 1]
Figure 1
Perspective views of compounds (I)–(IV), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x, 1 − y, z; (ii) −x, 1 − y, 1 − z; (iii) −x, y, 1 − z; (iv) −x, 1 − y, −z; (v) −x, y, −z; (vi) x − 1, y − 1, z − 1.]
[Figure 2]
Figure 2
(a) A packing diagram of (I)[link] showing the layers of donor (blue) and acceptor (green) mol­ecules. (b) Hydrogen-bonding diagram for (I)[link] showing the C—H⋯O hydrogen-bonded rings formed between the pmda and naphthalene mol­ecules.
[Figure 3]
Figure 3
Packing diagrams for (II)–(IV). The donor mol­ecules are shown in blue or yellow, and the acceptor mol­ecules in green or red.
[Figure 4]
Figure 4
The mol­ecular Hirshfeld surfaces mapped over shape index for the pmda mol­ecule by itself (PYMDAN) and for the pmda acceptor mol­ecule in charge transfer complexes (I)–(IV).

3. Supra­molecular features

Compound (I)[link] crystallizes in the C2/m space group with one quarter of the pmda and naphthalene mol­ecules occupying a twofold axis and a mirror plane, resulting in Z′ = 0.25 for the asymmetric unit. The donor and acceptor mol­ecules stack along the c-axis direction, and in a checker board fashion along the ab plane [Fig. 2[link](a)]. In the direction of the a-axis, there is a symmetrical C4—H4⋯O2 inter­action from both ends of the naphthalene mol­ecule to the oxygen atoms on the pmda [Fig. 2[link](b), Table 3[link]]. As a result of the mirror plane symmetry, this results in a very symmetrical R21(5) ring as described using graph-set notation (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Along the b-axis, there is an additional hydrogen bonded ring, R22(8), resulting from C3—H3⋯O1 hydrogen-bond inter­action [Fig. 2[link](b)].

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.68 3.2748 (14) 121
C3—H3⋯O1ii 0.95 2.63 3.3463 (13) 133
C5—H5⋯O1ii 0.95 2.69 3.4127 (14) 133
Symmetry codes: (i) -x+1, y, -z+1; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Compound (II)[link] crystallizes in the Pca21 space group with two pmda and two fluoranthene mol­ecules in the asymmetric unit. One set of D/A pairs is shown in blue/green, and the second is shown in yellow/red. The separation of the two D/A pairs can be clearly seen in Fig. 3[link](a). Between the four unique pmda acceptor and fluoranthene donors there are numerous C—H⋯O inter­actions (Table 4[link]). As the fluoranthene has only C and H atoms, it is the mol­ecule that has the most weak hydrogen-bond donor groups (C—H), and the pmda, with six oxygen atoms, has numerous good hydrogen-bond acceptor atoms (O). Fig. 5[link](a) and 5(b) illustrate four of the hydrogen bonds emanating from the two symmetry-independent fluoranthene mol­ecules, which form a number of hydrogen-bonded rings: R21(7), R22(7), R22(8) and R33(12).

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.95 2.67 3.373 (5) 132
C16—H16⋯O8 0.95 2.59 3.444 (5) 150
C17—H17⋯O3ii 0.95 2.65 3.576 (5) 166
C18—H18⋯O1ii 0.95 2.67 3.332 (5) 127
C22—H22⋯O4iii 0.95 2.59 3.481 (5) 155
C25—H25⋯O11iii 0.95 2.55 3.347 (5) 142
C29—H29⋯O12iv 0.95 2.71 3.370 (5) 127
C42—H42⋯O6 0.95 2.49 3.413 (5) 165
C43—H43⋯O11iii 0.95 2.58 3.293 (5) 132
C44—H44⋯O10iii 0.95 2.52 3.428 (5) 160
C45—H45⋯O12iv 0.95 2.57 3.429 (5) 150
C46—H46⋯O9v 0.95 2.64 3.256 (5) 123
C48—H48⋯O9vi 0.95 2.55 3.473 (5) 164
C50—H50⋯O7vi 0.95 2.5 3.420 (5) 164
C52—H52⋯O6 0.95 2.62 3.525 (5) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) x, y-1, z-1; (iii) x, y, z+1; (iv) [-x+2, -y+1, z+{\script{1\over 2}}]; (v) [-x+2, -y+1, z-{\script{1\over 2}}]; (vi) x, y+1, z-1.
[Figure 5]
Figure 5
Hydrogen-bonding diagrams for (II)–(IV). Atom labels correspond to those given in the hydrogen-bonding tables.

Compound (III)[link] crystallizes in the P[\overline{1}] space group with both the pmda and 9-methyl­anthracene in the asymmetric unit. The packing of the structure shows the typical donor–acceptor stacking along the a axis [Fig. 3[link](b)] and has the closest centroid-to-centroid distance of all four charge-transfer complexes at 3.2994 (4) Å (Table 1[link]). Perpendicular to the stacking axis, the donor and acceptor mol­ecules form hydrogen-bonded layers using four distinct C—H⋯O hydrogen bonds (Table 5[link]). The combination of these individually or in groups results in three types of hydrogen bonded rings, R22(10), R33(13) and R44(24), shown in Fig. 5[link](c).

Table 5
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.55 3.376 (4) 145
C14—H14⋯O2ii 0.95 2.63 3.347 (4) 133
C16—H16⋯O4iii 0.95 2.68 3.365 (4) 130
C22—H22⋯O5iv 0.95 2.64 3.323 (4) 130
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z.

Compound (IV)[link] crystallizes in the P21/c space group with half a pmda (on a centre of inversion) and one complete 9-ethyl ester anthracene mol­ecule in the asymmetric unit, giving a ratio of one acceptor to two donors. [Fig. 3[link](c)]. Two donor mol­ecules form a hydrogen-bonded ring dimer [Fig. 5[link](d)], graph-set R22(14), via a C21—H21⋯O4 hydrogen bond Two pmda mol­ecules are connected to the donor via discrete hydrogen bonds C12—H12⋯O2 and C15—H15⋯O3 (Table 6[link]).

Table 6
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.65 3.351 (2) 131
C15—H15⋯O3ii 0.95 2.55 3.306 (2) 137
C21—H21⋯O4iii 0.95 2.48 3.433 (2) 176
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z+1; (iii) -x, -y+1, -z+1.

One of the major differences between the four complexes is the symmetry of the asymmetric unit. Pmda, being a very symmetrical mol­ecule with point group D2h, is shown to crystallize with Z′ = 0.25, 0.5 and 1 in the title complexes. In the literature, the most common case is with Z′ = 0.5, such as those with anthracene (ANTPML; Boeyens & Herbstein, 1965[Boeyens, J. C. A. & Herbstein, F. H. (1965). J. Phys. Chem. 69, 2160-2176.]; ANTPML01 and ANTPML01; Robertson & Stezowski, 1978[Robertson, B. E. & Stezowski, J. J. (1978). Acta Cryst. B34, 3005-3011.]), acridine (BIWVUY; Karl et al., 1982b[Karl, N., Binder, W., Kollat, P. & Stezowski, J. J. (1982b). Acta Cryst. B38, 2919-2921.]), bi­phenyl­ene (DURZAR, DURZAR01, DURZAR02; Stezowski et al., 1986[Stezowski, J. J., Stigler, R.-D. & Karl, N. (1986). J. Chem. Phys. 84, 5162-5170.]), chrysene (FILHIR; Bulgarovskaya et al., 1987b[Bulgarovskaya, I. V., Zavodnik, V. E. & Vozzhennikov, V. M. (1987b). Acta Cryst. C43, 766-768.]) to name but a few. More unusual is the case with Z′ = 0.25, seen only twice in 9,10-di­bromo­anthracene (FILHEN; Bulgarovskaya et al., 1987a[Bulgarovskaya, I. V., Belsky, V. K. & Vozzhennikov, V. M. (1987a). Acta Cryst. C43, 768-770.]) and naphthalene (NAPYMA01; Le Bars-Combe et al., 1979[Le Bars-Combe, M., Chion, B. & Lajzérowicz-Bonneteau, J. (1979). Acta Cryst. B35, 913-920.]). It has also been observed were pmda is present with both Z′ = 0.5 and 1, such as in RUYWIR (Kurebayashi et al., 2001[Kurebayashi, H., Haino, T., Usui, S. & Fukazawa, Y. (2001). Tetrahedron, 57, 8667-8674.]), 3,6-di­bromo­carbazole (VILFIF; Bulgarovskaya et al., 1989[Bulgarovskaya, I. V., Zavodnik, V. E., Bel'skii, V. K. & Vozzhennikov, V. M. (1989). Kristallografiya, 34, 345-352.]) and N-methyl-3,6-di­bromo­carbazole (WEXKEP; Dzyabchenko et al., 1994[Dzyabchenko, A. V., Bulgarovskaya, I. V. & Zavodnik, V. E. (1994). Kristallografiya, 39, 434-438.]). In summary, we have characterized a further new set of four CT complexes of pmda and aromatic mol­ecules.

4. Database survey

A database survey in the Cambridge Structural Database (CSD, Version 5.39; November 2017 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was undertaken for any structures containing the pmda moiety. A total of 26 complexes were found, four showing polymorphism [BECNUS02 (Karl et al., 1982a[Karl, N., Ketterer, W. & Stezowski, J. J. (1982a). Acta Cryst. B38, 2917-2919.]) and BECNUS10 (Bugarovskaya et al., 1982[Bugarovskaya, I. V., Vozzhennikov, V. M., Krasavin, V. P. & Kotov, B. V. (1982). Cryst. Struct. Commun. 11, 501-504.]); DURZAR and DURZAR01 (Stezowski et al., 1986[Stezowski, J. J., Stigler, R.-D. & Karl, N. (1986). J. Chem. Phys. 84, 5162-5170.]); NAPYMA01 (Le Bars-Combe et al., 1979[Le Bars-Combe, M., Chion, B. & Lajzérowicz-Bonneteau, J. (1979). Acta Cryst. B35, 913-920.]) and NAPYMA12 (Le Bars-Combe et al., 1981[Le Bars-Combe, M. & Lajzérowicz-Bonneteau, J. (1981). Acta Cryst. B37, 1707-1712.]); PYRPMA04 (Herbstein et al., 1994[Herbstein, F. H., Marsh, R. E. & Samson, S. (1994). Acta Cryst. B50, 174-181.]) and PYRPMA11 (Kato et al., 2017[Kato, K., Hagi, S., Hinoshita, M., Shikoh, E. & Teki, Y. (2017). Phys. Chem. Chem. Phys. 19, 18845-18853.])] and one showing stoichiometric variation [VILFEB and VILFIF (Bulgarovskaya et al., 1989[Bulgarovskaya, I. V., Zavodnik, V. E., Bel'skii, V. K. & Vozzhennikov, V. M. (1989). Kristallografiya, 34, 345-352.])].

5. Synthesis and crystallization

All chemicals were purchased from commercial sources (Sigma Aldrich) and used as received without further purification. The pyromellitic acid dianhydride charge transfer complexes were prepared in a 10 mL ethano­lic solution with a 1:1 stoichiometric ratio of the donor to the acceptor mol­ecule which was then heated and stirred until total dissolution took place (approx. 4 h). The solution was then cooled very slowly and allowed to evaporate to obtain crystals suitable for X-ray diffraction. Detailed masses are as follows: (I)[link]: 0.100 g of pyromellitic acid dianhydride and 0.059 g of naphthalene; (II)[link]: 0.100 g of pyromellitic acid dianhydride and 0.093 g of fluoranthene; (III)[link]: 0.100 g of pyromellitic acid dianhydride and 0.088 g of 9-methyl­anthracene; and (IV)[link]: 0.100 g of pyromellitic acid dianhydride and 0.12 1 g of 9-ethyl ester anthracene.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. For all compounds, the C-bound H atoms were geometrically placed (C—H bond lengths of 0.96 (methyl CH3), and 0.95 (Ar—H) Å) and refined as riding with Uiso(H) = 1.2Ueq(Ar-C) or Uiso(H) = 1.5Ueq(methyl-C).

Table 7
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C10H2O6·C10H8 C10H2O6·C16H10 C10H2O6·C15H12 C17H12O3·0.5C10H2O6
Mr 346.28 420.36 410.36 373.32
Crystal system, space group Monoclinic, C2/m Orthorhombic, Pca21 Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 173 173 173 173
a, b, c (Å) 9.1478 (4), 12.8195 (6), 6.7459 (3) 57.356 (9), 7.0172 (10), 9.3429 (13) 7.1012 (8), 9.5674 (12), 13.6147 (16) 9.1949 (7), 17.9751 (14), 10.9716 (10)
α, β, γ (°) 90, 104.202 (3), 90 90, 90, 90 99.109 (4), 99.941 (4), 92.219 (4) 90, 112.829 (2), 90
V3) 766.91 (6) 3760.3 (9) 897.53 (19) 1671.3 (2)
Z 2 8 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 0.11 0.11
Crystal size (mm) 0.40 × 0.08 × 0.05 0.5 × 0.1 × 0.1 0.19 × 0.06 × 0.05 0.55 × 0.1 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector
Absorption correction Multi-scan SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.9, 0.95 0.9, 0.95 0.9, 0.95 0.9, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 3774, 967, 841 40403, 6983, 5636 20202, 3280, 2159 13071, 4035, 2731
Rint 0.042 0.054 0.075 0.046
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.04 0.045, 0.106, 1.08 0.073, 0.223, 1.02 0.043, 0.112, 1.05
No. of reflections 967 6983 3280 4035
No. of parameters 63 577 281 254
No. of restraints 0 1 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.3 0.21, −0.17 0.67, −0.28 0.30, −0.26
Computer programs: APEX3, SAINT-Plus and XPREP (Bruker 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus and XPREP (Bruker 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Pyromellitic acid dianhydride–naphthalene (1/1) (I) top
Crystal data top
C10H2O6·C10H8F(000) = 356
Mr = 346.28Dx = 1.5 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2019 reflections
a = 9.1478 (4) Åθ = 2.8–28.2°
b = 12.8195 (6) ŵ = 0.11 mm1
c = 6.7459 (3) ÅT = 173 K
β = 104.202 (3)°Plate, yellow
V = 766.91 (6) Å30.40 × 0.08 × 0.05 mm
Z = 2
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 28.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1112
Tmin = 0.9, Tmax = 0.95k = 1616
3774 measured reflectionsl = 88
967 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2771P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.36 e Å3
967 reflectionsΔρmin = 0.3 e Å3
63 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.011 (3)
0 constraints
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29033 (11)0.41071 (8)0.62113 (16)0.0267 (3)
C20.13074 (10)0.44565 (8)0.55335 (13)0.0221 (3)
C300.38652 (11)0.50.0238 (3)
H300.3124170.50.029*
O10.34466 (8)0.32627 (6)0.65041 (12)0.0379 (3)
O20.37963 (11)0.50.65364 (16)0.0309 (3)
C40.27282 (12)0.44493 (10)0.10439 (16)0.0358 (3)
H40.3654780.4078810.1402330.043*
C50.13998 (12)0.39113 (10)0.05322 (16)0.0324 (3)
H50.1413170.3170330.0532530.039*
C600.44465 (12)00.0262 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (5)0.0307 (6)0.0273 (5)0.0019 (4)0.0023 (4)0.0027 (4)
C20.0187 (5)0.0248 (5)0.0219 (5)0.0025 (3)0.0032 (3)0.0002 (3)
C30.0225 (6)0.0209 (6)0.0263 (7)00.0030 (5)0
O10.0283 (4)0.0329 (5)0.0476 (5)0.0107 (3)0.0000 (3)0.0026 (3)
O20.0181 (5)0.0337 (6)0.0382 (6)00.0017 (4)0
C40.0221 (5)0.0545 (7)0.0289 (6)0.0073 (5)0.0029 (4)0.0021 (5)
C50.0294 (6)0.0377 (6)0.0295 (5)0.0060 (4)0.0059 (4)0.0020 (4)
C60.0224 (6)0.0353 (8)0.0204 (6)00.0042 (5)0
Geometric parameters (Å, º) top
C1—O11.1872 (12)C4—C51.3659 (16)
C1—O21.3921 (12)C4—C4i1.412 (3)
C1—C21.4878 (12)C4—H40.9497
C2—C31.3868 (12)C5—C61.4190 (13)
C2—C2i1.394 (2)C5—H50.95
C3—H30.9499C6—C6ii1.419 (3)
O1—C1—O2121.20 (9)C5—C4—C4i120.33 (7)
O1—C1—C2131.66 (10)C5—C4—H4119.7
O2—C1—C2107.13 (8)C4i—C4—H4120
C3—C2—C2i123.13 (6)C4—C5—C6120.76 (12)
C3—C2—C1129.34 (9)C4—C5—H5119.6
C2i—C2—C1107.52 (6)C6—C5—H5119.6
C2—C3—C2iii113.73 (12)C5—C6—C5iv122.18 (15)
C2—C3—H3123.1C5—C6—C6ii118.91 (7)
C2iii—C3—H3123.1C5iv—C6—C6ii118.91 (7)
C1i—O2—C1110.63 (11)
O1—C1—C2—C31.92 (18)O1—C1—O2—C1i176.38 (6)
O2—C1—C2—C3179.21 (8)C2—C1—O2—C1i2.63 (15)
O1—C1—C2—C2i177.30 (11)C4i—C4—C5—C60.22 (11)
O2—C1—C2—C2i1.57 (9)C4—C5—C6—C5iv179.78 (11)
C2i—C2—C3—C2iii0C4—C5—C6—C6ii0.22 (11)
C1—C2—C3—C2iii179.11 (11)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2v0.952.683.2748 (14)121
C3—H3···O1vi0.952.633.3463 (13)133
C5—H5···O1vi0.952.693.4127 (14)133
Symmetry codes: (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z+1.
Pyromellitic acid dianhydride–fluoranthene (1/1) (II) top
Crystal data top
C10H2O6·C16H10F(000) = 1728
Mr = 420.36Dx = 1.485 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9936 reflections
a = 57.356 (9) Åθ = 2.9–25.0°
b = 7.0172 (10) ŵ = 0.11 mm1
c = 9.3429 (13) ÅT = 173 K
V = 3760.3 (9) Å3Needle, yellow
Z = 80.5 × 0.1 × 0.1 mm
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
5636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 6869
Tmin = 0.9, Tmax = 0.95k = 88
40403 measured reflectionsl = 1111
6983 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1599P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
6983 reflectionsΔρmax = 0.21 e Å3
577 parametersΔρmin = 0.17 e Å3
1 restraint
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82357 (7)1.1250 (5)0.7955 (4)0.0292 (9)
C20.81768 (6)1.0608 (5)0.6489 (4)0.0222 (9)
C30.83230 (7)1.0187 (5)0.5355 (4)0.0247 (9)
H30.8487911.0282830.5413930.03*
C40.82087 (6)0.9617 (5)0.4134 (4)0.0223 (8)
C50.83073 (7)0.9076 (5)0.2727 (4)0.0274 (9)
C60.79114 (7)0.8856 (5)0.2571 (4)0.0265 (9)
C70.79692 (6)0.9479 (4)0.4036 (4)0.0211 (9)
C80.78227 (6)0.9916 (5)0.5173 (4)0.0239 (8)
H80.7657780.982810.5108360.029*
C90.79363 (6)1.0491 (5)0.6408 (4)0.0237 (9)
C100.78389 (7)1.1076 (5)0.7808 (4)0.0263 (9)
O10.80273 (5)1.1492 (3)0.8698 (3)0.0313 (6)
O20.76441 (5)1.1242 (4)0.8216 (3)0.0367 (7)
O30.84189 (5)1.1546 (4)0.8516 (3)0.0398 (7)
O40.81209 (4)0.8637 (3)0.1825 (3)0.0296 (6)
O50.77309 (5)0.8529 (4)0.1999 (3)0.0362 (7)
O60.85035 (5)0.8965 (4)0.2327 (3)0.0373 (7)
C110.79962 (7)0.4589 (4)0.4321 (4)0.0220 (9)
C120.79336 (6)0.5209 (5)0.5780 (4)0.0216 (8)
C130.81464 (6)0.5575 (5)0.6486 (4)0.0209 (8)
C140.83381 (6)0.5247 (5)0.5586 (4)0.0247 (9)
C150.82429 (6)0.4634 (5)0.4204 (4)0.0235 (9)
C160.83500 (7)0.4131 (5)0.2922 (4)0.0292 (9)
H160.8514830.4164170.2828920.035*
C170.82101 (7)0.3579 (5)0.1783 (4)0.0324 (10)
H170.8280980.3238810.090030.039*
C180.79686 (7)0.3513 (5)0.1905 (4)0.0309 (10)
H180.7877310.3118980.1109940.037*
C190.78599 (7)0.4014 (5)0.3169 (4)0.0271 (9)
H190.7694920.3965930.3250540.032*
C200.77293 (6)0.5517 (5)0.6511 (4)0.0270 (9)
H200.7582860.528630.6068370.032*
C210.77417 (7)0.6187 (5)0.7942 (4)0.0281 (9)
H210.7600530.6408050.8446860.034*
C220.79487 (6)0.6527 (5)0.8623 (4)0.0266 (9)
H220.7948620.6964990.9585180.032*
C230.81630 (6)0.6229 (5)0.7904 (4)0.0252 (9)
C240.83898 (7)0.6531 (5)0.8429 (5)0.0316 (9)
H240.8411920.6958940.9384280.038*
C250.85813 (7)0.6204 (5)0.7558 (5)0.0357 (10)
H250.8732960.6430290.7929230.043*
C260.85582 (7)0.5545 (5)0.6131 (5)0.0331 (10)
H260.8692280.5311610.556090.04*
C270.95132 (7)0.2701 (5)0.3916 (4)0.0273 (9)
C280.94915 (6)0.3286 (4)0.2407 (4)0.0211 (8)
C290.96640 (6)0.3586 (5)0.1395 (4)0.0240 (9)
H290.9825220.3423930.1592710.029*
C300.95802 (6)0.4145 (4)0.0070 (4)0.0214 (8)
C310.97109 (7)0.4574 (5)0.1257 (5)0.0284 (9)
C320.93229 (7)0.5019 (5)0.1718 (4)0.0268 (9)
C330.93452 (7)0.4410 (5)0.0213 (4)0.0236 (9)
C340.91744 (6)0.4095 (5)0.0794 (4)0.0247 (9)
H340.9013130.4259490.0595880.03*
C350.92565 (6)0.3521 (5)0.2117 (4)0.0239 (9)
C360.91269 (7)0.3065 (5)0.3450 (5)0.0299 (9)
O70.92884 (4)0.2590 (3)0.4485 (3)0.0315 (7)
O80.89225 (5)0.3043 (4)0.3676 (3)0.0396 (7)
O90.96799 (5)0.2355 (4)0.4632 (3)0.0396 (7)
O100.95479 (5)0.5088 (3)0.2297 (3)0.0318 (7)
O110.91570 (5)0.5429 (4)0.2403 (3)0.0382 (7)
O120.99143 (5)0.4552 (4)0.1519 (3)0.0370 (7)
C370.94594 (6)0.8366 (4)0.2153 (4)0.0224 (8)
C380.95615 (6)0.8863 (4)0.0751 (4)0.0212 (8)
C390.93732 (6)0.9377 (5)0.0149 (4)0.0224 (9)
C400.91574 (6)0.9237 (5)0.0587 (4)0.0215 (8)
C410.92138 (6)0.8593 (5)0.2046 (4)0.0218 (8)
C420.90731 (7)0.8204 (5)0.3214 (4)0.0277 (9)
H420.8908610.8337720.3150280.033*
C430.91770 (7)0.7615 (5)0.4480 (4)0.0309 (10)
H430.9082510.7348990.529090.037*
C440.94165 (7)0.7410 (5)0.4578 (4)0.0302 (10)
H440.9483730.7012030.5457630.036*
C450.95597 (7)0.7771 (5)0.3420 (4)0.0261 (9)
H450.9723810.7614410.349470.031*
C460.97819 (7)0.8917 (5)0.0193 (4)0.0278 (9)
H460.9912740.8559350.0755640.033*
C470.98106 (7)0.9521 (5)0.1249 (4)0.0303 (9)
H470.9963640.9567010.163710.036*
C480.96282 (7)1.0037 (5)0.2099 (4)0.0296 (10)
H480.9655731.0439250.3055230.036*
C490.93963 (6)0.9974 (4)0.1556 (4)0.0240 (9)
C500.91870 (7)1.0472 (5)0.2278 (5)0.0322 (10)
H500.9191781.0883630.324610.039*
C510.89775 (7)1.0355 (5)0.1570 (4)0.0296 (9)
H510.8839391.0712250.2062590.036*
C520.89595 (7)0.9724 (5)0.0137 (4)0.0286 (9)
H520.881150.964050.0315330.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.023 (2)0.030 (2)0.0012 (17)0.000 (2)0.0011 (17)
C20.025 (2)0.0174 (18)0.024 (2)0.0030 (15)0.0004 (18)0.0001 (15)
C30.023 (2)0.0215 (19)0.029 (2)0.0009 (16)0.0007 (18)0.0023 (16)
C40.028 (2)0.0169 (17)0.022 (2)0.0022 (16)0.0019 (18)0.0020 (15)
C50.032 (3)0.0204 (19)0.030 (2)0.0005 (16)0.003 (2)0.0028 (17)
C60.029 (2)0.0221 (19)0.029 (2)0.0001 (16)0.0037 (19)0.0039 (18)
C70.026 (2)0.0146 (17)0.023 (2)0.0004 (15)0.0003 (18)0.0023 (15)
C80.025 (2)0.0201 (17)0.026 (2)0.0004 (16)0.0009 (19)0.0016 (15)
C90.028 (2)0.0165 (18)0.027 (2)0.0021 (15)0.0001 (18)0.0005 (16)
C100.033 (2)0.0182 (18)0.028 (2)0.0013 (16)0.004 (2)0.0002 (16)
O10.0394 (17)0.0318 (14)0.0226 (16)0.0010 (12)0.0035 (14)0.0063 (12)
O20.0370 (18)0.0329 (15)0.0402 (19)0.0011 (12)0.0127 (14)0.0046 (13)
O30.0395 (18)0.0430 (16)0.0368 (18)0.0043 (13)0.0064 (16)0.0115 (14)
O40.0320 (16)0.0330 (15)0.0238 (15)0.0015 (12)0.0020 (13)0.0062 (12)
O50.0347 (17)0.0394 (15)0.0345 (17)0.0004 (13)0.0071 (15)0.0096 (13)
O60.0295 (17)0.0480 (17)0.0344 (18)0.0026 (13)0.0100 (14)0.0077 (14)
C110.028 (2)0.0155 (17)0.022 (2)0.0036 (16)0.0003 (17)0.0015 (15)
C120.026 (2)0.0149 (17)0.024 (2)0.0005 (15)0.0016 (18)0.0015 (15)
C130.026 (2)0.0155 (18)0.021 (2)0.0001 (15)0.0011 (17)0.0002 (15)
C140.027 (2)0.0196 (19)0.027 (2)0.0003 (15)0.0003 (18)0.0037 (16)
C150.028 (2)0.0188 (18)0.024 (2)0.0010 (16)0.0018 (18)0.0012 (15)
C160.036 (2)0.0242 (19)0.028 (2)0.0002 (17)0.006 (2)0.0025 (16)
C170.053 (3)0.026 (2)0.018 (2)0.0076 (19)0.011 (2)0.0013 (17)
C180.047 (3)0.025 (2)0.021 (2)0.0057 (18)0.004 (2)0.0012 (16)
C190.032 (2)0.0209 (18)0.029 (2)0.0016 (16)0.0035 (19)0.0018 (16)
C200.029 (2)0.0215 (19)0.030 (2)0.0009 (16)0.0007 (19)0.0017 (16)
C210.036 (2)0.0237 (19)0.025 (2)0.0019 (17)0.0102 (19)0.0005 (16)
C220.036 (2)0.0245 (19)0.019 (2)0.0001 (16)0.0040 (19)0.0038 (16)
C230.033 (2)0.0147 (17)0.028 (2)0.0022 (15)0.0033 (19)0.0006 (16)
C240.038 (2)0.028 (2)0.029 (2)0.0019 (17)0.004 (2)0.0036 (17)
C250.028 (2)0.035 (2)0.044 (3)0.0008 (18)0.005 (2)0.007 (2)
C260.027 (2)0.031 (2)0.042 (3)0.0008 (17)0.001 (2)0.0073 (19)
C270.038 (2)0.0209 (19)0.023 (2)0.0012 (17)0.001 (2)0.0014 (16)
C280.027 (2)0.0154 (17)0.021 (2)0.0006 (15)0.0009 (17)0.0011 (15)
C290.025 (2)0.0205 (18)0.027 (2)0.0029 (15)0.0039 (17)0.0029 (16)
C300.025 (2)0.0145 (17)0.024 (2)0.0008 (15)0.0027 (17)0.0032 (15)
C310.035 (3)0.0181 (18)0.032 (2)0.0003 (16)0.001 (2)0.0007 (17)
C320.036 (2)0.023 (2)0.022 (2)0.0023 (17)0.000 (2)0.0015 (16)
C330.032 (2)0.0182 (18)0.021 (2)0.0026 (16)0.0001 (18)0.0014 (15)
C340.026 (2)0.0203 (19)0.028 (2)0.0018 (16)0.0001 (19)0.0007 (16)
C350.030 (2)0.0162 (17)0.025 (2)0.0009 (15)0.0039 (18)0.0007 (15)
C360.036 (2)0.0209 (19)0.033 (2)0.0020 (17)0.005 (2)0.0030 (17)
O70.0381 (16)0.0324 (15)0.0241 (16)0.0020 (12)0.0034 (13)0.0066 (12)
O80.0348 (17)0.0429 (16)0.0411 (19)0.0011 (13)0.0147 (15)0.0044 (14)
O90.0449 (18)0.0443 (17)0.0295 (16)0.0003 (14)0.0095 (15)0.0090 (14)
O100.0377 (17)0.0334 (14)0.0241 (15)0.0025 (12)0.0060 (14)0.0084 (12)
O110.0432 (18)0.0424 (16)0.0291 (17)0.0034 (13)0.0054 (15)0.0109 (14)
O120.0331 (17)0.0369 (15)0.0410 (18)0.0003 (12)0.0123 (15)0.0048 (13)
C370.029 (2)0.0138 (16)0.024 (2)0.0023 (15)0.0005 (18)0.0011 (14)
C380.026 (2)0.0124 (17)0.025 (2)0.0031 (14)0.0004 (18)0.0006 (15)
C390.027 (2)0.0136 (17)0.027 (2)0.0017 (14)0.0008 (18)0.0003 (15)
C400.029 (2)0.0169 (18)0.019 (2)0.0039 (15)0.0007 (17)0.0004 (15)
C410.029 (2)0.0148 (17)0.021 (2)0.0038 (15)0.0013 (17)0.0006 (14)
C420.031 (2)0.0230 (19)0.029 (2)0.0005 (16)0.0037 (19)0.0020 (16)
C430.041 (3)0.027 (2)0.024 (2)0.0029 (17)0.007 (2)0.0011 (17)
C440.049 (3)0.0235 (19)0.018 (2)0.0020 (18)0.005 (2)0.0035 (15)
C450.033 (2)0.0187 (17)0.027 (2)0.0014 (16)0.009 (2)0.0002 (16)
C460.026 (2)0.0207 (18)0.036 (2)0.0011 (16)0.0002 (19)0.0007 (17)
C470.029 (2)0.0282 (19)0.034 (3)0.0030 (17)0.011 (2)0.0004 (17)
C480.041 (3)0.0218 (19)0.026 (2)0.0064 (17)0.010 (2)0.0024 (16)
C490.031 (2)0.0177 (18)0.023 (2)0.0028 (15)0.0043 (19)0.0026 (16)
C500.047 (3)0.027 (2)0.022 (2)0.0032 (18)0.001 (2)0.0065 (17)
C510.030 (2)0.033 (2)0.026 (2)0.0011 (17)0.0052 (19)0.0033 (18)
C520.029 (2)0.028 (2)0.029 (2)0.0021 (16)0.0013 (18)0.0018 (17)
Geometric parameters (Å, º) top
C1—O31.193 (5)C27—O91.192 (4)
C1—O11.393 (5)C27—O71.397 (4)
C1—C21.481 (6)C27—C281.474 (5)
C2—C31.383 (5)C28—C291.384 (5)
C2—C91.384 (5)C28—C351.385 (5)
C3—C41.375 (5)C29—C301.385 (5)
C3—H30.95C29—H290.95
C4—C71.380 (5)C30—C331.386 (5)
C4—C51.480 (5)C30—C311.479 (5)
C5—O61.188 (4)C31—O121.193 (4)
C5—O41.396 (4)C31—O101.396 (5)
C6—O51.188 (4)C32—O111.182 (4)
C6—O41.397 (4)C32—O101.400 (5)
C6—C71.474 (5)C32—C331.475 (5)
C7—C81.389 (5)C33—C341.376 (5)
C8—C91.385 (5)C34—C351.383 (5)
C8—H80.95C34—H340.95
C9—C101.480 (5)C35—C361.485 (5)
C10—O21.186 (4)C36—O81.191 (4)
C10—O11.395 (5)C36—O71.380 (5)
C11—C191.390 (5)C37—C451.381 (5)
C11—C151.420 (5)C37—C411.421 (5)
C11—C121.475 (5)C37—C381.476 (5)
C12—C201.374 (5)C38—C461.368 (5)
C12—C131.411 (5)C38—C391.416 (5)
C13—C141.403 (5)C39—C491.386 (5)
C13—C231.405 (5)C39—C401.419 (5)
C14—C261.378 (5)C40—C521.365 (5)
C14—C151.466 (5)C40—C411.472 (5)
C15—C161.391 (5)C41—C421.385 (5)
C16—C171.388 (5)C42—C431.387 (5)
C16—H160.95C42—H420.95
C17—C181.391 (5)C43—C441.384 (5)
C17—H170.95C43—H430.95
C18—C191.381 (5)C44—C451.381 (5)
C18—H180.95C44—H440.95
C19—H190.95C45—H450.95
C20—C211.419 (6)C46—C471.422 (6)
C20—H200.95C46—H460.95
C21—C221.368 (5)C47—C481.362 (5)
C21—H210.95C47—H470.95
C22—C231.416 (5)C48—C491.424 (5)
C22—H220.95C48—H480.95
C23—C241.407 (5)C49—C501.421 (5)
C24—C251.386 (6)C50—C511.374 (5)
C24—H240.95C50—H500.95
C25—C261.417 (6)C51—C521.413 (6)
C25—H250.95C51—H510.95
C26—H260.95C52—H520.95
O3—C1—O1121.1 (4)O9—C27—O7121.0 (3)
O3—C1—C2131.3 (4)O9—C27—C28131.4 (4)
O1—C1—C2107.6 (3)O7—C27—C28107.6 (3)
C3—C2—C9123.3 (4)C29—C28—C35123.0 (3)
C3—C2—C1129.4 (3)C29—C28—C27129.4 (4)
C9—C2—C1107.2 (3)C35—C28—C27107.6 (3)
C4—C3—C2114.1 (3)C28—C29—C30113.9 (3)
C4—C3—H3122.9C28—C29—H29123
C2—C3—H3122.9C30—C29—H29123
C3—C4—C7123.4 (3)C29—C30—C33123.0 (4)
C3—C4—C5129.0 (3)C29—C30—C31129.1 (3)
C7—C4—C5107.7 (3)C33—C30—C31107.8 (3)
O6—C5—O4121.4 (4)O12—C31—O10121.0 (4)
O6—C5—C4131.2 (4)O12—C31—C30131.7 (4)
O4—C5—C4107.5 (3)O10—C31—C30107.3 (3)
O5—C6—O4120.3 (4)O11—C32—O10121.6 (4)
O5—C6—C7132.1 (4)O11—C32—C33131.0 (4)
O4—C6—C7107.6 (3)O10—C32—C33107.4 (3)
C4—C7—C8122.4 (3)C34—C33—C30122.7 (4)
C4—C7—C6107.8 (3)C34—C33—C32129.5 (4)
C8—C7—C6129.8 (3)C30—C33—C32107.7 (3)
C9—C8—C7114.7 (3)C33—C34—C35114.5 (3)
C9—C8—H8122.7C33—C34—H34122.7
C7—C8—H8122.7C35—C34—H34122.7
C2—C9—C8122.1 (4)C34—C35—C28122.8 (3)
C2—C9—C10108.1 (3)C34—C35—C36129.9 (3)
C8—C9—C10129.8 (3)C28—C35—C36107.3 (3)
O2—C10—O1121.2 (4)O8—C36—O7122.2 (4)
O2—C10—C9131.8 (4)O8—C36—C35130.1 (4)
O1—C10—C9107.0 (3)O7—C36—C35107.7 (3)
C1—O1—C10110.0 (3)C36—O7—C27109.8 (3)
C5—O4—C6109.4 (3)C31—O10—C32109.8 (3)
C19—C11—C15120.5 (3)C45—C37—C41120.5 (3)
C19—C11—C12131.6 (4)C45—C37—C38131.8 (3)
C15—C11—C12107.9 (3)C41—C37—C38107.7 (3)
C20—C12—C13118.5 (4)C46—C38—C39118.1 (4)
C20—C12—C11135.5 (4)C46—C38—C37135.3 (4)
C13—C12—C11106.0 (3)C39—C38—C37106.6 (3)
C14—C13—C23124.5 (3)C49—C39—C38124.6 (3)
C14—C13—C12111.5 (3)C49—C39—C40124.3 (3)
C23—C13—C12124.0 (3)C38—C39—C40111.1 (3)
C26—C14—C13118.1 (4)C52—C40—C39117.9 (3)
C26—C14—C15135.4 (4)C52—C40—C41136.0 (4)
C13—C14—C15106.5 (3)C39—C40—C41106.2 (3)
C16—C15—C11120.0 (3)C42—C41—C37120.0 (3)
C16—C15—C14131.9 (4)C42—C41—C40131.5 (3)
C11—C15—C14108.1 (3)C37—C41—C40108.5 (3)
C17—C16—C15118.4 (4)C41—C42—C43118.7 (3)
C17—C16—H16120.8C41—C42—H42120.6
C15—C16—H16120.8C43—C42—H42120.6
C16—C17—C18121.5 (4)C44—C43—C42120.9 (4)
C16—C17—H17119.3C44—C43—H43119.6
C18—C17—H17119.3C42—C43—H43119.6
C19—C18—C17120.7 (4)C45—C44—C43121.3 (4)
C19—C18—H18119.6C45—C44—H44119.4
C17—C18—H18119.6C43—C44—H44119.4
C18—C19—C11118.8 (4)C37—C45—C44118.6 (3)
C18—C19—H19120.6C37—C45—H45120.7
C11—C19—H19120.6C44—C45—H45120.7
C12—C20—C21118.6 (4)C38—C46—C47118.5 (4)
C12—C20—H20120.7C38—C46—H46120.8
C21—C20—H20120.7C47—C46—H46120.8
C22—C21—C20122.7 (4)C48—C47—C46122.8 (4)
C22—C21—H21118.7C48—C47—H47118.6
C20—C21—H21118.7C46—C47—H47118.6
C21—C22—C23120.4 (4)C47—C48—C49120.1 (4)
C21—C22—H22119.8C47—C48—H48120
C23—C22—H22119.8C49—C48—H48120
C13—C23—C24116.1 (4)C39—C49—C50116.3 (3)
C13—C23—C22115.9 (3)C39—C49—C48115.9 (4)
C24—C23—C22128.0 (4)C50—C49—C48127.8 (4)
C25—C24—C23120.2 (4)C51—C50—C49119.7 (4)
C25—C24—H24119.9C51—C50—H50120.1
C23—C24—H24119.9C49—C50—H50120.1
C24—C25—C26122.2 (4)C50—C51—C52122.6 (4)
C24—C25—H25118.9C50—C51—H51118.7
C26—C25—H25118.9C52—C51—H51118.7
C14—C26—C25118.9 (4)C40—C52—C51119.1 (4)
C14—C26—H26120.6C40—C52—H52120.4
C25—C26—H26120.6C51—C52—H52120.4
O3—C1—C2—C30.5 (7)O9—C27—C28—C290.3 (6)
O1—C1—C2—C3179.7 (3)O7—C27—C28—C29179.9 (3)
O3—C1—C2—C9179.8 (4)O9—C27—C28—C35179.4 (4)
O1—C1—C2—C90.0 (4)O7—C27—C28—C350.4 (4)
C9—C2—C3—C40.7 (5)C35—C28—C29—C300.1 (5)
C1—C2—C3—C4179.7 (3)C27—C28—C29—C30179.6 (3)
C2—C3—C4—C70.2 (5)C28—C29—C30—C331.0 (5)
C2—C3—C4—C5179.4 (3)C28—C29—C30—C31179.5 (3)
C3—C4—C5—O61.8 (7)C29—C30—C31—O120.0 (7)
C7—C4—C5—O6178.9 (4)C33—C30—C31—O12179.5 (4)
C3—C4—C5—O4179.0 (3)C29—C30—C31—O10179.5 (3)
C7—C4—C5—O40.2 (4)C33—C30—C31—O100.0 (4)
C3—C4—C7—C80.2 (5)C29—C30—C33—C341.6 (5)
C5—C4—C7—C8179.1 (3)C31—C30—C33—C34178.8 (3)
C3—C4—C7—C6179.2 (3)C29—C30—C33—C32179.4 (3)
C5—C4—C7—C60.1 (4)C31—C30—C33—C320.2 (4)
O5—C6—C7—C4179.2 (4)O11—C32—C33—C342.4 (7)
O4—C6—C7—C40.1 (4)O10—C32—C33—C34178.6 (3)
O5—C6—C7—C81.9 (7)O11—C32—C33—C30178.7 (4)
O4—C6—C7—C8178.8 (3)O10—C32—C33—C300.3 (4)
C4—C7—C8—C90.3 (5)C30—C33—C34—C351.0 (5)
C6—C7—C8—C9179.0 (3)C32—C33—C34—C35179.7 (3)
C3—C2—C9—C80.7 (5)C33—C34—C35—C280.2 (5)
C1—C2—C9—C8179.6 (3)C33—C34—C35—C36179.6 (3)
C3—C2—C9—C10179.0 (3)C29—C28—C35—C340.7 (5)
C1—C2—C9—C100.7 (4)C27—C28—C35—C34179.0 (3)
C7—C8—C9—C20.2 (5)C29—C28—C35—C36179.8 (3)
C7—C8—C9—C10179.4 (3)C27—C28—C35—C360.5 (4)
C2—C9—C10—O2177.8 (4)C34—C35—C36—O82.1 (7)
C8—C9—C10—O21.9 (6)C28—C35—C36—O8178.4 (4)
C2—C9—C10—O11.2 (4)C34—C35—C36—O7179.1 (3)
C8—C9—C10—O1179.2 (3)C28—C35—C36—O70.4 (4)
O3—C1—O1—C10179.4 (3)O8—C36—O7—C27178.7 (3)
C2—C1—O1—C100.8 (4)C35—C36—O7—C270.2 (4)
O2—C10—O1—C1177.9 (3)O9—C27—O7—C36179.7 (3)
C9—C10—O1—C11.2 (4)C28—C27—O7—C360.1 (4)
O6—C5—O4—C6179.0 (3)O12—C31—O10—C32179.4 (3)
C4—C5—O4—C60.3 (4)C30—C31—O10—C320.2 (4)
O5—C6—O4—C5179.1 (3)O11—C32—O10—C31178.8 (3)
C7—C6—O4—C50.2 (4)C33—C32—O10—C310.3 (4)
C19—C11—C12—C203.0 (6)C45—C37—C38—C460.3 (7)
C15—C11—C12—C20177.4 (4)C41—C37—C38—C46179.6 (4)
C19—C11—C12—C13178.7 (3)C45—C37—C38—C39179.9 (3)
C15—C11—C12—C130.8 (4)C41—C37—C38—C390.2 (4)
C20—C12—C13—C14178.2 (3)C46—C38—C39—C491.4 (5)
C11—C12—C13—C140.4 (4)C37—C38—C39—C49178.8 (3)
C20—C12—C13—C230.4 (5)C46—C38—C39—C40179.7 (3)
C11—C12—C13—C23179.0 (3)C37—C38—C39—C400.1 (4)
C23—C13—C14—C261.5 (5)C49—C39—C40—C520.1 (5)
C12—C13—C14—C26179.9 (3)C38—C39—C40—C52178.8 (3)
C23—C13—C14—C15178.4 (3)C49—C39—C40—C41178.9 (3)
C12—C13—C14—C150.2 (4)C38—C39—C40—C410.0 (4)
C19—C11—C15—C161.1 (5)C45—C37—C41—C420.5 (5)
C12—C11—C15—C16179.3 (3)C38—C37—C41—C42179.5 (3)
C19—C11—C15—C14178.7 (3)C45—C37—C41—C40179.9 (3)
C12—C11—C15—C140.9 (4)C38—C37—C41—C400.1 (4)
C26—C14—C15—C160.3 (7)C52—C40—C41—C422.1 (7)
C13—C14—C15—C16179.6 (4)C39—C40—C41—C42179.5 (3)
C26—C14—C15—C11179.4 (4)C52—C40—C41—C37178.3 (4)
C13—C14—C15—C110.7 (4)C39—C40—C41—C370.1 (4)
C11—C15—C16—C170.5 (5)C37—C41—C42—C430.7 (5)
C14—C15—C16—C17179.2 (3)C40—C41—C42—C43179.8 (3)
C15—C16—C17—C180.3 (5)C41—C42—C43—C440.3 (5)
C16—C17—C18—C190.6 (5)C42—C43—C44—C450.4 (5)
C17—C18—C19—C110.1 (5)C41—C37—C45—C440.2 (5)
C15—C11—C19—C180.9 (5)C38—C37—C45—C44179.9 (3)
C12—C11—C19—C18179.6 (3)C43—C44—C45—C370.6 (5)
C13—C12—C20—C210.0 (5)C39—C38—C46—C471.2 (5)
C11—C12—C20—C21178.1 (3)C37—C38—C46—C47179.0 (3)
C12—C20—C21—C220.4 (5)C38—C46—C47—C480.4 (5)
C20—C21—C22—C230.5 (5)C46—C47—C48—C490.4 (5)
C14—C13—C23—C241.1 (5)C38—C39—C49—C50178.6 (3)
C12—C13—C23—C24179.5 (3)C40—C39—C49—C500.2 (5)
C14—C13—C23—C22178.1 (3)C38—C39—C49—C480.6 (5)
C12—C13—C23—C220.3 (5)C40—C39—C49—C48179.4 (3)
C21—C22—C23—C130.2 (5)C47—C48—C49—C390.3 (5)
C21—C22—C23—C24179.0 (3)C47—C48—C49—C50179.4 (3)
C13—C23—C24—C250.7 (5)C39—C49—C50—C510.4 (5)
C22—C23—C24—C25178.5 (3)C48—C49—C50—C51178.7 (3)
C23—C24—C25—C260.7 (6)C49—C50—C51—C521.0 (6)
C13—C14—C26—C251.4 (5)C39—C40—C52—C510.5 (5)
C15—C14—C26—C25178.5 (4)C41—C40—C52—C51177.8 (4)
C24—C25—C26—C141.1 (6)C50—C51—C52—C401.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.952.673.373 (5)132
C16—H16···O80.952.593.444 (5)150
C17—H17···O3ii0.952.653.576 (5)166
C18—H18···O1ii0.952.673.332 (5)127
C22—H22···O4iii0.952.593.481 (5)155
C25—H25···O11iii0.952.553.347 (5)142
C29—H29···O12iv0.952.713.370 (5)127
C42—H42···O60.952.493.413 (5)165
C43—H43···O11iii0.952.583.293 (5)132
C44—H44···O10iii0.952.523.428 (5)160
C45—H45···O12iv0.952.573.429 (5)150
C46—H46···O9v0.952.643.256 (5)123
C48—H48···O9vi0.952.553.473 (5)164
C50—H50···O7vi0.952.53.420 (5)164
C52—H52···O60.952.623.525 (5)159
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x, y1, z1; (iii) x, y, z+1; (iv) x+2, y+1, z+1/2; (v) x+2, y+1, z1/2; (vi) x, y+1, z1.
Pyromellitic acid dianhydride–9-methylanthracene (1/1) (III) top
Crystal data top
C10H2O6·C15H12Z = 2
Mr = 410.36F(000) = 424
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1012 (8) ÅCell parameters from 4805 reflections
b = 9.5674 (12) Åθ = 3.5–28.2°
c = 13.6147 (16) ŵ = 0.11 mm1
α = 99.109 (4)°T = 173 K
β = 99.941 (4)°Needle, red
γ = 92.219 (4)°0.19 × 0.06 × 0.05 mm
V = 897.53 (19) Å3
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.9, Tmax = 0.95k = 1111
20202 measured reflectionsl = 1616
3280 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.223 w = 1/[σ2(Fo2) + (0.1395P)2 + 0.5023P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.028
3280 reflectionsΔρmax = 0.67 e Å3
281 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.5511 (4)0.7888 (3)0.1593 (2)0.0168 (7)
C120.6280 (4)0.6829 (3)0.2138 (2)0.0186 (7)
C130.6688 (5)0.5463 (3)0.1648 (2)0.0238 (8)
H130.6457060.5257780.0930030.029*
C140.7394 (5)0.4460 (3)0.2181 (3)0.0267 (8)
H140.7647390.3565170.1832970.032*
C150.7760 (5)0.4733 (4)0.3256 (3)0.0293 (8)
H150.8238670.4017440.3623380.035*
C160.7426 (5)0.6011 (4)0.3757 (3)0.0255 (8)
H160.7692320.6186680.4475330.031*
C170.6678 (4)0.7105 (3)0.3225 (2)0.0193 (7)
C180.6349 (4)0.8429 (3)0.3731 (2)0.0213 (7)
H180.6637050.861580.4449560.026*
C190.5610 (4)0.9481 (3)0.3215 (2)0.0170 (7)
C200.5291 (5)1.0846 (3)0.3738 (3)0.0258 (8)
H200.5610011.1040840.4455550.031*
C210.4535 (5)1.1878 (4)0.3228 (3)0.0279 (8)
H210.4343051.2779530.3589150.033*
C220.4041 (5)1.1596 (3)0.2159 (3)0.0270 (8)
H220.348821.2304490.1806510.032*
C230.4348 (5)1.0322 (3)0.1632 (2)0.0220 (7)
H230.4020081.0162830.0914790.026*
C240.5155 (4)0.9210 (3)0.2130 (2)0.0173 (7)
C250.5090 (5)0.7591 (4)0.0452 (2)0.0279 (8)
H25A0.617120.7140470.0202210.042*
H25B0.4896420.8483190.0193450.042*
H25C0.3928890.6954350.0220680.042*
O10.0077 (3)1.1492 (2)0.41401 (18)0.0317 (6)
O20.0687 (3)1.1373 (2)0.24510 (17)0.0277 (6)
O30.1253 (3)1.0619 (3)0.07623 (18)0.0333 (7)
O40.2767 (4)0.5551 (3)0.42121 (19)0.0380 (7)
O50.2349 (3)0.4790 (2)0.25220 (18)0.0313 (6)
O60.1745 (4)0.4690 (3)0.08289 (19)0.0383 (7)
C10.0022 (5)1.0820 (3)0.3321 (2)0.0233 (8)
C20.0472 (4)0.9353 (3)0.2990 (2)0.0189 (7)
C30.1180 (4)0.8363 (3)0.3567 (2)0.0202 (7)
H30.1407180.854210.4285370.024*
C40.1534 (4)0.7083 (3)0.3013 (2)0.0198 (7)
C50.2282 (5)0.5797 (4)0.3378 (3)0.0274 (8)
C60.1740 (5)0.5354 (4)0.1647 (3)0.0267 (8)
C70.1187 (4)0.6823 (3)0.1960 (2)0.0204 (7)
C80.0455 (4)0.7800 (3)0.1375 (2)0.0196 (7)
H80.0207490.7613530.0656980.023*
C90.0114 (4)0.9083 (3)0.1936 (2)0.0180 (7)
C100.0672 (5)1.0373 (3)0.1585 (2)0.0236 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0162 (16)0.0139 (15)0.0196 (16)0.0028 (12)0.0030 (12)0.0017 (12)
C120.0155 (16)0.0157 (16)0.0255 (17)0.0010 (12)0.0053 (13)0.0052 (13)
C130.0258 (18)0.0182 (17)0.0272 (18)0.0042 (14)0.0053 (14)0.0017 (14)
C140.0250 (19)0.0147 (16)0.041 (2)0.0021 (14)0.0061 (15)0.0058 (15)
C150.0249 (19)0.0211 (18)0.046 (2)0.0026 (14)0.0057 (16)0.0178 (16)
C160.0244 (18)0.0283 (19)0.0266 (18)0.0021 (15)0.0042 (14)0.0137 (15)
C170.0153 (16)0.0209 (17)0.0241 (17)0.0007 (13)0.0078 (13)0.0063 (13)
C180.0172 (17)0.0283 (18)0.0187 (16)0.0007 (14)0.0041 (13)0.0038 (14)
C190.0134 (15)0.0162 (16)0.0215 (16)0.0007 (12)0.0047 (12)0.0017 (12)
C200.0194 (17)0.0196 (17)0.0364 (19)0.0005 (14)0.0107 (14)0.0069 (14)
C210.0229 (18)0.0176 (17)0.042 (2)0.0039 (14)0.0111 (15)0.0051 (15)
C220.0240 (18)0.0195 (17)0.038 (2)0.0031 (14)0.0062 (15)0.0046 (15)
C230.0222 (17)0.0198 (17)0.0247 (17)0.0056 (14)0.0018 (13)0.0072 (14)
C240.0149 (16)0.0191 (16)0.0195 (16)0.0012 (13)0.0055 (12)0.0061 (13)
C250.037 (2)0.0235 (17)0.0230 (18)0.0082 (15)0.0052 (15)0.0019 (14)
O10.0327 (14)0.0253 (13)0.0343 (15)0.0050 (11)0.0070 (11)0.0055 (11)
O20.0291 (13)0.0181 (12)0.0371 (14)0.0093 (10)0.0068 (10)0.0055 (10)
O30.0345 (15)0.0393 (15)0.0312 (14)0.0162 (12)0.0072 (11)0.0169 (11)
O40.0389 (16)0.0406 (15)0.0427 (16)0.0136 (12)0.0101 (12)0.0261 (13)
O50.0303 (14)0.0202 (12)0.0455 (15)0.0106 (10)0.0081 (11)0.0083 (11)
O60.0379 (15)0.0294 (14)0.0431 (16)0.0119 (12)0.0058 (12)0.0082 (12)
C10.0192 (17)0.0209 (17)0.0307 (19)0.0013 (14)0.0068 (14)0.0048 (15)
C20.0131 (16)0.0224 (17)0.0222 (17)0.0022 (13)0.0043 (12)0.0050 (13)
C30.0164 (16)0.0248 (17)0.0200 (16)0.0025 (13)0.0027 (12)0.0057 (13)
C40.0168 (16)0.0191 (16)0.0250 (17)0.0020 (13)0.0051 (13)0.0069 (13)
C50.0216 (18)0.0253 (18)0.038 (2)0.0055 (14)0.0085 (15)0.0107 (16)
C60.0221 (18)0.0216 (18)0.037 (2)0.0080 (14)0.0069 (15)0.0038 (16)
C70.0113 (15)0.0194 (16)0.0285 (18)0.0004 (12)0.0028 (13)0.0003 (13)
C80.0165 (16)0.0207 (17)0.0211 (16)0.0010 (13)0.0031 (12)0.0025 (13)
C90.0132 (15)0.0208 (17)0.0220 (16)0.0039 (13)0.0046 (12)0.0077 (13)
C100.0233 (18)0.0220 (18)0.0277 (18)0.0074 (14)0.0079 (14)0.0065 (15)
Geometric parameters (Å, º) top
C11—C241.411 (4)C23—H230.95
C11—C121.420 (4)C25—H25A0.98
C11—C251.509 (4)C25—H25B0.98
C12—C131.434 (4)C25—H25C0.98
C12—C171.437 (4)O1—C11.186 (4)
C13—C141.353 (4)O2—C11.389 (4)
C13—H130.95O2—C101.398 (4)
C14—C151.422 (5)O3—C101.188 (4)
C14—H140.95O4—C51.191 (4)
C15—C161.353 (5)O5—C61.393 (4)
C15—H150.95O5—C51.399 (4)
C16—C171.432 (4)O6—C61.193 (4)
C16—H160.95C1—C21.479 (4)
C17—C181.392 (4)C2—C31.380 (4)
C18—C191.386 (4)C2—C91.394 (4)
C18—H180.95C3—C41.389 (4)
C19—C201.432 (4)C3—H30.95
C19—C241.435 (4)C4—C71.392 (4)
C20—C211.369 (5)C4—C51.482 (4)
C20—H200.95C6—C71.491 (4)
C21—C221.417 (5)C7—C81.382 (4)
C21—H210.95C8—C91.392 (4)
C22—C231.358 (4)C8—H80.95
C22—H220.95C9—C101.486 (4)
C23—C241.437 (4)
C24—C11—C12119.3 (3)C11—C24—C23122.5 (3)
C24—C11—C25120.9 (3)C19—C24—C23117.6 (3)
C12—C11—C25119.8 (3)C11—C25—H25A109.5
C11—C12—C13122.6 (3)C11—C25—H25B109.5
C11—C12—C17120.0 (3)H25A—C25—H25B109.5
C13—C12—C17117.3 (3)C11—C25—H25C109.5
C14—C13—C12121.8 (3)H25A—C25—H25C109.5
C14—C13—H13119.1H25B—C25—H25C109.5
C12—C13—H13119.1C1—O2—C10110.9 (2)
C13—C14—C15120.6 (3)C6—O5—C5110.2 (2)
C13—C14—H14119.7O1—C1—O2121.9 (3)
C15—C14—H14119.7O1—C1—C2131.2 (3)
C16—C15—C14120.1 (3)O2—C1—C2106.9 (3)
C16—C15—H15120C3—C2—C9122.7 (3)
C14—C15—H15120C3—C2—C1129.2 (3)
C15—C16—C17121.3 (3)C9—C2—C1108.1 (3)
C15—C16—H16119.4C2—C3—C4114.6 (3)
C17—C16—H16119.4C2—C3—H3122.7
C18—C17—C16121.8 (3)C4—C3—H3122.7
C18—C17—C12119.3 (3)C3—C4—C7122.4 (3)
C16—C17—C12118.9 (3)C3—C4—C5129.1 (3)
C19—C18—C17121.7 (3)C7—C4—C5108.4 (3)
C19—C18—H18119.2O4—C5—O5121.8 (3)
C17—C18—H18119.2O4—C5—C4131.3 (3)
C18—C19—C20121.5 (3)O5—C5—C4106.9 (3)
C18—C19—C24119.8 (3)O6—C6—O5121.4 (3)
C20—C19—C24118.7 (3)O6—C6—C7130.9 (3)
C21—C20—C19121.4 (3)O5—C6—C7107.7 (3)
C21—C20—H20119.3C8—C7—C4123.4 (3)
C19—C20—H20119.3C8—C7—C6129.8 (3)
C20—C21—C22119.7 (3)C4—C7—C6106.7 (3)
C20—C21—H21120.1C7—C8—C9113.8 (3)
C22—C21—H21120.1C7—C8—H8123.1
C23—C22—C21120.7 (3)C9—C8—H8123.1
C23—C22—H22119.7C8—C9—C2123.0 (3)
C21—C22—H22119.7C8—C9—C10129.7 (3)
C22—C23—C24121.8 (3)C2—C9—C10107.3 (3)
C22—C23—H23119.1O3—C10—O2121.5 (3)
C24—C23—H23119.1O3—C10—C9131.7 (3)
C11—C24—C19119.9 (3)O2—C10—C9106.8 (3)
C24—C11—C12—C13179.8 (3)O2—C1—C2—C3179.6 (3)
C25—C11—C12—C130.1 (5)O1—C1—C2—C9179.0 (3)
C24—C11—C12—C170.3 (4)O2—C1—C2—C90.8 (3)
C25—C11—C12—C17179.8 (3)C9—C2—C3—C40.9 (5)
C11—C12—C13—C14179.0 (3)C1—C2—C3—C4178.6 (3)
C17—C12—C13—C140.9 (5)C2—C3—C4—C70.4 (5)
C12—C13—C14—C150.1 (5)C2—C3—C4—C5179.8 (3)
C13—C14—C15—C160.9 (5)C6—O5—C5—O4178.9 (3)
C14—C15—C16—C170.9 (5)C6—O5—C5—C41.3 (4)
C15—C16—C17—C18179.3 (3)C3—C4—C5—O40.7 (6)
C15—C16—C17—C120.0 (5)C7—C4—C5—O4179.8 (4)
C11—C12—C17—C181.7 (4)C3—C4—C5—O5179.1 (3)
C13—C12—C17—C18178.4 (3)C7—C4—C5—O50.4 (4)
C11—C12—C17—C16179.0 (3)C5—O5—C6—O6177.4 (3)
C13—C12—C17—C160.9 (4)C5—O5—C6—C71.6 (4)
C16—C17—C18—C19179.5 (3)C3—C4—C7—C80.4 (5)
C12—C17—C18—C191.3 (5)C5—C4—C7—C8179.1 (3)
C17—C18—C19—C20179.4 (3)C3—C4—C7—C6179.9 (3)
C17—C18—C19—C240.5 (5)C5—C4—C7—C60.5 (3)
C18—C19—C20—C21179.0 (3)O6—C6—C7—C82.8 (6)
C24—C19—C20—C211.1 (5)O5—C6—C7—C8178.3 (3)
C19—C20—C21—C220.5 (5)O6—C6—C7—C4177.6 (4)
C20—C21—C22—C231.5 (5)O5—C6—C7—C41.3 (4)
C21—C22—C23—C240.8 (5)C4—C7—C8—C90.7 (5)
C12—C11—C24—C191.4 (4)C6—C7—C8—C9179.7 (3)
C25—C11—C24—C19178.5 (3)C7—C8—C9—C20.2 (4)
C12—C11—C24—C23178.9 (3)C7—C8—C9—C10179.5 (3)
C25—C11—C24—C231.3 (5)C3—C2—C9—C80.6 (5)
C18—C19—C24—C111.8 (4)C1—C2—C9—C8179.0 (3)
C20—C19—C24—C11178.0 (3)C3—C2—C9—C10178.8 (3)
C18—C19—C24—C23178.4 (3)C1—C2—C9—C101.7 (3)
C20—C19—C24—C231.7 (4)C1—O2—C10—O3177.3 (3)
C22—C23—C24—C11179.0 (3)C1—O2—C10—C91.4 (3)
C22—C23—C24—C190.8 (5)C8—C9—C10—O32.7 (6)
C10—O2—C1—O1179.7 (3)C2—C9—C10—O3176.6 (4)
C10—O2—C1—C20.4 (3)C8—C9—C10—O2178.8 (3)
O1—C1—C2—C30.5 (6)C2—C9—C10—O21.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.553.376 (4)145
C14—H14···O2ii0.952.633.347 (4)133
C16—H16···O4iii0.952.683.365 (4)130
C22—H22···O5iv0.952.643.323 (4)130
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z.
Pyromellitic acid dianhydride–ethyl anthracene-9-carboxylate (1/2) (IV) top
Crystal data top
C17H12O3·0.5C10H2O6F(000) = 772
Mr = 373.32Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2311 reflections
a = 9.1949 (7) Åθ = 2.3–26.6°
b = 17.9751 (14) ŵ = 0.11 mm1
c = 10.9716 (10) ÅT = 173 K
β = 112.829 (2)°Plate, red
V = 1671.3 (2) Å30.55 × 0.1 × 0.06 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.9, Tmax = 0.95k = 2321
13071 measured reflectionsl = 1414
4035 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.0752P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4035 reflectionsΔρmax = 0.30 e Å3
254 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63812 (17)0.54682 (8)0.55902 (15)0.0264 (3)
H10.7286310.577490.5976380.032*
C20.49342 (18)0.57369 (8)0.47345 (15)0.0251 (3)
C30.44815 (19)0.65055 (9)0.42556 (16)0.0306 (4)
C40.22896 (19)0.57678 (9)0.33296 (15)0.0302 (4)
C50.36097 (17)0.52887 (8)0.41673 (14)0.0243 (3)
O10.28769 (13)0.64923 (6)0.34113 (11)0.0342 (3)
O20.52155 (15)0.70646 (6)0.44651 (13)0.0415 (3)
O30.09445 (13)0.56283 (7)0.26877 (12)0.0417 (3)
C110.55637 (17)0.42627 (8)0.88576 (14)0.0238 (3)
C120.60955 (18)0.35455 (9)0.94068 (15)0.0296 (4)
H120.5396280.3133250.9136220.035*
C130.75932 (19)0.34440 (9)1.03144 (16)0.0342 (4)
H130.7914730.296261.0676140.041*
C140.86796 (19)0.40408 (10)1.07291 (16)0.0357 (4)
H140.9719590.3958981.1361310.043*
C150.82309 (18)0.47274 (10)1.02220 (15)0.0322 (4)
H150.8964930.5125951.0505270.039*
C160.66755 (17)0.48668 (8)0.92684 (14)0.0251 (3)
C170.62178 (18)0.55718 (8)0.87435 (15)0.0278 (3)
H170.6965660.5965230.9013150.033*
C180.46992 (17)0.57207 (8)0.78354 (14)0.0248 (3)
C190.4253 (2)0.64542 (9)0.73299 (16)0.0319 (4)
H190.5003850.6845920.7609190.038*
C200.2764 (2)0.65969 (9)0.64539 (16)0.0339 (4)
H200.2482880.7086950.6121950.041*
C210.1630 (2)0.60214 (9)0.60322 (16)0.0323 (4)
H210.0592090.6129360.5420450.039*
C220.20050 (17)0.53167 (9)0.64893 (15)0.0271 (3)
H220.1221120.4939540.6198040.032*
C230.35631 (16)0.51312 (8)0.74042 (14)0.0223 (3)
C240.40167 (16)0.44101 (8)0.79185 (14)0.0230 (3)
C250.28407 (17)0.38021 (8)0.74148 (15)0.0250 (3)
C260.18246 (19)0.27453 (9)0.81897 (17)0.0346 (4)
C270.0880 (2)0.26785 (10)0.9011 (2)0.0451 (5)
H27A0.0238880.2225390.87660.068*
H27B0.0187930.3112580.8864880.068*
H27C0.1587970.2653380.994630.068*
O40.21058 (13)0.36619 (6)0.62747 (11)0.0335 (3)
O50.26000 (12)0.34368 (6)0.84255 (11)0.0313 (3)
O60.20212 (17)0.22943 (7)0.74753 (14)0.0532 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (8)0.0265 (8)0.0271 (8)0.0014 (6)0.0121 (6)0.0029 (6)
C20.0308 (8)0.0239 (8)0.0242 (7)0.0019 (6)0.0145 (6)0.0001 (6)
C30.0382 (9)0.0265 (9)0.0318 (8)0.0056 (7)0.0185 (7)0.0034 (7)
C40.0342 (9)0.0329 (9)0.0239 (8)0.0073 (7)0.0116 (7)0.0017 (7)
C50.0256 (8)0.0275 (8)0.0213 (7)0.0036 (6)0.0108 (6)0.0006 (6)
O10.0379 (7)0.0295 (6)0.0346 (6)0.0106 (5)0.0136 (5)0.0061 (5)
O20.0503 (7)0.0221 (6)0.0567 (8)0.0005 (5)0.0259 (6)0.0035 (5)
O30.0299 (6)0.0495 (8)0.0363 (7)0.0073 (6)0.0027 (5)0.0015 (6)
C110.0262 (8)0.0277 (8)0.0206 (7)0.0000 (6)0.0125 (6)0.0014 (6)
C120.0322 (8)0.0274 (9)0.0297 (8)0.0015 (7)0.0127 (7)0.0026 (6)
C130.0383 (9)0.0332 (9)0.0318 (9)0.0100 (8)0.0144 (7)0.0045 (7)
C140.0275 (8)0.0492 (11)0.0265 (8)0.0072 (8)0.0061 (7)0.0015 (7)
C150.0258 (8)0.0411 (10)0.0284 (8)0.0051 (7)0.0091 (7)0.0076 (7)
C160.0264 (8)0.0289 (8)0.0223 (7)0.0021 (6)0.0119 (6)0.0040 (6)
C170.0288 (8)0.0273 (9)0.0290 (8)0.0079 (7)0.0132 (7)0.0058 (6)
C180.0313 (8)0.0230 (8)0.0242 (7)0.0002 (6)0.0156 (6)0.0032 (6)
C190.0414 (9)0.0232 (8)0.0372 (9)0.0030 (7)0.0218 (8)0.0019 (7)
C200.0465 (10)0.0250 (8)0.0367 (9)0.0085 (8)0.0232 (8)0.0056 (7)
C210.0346 (9)0.0344 (9)0.0289 (8)0.0098 (7)0.0134 (7)0.0014 (7)
C220.0266 (8)0.0275 (8)0.0276 (8)0.0017 (6)0.0112 (6)0.0021 (6)
C230.0256 (7)0.0240 (8)0.0204 (7)0.0013 (6)0.0123 (6)0.0012 (6)
C240.0242 (7)0.0243 (8)0.0228 (7)0.0019 (6)0.0118 (6)0.0022 (6)
C250.0241 (7)0.0227 (8)0.0289 (8)0.0002 (6)0.0110 (6)0.0003 (6)
C260.0334 (9)0.0278 (9)0.0362 (9)0.0067 (7)0.0065 (7)0.0033 (7)
C270.0367 (10)0.0422 (10)0.0581 (12)0.0048 (8)0.0203 (9)0.0160 (9)
O40.0363 (6)0.0304 (6)0.0289 (6)0.0059 (5)0.0072 (5)0.0030 (5)
O50.0362 (6)0.0282 (6)0.0317 (6)0.0117 (5)0.0158 (5)0.0025 (5)
O60.0713 (10)0.0330 (7)0.0551 (9)0.0128 (7)0.0244 (8)0.0085 (6)
Geometric parameters (Å, º) top
C1—C21.384 (2)C17—C181.391 (2)
C1—C5i1.386 (2)C17—H170.95
C1—H10.95C18—C191.428 (2)
C2—C51.390 (2)C18—C231.433 (2)
C2—C31.479 (2)C19—C201.357 (2)
C3—O21.1824 (19)C19—H190.95
C3—O11.4054 (19)C20—C211.413 (2)
C4—O31.1885 (19)C20—H200.95
C4—O11.399 (2)C21—C221.357 (2)
C4—C51.481 (2)C21—H210.95
C11—C241.420 (2)C22—C231.434 (2)
C11—C121.427 (2)C22—H220.95
C11—C161.439 (2)C23—C241.411 (2)
C12—C131.363 (2)C24—C251.485 (2)
C12—H120.95C25—O41.1954 (18)
C13—C141.415 (2)C25—O51.3786 (18)
C13—H130.95C26—O61.189 (2)
C14—C151.351 (2)C26—O51.4061 (19)
C14—H140.95C26—C271.479 (2)
C15—C161.429 (2)C27—H27A0.98
C15—H150.95C27—H27B0.98
C16—C171.388 (2)C27—H27C0.98
C2—C1—C5i113.92 (14)C18—C17—H17119
C2—C1—H1123C17—C18—C19120.89 (14)
C5i—C1—H1123C17—C18—C23119.65 (13)
C1—C2—C5123.11 (14)C19—C18—C23119.45 (14)
C1—C2—C3129.11 (15)C20—C19—C18120.57 (15)
C5—C2—C3107.78 (13)C20—C19—H19119.7
O2—C3—O1121.11 (14)C18—C19—H19119.7
O2—C3—C2131.61 (16)C19—C20—C21120.45 (15)
O1—C3—C2107.28 (13)C19—C20—H20119.8
O3—C4—O1121.42 (14)C21—C20—H20119.8
O3—C4—C5131.21 (16)C22—C21—C20120.88 (15)
O1—C4—C5107.36 (13)C22—C21—H21119.6
C1i—C5—C2122.97 (14)C20—C21—H21119.6
C1i—C5—C4129.23 (14)C21—C22—C23121.16 (15)
C2—C5—C4107.80 (14)C21—C22—H22119.4
C4—O1—C3109.78 (11)C23—C22—H22119.4
C24—C11—C12123.88 (14)C24—C23—C18118.87 (13)
C24—C11—C16118.45 (13)C24—C23—C22123.63 (13)
C12—C11—C16117.66 (13)C18—C23—C22117.48 (13)
C13—C12—C11120.88 (15)C23—C24—C11121.26 (13)
C13—C12—H12119.6C23—C24—C25117.89 (13)
C11—C12—H12119.6C11—C24—C25120.82 (13)
C12—C13—C14121.36 (15)O4—C25—O5122.63 (14)
C12—C13—H13119.3O4—C25—C24125.38 (14)
C14—C13—H13119.3O5—C25—C24111.86 (12)
C15—C14—C13119.70 (15)O6—C26—O5121.88 (16)
C15—C14—H14120.1O6—C26—C27128.43 (16)
C13—C14—H14120.1O5—C26—C27109.59 (15)
C14—C15—C16121.38 (15)C26—C27—H27A109.5
C14—C15—H15119.3C26—C27—H27B109.5
C16—C15—H15119.3H27A—C27—H27B109.5
C17—C16—C15121.34 (14)C26—C27—H27C109.5
C17—C16—C11119.67 (13)H27A—C27—H27C109.5
C15—C16—C11118.99 (14)H27B—C27—H27C109.5
C16—C17—C18122.10 (14)C25—O5—C26120.09 (12)
C16—C17—H17119
C5i—C1—C2—C50.1 (2)C11—C16—C17—C180.8 (2)
C5i—C1—C2—C3179.81 (14)C16—C17—C18—C19178.85 (14)
C1—C2—C3—O20.7 (3)C16—C17—C18—C230.9 (2)
C5—C2—C3—O2179.41 (17)C17—C18—C19—C20179.35 (15)
C1—C2—C3—O1179.62 (14)C23—C18—C19—C200.4 (2)
C5—C2—C3—O10.30 (16)C18—C19—C20—C210.3 (2)
C1—C2—C5—C1i0.1 (3)C19—C20—C21—C220.2 (2)
C3—C2—C5—C1i179.82 (13)C20—C21—C22—C230.5 (2)
C1—C2—C5—C4179.33 (14)C17—C18—C23—C240.2 (2)
C3—C2—C5—C40.59 (16)C19—C18—C23—C24179.56 (13)
O3—C4—C5—C1i1.0 (3)C17—C18—C23—C22178.68 (13)
O1—C4—C5—C1i179.84 (15)C19—C18—C23—C221.0 (2)
O3—C4—C5—C2178.20 (17)C21—C22—C23—C24179.59 (14)
O1—C4—C5—C20.68 (16)C21—C22—C23—C181.1 (2)
O3—C4—O1—C3178.52 (15)C18—C23—C24—C110.6 (2)
C5—C4—O1—C30.50 (15)C22—C23—C24—C11177.83 (13)
O2—C3—O1—C4179.89 (15)C18—C23—C24—C25177.47 (12)
C2—C3—O1—C40.14 (16)C22—C23—C24—C254.1 (2)
C24—C11—C12—C13179.39 (14)C12—C11—C24—C23179.58 (13)
C16—C11—C12—C131.7 (2)C16—C11—C24—C230.7 (2)
C11—C12—C13—C141.0 (2)C12—C11—C24—C251.6 (2)
C12—C13—C14—C150.2 (2)C16—C11—C24—C25177.35 (13)
C13—C14—C15—C160.1 (2)C23—C24—C25—O450.9 (2)
C14—C15—C16—C17179.71 (15)C11—C24—C25—O4127.22 (17)
C14—C15—C16—C110.8 (2)C23—C24—C25—O5125.00 (14)
C24—C11—C16—C170.0 (2)C11—C24—C25—O556.92 (17)
C12—C11—C16—C17178.95 (13)O4—C25—O5—C2618.8 (2)
C24—C11—C16—C15179.41 (13)C24—C25—O5—C26165.19 (13)
C12—C11—C16—C151.6 (2)O6—C26—O5—C2537.5 (2)
C15—C16—C17—C18178.63 (14)C27—C26—O5—C25146.03 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2ii0.952.653.351 (2)131
C15—H15···O3iii0.952.553.306 (2)137
C21—H21···O4iv0.952.483.433 (2)176
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z+1; (iv) x, y+1, z+1.
Centroid distances (Å) between the pmda and the ring centroids (Cg) of the aromatic polycyclics top
StructureAcceptor CgDonor CgCg···CgSymmetry Operator
(I)C1–O1 (Cg3)C4–C6 (Cg6)3.3724 (2)-x + 1/2, y - 1/2, -z
(II)O1–C10 (Cg5)C11–C19 (Cg14)3.3193 (5)x, y, z
(III)C2–C9 (Cg3)C11–C24 (Cg10)3.2994 (4)x - 1, y, z
(IV)C1–O1 (Cg9)C11–C24 (Cg3)3.3280 (3)1 - x, -y, 1 - z
Proportion (%) of intermolecular contacts between donor and acceptor (pmda) molecules in the Hirshfeld fingerprint plots top
StructureC···CH···HC···HO···OO···HC···O
(pmda)0.28.01.029.917.943.0
(I)19.86.63.99.558.41.7
(IIA)21.08.65.45.552.86.6
(IIB)20.611.76.27.148.55.9
(III)20.29.54.14.256.85.2
(IV)20.910.82.74.453.97.3
 

Funding information

This material is based upon work supported financially by the University of the Witwatersrand Friedel Sellschop Grant and the Mol­ecular Sciences Institute. TNH thanks the University of the Witwatersrand Research Office for a postdoctoral fellowship. The National Research Foundation National Equipment Programme (UID: 78572) is thanked for financing the purchase of the single-crystal diffractometer. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

References

First citationAakeröy, C. B. & Beatty, A. M. (2001). Aust. J. Chem. 54, 409–421.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. & Herbstein, F. H. (1965). J. Phys. Chem. 69, 2160–2176.  CrossRef Google Scholar
First citationBoeyens, J. C. A. & Levendis, D. C. (1986). J. Chem. Phys. 84, 3986–3992.  CrossRef Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugarovskaya, I. V., Vozzhennikov, V. M., Krasavin, V. P. & Kotov, B. V. (1982). Cryst. Struct. Commun. 11, 501–504.  Google Scholar
First citationBulgarovskaya, I. V., Belsky, V. K. & Vozzhennikov, V. M. (1987a). Acta Cryst. C43, 768–770.  CrossRef IUCr Journals Google Scholar
First citationBulgarovskaya, I. V., Zavodnik, V. E., Bel'skii, V. K. & Vozzhennikov, V. M. (1989). Kristallografiya, 34, 345–352.  Google Scholar
First citationBulgarovskaya, I. V., Zavodnik, V. E. & Vozzhennikov, V. M. (1987b). Acta Cryst. C43, 766–768.  CrossRef IUCr Journals Google Scholar
First citationChen, P. Y., Zhang, L., Zhu, S. G., Cheng, G. B. & Li, N. R. (2017). J. Mol. Struct. 1128, 629–635.  Web of Science CrossRef CAS Google Scholar
First citationDzyabchenko, A. V., Bulgarovskaya, I. V. & Zavodnik, V. E. (1994). Kristallografiya, 39, 434–438.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerbstein, F. H. (2005). Crystalline Molecular Complexes and Compounds: Structures and Principles. Oxford University Press.  Google Scholar
First citationHerbstein, F. H., Marsh, R. E. & Samson, S. (1994). Acta Cryst. B50, 174–181.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHill, T., Levendis, D. C. & Lemmerer, A. (2018a). Acta Cryst. E74, 113–118.  CrossRef IUCr Journals Google Scholar
First citationHill, T., Levendis, D. C. & Lemmerer, A. (2018b). J. Mol. Struct. 1168, 28–38.  CrossRef Google Scholar
First citationIsaac, R., Goetz, K. P., Roberts, D., Jurchescu, O. D. & McNeil, L. E. (2018). AIP ADVANCES 8, 025117-1–6.  CrossRef Google Scholar
First citationKarl, N., Binder, W., Kollat, P. & Stezowski, J. J. (1982b). Acta Cryst. B38, 2919–2921.  CrossRef IUCr Journals Google Scholar
First citationKarl, N., Ketterer, W. & Stezowski, J. J. (1982a). Acta Cryst. B38, 2917–2919.  CrossRef IUCr Journals Google Scholar
First citationKato, K., Hagi, S., Hinoshita, M., Shikoh, E. & Teki, Y. (2017). Phys. Chem. Chem. Phys. 19, 18845–18853.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKurebayashi, H., Haino, T., Usui, S. & Fukazawa, Y. (2001). Tetrahedron, 57, 8667–8674.  Web of Science CrossRef CAS Google Scholar
First citationLe Bars-Combe, M., Chion, B. & Lajzérowicz-Bonneteau, J. (1979). Acta Cryst. B35, 913–920.  CrossRef IUCr Journals Google Scholar
First citationLe Bars-Combe, M. & Lajzérowicz-Bonneteau, J. (1981). Acta Cryst. B37, 1707–1712.  CrossRef IUCr Journals Google Scholar
First citationMacfarlane, R. M. & Ushioda, S. (1977). J. Chem. Phys. 67, 3214–3220.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaul, M., Chakraborty, S. & Desiraju, G. R. (2018). J. Am. Chem. Soc. 140, 2309–2315.  Web of Science CrossRef PubMed Google Scholar
First citationRobertson, B. E. & Stezowski, J. J. (1978). Acta Cryst. B34, 3005–3011.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationStezowski, J. J., Stigler, R.-D. & Karl, N. (1986). J. Chem. Phys. 84, 5162–5170.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds