research communications
The enrichment ratio of atomic contacts in the 4]2− as counter-ion
of isomeric, triply protonated, 4′-functionalized terpyridine cations with [ZnClaDepartamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile, bDepartamento de Química Inorgánica, Analítica y Química, Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, and cGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: juan.granifo@ufrontera.cl, baggio@tandar.cnea.gov.ar
We report herein the synthesis, crystallographic analysis and a study of the non-covalent interactions observed in the new 4′-substituted terpyridine-based derivative bis[4′-(isoquinolin-2-ium-4-yl)-4,2′:6′,4′′-terpyridine-1,1′′-diium] tris-[tetrachloridozincate(II)], (C24H19N4)2[ZnCl4]3 or (44TPH3)2[ZnCl4]3, where (44TPH3)3+ is the triply protonated cation 4′-(isoquinolinium-4-yl)-4,2′:6′,4′′ terpyridinium. The compound is similar in its formulation to the recently reported 2,2′:6′,2′′ terpyridinium analogue {bis[4′-(isoquinolin-2-ium-4-yl)-2,2′:6′,2′′-terpyridine-1,1′′-diium] tris[tetrachloridozincate(II)] monohydrate; Granifo et al. (2017). Acta Cryst. C73, 1121–1130}, although rather different and much simpler in its structural features, mainly in the number and type of non-covalent interactions present, as well as in the supramolecular structure they define.
Keywords: crystal structure; terpyridine; Anion⋯π interactions; Hirshfeld surfaces.
CCDC reference: 1879345
1. Chemical context
We have recently reported the use of the 4′-pyridyl-substituted terpyridine 4′-(isoquinolin-4-yl)-2,2′:6′,2′′-terpyridine (22TP) in the synthesis of the tetrachloridozincate salt (22TPH3)2[ZnCl4]3·H2O (II) containing the triply protonated cation (22TPH3)3+ (Granifo et al., 2017). The structural study of (II) demonstrates the concerted way in which a series of non-covalent interactions, viz. hydrogen bonding, anion–π and π–π stacking, participate in the crystal packing. The repulsive nature of the π–π interaction between the triply protonated (22TPH3)3+ cations is counteracted by the [ZnCl4]2− anions through abundant peripheral hydrogen bonding and anion–π interactions to the aromatic rings. A useful tool to highlight those contacts, which are statistically favored in a given structure, is the enrichment ratios approach (Jelsch et al., 2014) based on the Hirshfeld surface, and whose application in the present case showed unexpectedly large enrichment ratios for the cationic C⋯N contacts in (II) as compared to those in the unprotonated base 22TP. This result was rationalized through the atomic and ring natural bond order charges (NBO), calculated by Maclagan and co-workers (Maclagan et al., 2015) for a series of aromatic N-heterocyclic compounds. Concisely, in a protonated species, the hydrogen and nitrogen in the N—H group carry an almost constant charge q, with an average of q(H) = 0.43 ± 0.01 and q(N) = −0.46 ± 0.1. The other atoms in the aromatic rings, C and H, receive the remaining positive charge, i.e. 0.57 ± 0.01 unit charge. A further remarkable result is that the q(N) values appear almost invariant when going from the neutral to the protonated base. Now, given that protonation leads to an increase on the positive charge in the C atoms and that the negative charge of the N atoms is almost invariant, a natural conclusion is that this ought to enrich the cationic C⋯N interactions. In an attempt to explore the effect of the position of the protonated N atoms on this type of interaction, we decided to protonate the already known isomeric base 4′-(isoquinolin-4-yl)-4,2′:6′,4′′-terpyridine (44TP) (Granifo et al., 2015) and to study the of the new related compound (44TPH3)2[ZnCl4]3 (I).
2. Structural commentary
Fig. 1 shows the molecular geometry as well as atom and ring labelling for (I). There is one (44TPH3)3+ independent cationic moiety, protonated at N1 and N3 in the lateral pyridine rings (hereinafter py) and at N4 in the isoquinoline group (hereinafter, isq). The three negative charges required for charge balance are provided by one full independent [ZnCl4]2− (tcz) anion in general position and a second one sitting on a twofold axis (thus providing only half of the charge). The general formulation is then (44TPH3)2[ZnCl4]3, similar to the 2,2′:6′,2′′ analogue (II) but without water as solvent. In this respect, the analogy goes a bit further: the observed in (II), which linked both (otherwise independent) (44TPH3)3+ cations becomes genuine symmetry in (I), expressed through the crystallographic twofold operation through the tcz group at Zn2.
Bond distances and angles are unremarkable in the (44TPH3)3+ moiety, with only minor departures from commonly accepted values in general, and from those in (II) in particular. The most relevant features come from the dihedral angles involving the internal planar groups, and it is here where the molecular differences with (II) are more apparent. The terpyridine nucleus presents significant out-of-plane rotations of the lateral pyridinium groups with regard to the central py one, and similarly with the pendant isq rings [dihedral angles: 2, 1 = 15.87 (16)°; 2, 3 = 25.80 (16)°; 2, 4 = 48.49 (15)°, plane labels taken from their N heteroatoms]. This large rotation of the isq group is required to avoid `bumping' between the otherwise colliding atoms H7 and H23. The experimental d(H7⋯H23) distance is 2.36 Å, while in a perfectly planar disposition this value would collapse down to ≃ 0.80 Å. This `anti-bumping' argument appears to be reinforced by the difference between the angles C16, [C24—C16—C8 = 124.7 (3)° > C17—C16—C8 = 116.2 (3)°], suggesting some kind of an H7⋯H23 repulsion.
3. Supramolecular features
As in (II), the most conspicuous aspect of the structure of (I) is its packing scheme, derived from a number of different intermolecular interactions, presented in Table 1 (N/C—H⋯Cl), Table 2 (π–π) and Table 3 (Zn—Cl⋯π/π+), which for convenience of description have been assigned an individual `code' or sequence number (from #1 to #17). Among these, hydrogen bonds are the most abundant and are clearly divided into two groups: stronger N—H⋯Cl (#1 to #5) and weaker C—H⋯Cl bonds (#6 to #10). Interactions #1 to #6 serve to link the (44TPH3)3+ cations to the [ZnCl4]2− anions as shown in Fig. 2, to form broad 2D structures parallel to (10) . Fig. 3, in turn, presents a view of these planar arrays along the plane normal. The remaining interactions (hydrogen bonds #7–#10, π–π contacts #11–#14 and Cl⋯π interactions #15–#17) link the superimposed planes roughly along [10], defining a well-connected 3D network. The so-called Cl⋯π interactions (Bauzá et al., 2016; Gamez, 2014; Giese et al., 2015, 2016) that involve the aromatic ring systems, either neutral π or charged π+, and the Cl− anions are presented in Fig. 4.
|
|
4. Hirshfeld surface and enrichment ratio
Calculations of the recently introduced enrichment ratio (ER) approach using the Hirshfeld surface methodology (Jelsch et al., 2014) were performed with MoProViewer (Guillot et al., 2014). Considering that the ER is the ratio between the actual contacts and those that should result from random ones, values larger than unity for any pair of elements mean they have a high tendency to form contacts in the the opposite happening for pairs with values lower than unity. The computed Hirshfeld surfaces and the corresponding contact ERs in the global structure of (I) are shown in Fig. 5 and Table 4, respectively. Since a tcz anion (Zn2) is located on a twofold axis, it was necessary to generate a dimer of the in order to obtain the entire surface for each species (Fig. 5). As expected, the results show that the greatest contributions to the global surfaces (taking into account the inner and outer surfaces) are provided by C (27.56%), Cl (33.88%) and HC (27.26%) atoms. On the other hand, visualization of the ERs discloses a remarkable increase in the C⋯N contacts in the (44TPH3)3+ cations (ER = 2.78; Table 4), as compared to those of neutral free 44TP (ER = 0.34; Table 5). As a way to specifically study the cation–cation interactions, the Hirshfeld surface and the respective ERs of the (44TPH3)3+ cation were computed. So, in Fig. 6, the coloured interior/exterior Hirshfeld surfaces shows, as in the global situation, the relevance of the C (36.26%), Cl (25.08%) and HC (27.34%) atoms, while values in Table 6 show that the C⋯N contacts are significantly enriched (ER = 2.15). When these results are compared with those obtained in (II), a very similar behavior is observed, i.e., in spite of changing the position of the protonated pyridyl N atoms, the system reorients itself as to favour the C⋯N interactions, evidencing the validity of the application of the criterion based on atomic charges.
|
|
|
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.39, November 2017, update 3, May 2018; Groom et al., 2016) for recently published structures with triply protonated (LH3)3+ cations showed just a handful of entries, viz: IRESII [2,4,6-tris(2-pyridinio)pyridine trinitrate; Padhi et al., 2011]; LEMVAC {2,2′-[4-(pyridinium-4-yl)pyridine-2,6-diyl]dipyridinium trinitrate monohydrate; Seth et al., 2013}; ODOHIA [trihydrogen 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine trinitrate bis(nitric acid); Manna et al., 2013]; LODHUJ [2,6-bis(pyridinium-2-yl)-4-(pyridinium-4-yl)pyridine tribromide trihydrate; Manna et al., 2014a]; FOTRUD [4′-(pyridinium-4-yl)-3,2′:6′,3′′-terpyridine-1,1′′-di-ium triperchlorate monohydrate; Manna et al., 2014b] and KEQYAJ {bis[4′-(isoquinolin-2-ium-4-yl)-2,2′:6′,2′′-terpyridine-1,1′′-diium] tris[tetrachloridozincate(II)] monohydrate (II); Granifo et al., 2017}.
A characteristic found in these structures, in common with the case reported herein, is that only the N atoms of the three outermost pyridyl groups are protonated and that the lateral rings of the terpyridine portion adopt a syn–syn conformation with respect to the central pyridine ring. In most of the reported cases it was found that, in spite of the repulsive electrostatic nature between positively charged (LH3)3+ cations, the π–π stacking interactions appear enhanced when the π-system is charged. Due to lack of reported information, quantitative comparison of the ERs could only be made with the (already discussed) structure (II).
6. Synthesis and crystallization
The tetrachloridozincate salt (44TPH3)2[ZnCl4]3 was prepared by the reaction of 4′-(isoquinolin-4-yl)-4,2′:6′,4′′- terpyridine (44TP; Granifo et al., 2015), ZnCl2 and concentrated HCl (37%). 44TP (4.8 mg) was placed in a small beaker and dissolved with concentrated HCl (0.5 ml) and then 0.5 ml of water was added. To this solution was added an excess of ZnCl2 (48.0 mg) and the resulting solution was stirred for 1.5 min. The clear solution was allowed to stand at room temperature for a few days to give colourless block-shaped crystals, which were washed with methanol (3 × 1 ml) and then dried with hot air.
7. Refinement
Crystal data, data collection and structure . H atoms were identified in an intermediate difference map, and treated differently in those attached to C were further idealized and finally allowed to ride with C—H = 0.93 Å, while those attached to N were refined with restrained N—H = 0.85 (1) Å. In all cases, H-atom displacement parameters were taken as Uiso(H) =1.2 Ueq(Host).
details are summarized in Table 7
|
Supporting information
CCDC reference: 1879345
https://doi.org/10.1107/S2056989018016250/eb2014sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018016250/eb2014Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009).(C24H19N4)2[ZnCl4]3 | F(000) = 2704 |
Mr = 1348.37 | Dx = 1.694 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 30.642 (2) Å | Cell parameters from 4699 reflections |
b = 8.0866 (4) Å | θ = 3.7–27.5° |
c = 23.413 (2) Å | µ = 2.00 mm−1 |
β = 114.316 (7)° | T = 295 K |
V = 5286.8 (7) Å3 | Blocks, colourless |
Z = 4 | 0.34 × 0.20 × 0.14 mm |
Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 6416 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4482 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
ω scans | θmax = 29.4°, θmin = 3.7° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | h = −39→41 |
Tmin = 0.58, Tmax = 0.82 | k = −10→10 |
23819 measured reflections | l = −30→31 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0313P)2 + 4.8559P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
6416 reflections | Δρmax = 0.62 e Å−3 |
330 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.65199 (2) | 0.59124 (5) | 0.12147 (2) | 0.02480 (12) | |
Cl11 | 0.68969 (3) | 0.80880 (11) | 0.18160 (5) | 0.0407 (3) | |
Cl12 | 0.58917 (3) | 0.50894 (12) | 0.14395 (5) | 0.0419 (3) | |
Cl13 | 0.62471 (4) | 0.63226 (13) | 0.01753 (4) | 0.0418 (2) | |
Cl14 | 0.70191 (3) | 0.37027 (10) | 0.15801 (4) | 0.0325 (2) | |
Zn2 | 0.500000 | 0.40642 (7) | 0.750000 | 0.02449 (14) | |
Cl21 | 0.56071 (3) | 0.22938 (11) | 0.76067 (5) | 0.0384 (2) | |
Cl22 | 0.47311 (3) | 0.57574 (10) | 0.66606 (4) | 0.0342 (2) | |
N1 | 0.84733 (11) | 0.9147 (4) | 0.65467 (16) | 0.0383 (8) | |
H1N | 0.8754 (6) | 0.887 (4) | 0.6794 (16) | 0.046* | |
N2 | 0.70304 (9) | 1.0267 (3) | 0.46155 (13) | 0.0257 (6) | |
N3 | 0.65260 (11) | 1.2242 (4) | 0.24416 (14) | 0.0327 (7) | |
H3N | 0.6521 (13) | 1.273 (4) | 0.2119 (11) | 0.039* | |
N4 | 0.51052 (10) | 0.6700 (3) | 0.43396 (14) | 0.0281 (7) | |
H4N | 0.4922 (11) | 0.609 (3) | 0.4043 (12) | 0.034* | |
C1 | 0.79534 (11) | 0.9775 (4) | 0.55141 (17) | 0.0328 (9) | |
H1 | 0.790536 | 1.005648 | 0.510738 | 0.039* | |
C2 | 0.84084 (12) | 0.9559 (5) | 0.59660 (19) | 0.0380 (9) | |
H2 | 0.867084 | 0.969995 | 0.586770 | 0.046* | |
C3 | 0.81105 (13) | 0.9004 (4) | 0.67238 (18) | 0.0377 (10) | |
H3 | 0.816987 | 0.874321 | 0.713614 | 0.045* | |
C4 | 0.76494 (12) | 0.9249 (4) | 0.62865 (17) | 0.0334 (9) | |
H4 | 0.739506 | 0.919950 | 0.640532 | 0.040* | |
C5 | 0.75647 (11) | 0.9572 (4) | 0.56675 (16) | 0.0257 (8) | |
C6 | 0.70667 (11) | 0.9661 (4) | 0.51656 (15) | 0.0233 (7) | |
C7 | 0.66782 (11) | 0.9041 (4) | 0.52621 (15) | 0.0228 (7) | |
H7 | 0.672074 | 0.860642 | 0.564933 | 0.027* | |
C8 | 0.62267 (11) | 0.9081 (4) | 0.47714 (16) | 0.0221 (7) | |
C9 | 0.61866 (11) | 0.9763 (4) | 0.42063 (16) | 0.0251 (7) | |
H9 | 0.588853 | 0.984287 | 0.387052 | 0.030* | |
C10 | 0.65932 (11) | 1.0322 (4) | 0.41467 (15) | 0.0230 (7) | |
C11 | 0.65678 (11) | 1.0990 (4) | 0.35449 (15) | 0.0232 (7) | |
C12 | 0.61460 (12) | 1.1688 (4) | 0.31040 (16) | 0.0285 (8) | |
H12 | 0.587272 | 1.172068 | 0.318353 | 0.034* | |
C13 | 0.61339 (13) | 1.2323 (4) | 0.25572 (17) | 0.0313 (8) | |
H13 | 0.585546 | 1.280842 | 0.226775 | 0.038* | |
C14 | 0.69363 (13) | 1.1557 (5) | 0.28393 (18) | 0.0366 (9) | |
H14 | 0.719948 | 1.150150 | 0.273842 | 0.044* | |
C15 | 0.69625 (13) | 1.0939 (4) | 0.33971 (17) | 0.0321 (8) | |
H15 | 0.724803 | 1.048051 | 0.368031 | 0.039* | |
C16 | 0.57945 (11) | 0.8377 (4) | 0.48229 (15) | 0.0225 (7) | |
C17 | 0.55171 (11) | 0.7358 (4) | 0.43484 (16) | 0.0270 (8) | |
H17 | 0.561020 | 0.710850 | 0.402698 | 0.032* | |
C18 | 0.49493 (11) | 0.7020 (4) | 0.47743 (16) | 0.0253 (8) | |
H18 | 0.466264 | 0.655910 | 0.474464 | 0.030* | |
C19 | 0.52111 (11) | 0.8044 (4) | 0.52799 (16) | 0.0236 (7) | |
C20 | 0.50381 (11) | 0.8408 (4) | 0.57389 (16) | 0.0262 (8) | |
H20 | 0.475249 | 0.794643 | 0.571249 | 0.031* | |
C21 | 0.52914 (12) | 0.9435 (4) | 0.62180 (16) | 0.0301 (8) | |
H21 | 0.518261 | 0.966419 | 0.652638 | 0.036* | |
C22 | 0.57181 (12) | 1.0155 (4) | 0.62503 (16) | 0.0283 (8) | |
H22 | 0.588456 | 1.087141 | 0.657908 | 0.034* | |
C23 | 0.58967 (11) | 0.9837 (4) | 0.58143 (15) | 0.0243 (7) | |
H23 | 0.617993 | 1.033407 | 0.584754 | 0.029* | |
C24 | 0.56479 (11) | 0.8747 (4) | 0.53117 (15) | 0.0218 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0216 (2) | 0.0276 (2) | 0.0238 (2) | 0.00225 (15) | 0.00800 (17) | 0.00170 (16) |
Cl11 | 0.0324 (5) | 0.0322 (5) | 0.0413 (6) | 0.0011 (4) | −0.0012 (4) | −0.0048 (4) |
Cl12 | 0.0251 (5) | 0.0506 (6) | 0.0529 (6) | 0.0114 (4) | 0.0190 (4) | 0.0275 (5) |
Cl13 | 0.0453 (6) | 0.0558 (6) | 0.0245 (5) | 0.0109 (5) | 0.0146 (4) | 0.0042 (4) |
Cl14 | 0.0280 (4) | 0.0315 (5) | 0.0396 (5) | 0.0075 (3) | 0.0156 (4) | 0.0052 (4) |
Zn2 | 0.0206 (3) | 0.0297 (3) | 0.0206 (3) | 0.000 | 0.0060 (2) | 0.000 |
Cl21 | 0.0251 (5) | 0.0401 (5) | 0.0431 (6) | 0.0051 (4) | 0.0071 (4) | −0.0101 (4) |
Cl22 | 0.0450 (5) | 0.0337 (5) | 0.0243 (5) | 0.0047 (4) | 0.0147 (4) | 0.0039 (4) |
N1 | 0.0213 (16) | 0.0404 (19) | 0.040 (2) | 0.0015 (14) | −0.0010 (15) | 0.0030 (16) |
N2 | 0.0209 (14) | 0.0291 (15) | 0.0278 (17) | −0.0009 (12) | 0.0107 (12) | 0.0032 (13) |
N3 | 0.0368 (18) | 0.0399 (18) | 0.0223 (17) | −0.0082 (14) | 0.0132 (14) | 0.0010 (14) |
N4 | 0.0220 (15) | 0.0294 (16) | 0.0305 (18) | −0.0063 (12) | 0.0084 (13) | −0.0068 (13) |
C1 | 0.0209 (18) | 0.045 (2) | 0.031 (2) | −0.0024 (16) | 0.0089 (15) | 0.0016 (17) |
C2 | 0.0211 (18) | 0.050 (2) | 0.039 (2) | 0.0001 (16) | 0.0088 (17) | −0.0028 (19) |
C3 | 0.033 (2) | 0.040 (2) | 0.030 (2) | −0.0108 (17) | 0.0027 (17) | 0.0060 (17) |
C4 | 0.0229 (18) | 0.044 (2) | 0.028 (2) | −0.0078 (15) | 0.0058 (15) | 0.0030 (17) |
C5 | 0.0185 (16) | 0.0262 (17) | 0.030 (2) | −0.0052 (13) | 0.0075 (14) | 0.0007 (15) |
C6 | 0.0211 (17) | 0.0260 (17) | 0.0235 (18) | −0.0026 (14) | 0.0097 (14) | 0.0004 (14) |
C7 | 0.0221 (17) | 0.0276 (17) | 0.0182 (17) | −0.0003 (13) | 0.0079 (13) | 0.0005 (14) |
C8 | 0.0210 (16) | 0.0231 (16) | 0.0243 (18) | −0.0029 (13) | 0.0115 (14) | −0.0044 (14) |
C9 | 0.0181 (16) | 0.0290 (18) | 0.0266 (19) | 0.0004 (13) | 0.0077 (14) | −0.0016 (15) |
C10 | 0.0191 (16) | 0.0286 (17) | 0.0208 (18) | 0.0022 (13) | 0.0078 (13) | 0.0013 (14) |
C11 | 0.0196 (16) | 0.0270 (17) | 0.0224 (18) | −0.0011 (13) | 0.0081 (14) | −0.0032 (14) |
C12 | 0.0246 (18) | 0.0316 (19) | 0.029 (2) | −0.0014 (14) | 0.0109 (15) | 0.0060 (16) |
C13 | 0.029 (2) | 0.0311 (19) | 0.028 (2) | −0.0032 (15) | 0.0059 (16) | 0.0028 (16) |
C14 | 0.028 (2) | 0.052 (2) | 0.033 (2) | −0.0050 (17) | 0.0166 (17) | −0.0026 (18) |
C15 | 0.0273 (19) | 0.041 (2) | 0.029 (2) | 0.0041 (16) | 0.0129 (16) | 0.0056 (17) |
C16 | 0.0168 (16) | 0.0243 (17) | 0.0235 (18) | 0.0017 (13) | 0.0053 (13) | 0.0014 (14) |
C17 | 0.0194 (17) | 0.0365 (19) | 0.0259 (19) | 0.0008 (14) | 0.0101 (14) | 0.0000 (15) |
C18 | 0.0175 (16) | 0.0268 (18) | 0.031 (2) | −0.0029 (13) | 0.0093 (14) | 0.0032 (15) |
C19 | 0.0172 (16) | 0.0250 (17) | 0.0270 (19) | 0.0016 (13) | 0.0075 (14) | 0.0060 (14) |
C20 | 0.0198 (17) | 0.0330 (19) | 0.0262 (19) | 0.0012 (14) | 0.0099 (14) | 0.0091 (15) |
C21 | 0.0289 (19) | 0.040 (2) | 0.026 (2) | 0.0048 (16) | 0.0157 (16) | 0.0060 (16) |
C22 | 0.0294 (19) | 0.0300 (19) | 0.0220 (18) | −0.0021 (15) | 0.0071 (15) | −0.0008 (15) |
C23 | 0.0221 (17) | 0.0263 (17) | 0.0233 (18) | −0.0029 (13) | 0.0080 (14) | 0.0025 (14) |
C24 | 0.0183 (16) | 0.0226 (16) | 0.0247 (18) | 0.0029 (13) | 0.0091 (13) | 0.0052 (14) |
Zn1—Cl13 | 2.2485 (10) | C7—H7 | 0.9300 |
Zn1—Cl11 | 2.2521 (10) | C8—C9 | 1.391 (5) |
Zn1—Cl14 | 2.2775 (9) | C8—C16 | 1.491 (4) |
Zn1—Cl12 | 2.2935 (10) | C9—C10 | 1.385 (4) |
Zn2—Cl22 | 2.2545 (9) | C9—H9 | 0.9300 |
Zn2—Cl22i | 2.2545 (9) | C10—C11 | 1.481 (5) |
Zn2—Cl21 | 2.2782 (9) | C11—C15 | 1.389 (5) |
Zn2—Cl21i | 2.2783 (9) | C11—C12 | 1.399 (4) |
N1—C2 | 1.333 (5) | C12—C13 | 1.366 (5) |
N1—C3 | 1.342 (5) | C12—H12 | 0.9300 |
N1—H1N | 0.846 (10) | C13—H13 | 0.9300 |
N2—C10 | 1.338 (4) | C14—C15 | 1.369 (5) |
N2—C6 | 1.339 (4) | C14—H14 | 0.9300 |
N3—C13 | 1.337 (5) | C15—H15 | 0.9300 |
N3—C14 | 1.338 (5) | C16—C17 | 1.363 (4) |
N3—H3N | 0.847 (10) | C16—C24 | 1.423 (5) |
N4—C18 | 1.316 (4) | C17—H17 | 0.9300 |
N4—C17 | 1.362 (4) | C18—C19 | 1.396 (5) |
N4—H4N | 0.850 (10) | C18—H18 | 0.9300 |
C1—C2 | 1.371 (5) | C19—C20 | 1.411 (5) |
C1—C5 | 1.388 (5) | C19—C24 | 1.427 (4) |
C1—H1 | 0.9300 | C20—C21 | 1.354 (5) |
C2—H2 | 0.9300 | C20—H20 | 0.9300 |
C3—C4 | 1.376 (5) | C21—C22 | 1.405 (5) |
C3—H3 | 0.9300 | C21—H21 | 0.9300 |
C4—C5 | 1.388 (5) | C22—C23 | 1.367 (5) |
C4—H4 | 0.9300 | C22—H22 | 0.9300 |
C5—C6 | 1.496 (4) | C23—C24 | 1.416 (4) |
C6—C7 | 1.393 (4) | C23—H23 | 0.9300 |
C7—C8 | 1.388 (4) | ||
Cl13—Zn1—Cl11 | 115.32 (4) | C10—C9—H9 | 120.2 |
Cl13—Zn1—Cl14 | 114.53 (4) | C8—C9—H9 | 120.2 |
Cl11—Zn1—Cl14 | 106.61 (4) | N2—C10—C9 | 123.0 (3) |
Cl13—Zn1—Cl12 | 108.54 (4) | N2—C10—C11 | 115.8 (3) |
Cl11—Zn1—Cl12 | 110.25 (4) | C9—C10—C11 | 121.2 (3) |
Cl14—Zn1—Cl12 | 100.58 (4) | C15—C11—C12 | 117.6 (3) |
Cl22—Zn2—Cl22i | 105.21 (5) | C15—C11—C10 | 121.1 (3) |
Cl22—Zn2—Cl21 | 117.78 (4) | C12—C11—C10 | 121.3 (3) |
Cl22i—Zn2—Cl21 | 107.29 (3) | C13—C12—C11 | 120.3 (3) |
Cl22—Zn2—Cl21i | 107.30 (3) | C13—C12—H12 | 119.9 |
Cl22i—Zn2—Cl21i | 117.77 (4) | C11—C12—H12 | 119.9 |
Cl21—Zn2—Cl21i | 102.14 (5) | N3—C13—C12 | 119.4 (3) |
C2—N1—C3 | 122.8 (3) | N3—C13—H13 | 120.3 |
C2—N1—H1N | 117 (3) | C12—C13—H13 | 120.3 |
C3—N1—H1N | 120 (3) | N3—C14—C15 | 118.9 (4) |
C10—N2—C6 | 117.4 (3) | N3—C14—H14 | 120.5 |
C13—N3—C14 | 123.0 (3) | C15—C14—H14 | 120.5 |
C13—N3—H3N | 118 (3) | C14—C15—C11 | 120.8 (3) |
C14—N3—H3N | 119 (3) | C14—C15—H15 | 119.6 |
C18—N4—C17 | 122.8 (3) | C11—C15—H15 | 119.6 |
C18—N4—H4N | 115 (3) | C17—C16—C24 | 119.0 (3) |
C17—N4—H4N | 122 (3) | C17—C16—C8 | 116.2 (3) |
C2—C1—C5 | 119.6 (4) | C24—C16—C8 | 124.7 (3) |
C2—C1—H1 | 120.2 | N4—C17—C16 | 120.7 (3) |
C5—C1—H1 | 120.2 | N4—C17—H17 | 119.6 |
N1—C2—C1 | 119.7 (4) | C16—C17—H17 | 119.6 |
N1—C2—H2 | 120.1 | N4—C18—C19 | 120.5 (3) |
C1—C2—H2 | 120.1 | N4—C18—H18 | 119.8 |
N1—C3—C4 | 119.0 (4) | C19—C18—H18 | 119.8 |
N1—C3—H3 | 120.5 | C18—C19—C20 | 120.3 (3) |
C4—C3—H3 | 120.5 | C18—C19—C24 | 118.6 (3) |
C3—C4—C5 | 119.8 (4) | C20—C19—C24 | 121.0 (3) |
C3—C4—H4 | 120.1 | C21—C20—C19 | 119.5 (3) |
C5—C4—H4 | 120.1 | C21—C20—H20 | 120.3 |
C1—C5—C4 | 118.8 (3) | C19—C20—H20 | 120.3 |
C1—C5—C6 | 119.8 (3) | C20—C21—C22 | 120.1 (3) |
C4—C5—C6 | 121.4 (3) | C20—C21—H21 | 119.9 |
N2—C6—C7 | 123.3 (3) | C22—C21—H21 | 119.9 |
N2—C6—C5 | 115.3 (3) | C23—C22—C21 | 122.1 (3) |
C7—C6—C5 | 121.2 (3) | C23—C22—H22 | 118.9 |
C8—C7—C6 | 119.0 (3) | C21—C22—H22 | 118.9 |
C8—C7—H7 | 120.5 | C22—C23—C24 | 119.6 (3) |
C6—C7—H7 | 120.5 | C22—C23—H23 | 120.2 |
C7—C8—C9 | 117.7 (3) | C24—C23—H23 | 120.2 |
C7—C8—C16 | 122.7 (3) | C23—C24—C16 | 124.0 (3) |
C9—C8—C16 | 119.6 (3) | C23—C24—C19 | 117.6 (3) |
C10—C9—C8 | 119.6 (3) | C16—C24—C19 | 118.3 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl21ii | 0.85 (1) | 2.27 (2) | 3.084 (3) | 161 (3) |
N3—H3N···Cl12iii | 0.85 (1) | 2.71 (3) | 3.291 (3) | 127 (3) |
N3—H3N···Cl14iii | 0.85 (1) | 2.47 (2) | 3.203 (3) | 144 (3) |
N4—H4N···Cl12iv | 0.85 (1) | 2.41 (2) | 3.125 (3) | 142 (3) |
N4—H4N···Cl22v | 0.85 (1) | 2.74 (3) | 3.264 (3) | 121 (3) |
C2—H2···Cl13vi | 0.93 | 2.87 | 3.551 (4) | 131 |
C3—H3···Cl11vii | 0.93 | 2.94 | 3.823 (4) | 158 |
C4—H4···Cl14viii | 0.93 | 2.72 | 3.316 (4) | 123 |
C7—H7···Cl14viii | 0.93 | 2.73 | 3.589 (3) | 155 |
C12—H12···Cl22ix | 0.93 | 2.88 | 3.607 (4) | 136 |
C13—H13···Cl12iii | 0.93 | 2.71 | 3.287 (4) | 121 |
C14—H14···Cl11vi | 0.93 | 2.83 | 3.548 (4) | 135 |
C15—H15···Cl14vi | 0.93 | 2.93 | 3.588 (4) | 129 |
C17—H17···Cl22v | 0.93 | 2.77 | 3.320 (4) | 119 |
C18—H18···Cl12iv | 0.93 | 2.85 | 3.335 (3) | 114 |
C18—H18···Cl13iv | 0.93 | 2.88 | 3.759 (3) | 159 |
Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (iii) x, y+1, z; (iv) −x+1, y, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x+3/2, y+1/2, −z+1/2; (vii) −x+3/2, −y+3/2, −z+1; (viii) x, −y+1, z+1/2; (ix) −x+1, −y+2, −z+1. |
Code | D—H···A | D—H | H···A | D···A | D—H···A |
#1 | N1—H1N···Cl21i | 0.846 (10) | 2.27 (3) | 3.085 (4) | 161 (3) |
#2 | N3—H3N···Cl12ii | 0.846 (10) | 2.71 (3) | 3.291 (3) | 127 (3) |
#3 | N3—H3N···Cl14ii | 0.847 (10) | 2.48 (4) | 3.203 (4) | 145 (3) |
#4 | N4—H4N···Cl12iii | 0.850 (10) | 2.41 (3) | 3.125 (3) | 142 (3) |
#5 | N4—H4N···Cl22iv | 0.850 (10) | 2.74 (3) | 3.264 (3) | 121 (3) |
#6 | C4—H4···Cl14v | 0.93 | 2.72 | 3.316 (4) | 123 |
#7 | C7—H7···Cl14v | 0.93 | 2.73 | 3.589 (3) | 155 |
#8 | C13—H13···Cl12ii | 0.93 | 2.71 | 3.287 (4) | 121 |
#9 | C17—H17···Cl22iv | 0.93 | 2.77 | 3.320 (3) | 119 |
#10 | C23—H23···Cl11vii | 0.93 | 2.74 | 3.434 (4) | 132 |
Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 3/2; (ii) x, y + 1, z; (iii) -x + 1, y, -z + 1/2; (iv) -x + 1, -y + 1, -z + 1; (v) x, -y + 1, y + 1/2; (vi) -x + 3/2, y + 1/2, -y + 1/2; (vii) x, -y + 2, y + 1/2. |
Ring codes as in Fig. 1. ccd: centroid-to-centroid distance; da: dihedral angle between rings; ipd: interplanar distance, or (mean) distance from one plane to the neighbouring centroid. For details, see Janiak (2000) |
Interaction code | Cg···Cg | ccd (Å | da (°) | ipd (Å) |
#11 | Cg4···Cg5vii | 3.495 (2) | 18.1 (15) | 3.32 (2) |
#12 | Cg5···Cg5vii | 3.843 (2) | 0.0 | 3.35 (2) |
#13 | Cg1···Cg3viii | 3.784 (2) | 16.2 (14) | 3.66 (2) |
#14 | Cg1···Cg2ix | 4.149 (2) | 15.9 (16) | 3.85 (2) |
Symmetry codes: (vii) -x + 1, -y + 2, -z + 1; (viii) -x + 3/2, -y + 5/2, -z + 1; (ix) -x + 3/2, -y + 3/2, -z + 1. |
d is the Cl···X distance where X is the atom in the ring nearest the Cl anion; α is the angle subtended by the Cl–Cg vector to the ring normal; β is the angle subtended by the X–Cg and X–Cg vectors (for β < 90°, the anion projects within the ring and for 90° < β, the anion projects outside the ring; n ( in ηn) is the number of interacting atoms. NB according to standard requirements for anion···π interactions (Giese et al. 2015, 2016), β should be < 100°. |
Code | Zn—Cl···Cg | Cl···Cg | d | α | β | ηn |
#15 | Zn1—Cl12···Cg5x | 3.739 (2) | 3.671 | 14.5 | 82.0 | η2 |
#16 | Zn1—Cl13···Cg2xi | 3.760 (2) | 3.829 | 8.60 | 76.5 | η1 |
#17 | Zn1—Cl13···Cg4xii | 4.084 (2) | 3.748 | 23.9 | 94.3 | η1 |
Symmetry codes: (x) x, -y + 1, z - 1/2; (xi) x, -y + 2, z - 1/2; (xii) x, -y + 1, z - 1/2. |
The H atoms bound to carbon (HC) and nitrogen (HN) are differentiated. The first column corresponds to `interior' atoms and the remaining columns to `exterior' ones. |
C | N | Cl | Zn | HC | HN | |
Surface interior (%) | 28.66 | 2.65 | 33.36 | 3.49 | 26.38 | 5.46 |
Surface exterior (%) | 26.45 | 2.20 | 34.40 | 3.01 | 28.15 | 5.80 |
Enrichment ratios (reciprocal contacts merged) | ||||||
C | 1.74 | |||||
N | 2.78 | 0.24 | ||||
Cl | 0.89 | 0.21 | 0.27 | |||
Zn | 0.92 | 0.00 | 0.10 | 0.00 | ||
HC | 0.35 | 0.59 | 1.91 | 2.33 | 0.60 | |
HN | 0.49 | 0.00 | 2.36 | 1.40 | 0.07 | 0.00 |
The first column corresponds to `interior' atoms and the remaining columns to `exterior' ones. |
C | N | HC | |
Surface interior (%) | 42.44 | 10.43 | 47.13 |
Surface exterior (%) | 40.81 | 10.44 | 48.74 |
Enrichment ratios (reciprocal contacts merged) | |||
C | 1.28 | ||
N | 0.34 | 0.44 | |
HC | 0.90 | 1.69 | 0.94 |
The H atoms bound to carbon (HC) and nitrogen (HN) are differentiated. The first column corresponds to `interior' atoms and the remaining columns to `exterior' ones. |
C | N | Cl | Zn | HC | HN | |
Surface interior (%) | 44.29 | 4.09 | 0.00 | 0.00 | 42.66 | 8.96 |
Surface exterior (%) | 28.22 | 3.60 | 50.16 | 4.66 | 12.03 | 1.34 |
Enrichment ratios (reciprocal contacts merged) | ||||||
C | 1.62 | |||||
N | 2.15 | 0.43 | ||||
Cl | 0.62 | 0.16 | NaN | |||
Zn | 0.76 | 0.00 | NaN | NaN | ||
HC | 0.49 | 0.65 | 1.34 | 1.37 | 1.29 | |
HN | 0.73 | 0.00 | 1.64 | 0.88 | 0.18 | 0.00 |
Funding information
The authors acknowledge the NPCyT (project No. PME 2006-01113) for the purchase of the Oxford Gemini CCD diffractometer and the Universidad de La Frontera (Proyecto DIUFRO DI17-0173).
References
Bauzá, A., Mooibroek, T. J. & Frontera, A. (2016). CrystEngComm, 18, 10–23. Google Scholar
Gamez, P. (2014). Inorg. Chem. Front. 1, 35–43. CrossRef CAS Google Scholar
Giese, M., Albrecht, M. & Rissanen, K. (2016). Chem. Comm. 52, 1778–1795. CrossRef Google Scholar
Giese, M., Albrecht, M., Valkonen, A. & Rissanen, K. (2015). Chem. Sci. 6, 354–359. CrossRef Google Scholar
Granifo, J., Suárez, S., Boubeta, F. & Baggio, R. (2017). Acta Cryst. C73, 1121–1130. CrossRef IUCr Journals Google Scholar
Granifo, J., Westermeyer, M., Riquelme, M., Gaviño, R., Suárez, S., Halac, E. B. & Baggio, R. (2015). Acta Cryst. B71, 805–813. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guillot, B., Enrique, E., Huder, L. & Jelsch, C. (2014). Acta Cryst. A70, C279. CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Maclagan, R. G. A. R., Gronert, S. & Meot-Ner (Mautner), M. (2015). J. Phys. Chem. A, 119, 127–139. Google Scholar
Manna, P., Seth, S. K., Bauzá, A., Mitra, M., Ray Choudhury, S., Frontera, A. & Mukhopadhyay, S. (2014a). Cryst. Growth Des. 14, 747–755. CrossRef Google Scholar
Manna, P., Seth, S. K., Mitra, M., Choudhury, S. R., Bauzá, A., Frontera, A. & Mukhopadhyay, S. (2014b). Cryst. Growth Des. 14, 5812–5821. CrossRef Google Scholar
Manna, P., Seth, S. K., Mitra, M., Das, A., Singh, N. J., Choudhury, S. R., Kar, T. & Mukhopadhyay, S. (2013). CrystEngComm, 15, 7879–7886. Web of Science CrossRef CAS Google Scholar
Padhi, S. K., Sahu, R., Saha, D. & Manivannan, V. (2011). Inorg. Chim. Acta, 372, 383–388. CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seth, S. K., Manna, P., Singh, N. J., Mitra, M., Jana, A. D., Das, A., Choudhury, S. R., Kar, T., Mukhopadhyay, S. & Kim, K. S. (2013). CrystEngComm, 15, 1285–1288. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.