research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The enrichment ratio of atomic contacts in the crystal structure of isomeric, triply protonated, 4′-functionalized terpyridine cations with [ZnCl4]2− as counter-ion

CROSSMARK_Color_square_no_text.svg

aDepartamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile, bDepartamento de Química Inorgánica, Analítica y Química, Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, and cGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: juan.granifo@ufrontera.cl, baggio@tandar.cnea.gov.ar

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 31 October 2018; accepted 15 November 2018; online 30 November 2018)

We report herein the synthesis, crystallographic analysis and a study of the non-covalent inter­actions observed in the new 4′-substituted terpyridine-based derivative bis­[4′-(isoquinolin-2-ium-4-yl)-4,2′:6′,4′′-terpyridine-1,1′′-diium] tris-[tetra­chlorido­zincate(II)], (C24H19N4)2[ZnCl4]3 or (44TPH3)2[ZnCl4]3, where (44TPH3)3+ is the triply protonated cation 4′-(isoquinolinium-4-yl)-4,2′:6′,4′′ terpyridinium. The compound is similar in its formulation to the recently reported 2,2′:6′,2′′ terpyridinium analogue {bis­[4′-(isoquinolin-2-ium-4-yl)-2,2′:6′,2′′-terpyridine-1,1′′-diium] tris­[tetra­chlorido­zincate(II)] monohydrate; Granifo et al. (2017[Granifo, J., Suárez, S., Boubeta, F. & Baggio, R. (2017). Acta Cryst. C73, 1121-1130.]). Acta Cryst. C73, 1121–1130}, although rather different and much simpler in its structural features, mainly in the number and type of non-covalent inter­actions present, as well as in the supra­molecular structure they define.

1. Chemical context

We have recently reported the use of the 4′-pyridyl-substituted terpyridine 4′-(isoquinolin-4-yl)-2,2′:6′,2′′-terpyridine (22TP) in the synthesis of the tetra­chlorido­zincate salt (22TPH3)2[ZnCl4]3·H2O (II) containing the triply protonated cation (22TPH3)3+ (Granifo et al., 2017[Granifo, J., Suárez, S., Boubeta, F. & Baggio, R. (2017). Acta Cryst. C73, 1121-1130.]). The structural study of (II) demonstrates the concerted way in which a series of non-covalent inter­actions, viz. hydrogen bonding, anion–π and ππ stacking, participate in the crystal packing. The repulsive nature of the ππ inter­action between the triply protonated (22TPH3)3+ cations is counteracted by the [ZnCl4]2− anions through abundant peripheral hydrogen bonding and anion–π inter­actions to the aromatic rings. A useful tool to highlight those contacts, which are statistically favored in a given structure, is the enrichment ratios approach (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]) based on the Hirshfeld surface, and whose application in the present case showed unexpectedly large enrichment ratios for the cationic C⋯N contacts in (II) as compared to those in the unprotonated base 22TP. This result was rationalized through the atomic and ring natural bond order charges (NBO), calculated by Maclagan and co-workers (Maclagan et al., 2015[Maclagan, R. G. A. R., Gronert, S. & Meot-Ner (Mautner), M. (2015). J. Phys. Chem. A, 119, 127-139.]) for a series of aromatic N-heterocyclic compounds. Concisely, in a protonated species, the hydrogen and nitro­gen in the N—H group carry an almost constant charge q, with an average of q(H) = 0.43 ± 0.01 and q(N) = −0.46 ± 0.1. The other atoms in the aromatic rings, C and H, receive the remaining positive charge, i.e. 0.57 ± 0.01 unit charge. A further remarkable result is that the q(N) values appear almost invariant when going from the neutral to the proton­ated base. Now, given that protonation leads to an increase on the positive charge in the C atoms and that the negative charge of the N atoms is almost invariant, a natural conclusion is that this ought to enrich the cationic C⋯N inter­actions. In an attempt to explore the effect of the position of the protonated N atoms on this type of inter­action, we decided to protonate the already known isomeric base 4′-(isoquinolin-4-yl)-4,2′:6′,4′′-terpyridine (44TP) (Granifo et al., 2015[Granifo, J., Westermeyer, M., Riquelme, M., Gaviño, R., Suárez, S., Halac, E. B. & Baggio, R. (2015). Acta Cryst. B71, 805-813.]) and to study the crystal structure of the new related compound (44TPH3)2[ZnCl4]3 (I)[link].

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecular geometry as well as atom and ring labelling for (I)[link]. There is one (44TPH3)3+ independent cationic moiety, protonated at N1 and N3 in the lateral pyridine rings (hereinafter py) and at N4 in the iso­quinoline group (hereinafter, isq). The three negative charges required for charge balance are provided by one full independent [ZnCl4]2− (tcz) anion in general position and a second one sitting on a twofold axis (thus providing only half of the charge). The general formulation is then (44TPH3)2[ZnCl4]3, similar to the 2,2′:6′,2′′ analogue (II) but without water as solvent. In this respect, the analogy goes a bit further: the pseudosymmetry observed in (II), which linked both (otherwise independent) (44TPH3)3+ cations becomes genuine symmetry in (I)[link], expressed through the crystallographic twofold operation through the tcz group at Zn2.

[Figure 1]
Figure 1
Mol­ecular view of the asymmetric unit in (I)[link], with displacement ellipsoids drawn at the 50% probability level. Atom Zn2 lays onto a twofold symmetry axis. Symmetry code: (i) −x + 1, y, −z + [3\over2.]

Bond distances and angles are unremarkable in the (44TPH3)3+ moiety, with only minor departures from commonly accepted values in general, and from those in (II) in particular. The most relevant features come from the dihedral angles involving the inter­nal planar groups, and it is here where the mol­ecular differences with (II) are more apparent. The terpyridine nucleus presents significant out-of-plane rotations of the lateral pyridinium groups with regard to the central py one, and similarly with the pendant isq rings [dihedral angles: 2, 1 = 15.87 (16)°; 2, 3 = 25.80 (16)°; 2, 4 = 48.49 (15)°, plane labels taken from their N heteroatoms]. This large rotation of the isq group is required to avoid `bumping' between the otherwise colliding atoms H7 and H23. The experimental d(H7⋯H23) distance is 2.36 Å, while in a perfectly planar disposition this value would collapse down to ≃ 0.80 Å. This `anti-bumping' argument appears to be reinforced by the difference between the angles C16, [C24—C16—C8 = 124.7 (3)° > C17—C16—C8 = 116.2 (3)°], suggesting some kind of an H7⋯H23 repulsion.

3. Supra­molecular features

As in (II), the most conspicuous aspect of the structure of (I)[link] is its packing scheme, derived from a number of different inter­molecular inter­actions, presented in Table 1[link] (N/C—H⋯Cl), Table 2[link] (ππ) and Table 3[link] (Zn—Cl⋯π/π+), which for convenience of description have been assigned an individual `code' or sequence number (from #1 to #17). Among these, hydrogen bonds are the most abundant and are clearly divided into two groups: stronger N—H⋯Cl (#1 to #5) and weaker C—H⋯Cl bonds (#6 to #10). Inter­actions #1 to #6 serve to link the (44TPH3)3+ cations to the [ZnCl4]2− anions as shown in Fig. 2[link], to form broad 2D structures parallel to (10[\overline{1}]) . Fig. 3[link], in turn, presents a view of these planar arrays along the plane normal. The remaining inter­actions (hydrogen bonds #7–#10, ππ contacts #11–#14 and Cl⋯π inter­actions #15–#17) link the superimposed planes roughly along [10[\overline{1}]], defining a well-connected 3D network. The so-called Cl⋯π inter­actions (Bauzá et al., 2016[Bauzá, A., Mooibroek, T. J. & Frontera, A. (2016). CrystEngComm, 18, 10-23.]; Gamez, 2014[Gamez, P. (2014). Inorg. Chem. Front. 1, 35-43.]; Giese et al., 2015[Giese, M., Albrecht, M., Valkonen, A. & Rissanen, K. (2015). Chem. Sci. 6, 354-359.], 2016[Giese, M., Albrecht, M. & Rissanen, K. (2016). Chem. Comm. 52, 1778-1795.]) that involve the aromatic ring systems, either neutral π or charged π+, and the Cl anions are presented in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)

Code D—H⋯A D—H H⋯A DA D—H⋯A
#1 N1—H1N⋯Cl21i 0.846 (10) 2.27 (3) 3.085 (4) 161 (3)
#2 N3—H3N⋯Cl12ii 0.846 (10) 2.71 (3) 3.291 (3) 127 (3)
#3 N3—H3N⋯Cl14ii 0.847 (10) 2.48 (4) 3.203 (4) 145 (3)
#4 N4—H4N⋯Cl12iii 0.850 (10) 2.41 (3) 3.125 (3) 142 (3)
#5 N4—H4N⋯Cl22iv 0.850 (10) 2.74 (3) 3.264 (3) 121 (3)
#6 C4—H4⋯Cl14v 0.93 2.72 3.316 (4) 123
#7 C7—H7⋯Cl14v 0.93 2.73 3.589 (3) 155
#8 C13—H13⋯Cl12ii 0.93 2.71 3.287 (4) 121
#9 C17—H17⋯Cl22iv 0.93 2.77 3.320 (3) 119
#10 C23—H23⋯Cl11vii 0.93 2.74 3.434 (4) 132
Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) x, y + 1, z; (iii) −x + 1, y, −z + [{1\over 2}]; (iv) −x + 1, −y + 1, −z + 1; (v) x, −y + 1, y + [{1\over 2}]; (vi) −x + [{3\over 2}], y + [{1\over 2}], −y + [{1\over 2}]; (vii) x, −y + 2, y + [{1\over 2}].

Table 2
π–π contacts in (I)

Ring codes as in Fig. 1[link]. ccd: centroid-to-centroid distance; da: dihedral angle between rings; ipd: inter­planar distance, or (mean) distance from one plane to the neighbouring centroid. For details, see Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.])

Inter­action code CgCg ccd (Å) da (°) ipd (Å)
#11 Cg4⋯Cg5vii 3.495 (2) 18.1 (15) 3.32 (2)
#12 Cg5⋯Cg5vii 3.843 (2) 0.0 3.35 (2)
#13 Cg1⋯Cg3viii 3.784 (2) 16.2 (14) 3.66 (2)
#14 Cg1⋯Cg2ix 4.149 (2) 15.9 (16) 3.85 (2)
Symmetry codes: (vii) −x + 1, −y + 2, −z + 1; (viii) −x + [{3\over 2}], −y + [{5\over 2}], −z + 1; (ix) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1.

Table 3
Anion⋯π and anion⋯π+ inter­actions (Å, °) in (I)

d is the Cl⋯X distance where X is the atom in the ring nearest the Cl anion; α is the angle subtended by the Cl–Cg vector to the ring normal; β is the angle subtended by the XCg and XCg vectors (for β < 90°, the anion projects within the ring and for 90° < β, the anion projects outside the ring; n (in ηn) is the number of inter­acting atoms. NB according to standard requirements for anion⋯π inter­actions (Giese et al. 2015[Giese, M., Albrecht, M., Valkonen, A. & Rissanen, K. (2015). Chem. Sci. 6, 354-359.], 2016[Giese, M., Albrecht, M. & Rissanen, K. (2016). Chem. Comm. 52, 1778-1795.]), β should be < 100°.

Code Zn—Cl⋯Cg Cl⋯Cg d α β ηn
#15 Zn1—Cl12⋯Cg5x 3.739 (2) 3.671 14.5 82.0 η2
#16 Zn1—Cl13⋯Cg2xi 3.760 (2) 3.829 8.60 76.5 η1
#17 Zn1—Cl13⋯Cg4xii 4.084 (2) 3.748 23.9 94.3 η1
Symmetry codes: (x) x, −y + 1, z − [{1\over 2}]; (xi) x, −y + 2, z − [{1\over 2}]; (xii) x, −y + 1, z − [{1\over 2}].
[Figure 2]
Figure 2
The broad (010) planar structure, shown sideways, along b.
[Figure 3]
Figure 3
Same as Fig. 2[link], but shown along the plane normal, roughly [10[\overline{1}]].
[Figure 4]
Figure 4
Anion⋯π inter­actions in (I)[link] including the π-stacking involved.

4. Hirshfeld surface and enrichment ratio

Calculations of the recently introduced enrichment ratio (ER) approach using the Hirshfeld surface methodology (Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]) were performed with MoProViewer (Guillot et al., 2014[Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.]). Considering that the ER is the ratio between the actual contacts and those that should result from random ones, values larger than unity for any pair of elements mean they have a high tendency to form contacts in the crystal structure, the opposite happening for pairs with values lower than unity. The computed Hirshfeld surfaces and the corresponding contact ERs in the global structure of (I)[link] are shown in Fig. 5[link] and Table 4[link], respectively. Since a tcz anion (Zn2) is located on a twofold axis, it was necessary to generate a dimer of the asymmetric unit in order to obtain the entire surface for each species (Fig. 5[link]). As expected, the results show that the greatest contributions to the global surfaces (taking into account the inner and outer surfaces) are provided by C (27.56%), Cl (33.88%) and HC (27.26%) atoms. On the other hand, visualization of the ERs discloses a remarkable increase in the C⋯N contacts in the (44TPH3)3+ cations (ER = 2.78; Table 4[link]), as compared to those of neutral free 44TP (ER = 0.34; Table 5[link]). As a way to specifically study the cation–cation inter­actions, the Hirshfeld surface and the respective ERs of the (44TPH3)3+ cation were computed. So, in Fig. 6[link], the coloured inter­ior/exterior Hirshfeld surfaces shows, as in the global situation, the relevance of the C (36.26%), Cl (25.08%) and HC (27.34%) atoms, while values in Table 6[link] show that the C⋯N contacts are significantly enriched (ER = 2.15). When these results are compared with those obtained in (II), a very similar behavior is observed, i.e., in spite of changing the position of the protonated pyridyl N atoms, the system reorients itself as to favour the C⋯N inter­actions, evidencing the validity of the application of the criterion based on atomic charges.

Table 4
Hirshfeld contact surfaces and ERs for (44TPH3)2[ZnCl4]3 computed around the two (44TPH3)3+ cations and the three [ZnCl4]2− anions

The H atoms bound to carbon (HC) and nitro­gen (HN) are differentiated. The first column corresponds to `inter­ior' atoms and the remaining columns to `exterior' ones.

  C N Cl Zn HC HN
Surface inter­ior (%) 28.66 2.65 33.36 3.49 26.38 5.46
Surface exterior (%) 26.45 2.20 34.40 3.01 28.15 5.80
             
Enrichment ratios (reciprocal contacts merged)
C 1.74          
N 2.78 0.24        
Cl 0.89 0.21 0.27      
Zn 0.92 0.00 0.10 0.00    
HC 0.35 0.59 1.91 2.33 0.60  
HN 0.49 0.00 2.36 1.40 0.07 0.00

Table 5
Hirshfeld contact surfaces and ERs for 44TP

The first column corresponds to `inter­ior' atoms and the remaining columns to `exterior' ones.

  C N HC
Surface inter­ior (%) 42.44 10.43 47.13
Surface exterior (%) 40.81 10.44 48.74
       
Enrichment ratios (reciprocal contacts merged)
C 1.28    
N 0.34 0.44  
HC 0.90 1.69 0.94

Table 6
Hirshfeld contact surfaces and ERs for (44TPH3)3+

The H atoms bound to carbon (HC) and nitro­gen (HN) are differentiated. The first column corresponds to `inter­ior' atoms and the remaining columns to `exterior' ones.

  C N Cl Zn HC HN
Surface inter­ior (%) 44.29 4.09 0.00 0.00 42.66 8.96
Surface exterior (%) 28.22 3.60 50.16 4.66 12.03 1.34
             
Enrichment ratios (reciprocal contacts merged)
C 1.62          
N 2.15 0.43        
Cl 0.62 0.16 NaN      
Zn 0.76 0.00 NaN NaN    
HC 0.49 0.65 1.34 1.37 1.29  
HN 0.73 0.00 1.64 0.88 0.18 0.00
[Figure 5]
Figure 5
Right and left: Hirshfeld surfaces of the independent entities of (I)[link] shown in (c) (conveniently set apart as to avoid overlapping) and colored in accordance with the species contributing most to the electron density on the surface; (a) surfaces coloured according to the inter­ior atoms (b) surfaces coloured according to the exterior atoms. Colour key: HC: grey, HN: light blue, C: dark brown, N: blue, Cl: green, Zn: purple.
[Figure 6]
Figure 6
Hirshfeld surface of the (44TPH3)3+ cation coloured in accordance with the species contributing most to the electron density on the surface, showing (a)/(c) front and (d)/(f) back. In (a)/(d) the surface is coloured according to the inter­ior atoms and in (c)/(f) the surface is coloured according to the exterior atoms. The orientation of the structure inside the surface is shown in (b)/(e). Colour key: HC grey, HN light blue, C dark brown, N blue, Cl green and Zn magenta.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.39, November 2017, update 3, May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for recently published structures with triply protonated (LH3)3+ cations showed just a handful of entries, viz: IRESII [2,4,6-tris­(2-pyridinio)pyridine trinitrate; Padhi et al., 2011[Padhi, S. K., Sahu, R., Saha, D. & Manivannan, V. (2011). Inorg. Chim. Acta, 372, 383-388.]]; LEMVAC {2,2′-[4-(pyridinium-4-yl)pyridine-2,6-di­yl]dipyri­dinium trinitrate monohydrate; Seth et al., 2013[Seth, S. K., Manna, P., Singh, N. J., Mitra, M., Jana, A. D., Das, A., Choudhury, S. R., Kar, T., Mukhopadhyay, S. & Kim, K. S. (2013). CrystEngComm, 15, 1285-1288.]}; ODOHIA [tri­hydrogen 4′-(4-pyrid­yl)-2,2′:6′,2′′-terpyridine trinitrate bis­(nitric acid); Manna et al., 2013[Manna, P., Seth, S. K., Mitra, M., Das, A., Singh, N. J., Choudhury, S. R., Kar, T. & Mukhopadhyay, S. (2013). CrystEngComm, 15, 7879-7886.]]; LODHUJ [2,6-bis(pyridinium-2-yl)-4-(pyridinium-4-yl)pyridine tribromide trihydrate; Manna et al., 2014a[Manna, P., Seth, S. K., Bauzá, A., Mitra, M., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014a). Cryst. Growth Des. 14, 747-755.]]; FOTRUD [4′-(pyridinium-4-yl)-3,2′:6′,3′′-terpyridine-1,1′′-di-ium triperchlorate monohydrate; Manna et al., 2014b[Manna, P., Seth, S. K., Mitra, M., Choudhury, S. R., Bauzá, A., Frontera, A. & Mukhopadhyay, S. (2014b). Cryst. Growth Des. 14, 5812-5821.]] and KEQYAJ {bis­[4′-(isoquin­olin-2-ium-4-yl)-2,2′:6′,2′′-terpyridine-1,1′′-diium] tris­[tetra­chlorido­zincate(II)] monohydrate (II); Granifo et al., 2017[Granifo, J., Suárez, S., Boubeta, F. & Baggio, R. (2017). Acta Cryst. C73, 1121-1130.]}.

A characteristic found in these structures, in common with the case reported herein, is that only the N atoms of the three outermost pyridyl groups are protonated and that the lateral rings of the terpyridine portion adopt a syn–syn conformation with respect to the central pyridine ring. In most of the reported cases it was found that, in spite of the repulsive electrostatic nature between positively charged (LH3)3+ cations, the ππ stacking inter­actions appear enhanced when the π-system is charged. Due to lack of reported information, qu­anti­tative comparison of the ERs could only be made with the (already discussed) structure (II).

6. Synthesis and crystallization

The tetra­chlorido­zincate salt (44TPH3)2[ZnCl4]3 was prepared by the reaction of 4′-(isoquinolin-4-yl)-4,2′:6′,4′′- terpyridine (44TP; Granifo et al., 2015[Granifo, J., Westermeyer, M., Riquelme, M., Gaviño, R., Suárez, S., Halac, E. B. & Baggio, R. (2015). Acta Cryst. B71, 805-813.]), ZnCl2 and concentrated HCl (37%). 44TP (4.8 mg) was placed in a small beaker and dissolved with concentrated HCl (0.5 ml) and then 0.5 ml of water was added. To this solution was added an excess of ZnCl2 (48.0 mg) and the resulting solution was stirred for 1.5 min. The clear solution was allowed to stand at room temperature for a few days to give colourless block-shaped crystals, which were washed with methanol (3 × 1 ml) and then dried with hot air.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. H atoms were identified in an inter­mediate difference map, and treated differently in refinement: those attached to C were further idealized and finally allowed to ride with C—H = 0.93 Å, while those attached to N were refined with restrained N—H = 0.85 (1) Å. In all cases, H-atom displacement parameters were taken as Uiso(H) =1.2 Ueq(Host).

Table 7
Experimental details

Crystal data
Chemical formula (C24H19N4)2[ZnCl4]3
Mr 1348.37
Crystal system, space group Monoclinic, C2/c
Temperature (K) 295
a, b, c (Å) 30.642 (2), 8.0866 (4), 23.413 (2)
β (°) 114.316 (7)
V3) 5286.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.00
Crystal size (mm) 0.34 × 0.20 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.58, 0.82
No. of measured, independent and observed [I > 2σ(I)] reflections 23819, 6416, 4482
Rint 0.065
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.08
No. of reflections 6416
No. of parameters 330
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.60
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009).

Bis[4'-(isoquinolin-2-ium-4-yl)-4,2':6',4''-terpyridine-1,1''-diium] tris(tetrachloridozincate) top
Crystal data top
(C24H19N4)2[ZnCl4]3F(000) = 2704
Mr = 1348.37Dx = 1.694 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.642 (2) ÅCell parameters from 4699 reflections
b = 8.0866 (4) Åθ = 3.7–27.5°
c = 23.413 (2) ŵ = 2.00 mm1
β = 114.316 (7)°T = 295 K
V = 5286.8 (7) Å3Blocks, colourless
Z = 40.34 × 0.20 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
6416 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 29.4°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 3941
Tmin = 0.58, Tmax = 0.82k = 1010
23819 measured reflectionsl = 3031
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0313P)2 + 4.8559P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
6416 reflectionsΔρmax = 0.62 e Å3
330 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.65199 (2)0.59124 (5)0.12147 (2)0.02480 (12)
Cl110.68969 (3)0.80880 (11)0.18160 (5)0.0407 (3)
Cl120.58917 (3)0.50894 (12)0.14395 (5)0.0419 (3)
Cl130.62471 (4)0.63226 (13)0.01753 (4)0.0418 (2)
Cl140.70191 (3)0.37027 (10)0.15801 (4)0.0325 (2)
Zn20.5000000.40642 (7)0.7500000.02449 (14)
Cl210.56071 (3)0.22938 (11)0.76067 (5)0.0384 (2)
Cl220.47311 (3)0.57574 (10)0.66606 (4)0.0342 (2)
N10.84733 (11)0.9147 (4)0.65467 (16)0.0383 (8)
H1N0.8754 (6)0.887 (4)0.6794 (16)0.046*
N20.70304 (9)1.0267 (3)0.46155 (13)0.0257 (6)
N30.65260 (11)1.2242 (4)0.24416 (14)0.0327 (7)
H3N0.6521 (13)1.273 (4)0.2119 (11)0.039*
N40.51052 (10)0.6700 (3)0.43396 (14)0.0281 (7)
H4N0.4922 (11)0.609 (3)0.4043 (12)0.034*
C10.79534 (11)0.9775 (4)0.55141 (17)0.0328 (9)
H10.7905361.0056480.5107380.039*
C20.84084 (12)0.9559 (5)0.59660 (19)0.0380 (9)
H20.8670840.9699950.5867700.046*
C30.81105 (13)0.9004 (4)0.67238 (18)0.0377 (10)
H30.8169870.8743210.7136140.045*
C40.76494 (12)0.9249 (4)0.62865 (17)0.0334 (9)
H40.7395060.9199500.6405320.040*
C50.75647 (11)0.9572 (4)0.56675 (16)0.0257 (8)
C60.70667 (11)0.9661 (4)0.51656 (15)0.0233 (7)
C70.66782 (11)0.9041 (4)0.52621 (15)0.0228 (7)
H70.6720740.8606420.5649330.027*
C80.62267 (11)0.9081 (4)0.47714 (16)0.0221 (7)
C90.61866 (11)0.9763 (4)0.42063 (16)0.0251 (7)
H90.5888530.9842870.3870520.030*
C100.65932 (11)1.0322 (4)0.41467 (15)0.0230 (7)
C110.65678 (11)1.0990 (4)0.35449 (15)0.0232 (7)
C120.61460 (12)1.1688 (4)0.31040 (16)0.0285 (8)
H120.5872721.1720680.3183530.034*
C130.61339 (13)1.2323 (4)0.25572 (17)0.0313 (8)
H130.5855461.2808420.2267750.038*
C140.69363 (13)1.1557 (5)0.28393 (18)0.0366 (9)
H140.7199481.1501500.2738420.044*
C150.69625 (13)1.0939 (4)0.33971 (17)0.0321 (8)
H150.7248031.0480510.3680310.039*
C160.57945 (11)0.8377 (4)0.48229 (15)0.0225 (7)
C170.55171 (11)0.7358 (4)0.43484 (16)0.0270 (8)
H170.5610200.7108500.4026980.032*
C180.49493 (11)0.7020 (4)0.47743 (16)0.0253 (8)
H180.4662640.6559100.4744640.030*
C190.52111 (11)0.8044 (4)0.52799 (16)0.0236 (7)
C200.50381 (11)0.8408 (4)0.57389 (16)0.0262 (8)
H200.4752490.7946430.5712490.031*
C210.52914 (12)0.9435 (4)0.62180 (16)0.0301 (8)
H210.5182610.9664190.6526380.036*
C220.57181 (12)1.0155 (4)0.62503 (16)0.0283 (8)
H220.5884561.0871410.6579080.034*
C230.58967 (11)0.9837 (4)0.58143 (15)0.0243 (7)
H230.6179931.0334070.5847540.029*
C240.56479 (11)0.8747 (4)0.53117 (15)0.0218 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0216 (2)0.0276 (2)0.0238 (2)0.00225 (15)0.00800 (17)0.00170 (16)
Cl110.0324 (5)0.0322 (5)0.0413 (6)0.0011 (4)0.0012 (4)0.0048 (4)
Cl120.0251 (5)0.0506 (6)0.0529 (6)0.0114 (4)0.0190 (4)0.0275 (5)
Cl130.0453 (6)0.0558 (6)0.0245 (5)0.0109 (5)0.0146 (4)0.0042 (4)
Cl140.0280 (4)0.0315 (5)0.0396 (5)0.0075 (3)0.0156 (4)0.0052 (4)
Zn20.0206 (3)0.0297 (3)0.0206 (3)0.0000.0060 (2)0.000
Cl210.0251 (5)0.0401 (5)0.0431 (6)0.0051 (4)0.0071 (4)0.0101 (4)
Cl220.0450 (5)0.0337 (5)0.0243 (5)0.0047 (4)0.0147 (4)0.0039 (4)
N10.0213 (16)0.0404 (19)0.040 (2)0.0015 (14)0.0010 (15)0.0030 (16)
N20.0209 (14)0.0291 (15)0.0278 (17)0.0009 (12)0.0107 (12)0.0032 (13)
N30.0368 (18)0.0399 (18)0.0223 (17)0.0082 (14)0.0132 (14)0.0010 (14)
N40.0220 (15)0.0294 (16)0.0305 (18)0.0063 (12)0.0084 (13)0.0068 (13)
C10.0209 (18)0.045 (2)0.031 (2)0.0024 (16)0.0089 (15)0.0016 (17)
C20.0211 (18)0.050 (2)0.039 (2)0.0001 (16)0.0088 (17)0.0028 (19)
C30.033 (2)0.040 (2)0.030 (2)0.0108 (17)0.0027 (17)0.0060 (17)
C40.0229 (18)0.044 (2)0.028 (2)0.0078 (15)0.0058 (15)0.0030 (17)
C50.0185 (16)0.0262 (17)0.030 (2)0.0052 (13)0.0075 (14)0.0007 (15)
C60.0211 (17)0.0260 (17)0.0235 (18)0.0026 (14)0.0097 (14)0.0004 (14)
C70.0221 (17)0.0276 (17)0.0182 (17)0.0003 (13)0.0079 (13)0.0005 (14)
C80.0210 (16)0.0231 (16)0.0243 (18)0.0029 (13)0.0115 (14)0.0044 (14)
C90.0181 (16)0.0290 (18)0.0266 (19)0.0004 (13)0.0077 (14)0.0016 (15)
C100.0191 (16)0.0286 (17)0.0208 (18)0.0022 (13)0.0078 (13)0.0013 (14)
C110.0196 (16)0.0270 (17)0.0224 (18)0.0011 (13)0.0081 (14)0.0032 (14)
C120.0246 (18)0.0316 (19)0.029 (2)0.0014 (14)0.0109 (15)0.0060 (16)
C130.029 (2)0.0311 (19)0.028 (2)0.0032 (15)0.0059 (16)0.0028 (16)
C140.028 (2)0.052 (2)0.033 (2)0.0050 (17)0.0166 (17)0.0026 (18)
C150.0273 (19)0.041 (2)0.029 (2)0.0041 (16)0.0129 (16)0.0056 (17)
C160.0168 (16)0.0243 (17)0.0235 (18)0.0017 (13)0.0053 (13)0.0014 (14)
C170.0194 (17)0.0365 (19)0.0259 (19)0.0008 (14)0.0101 (14)0.0000 (15)
C180.0175 (16)0.0268 (18)0.031 (2)0.0029 (13)0.0093 (14)0.0032 (15)
C190.0172 (16)0.0250 (17)0.0270 (19)0.0016 (13)0.0075 (14)0.0060 (14)
C200.0198 (17)0.0330 (19)0.0262 (19)0.0012 (14)0.0099 (14)0.0091 (15)
C210.0289 (19)0.040 (2)0.026 (2)0.0048 (16)0.0157 (16)0.0060 (16)
C220.0294 (19)0.0300 (19)0.0220 (18)0.0021 (15)0.0071 (15)0.0008 (15)
C230.0221 (17)0.0263 (17)0.0233 (18)0.0029 (13)0.0080 (14)0.0025 (14)
C240.0183 (16)0.0226 (16)0.0247 (18)0.0029 (13)0.0091 (13)0.0052 (14)
Geometric parameters (Å, º) top
Zn1—Cl132.2485 (10)C7—H70.9300
Zn1—Cl112.2521 (10)C8—C91.391 (5)
Zn1—Cl142.2775 (9)C8—C161.491 (4)
Zn1—Cl122.2935 (10)C9—C101.385 (4)
Zn2—Cl222.2545 (9)C9—H90.9300
Zn2—Cl22i2.2545 (9)C10—C111.481 (5)
Zn2—Cl212.2782 (9)C11—C151.389 (5)
Zn2—Cl21i2.2783 (9)C11—C121.399 (4)
N1—C21.333 (5)C12—C131.366 (5)
N1—C31.342 (5)C12—H120.9300
N1—H1N0.846 (10)C13—H130.9300
N2—C101.338 (4)C14—C151.369 (5)
N2—C61.339 (4)C14—H140.9300
N3—C131.337 (5)C15—H150.9300
N3—C141.338 (5)C16—C171.363 (4)
N3—H3N0.847 (10)C16—C241.423 (5)
N4—C181.316 (4)C17—H170.9300
N4—C171.362 (4)C18—C191.396 (5)
N4—H4N0.850 (10)C18—H180.9300
C1—C21.371 (5)C19—C201.411 (5)
C1—C51.388 (5)C19—C241.427 (4)
C1—H10.9300C20—C211.354 (5)
C2—H20.9300C20—H200.9300
C3—C41.376 (5)C21—C221.405 (5)
C3—H30.9300C21—H210.9300
C4—C51.388 (5)C22—C231.367 (5)
C4—H40.9300C22—H220.9300
C5—C61.496 (4)C23—C241.416 (4)
C6—C71.393 (4)C23—H230.9300
C7—C81.388 (4)
Cl13—Zn1—Cl11115.32 (4)C10—C9—H9120.2
Cl13—Zn1—Cl14114.53 (4)C8—C9—H9120.2
Cl11—Zn1—Cl14106.61 (4)N2—C10—C9123.0 (3)
Cl13—Zn1—Cl12108.54 (4)N2—C10—C11115.8 (3)
Cl11—Zn1—Cl12110.25 (4)C9—C10—C11121.2 (3)
Cl14—Zn1—Cl12100.58 (4)C15—C11—C12117.6 (3)
Cl22—Zn2—Cl22i105.21 (5)C15—C11—C10121.1 (3)
Cl22—Zn2—Cl21117.78 (4)C12—C11—C10121.3 (3)
Cl22i—Zn2—Cl21107.29 (3)C13—C12—C11120.3 (3)
Cl22—Zn2—Cl21i107.30 (3)C13—C12—H12119.9
Cl22i—Zn2—Cl21i117.77 (4)C11—C12—H12119.9
Cl21—Zn2—Cl21i102.14 (5)N3—C13—C12119.4 (3)
C2—N1—C3122.8 (3)N3—C13—H13120.3
C2—N1—H1N117 (3)C12—C13—H13120.3
C3—N1—H1N120 (3)N3—C14—C15118.9 (4)
C10—N2—C6117.4 (3)N3—C14—H14120.5
C13—N3—C14123.0 (3)C15—C14—H14120.5
C13—N3—H3N118 (3)C14—C15—C11120.8 (3)
C14—N3—H3N119 (3)C14—C15—H15119.6
C18—N4—C17122.8 (3)C11—C15—H15119.6
C18—N4—H4N115 (3)C17—C16—C24119.0 (3)
C17—N4—H4N122 (3)C17—C16—C8116.2 (3)
C2—C1—C5119.6 (4)C24—C16—C8124.7 (3)
C2—C1—H1120.2N4—C17—C16120.7 (3)
C5—C1—H1120.2N4—C17—H17119.6
N1—C2—C1119.7 (4)C16—C17—H17119.6
N1—C2—H2120.1N4—C18—C19120.5 (3)
C1—C2—H2120.1N4—C18—H18119.8
N1—C3—C4119.0 (4)C19—C18—H18119.8
N1—C3—H3120.5C18—C19—C20120.3 (3)
C4—C3—H3120.5C18—C19—C24118.6 (3)
C3—C4—C5119.8 (4)C20—C19—C24121.0 (3)
C3—C4—H4120.1C21—C20—C19119.5 (3)
C5—C4—H4120.1C21—C20—H20120.3
C1—C5—C4118.8 (3)C19—C20—H20120.3
C1—C5—C6119.8 (3)C20—C21—C22120.1 (3)
C4—C5—C6121.4 (3)C20—C21—H21119.9
N2—C6—C7123.3 (3)C22—C21—H21119.9
N2—C6—C5115.3 (3)C23—C22—C21122.1 (3)
C7—C6—C5121.2 (3)C23—C22—H22118.9
C8—C7—C6119.0 (3)C21—C22—H22118.9
C8—C7—H7120.5C22—C23—C24119.6 (3)
C6—C7—H7120.5C22—C23—H23120.2
C7—C8—C9117.7 (3)C24—C23—H23120.2
C7—C8—C16122.7 (3)C23—C24—C16124.0 (3)
C9—C8—C16119.6 (3)C23—C24—C19117.6 (3)
C10—C9—C8119.6 (3)C16—C24—C19118.3 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl21ii0.85 (1)2.27 (2)3.084 (3)161 (3)
N3—H3N···Cl12iii0.85 (1)2.71 (3)3.291 (3)127 (3)
N3—H3N···Cl14iii0.85 (1)2.47 (2)3.203 (3)144 (3)
N4—H4N···Cl12iv0.85 (1)2.41 (2)3.125 (3)142 (3)
N4—H4N···Cl22v0.85 (1)2.74 (3)3.264 (3)121 (3)
C2—H2···Cl13vi0.932.873.551 (4)131
C3—H3···Cl11vii0.932.943.823 (4)158
C4—H4···Cl14viii0.932.723.316 (4)123
C7—H7···Cl14viii0.932.733.589 (3)155
C12—H12···Cl22ix0.932.883.607 (4)136
C13—H13···Cl12iii0.932.713.287 (4)121
C14—H14···Cl11vi0.932.833.548 (4)135
C15—H15···Cl14vi0.932.933.588 (4)129
C17—H17···Cl22v0.932.773.320 (4)119
C18—H18···Cl12iv0.932.853.335 (3)114
C18—H18···Cl13iv0.932.883.759 (3)159
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+1, y, z+1/2; (v) x+1, y+1, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+3/2, y+3/2, z+1; (viii) x, y+1, z+1/2; (ix) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, °) for (I) top
CodeD—H···AD—HH···AD···AD—H···A
#1N1—H1N···Cl21i0.846 (10)2.27 (3)3.085 (4)161 (3)
#2N3—H3N···Cl12ii0.846 (10)2.71 (3)3.291 (3)127 (3)
#3N3—H3N···Cl14ii0.847 (10)2.48 (4)3.203 (4)145 (3)
#4N4—H4N···Cl12iii0.850 (10)2.41 (3)3.125 (3)142 (3)
#5N4—H4N···Cl22iv0.850 (10)2.74 (3)3.264 (3)121 (3)
#6C4—H4···Cl14v0.932.723.316 (4)123
#7C7—H7···Cl14v0.932.733.589 (3)155
#8C13—H13···Cl12ii0.932.713.287 (4)121
#9C17—H17···Cl22iv0.932.773.320 (3)119
#10C23—H23···Cl11vii0.932.743.434 (4)132
Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 3/2; (ii) x, y + 1, z; (iii) -x + 1, y, -z + 1/2; (iv) -x + 1, -y + 1, -z + 1; (v) x, -y + 1, y + 1/2; (vi) -x + 3/2, y + 1/2, -y + 1/2; (vii) x, -y + 2, y + 1/2.
ππ contacts in (I) top
Ring codes as in Fig. 1. ccd: centroid-to-centroid distance; da: dihedral angle between rings; ipd: interplanar distance, or (mean) distance from one plane to the neighbouring centroid. For details, see Janiak (2000)
Interaction codeCg···Cgccd (Åda (°)ipd (Å)
#11Cg4···Cg5vii3.495 (2)18.1 (15)3.32 (2)
#12Cg5···Cg5vii3.843 (2)0.03.35 (2)
#13Cg1···Cg3viii3.784 (2)16.2 (14)3.66 (2)
#14Cg1···Cg2ix4.149 (2)15.9 (16)3.85 (2)
Symmetry codes: (vii) -x + 1, -y + 2, -z + 1; (viii) -x + 3/2, -y + 5/2, -z + 1; (ix) -x + 3/2, -y + 3/2, -z + 1.
Anion···π and anion···π+ interactions (Å, °) in (I) top
d is the Cl···X distance where X is the atom in the ring nearest the Cl anion; α is the angle subtended by the Cl–Cg vector to the ring normal; β is the angle subtended by the X–Cg and X–Cg vectors (for β < 90°, the anion projects within the ring and for 90° < β, the anion projects outside the ring; n ( in ηn) is the number of interacting atoms. NB according to standard requirements for anion···π interactions (Giese et al. 2015, 2016), β should be < 100°.
CodeZn—Cl···CgCl···Cgdαβηn
#15Zn1—Cl12···Cg5x3.739 (2)3.67114.582.0η2
#16Zn1—Cl13···Cg2xi3.760 (2)3.8298.6076.5η1
#17Zn1—Cl13···Cg4xii4.084 (2)3.74823.994.3η1
Symmetry codes: (x) x, -y + 1, z - 1/2; (xi) x, -y + 2, z - 1/2; (xii) x, -y + 1, z - 1/2.
Hirshfeld contact surfaces and ERs for (44TPH3)2[ZnCl4]3 computed around the two (44TPH3)3+ cations and the three [ZnCl4]2- anions top
The H atoms bound to carbon (HC) and nitrogen (HN) are differentiated. The first column corresponds to `interior' atoms and the remaining columns to `exterior' ones.
CNClZnHCHN
Surface interior (%)28.662.6533.363.4926.385.46
Surface exterior (%)26.452.2034.403.0128.155.80
Enrichment ratios (reciprocal contacts merged)
C1.74
N2.780.24
Cl0.890.210.27
Zn0.920.000.100.00
HC0.350.591.912.330.60
HN0.490.002.361.400.070.00
Hirshfeld contact surfaces and ERs for 44TP top
The first column corresponds to `interior' atoms and the remaining columns to `exterior' ones.
CNHC
Surface interior (%)42.4410.4347.13
Surface exterior (%)40.8110.4448.74
Enrichment ratios (reciprocal contacts merged)
C1.28
N0.340.44
HC0.901.690.94
Hirshfeld contact surfaces and ERs for (44TPH3)3+ top
The H atoms bound to carbon (HC) and nitrogen (HN) are differentiated. The first column corresponds to `interior' atoms and the remaining columns to `exterior' ones.
CNClZnHCHN
Surface interior (%)44.294.090.000.0042.668.96
Surface exterior (%)28.223.6050.164.6612.031.34
Enrichment ratios (reciprocal contacts merged)
C1.62
N2.150.43
Cl0.620.16NaN
Zn0.760.00NaNNaN
HC0.490.651.341.371.29
HN0.730.001.640.880.180.00
 

Funding information

The authors acknowledge the NPCyT (project No. PME 2006-01113) for the purchase of the Oxford Gemini CCD diffractometer and the Universidad de La Frontera (Proyecto DIUFRO DI17-0173).

References

First citationBauzá, A., Mooibroek, T. J. & Frontera, A. (2016). CrystEngComm, 18, 10–23.  Google Scholar
First citationGamez, P. (2014). Inorg. Chem. Front. 1, 35–43.  CrossRef CAS Google Scholar
First citationGiese, M., Albrecht, M. & Rissanen, K. (2016). Chem. Comm. 52, 1778–1795.  CrossRef Google Scholar
First citationGiese, M., Albrecht, M., Valkonen, A. & Rissanen, K. (2015). Chem. Sci. 6, 354–359.  CrossRef Google Scholar
First citationGranifo, J., Suárez, S., Boubeta, F. & Baggio, R. (2017). Acta Cryst. C73, 1121–1130.  CrossRef IUCr Journals Google Scholar
First citationGranifo, J., Westermeyer, M., Riquelme, M., Gaviño, R., Suárez, S., Halac, E. B. & Baggio, R. (2015). Acta Cryst. B71, 805–813.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279.  CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMaclagan, R. G. A. R., Gronert, S. & Meot-Ner (Mautner), M. (2015). J. Phys. Chem. A, 119, 127–139.  Google Scholar
First citationManna, P., Seth, S. K., Bauzá, A., Mitra, M., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014a). Cryst. Growth Des. 14, 747–755.  CrossRef Google Scholar
First citationManna, P., Seth, S. K., Mitra, M., Choudhury, S. R., Bauzá, A., Frontera, A. & Mukhopadhyay, S. (2014b). Cryst. Growth Des. 14, 5812–5821.  CrossRef Google Scholar
First citationManna, P., Seth, S. K., Mitra, M., Das, A., Singh, N. J., Choudhury, S. R., Kar, T. & Mukhopadhyay, S. (2013). CrystEngComm, 15, 7879–7886.  Web of Science CrossRef CAS Google Scholar
First citationPadhi, S. K., Sahu, R., Saha, D. & Manivannan, V. (2011). Inorg. Chim. Acta, 372, 383–388.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeth, S. K., Manna, P., Singh, N. J., Mitra, M., Jana, A. D., Das, A., Choudhury, S. R., Kar, T., Mukhopadhyay, S. & Kim, K. S. (2013). CrystEngComm, 15, 1285–1288.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds