research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new co-crystal dinuclear/trinuclear ZnII–ZnII/ZnII–SmIII–ZnII complex with a salen-type Schiff base ligand

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 3 September 2018; accepted 14 November 2018; online 22 November 2018)

In the penta­nuclear title complex, [SmZn2(C22H18N2O4)2(NCS)2(C3H7NO)2][Zn2(C22H18N2O4)(NCS)3]·C3H7NO·0.32H2O, namely bis­{μ2-6,6′-dimeth­oxy-2,2′-[phenyl­ene-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}-1κ4O,N,N′,O′:2κ3O,O′,O6;2κ3O,O′,O6:3κ4O,N,N′,O′-bis­(di­methyl­formamide-2κO)di­thiocyanato-1κN,3κN-2-samarium(III)-1,3-dizinc(II) {μ2-6,6′-dimeth­oxy-2,2′-[phenyl­ene-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato-1κ4O,N,N′,O′:2κ2O,O′}trithio­cyan­ato-1κN;2κ2N,N-dizinc(II) di­methyl­formamide monosolvate 1.32-hydrate, a dinuclear unit and a trinuclear unit co-exist. One of the ZnII centers in the dinuclear unit as well as the two ZnII centers in the trinuclear unit are located in the inner N2O2 cavity of the ligand and are coordinated to the nitro­gen atom of one thio­cyanate moiety, giving rise to a square-pyramidal geometry. The second ZnII center in the dinuclear unit is coordinated to the two phenolate oxygen atoms of the ligand and to two thio­cyanate groups via the nitro­gen atom in a tetra­hedral geometry. The SmIII ion is eight-coordinated by four phenolate O atoms from the two ligand mol­ecules, two meth­oxy O atoms from the two ligand mol­ecules and two O atoms from the DFM solvent mol­ecule. In the dinuclear unit, the two meth­oxy oxygen atoms remain uncoordinated while in the trinuclear unit, for each ligand one meth­oxy oxygen is coordinated and the other one remains uncoordinated. In the crystal, the trinuclear cationic units and dinuclear anionic units are assembled into infinite layers. These layers are held together via electrostatic inter­actions, forming a three-dimensional structure. In the dinuclear unit, the C and S atoms of one of the thio­cyanate groups are disordered over two sets of sites in a 0.680 (4)(4):0.320 (4) ratio.

1. Chemical context

Over recent years, polyheteronuclear complexes of 3d and 4f metals have been studied with increasing inter­est by chemists (Cristóvão et al., 2017[Cristóvão, B., Miroslaw, B. & Bartyzel, A. (2017). Inorg. Chim. Acta, 466, 160-165.]; Cristóvão & Miroslaw, 2013[Cristóvão, B. & Miroslaw, B. (2013). Inorg. Chim. Acta, 401, 50-57.]; Ding et al., 2015[Ding, D.-D., Gao, T., Sun, O., Li, G.-M., Wu, Y.-H., Xu, M.-M., Zou, X.-Y. & Yan, P.-F. (2015). Inorg. Chem. Commun. 51, 21-25.]; Tian et al., 2012[Tian, Y.-M., Li, H.-F., Han, B.-L., Zhang, Q. & Sun, W.-B. (2012). Acta Cryst. E68, m1500-m1501.]; Wu & Hou, 2010[Wu, B. & Hou, T. (2010). Acta Cryst. E66, m457.]). The various structures obtained (Rossi et al., 2018[Rossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2018). Inorg. Chim. Acta, 470, 254-262.]; Zhou et al., 2015[Zhou, H., Chen, C., Liu, Y. & Shen, X. (2015). Inorg. Chim. Acta, 437, 188-194.]; Ghosh & Ghosh, 2016[Ghosh, S. & Ghosh, A. (2016). Inorg. Chim. Acta, 442, 64-69.]), the physicochemical properties (Cristóvão et al., 2017[Cristóvão, B., Miroslaw, B. & Bartyzel, A. (2017). Inorg. Chim. Acta, 466, 160-165.]) and the potential applications in fields such as luminescence (Zhao et al., 2014[Zhao, S., Liu, X., Wong, W.-Y., Lü, X. & Wong, W.-K. (2014). Inorg. Chim. Acta, 414, 160-164.]; Zhu et al., 2018[Zhu, T., Yu, Z., Yang, X., Bo, L., Jiang, D. & Chen, H. (2018). Polyhedron, 148, 124-128.]), magneto chemistry (Chesman et al., 2012[Chesman, A. S. R., Turner, D. R., Moubaraki, B., Murray, K. S., Deacon, G. B. & Batten, S. R. (2012). Inorg. Chim. Acta, 389, 99-106.]; Klokishner & Reu, 2012[Klokishner, S. & Reu, O. (2012). Chem. Phys. Lett. 552, 130-135.]), electrochemistry (Yin et al., 2017[Yin, J.-C., Qin, T.-Z., Hu, C., He, G.-M., Zhao, B.-W., Zhang, C. & Wang, J. (2017). Mater. Lett. 197, 221-223.]) and catalysis (Lan et al., 2018[Lan, T.-X., Gao, W.-S., Chen, C.-N., Wang, H.-S., Wang, M. & Fan, Y. (2018). New J. Chem. 42, 5798-5805.]) have made this chemistry very attractive. These compounds are obtained from Schiff bases, which are organic compounds having several donor sites, which are used to assemble stable structures with transition metal or lanthanide ions. Both the nature of the ligand and the nature of the metal strongly influence the properties of the compound obtained. The Schiff bases obtained by condensation between a di­amine and a well-selected keto-precursor may have two cavities of different dimensions, which can accommodate metal ions of different sizes (Andruh, 2011[Andruh, M. (2011). Chem. Commun. 47, 3025-3042.]; Gao et al., 2012[Gao, T., Xu, L.-L., Zhang, Q., Li, G.-M. & Yan, P.-F. (2012). Inorg. Chem. Commun. 26, 60-63.]). The salen-type Schiff base obtained by the condensation of 1,2-di­amino­benzene and ortho-vanillin has two cavities of different sizes, viz. N2O2 and O2O2. The smaller inner N2O2 cavity consists of two imino nitro­gen atoms and two phenolato oxygen atoms and can encapsulate 3d metal ions. The larger outer O2O2 cavity consists of two phenolato oxygen atoms and two oxygen atoms from meth­oxy groups and can encapsulate 3d ions or lanthanide ions that have a larger ionic radius and prefer oxygen because of their hard-acid characters. By controlling the ratio of the ligand–3d metal–4f metal, it is possible to synthesize 3d–3d and 3d–4f–3d complexes. It is in this context that we used the ligand N,N′-bis­(3-meth­oxy­salicyl­idene)phenyl­ene-1,2-di­amine (H2L) to synthesize the Zn–Zn/Zn–Sm–Zn co-crystal whose structure is described herein.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic system in the space group Pī. The asymmetric unit (Fig. 1[link]) consists a co-crystal of one trinuclear cationic unit, [SmZn2(L)2(SCN)2(DMF)2]+, one dinuclear anionic unit, [Zn2(L)(SCN)3], one uncoordinated DMF solvent mol­ecule and 0.32 of a water mol­ecule.

[Figure 1]
Figure 1
An ORTEP view of the asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

In the trinuclear unit, both zinc ions are in an N3O2 environment, which can be characterized by the Addison parameter τ [τ = (α − β)/60; τ = 0 indicates a regular square-pyramidal geometry and τ = 1 indicates a regular trigonal bipyramid; α and β are the largest angles around the metal ions; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]]. The τ values of 0.146 for Zn1 and 0.212 for Zn31 are indicative of a severely distorted square-pyramidal geometry around each zinc ion, with the apical positions of each metal ion being occupied by a terminal nitro­gen atom from an anionic thio­cyanate moiety. The apical bond lengths N121—Zn1 and N131—Zn31 are 1.9842 (17) and 1.9786 (16) Å, respectively, and are the shortest distances around these two atoms. The values are slightly lower than those found for the reported Zn2Sm complex (Gao et al., 2012[Gao, T., Xu, L.-L., Zhang, Q., Li, G.-M. & Yan, P.-F. (2012). Inorg. Chem. Commun. 26, 60-63.]). The equatorial planes around each of these two zinc ions in the trinuclear unit are formed, respectively, by two imino nitro­gen atoms and two phenolate oxygen atoms. The diagonal basal angles, N1—Zn1—O2 = 147.54 (6)° and N2—Zn1—O3 = 138.79 (6)°, N31—Zn31—O32 = 136.30 (6)° and N32—Zn31—O33 = 149.00 (6)° significantly deviate from the ideal values of 180°. The Zn1⋯Zn31, Zn1⋯Sm1 and Sm1⋯Zn31 distances of 5.0288 (5), 3.5372 (5) and 3.5443 (5) Å, respectively, and the Zn1⋯Sm1⋯Zn31, Sm1⋯Zn31⋯Zn1 and Zn31⋯Zn1⋯Sm1 angles of 90.49 (1), 44.70 (1) and 44.81 (1)° respectively, are indicative of an isosceles triangular arrangement of the metal centres in the trinuclear unit.

In the dinuclear unit, all of the meth­oxy oxygen atoms remain uncoordinated, whereas in the trinuclear unit, for each of the two metalloligands, one of the meth­oxy atoms remains uncoordinated (O1 and O34) while the others (O4 and O31) are coordinated to the SmIII atom. The longest bond distances around the SmIII ion are for Sm—O4 [2.6707 (13) Å] and Sm—O31 [2.6934 (13) Å]. The Sm—Ophen­oxy distances are in the range 2.3348 (12)–2.4417 (12) Å and are comparable to those found for the Zn2Sm complex (Gao et al., 2012[Gao, T., Xu, L.-L., Zhang, Q., Li, G.-M. & Yan, P.-F. (2012). Inorg. Chem. Commun. 26, 60-63.]) in which the mean Sm—Ophen­oxy distance is 2.332 Å. The Sm—ODMF distances are longer than those found in a samarium complex (Kou et al., 1998[Kou, H.-Z., Yang, G.-M., Liao, D.-Z., Cheng, P., Jiang, Z.-H., Yan, S.-P., Huang, X.-Y. & Wang, G.-L. (1998). J. Chem. Crystallogr. 28, 303-307.]) with Sm—O91 and Sm—O101 values of 2.3831 (13) and 2.3476 (13) Å, respectively (Table 1[link]). The octa­coordinated polyhedron around the SmIII atom is best described as slightly distorted square anti­prism. The Zn—Ophenoxo bond lengths in both the dinuclear and trinuclear units are in the range 1.9985 (13)–2.0395 (12) Å. These values are comparable with the distances for the dinuclear complex [Zn(H2O)(valdmpn)Sm(O2NO)3] [where valdmpn is N,N′-bis­(3-meth­oxy­salicyl­idene)(2,2-di­methyl­propyl­idene)-1,3-di­amine); Pasatoiu et al., 2012[Pasatoiu, T. D., Madalan, A. M., Zamfirescu, M., Tiseanu, C. & Andruh, M. (2012). Phys. Chem. Chem. Phys. 14, 11448-11456.]].

Table 1
Selected geometric parameters (Å, °)

N1—Zn1 2.0863 (16) O3—Zn1 1.9985 (13)
N2—Zn1 2.0451 (16) O4—Sm1 2.6707 (13)
N31—Zn31 2.0534 (16) O31—Sm1 2.6934 (13)
N32—Zn31 2.0644 (16) O32—Sm1 2.3599 (12)
N121—Zn1 1.9842 (17) O32—Zn31 2.0143 (13)
N131—Zn31 1.9786 (16) O33—Sm1 2.4038 (13)
O2—Sm1 2.4417 (12) O33—Zn31 2.0175 (13)
O2—Zn1 2.0395 (12) O91—Sm1 2.3831 (13)
O3—Sm1 2.3348 (12) O101—Sm1 2.3476 (13)
O2—Sm1—O4 119.60 (4) O32—Sm1—O31 59.85 (4)
O2—Sm1—O31 111.28 (4) O32—Sm1—O33 65.80 (4)
O3—Sm1—O2 66.10 (4) O91—Sm1—O2 83.29 (4)
O3—Sm1—O4 60.69 (4) O91—Sm1—O4 70.36 (4)
O3—Sm1—O31 159.39 (4) O91—Sm1—O31 69.71 (4)
O3—Sm1—O32 134.80 (4) O91—Sm1—O33 162.88 (5)
O3—Sm1—O33 80.48 (4) N121—Zn1—N1 108.05 (7)
O32—Sm1—O2 78.61 (4) N121—Zn1—N2 112.95 (7)
O32—Sm1—O4 161.77 (4) N121—Zn1—O2 104.31 (6)

In the trinuclear unit, the Zn(di-μ-phenoxo)2Sm bridging fragments show a difference between the Zn—O and Sm—O binding lengths whose mean values are 2.0204 (su?) and 2.3860 (su?) Å, respectively. The four Zn—Ophenoxo—Sm angles have different values with an averages of 106.54 (su?) and 107.16 (su?)°, respectively, for those involving the Zn1 and Zn31 atoms. The sum of the angles in the Zn1(di-μ-phenoxo)2Sm1 and Zn31(di-μ-phenoxo)2Sm1 arms are 359.58 and 359.89°, respectively, indicating regular planar geometries. The dihedral angle between Zn1/O2/Sm1/O3 and Zn31/O32/Sm1/O33 plane normals is 76.01 (3)° with the displacement of the respective constituent atoms not exceeding 0.046 and 0.023 Å. In the trinuclear unit, the dihedral angles between the planes O2/Sm1/O3 and O2/Zn1/O3 and the plane normals O32/Sm1/O33 and O32/Zn1/O33 are 6.04 (6) and 3.10 (6)°, respectively. In the dinuclear unit, the dihedral angle between the O62/Zn61/O63 and O62/Zn62/O63 planes is 21.31 (10)°.

In the dinuclear unit, the Zn61 atom is tetra­coordinated while the Zn62 atom is penta­coordinated. The values of the angles around Zn61, which fall in the range 76.86 (6)–119.03 (8)°, are indicative of a distorted tetra­hedral environment. The geometry around the Zn62 atom is best described as a distorted square pyramidal, as indicated by the value of 0.105 for the Addison parameter τ. The apical position is occupied by the nitro­gen atom N141 of the thio­cyanate group with the basal plan occupied by atoms N51, N52, O62 and O63 from the ligand mol­ecule. The angles between the N141 atom in the apical position and each of the four basal plane atoms fall in the range 106.67 (6)–111.37 (7)° and are far from the ideal value of 90°. The deformation of the basal plane around the Zn62 atom is indicated by the values of the transoid [138.41 (6) and 144.96 (7)°] and cisoid angles [88.34 (6) and 88.94 (6)°], which are different from the ideal values of 180 and 90° for a square-planar geometry (Table 1[link]). The anionic thio­cyanate ions are N donors and bind to the zinc atoms in a unidentate fashion. The Zn—N—CS bond angles in the dinuclear and trinuclear units are in the range 170.9 (5)–176.12 (18)°, indicating a quasi-linear alignment. The N—C—S angles vary between 177.7 (2) and 179.4 (2)°, showing that these three atoms adopt an almost linear alignment.

3. Supra­molecular features

Fig. 2[link] shows the packing arrangement in the crystal. The structure is clearly composed of alternating layers composed of cationic units and anionic units stacked along the [101] direction. The complex mol­ecules display no hydrogen-bonding contacts. The trinuclear cationic units and dinuclear anionic units are assembled into infinite layers via electrostatic inter­actions. The alternating ionic layers are held together via electrostatic inter­actions, forming a three-dimensional structure.

[Figure 2]
Figure 2
Mol­ecular representation of the title compound, showing the network of dinuclear and trinuclear complex units in layers.

4. Database survey

A survey of the Cambridge Structural Database (CSD) (Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that dinuclear complexes of the ligand bis­(2-hy­droxy-3-meth­oxy­benzyl­idene)-1,2-di­amino­benzene where the smaller N2O2 cage is occupied by a 3d metal and the larger, open O2O2 cage is occupied by one s-, p-, d- or f-block metal are well documented. Trinuclear complexes formed by two 3d metals with the above organic ligand in which the 3d metal atom is situated in the smaller N2O2 cage and one s-, d- or f-block metal atom is coordinated to the two larger O2O2 cages have also been reported: five entries corresponding to ds [BIZBAO (Bian et al., 2008[Bian, J. (2008). Acta Cryst. E64, m625.]), KAZQEK (Andrez et al., 2017[Andrez, J., Guidal, V., Scopelliti, R., Pécaut, J., Gambarelli, S. & Mazzanti, M. (2017). J. Am. Chem. Soc. 139, 8628-8638.]), KESYOY and KESZAL (Biswas et al., 2013b[Biswas, A., Mondal, S. & Mohanta, S. (2013b). J. Coord. Chem. 66, 152-170.]), LARPIG (Feng et al., 2017[Feng, X., Wu, K. Y., Xie, S. Y., Li, R. & Wang, L. (2017). Inorg. Nano-Met. Chem. 47, 1134-1140.])], four entries correspond dd [DEDPIM (Yang et al., 2006[Yang, X., Jones, R. A., Wu, Q., Oye, M. M., Lo, W.-K., Wong, W.-K. & Holmes, A. L. (2006). Polyhedron, 25, 271-278.]), OKECIS (Zhang et al., 2016[Zhang, Y., Zhang, W.-X. & Zheng, J.-M. (2016). Z. Anorg. Allg. Chem. 642, 461-466.]), UGAMOF (Wang et al., 2008b[Wang, H., Zhang, D., Tian, L. & Zhang, L.-F. (2008b). Acta Cryst. E64, m1460.]), WOGQAL (Wang et al., 2008a[Wang, H., Zhang, D. & Zhang, L.-F. (2008a). Acta Cryst. E64, m1408-m1409.])], seven correspond to sf [FEVDUH (Wang et al., 2013[Wang, H., Cao, W., Liu, T., Duan, C. & Jiang, J. (2013). Chem. Eur. J. 19, 2266-2270.]), ITOVIY (Ma et al., 2016[Ma, Q., Zeng, S., Feng, X., Cao, W., Wang, H., Dou, J. & Jiang, J. (2016). Eur. J. Inorg. Chem. 2016, 4194-4198.]), YIMLUD, YIMMAK, YIMMEO, YIMMIS and YIMMOY (Ma et al., 2013[Ma, Q., Feng, X., Cao, W., Wang, H. & Jiang, J. (2013). CrystEngComm, 15, 10383-10388.])], twenty entries correspond to df [AYOKIJ (Yang et al., 2011[Yang, F., Li, G.-M., Chen, P., Yan, P.-F. & Hou, G.-F. (2011). Acta Cryst. E67, m1185.]), DEJLEK and DEJLAG (Wong et al., 2006[Wong, W.-K., Yang, X., Jones, R. A., Rivers, J. H., Lynch, V., Lo, W.-K., Xiao, D., Oye, M. M. & Holmes, A. L. (2006). Inorg. Chem. 45, 4340-4345.]), EBIZUM, EBOBAA and EBOBEE (Chen et al., 2011[Chen, P., Chen, H., Yan, P., Wang, Y. & Li, G. (2011). CrystEngComm, 13, 6237-6242.]), GICBUR and GICCAY (Yang et al., 2013[Yang, X., Schipper, D., Liao, A., Stanley, J. M., Jones, R. A. & Holliday, B. J. (2013). Polyhedron, 52, 165-169.]), KEBGUW (Pushkarev et al., 2017[Pushkarev, A. P., Balashova, T. V., Kukinov, A. A., Arsenyev, M. V., Yablonskiy, A. N., Kryzhkov, D. I., Andreev, B. A., Rumyantcev, R. V., Fukin, G. K. & Bochkarev, M. N. (2017). Dalton Trans. 46, 10408-10417.]), MEPXEL, MEPXIP and MEPXOV (Lo et al., 2006[Lo, W.-K., Wong, W.-K., Wong, W.-Y., Guo, J., Yeung, K.-T., Cheng, W.-K., Yang, X. & Jones, R. A. (2006). Inorg. Chem. 45, 9315-9325.]), NOGPIJ (Bi et al., 2008a[Bi, W.-Y., Lü, Y., Chai, W.-L., Song, J.-R., Wong, W.-K., Yang, X.-P. & Jones, R. A. (2008a). Z. Anorg. Allg. Chem. 634, 1795-1800.]), NOMQIQ, NOMQOW and NOMQUC (Bi et al., 2008b[Bi, W.-Y., Lü, X., Chai, W.-L., Jin, W.-J. J.-R., Song, J. & Wong, W. (2008b). Inorg. Chem. Commun. 11, 1316-1319.]), PALZUA (Fu et al., 2017[Fu, G., Su, P., Lü, X. & Wong, W.-K. (2017). Inorg. Chem. Commun. 76, 12-14.]), POXMIZ (Bi et al., 2009[Bi, W.-Y., Lü, X., Chai, W.-L., Wei, T., Song, J.-R., Zhao, S.-S. & Wong, W.-K. (2009). Inorg. Chem. Commun. 12, 267-271.]), VAYBEF (Liu et al., 2017[Liu, L., Li, H., Su, P., Zhang, Z., Fu, G., Li, B. & Lü, X. (2017). J. Mater. Chem. C. 5, 4780-4787.]), YIMMUE (Ma et al., 2013[Ma, Q., Feng, X., Cao, W., Wang, H. & Jiang, J. (2013). CrystEngComm, 15, 10383-10388.])], five entries corresponding to dsd [DAVZEI (Nandy et al., 2017[Nandy, M., Saha, D., Rizzoli, C. & Shit, S. (2017). Z. Naturforsch. Teil B, 72, 133-140.]), IZEHEB (Das et al., 2011[Das, M., Chatterjee, S. & Chattopadhyay, S. (2011). Inorg. Chem. Commun. 14, 1337-1340.]), KESZEP, KESZIT and KESZOZ (Biswas et al., 2013a[Biswas, A., Mandal, L., Mondal, S., Lucas, R. & Mohanta, S. (2013a). CrystEngComm, 15, 5888-5897.])], three entries corresponding to ddd [DUCJER, DUCJOB and DUCJOB01 (Wang et al., 2009[Wang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L. & Jiang, J. (2009). Inorg. Chem. 48, 5946-5956.])]. In all, there are thirteen entries for hetero trinuclear 3d–4f–3d complexes in which the 3d metal ion is Zn2+ [DEJKUZ and DEJLIO (Wong et al., 2006[Wong, W.-K., Yang, X., Jones, R. A., Rivers, J. H., Lynch, V., Lo, W.-K., Xiao, D., Oye, M. M. & Holmes, A. L. (2006). Inorg. Chem. 45, 4340-4345.]), DUCKAO, DUCKOC, DUCKUI, DUCLAP and DUCLET (Wang et al., 2009[Wang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L. & Jiang, J. (2009). Inorg. Chem. 48, 5946-5956.]), EJAGIG (Liao et al., 2010[Liao, A., Yang, X., Stanley, J. M., Jones, R. A. & Holliday, B. J. (2010). J. Chem. Crystallogr. 40, 1060-1064.]), GICCEC and GICCIG (Yang et al., 2013[Yang, X., Schipper, D., Liao, A., Stanley, J. M., Jones, R. A. & Holliday, B. J. (2013). Polyhedron, 52, 165-169.]), QUQKUK, QUQLAR and QUQLEV (Sun et al., 2016[Sun, W.-B., Yan, P.-F., Jiang, S.-D., Wang, B.-W., Zhang, Y.-Q., Li, H.-F., Chen, P., Wang, Z.-M. & Gao, S. (2016). Chem. Sci. 7, 684-691.])]. Combinations of mononuclear and hetero dinuclear coordination complexes as co-crystals are observed in three cases [BICBEW and BICBIA (Biswas et al., 2013b[Biswas, A., Mondal, S. & Mohanta, S. (2013b). J. Coord. Chem. 66, 152-170.]), KAZPOT (Andrez et al., 2017[Andrez, J., Guidal, V., Scopelliti, R., Pécaut, J., Gambarelli, S. & Mazzanti, M. (2017). J. Am. Chem. Soc. 139, 8628-8638.])], while the combination of hetero dinuclear and hetero trinuclear coordination complexes as a co-crystal is observed in one case (Sarr et al., 2018[Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018). Eur. J. Chem. 9, 67-73.]).

5. Synthesis and crystallization

The complex [(ZnL)·(H2O)] was prepared according to a literature method (Liu et al., 2014[Liu, D.-F., Wu, L.-Y., Feng, W.-X., Zhang, X.-M., Wu, J., Zhu, L.-Q., Fan, D.-D., Lü, X.-Q. & Shi, Q. (2014). J. Mol. Catal. A Chem. 382, 136-145.]) with slight modification. To a solution of 1,2-di­amino­benzene (0.250 g, 2.31 mmol) in 10 mL of aceto­nitrile was added a solution of o-vanillin (0.705 g, 4.62 mmol) in 10 mL of aceto­nitrile. The resulting orange mixture was refluxed for 60 min, affording the organic H2L ligand. After cooling, a solution of Zn(CH3COO)2·2H2O (0.507 g, 2.31 mmol) in 10 mL of aceto­nitrile was added. The mixture was heated under reflux for 60 min. On cooling, the orange precipitate was filtered off, washed with 3 × 10 mL of ether and dried in air, yielding a compound formulated as [(ZnL)·(H2O)] in 75% yield, m.p. 571–573 K. FT–IR (KBr, ν, cm−1): 3307 (OH) (br, water), 1609 (C=N) 1594 (C=C), 1586 (C=C), 1488 (C=C), 1439, 1234, 1187, 731. Analysis calculated for C22H20ZnN2O5: C, 57.72; H, 4.40; N, 6.12. Found: C, 57.68; H, 4.42; N, 6.07%. Λ (S cm2 mol−1): 5. The filtrate of a mixture of Sm(NO3)3·6H2O (0.1112 g, 0.25 mmol) and KSCN (0.1458 g, 1.5 mmol) in 20 mL of absolute ethanol was added to a DMF solution (5 mL) of [(ZnL)·(H2O)] (0.2288 g, 0.5 mmol). The resulting solution was heated under reflux for two h. After cooling, the solution was filtered and the filtrate was kept at 298 K. After four weeks, crystals suitable for X-ray diffraction were collected and formulated as [{Zn2(L)(SCN)3}]·[Sm{Zn(L)(SCN)}2(DMF)2]·(DMF)·0.18H2O. FT–IR (KBr, ν, cm−1): 2078 (S=C=N), 1654, 1607 (C=N), 1584 (C=C), 1545 (C=C), 1463 (C=C), 1440, 1238, 1191, 731. Analysis calculated for C80H75.36Zn4SmN14O15.18S5: C, 46.92; H, 3.71; N, 9.57; S, 7.83%. Found: C, C, 46.87; H, 3.68; N, 9.51; S, 7.85%. ΛM (S m2 mol−1): 28. μeff = 1.6 µB.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl, O). One of the thio­cyanate groups was found to be partially disordered such that the C and S atoms 136 of this group were distributed over two positions. In the dinuclear unit, the C and S atoms of one of the thio­cyanate groups are disordered over two sets of sites in a 0.680 (4):0.320 (4) ratio. The water mol­ecule is partially occupied [0.32 (4)].

Table 2
Experimental details

Crystal data
Chemical formula [Zn2(C52H50N8O10S2Sm)][(Zn2(C25H18N5O4S3)]·C3H7NO·0.32H2O
Mr 2050.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 14.76937 (9), 15.57623 (10), 19.28129 (13)
α, β, γ (°) 94.7754 (5), 104.1999 (6), 100.9287 (5)
V3) 4182.75 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.02
Crystal size (mm) 0.33 × 0.21 × 0.17
 
Data collection
Diffractometer Rigaku FRE+ equipped with VHF Varimax confocal mirrors, an AFC12 goniometer and HyPix 6000 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.317, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 381624, 19170, 18483
Rint 0.031
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.06
No. of reflections 19170
No. of parameters 1115
No. of restraints 14
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.48, −1.13
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{µ2-6,6'-dimethoxy-2,2'-[phenylene-1,2-diylbis(nitrilomethanylylidene)]diphenolato}-1κ4O,N,N',O':2κ3O,O',O6;2κ3O,O',O6:3κ4O,N,N',O'-bis(dimethylformamide-2κO)dithiocyanato-1κN,3κN-2-samarium(III)-1,3-dizinc(II) {µ2-6,6'-dimethoxy-2,2'-[phenylene-1,2-diylbis(nitrilomethanylylidene)]diphenolato-1κ4O,N,N',O':2κ2O,O'}trithiocyanato-1κN;2κ2N,N-dizinc(II) dimethylformamide monosolvate 1.32-hydrate top
Crystal data top
[Zn2(C52H50N8O10S2Sm)][(Zn2(C25H18N5O4S3)]·C3H7NO·0.32H2OZ = 2
Mr = 2050.43F(000) = 2076
Triclinic, P1Dx = 1.628 Mg m3
a = 14.76937 (9) ÅMo Kα radiation, λ = 0.71075 Å
b = 15.57623 (10) ÅCell parameters from 217952 reflections
c = 19.28129 (13) Åθ = 2.2–31.9°
α = 94.7754 (5)°µ = 2.02 mm1
β = 104.1999 (6)°T = 100 K
γ = 100.9287 (5)°Block, orange
V = 4182.75 (5) Å30.33 × 0.21 × 0.17 mm
Data collection top
Rigaku FRE+ equipped with VHF Varimax confocal mirrors, an AFC12 goniometer and HyPix 6000 detector
diffractometer
19170 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+18483 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.031
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 1.9°
profile data from ω–scansh = 1919
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2018)
k = 2020
Tmin = 0.317, Tmax = 1.000l = 2525
381624 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0211P)2 + 5.627P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
19170 reflectionsΔρmax = 1.48 e Å3
1115 parametersΔρmin = 1.13 e Å3
14 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One of the thiocyanate ligands is partially disordered. Atoms C161 and S161 are modelled over two positions using thermal parameter restraints. Water molecule O171 partially occupies its site. Its occupancy was refined to 32%, linked to the minor component of the partially disordered thiocyanate.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.47788 (14)0.28188 (13)1.04840 (11)0.0234 (4)
H1A0.4912160.2232691.0395090.035*
H1B0.4405890.2815031.0840260.035*
H1C0.5383430.3255651.0668780.035*
C20.35372 (12)0.40497 (12)0.91731 (10)0.0163 (3)
C30.39956 (13)0.38428 (12)0.98574 (10)0.0173 (3)
C40.41594 (13)0.44118 (13)1.04845 (10)0.0202 (4)
H40.4472960.4259591.0934540.024*
C50.38637 (14)0.52140 (13)1.04576 (11)0.0226 (4)
H50.3957460.5597971.0890620.027*
C60.34397 (13)0.54428 (12)0.98067 (11)0.0203 (4)
H60.3237740.5986520.9792820.024*
C70.32954 (12)0.48859 (12)0.91529 (10)0.0175 (3)
C80.29304 (13)0.52442 (12)0.85001 (10)0.0192 (4)
H80.2664960.5749090.8546130.023*
C90.26062 (14)0.53571 (13)0.72522 (11)0.0231 (4)
C100.25789 (18)0.62528 (15)0.72943 (13)0.0338 (5)
H100.2771590.6612160.7750380.041*
C110.2271 (2)0.66125 (16)0.66710 (14)0.0393 (6)
H110.2261790.7222500.6698590.047*
C120.19754 (18)0.60888 (16)0.60061 (13)0.0352 (5)
H120.1741770.6337150.5581880.042*
C130.20176 (16)0.52053 (15)0.59538 (12)0.0291 (4)
H130.1818650.4852290.5494690.035*
C140.23524 (14)0.48334 (13)0.65759 (11)0.0225 (4)
C150.21799 (14)0.33654 (14)0.60309 (10)0.0230 (4)
H150.1867790.3536290.5588420.028*
C160.22727 (14)0.24583 (13)0.60267 (10)0.0213 (4)
C170.20302 (15)0.19239 (15)0.53515 (10)0.0253 (4)
H170.1858790.2179500.4920770.030*
C180.20380 (15)0.10436 (15)0.53072 (11)0.0260 (4)
H180.1885720.0698870.4847270.031*
C190.22688 (14)0.06467 (13)0.59352 (10)0.0218 (4)
H190.2270460.0035180.5904310.026*
C200.24932 (13)0.11582 (12)0.65979 (10)0.0181 (3)
C210.25185 (13)0.20688 (12)0.66623 (10)0.0178 (3)
C220.27917 (16)0.00449 (13)0.72560 (11)0.0246 (4)
H22A0.2990450.0168210.7754480.037*
H22B0.3281120.0128500.7009090.037*
H22C0.2183250.0448510.7003030.037*
C310.32608 (16)0.03342 (14)0.96039 (12)0.0272 (4)
H31A0.3341810.0132930.9132070.041*
H31B0.2811650.0126320.9740320.041*
H31C0.3880500.0457490.9966480.041*
C320.23365 (13)0.22423 (12)1.00721 (10)0.0173 (3)
C330.27561 (13)0.15082 (13)1.01867 (10)0.0194 (4)
C340.30241 (14)0.12524 (14)1.08608 (11)0.0237 (4)
H340.3279480.0739141.0919300.028*
C350.29158 (15)0.17583 (15)1.14596 (11)0.0266 (4)
H350.3089120.1583321.1925860.032*
C360.25608 (14)0.25030 (14)1.13726 (10)0.0254 (4)
H360.2516030.2853391.1785240.030*
C370.22583 (13)0.27649 (13)1.06822 (10)0.0202 (4)
C380.19608 (14)0.35980 (13)1.06429 (10)0.0226 (4)
H380.2102360.3990651.1078280.027*
C390.13107 (13)0.46871 (13)1.00127 (11)0.0219 (4)
C400.14305 (15)0.53108 (14)1.06130 (13)0.0288 (4)
H400.1640810.5169471.1087630.035*
C410.12407 (16)0.61338 (15)1.05102 (14)0.0337 (5)
H410.1316150.6555901.0916660.040*
C420.09435 (16)0.63475 (15)0.98244 (14)0.0345 (5)
H420.0831920.6920730.9762540.041*
C430.08054 (15)0.57354 (14)0.92236 (13)0.0295 (4)
H430.0592030.5885340.8752240.035*
C440.09821 (13)0.48952 (13)0.93150 (11)0.0225 (4)
C450.06749 (14)0.43569 (13)0.80713 (11)0.0230 (4)
H450.0655840.4943870.7979180.028*
C460.05095 (14)0.36976 (13)0.74565 (11)0.0220 (4)
C470.00884 (16)0.39196 (15)0.67714 (12)0.0292 (4)
H470.0015690.4499210.6732690.035*
C480.01701 (16)0.33123 (17)0.61657 (12)0.0332 (5)
H480.0455090.3471130.5710680.040*
C490.00170 (15)0.24575 (16)0.62125 (11)0.0290 (4)
H490.0215750.2031480.5792470.035*
C500.04234 (14)0.22333 (14)0.68703 (10)0.0222 (4)
C510.07168 (13)0.28513 (13)0.75038 (10)0.0186 (4)
C520.01779 (16)0.07149 (16)0.64128 (13)0.0334 (5)
H52A0.0411900.0833840.5989120.050*
H52B0.0517250.0657340.6287690.050*
H52C0.0333560.0165280.6569320.050*
C610.5946 (2)1.04315 (18)0.77533 (12)0.0451 (7)
H61A0.6514921.0879750.7763290.068*
H61B0.6134690.9987030.8057120.068*
H61C0.5495231.0711900.7936890.068*
C620.45184 (14)1.00189 (13)0.58964 (10)0.0207 (4)
C630.51311 (14)1.05321 (14)0.65420 (11)0.0239 (4)
C640.53124 (15)1.14368 (14)0.66317 (12)0.0271 (4)
H640.5693121.1765450.7079360.033*
C650.49331 (16)1.18724 (14)0.60597 (12)0.0285 (4)
H650.5045461.2498560.6121800.034*
C660.43987 (15)1.13970 (14)0.54088 (12)0.0261 (4)
H660.4181221.1699860.5014050.031*
C670.41665 (14)1.04641 (13)0.53161 (11)0.0215 (4)
C680.35884 (14)1.00181 (13)0.46112 (11)0.0222 (4)
H680.3514141.0358370.4222540.027*
C690.26370 (14)0.87812 (14)0.37728 (10)0.0226 (4)
C700.22243 (16)0.92248 (16)0.32200 (11)0.0293 (4)
H700.2298980.9847430.3299410.035*
C710.17050 (17)0.87523 (17)0.25547 (12)0.0344 (5)
H710.1424650.9053390.2177730.041*
C720.15917 (16)0.78435 (16)0.24355 (12)0.0319 (5)
H720.1239880.7527330.1975770.038*
C730.19858 (14)0.73949 (15)0.29790 (11)0.0265 (4)
H730.1901940.6771680.2893800.032*
C740.25078 (14)0.78568 (14)0.36542 (10)0.0224 (4)
C750.30916 (14)0.66808 (14)0.41934 (11)0.0244 (4)
H750.2940170.6372180.3719300.029*
C760.35154 (15)0.62422 (14)0.47861 (11)0.0244 (4)
C770.35354 (16)0.53432 (15)0.46215 (12)0.0304 (5)
H770.3273670.5059850.4138260.036*
C780.39237 (17)0.48743 (15)0.51437 (13)0.0343 (5)
H780.3906800.4266350.5023670.041*
C790.43454 (16)0.52873 (14)0.58538 (13)0.0302 (5)
H790.4620720.4963280.6215010.036*
C800.43585 (15)0.61642 (14)0.60247 (11)0.0257 (4)
C810.39344 (14)0.66613 (13)0.55010 (11)0.0239 (4)
C820.52080 (18)0.62428 (16)0.72639 (13)0.0365 (5)
H82A0.5734590.6025330.7136080.055*
H82B0.4748090.5747190.7348430.055*
H82C0.5461580.6672210.7703340.055*
C910.48768 (15)0.21332 (13)0.86469 (11)0.0244 (4)
H910.4873730.2648350.8415730.029*
C920.5778 (2)0.1232 (2)0.93742 (13)0.0433 (7)
H92A0.5924930.1427630.9893510.065*
H92B0.6286460.0958950.9273870.065*
H92C0.5166870.0799540.9218850.065*
C930.66121 (18)0.25655 (18)0.9000 (2)0.0573 (9)
H93A0.6487820.3035360.8705600.086*
H93B0.7011830.2226440.8806420.086*
H93C0.6944680.2826970.9499170.086*
C1010.07480 (14)0.02528 (14)0.84680 (11)0.0247 (4)
H1010.0437990.0670910.8644750.030*
C1020.0824 (2)0.12585 (17)0.81992 (19)0.0544 (8)
H10A0.0407050.1572910.7735560.082*
H10B0.0909950.1675950.8550510.082*
H10C0.1447040.0984560.8135320.082*
C1030.0466 (2)0.0882 (2)0.86993 (17)0.0514 (7)
H10D0.0678620.0369880.8880740.077*
H10E0.0320220.1246300.9085630.077*
H10F0.0974890.1232170.8292740.077*
C1100.0162 (2)0.34916 (18)0.28550 (16)0.0479 (7)
H1100.0548780.3268830.3155440.057*
C1110.1395 (3)0.4214 (3)0.2762 (2)0.0765 (12)
H11A0.1990110.4005650.2911660.115*
H11B0.1538090.4860880.2842690.115*
H11C0.1094200.4007210.2247520.115*
C1120.1110 (2)0.3983 (2)0.39459 (16)0.0572 (8)
H11D0.1629720.3669620.4079820.086*
H11E0.0588610.3738200.4152570.086*
H11F0.1348290.4611190.4132440.086*
C1210.54729 (15)0.41108 (14)0.75563 (10)0.0245 (4)
C1310.07003 (13)0.16694 (13)0.93407 (10)0.0202 (4)
C1410.13318 (15)0.82477 (13)0.56942 (10)0.0228 (4)
C1510.69896 (19)0.82208 (17)0.66168 (11)0.0350 (5)
C1610.4141 (6)0.8390 (5)0.7919 (4)0.0362 (17)0.680 (4)
C9610.4396 (10)0.8561 (10)0.7940 (8)0.020 (2)0.320 (4)
N10.24878 (12)0.39575 (11)0.65877 (9)0.0203 (3)
N20.29349 (11)0.49364 (10)0.78619 (9)0.0195 (3)
N310.08461 (11)0.42159 (10)0.87339 (9)0.0194 (3)
N320.15182 (11)0.38385 (10)1.00570 (9)0.0200 (3)
N510.29036 (12)0.74530 (11)0.42560 (9)0.0214 (3)
N520.31698 (11)0.91976 (11)0.44740 (9)0.0208 (3)
N910.57117 (13)0.19849 (12)0.89834 (10)0.0289 (4)
N1010.03909 (13)0.05827 (12)0.84590 (10)0.0296 (4)
N1100.07606 (17)0.38786 (15)0.31729 (12)0.0433 (5)
N1210.46702 (12)0.39695 (11)0.75462 (10)0.0245 (3)
N1310.01118 (11)0.21749 (10)0.92008 (9)0.0195 (3)
N1410.20378 (13)0.82501 (12)0.55333 (9)0.0258 (4)
N1510.62234 (14)0.83099 (13)0.65747 (10)0.0305 (4)
N1610.45048 (16)0.83626 (13)0.74264 (10)0.0349 (4)
O10.42459 (9)0.30425 (9)0.98237 (7)0.0192 (3)
O20.33573 (9)0.34532 (8)0.85947 (7)0.0166 (2)
O30.27275 (9)0.24984 (8)0.73285 (7)0.0175 (2)
O40.26748 (10)0.08498 (8)0.72583 (7)0.0192 (3)
O310.28939 (10)0.11197 (9)0.95643 (7)0.0216 (3)
O320.20855 (9)0.24163 (8)0.94012 (7)0.0166 (2)
O330.11769 (9)0.26091 (9)0.81137 (7)0.0183 (3)
O340.06243 (10)0.14280 (10)0.69857 (8)0.0251 (3)
O610.55042 (12)1.00204 (10)0.70337 (8)0.0321 (3)
O620.43286 (10)0.91519 (9)0.58715 (7)0.0248 (3)
O630.39607 (11)0.74948 (9)0.57098 (8)0.0268 (3)
O640.47437 (12)0.66543 (10)0.66895 (8)0.0304 (3)
O910.40942 (10)0.16447 (9)0.86118 (7)0.0212 (3)
O1010.14673 (10)0.05369 (9)0.82604 (8)0.0239 (3)
O1100.05398 (19)0.34068 (16)0.21991 (13)0.0669 (6)
O9710.2471 (4)0.7241 (3)0.8914 (3)0.0312 (13)0.320 (4)
H97A0.1916780.7135600.8597080.047*0.320 (4)
H97B0.2865280.7654210.8794110.047*0.320 (4)
S1210.66030 (4)0.43263 (6)0.75822 (3)0.04730 (18)
S1310.15358 (5)0.09592 (4)0.95208 (4)0.04343 (15)
S1410.03489 (4)0.82561 (4)0.59226 (4)0.03809 (13)
S1510.80856 (6)0.81383 (8)0.66793 (4)0.0716 (3)
S1610.36571 (19)0.84272 (15)0.85955 (6)0.0601 (7)0.680 (4)
S9610.41791 (18)0.88705 (18)0.86980 (10)0.0261 (6)0.320 (4)
Sm10.25154 (2)0.19066 (2)0.83656 (2)0.01485 (3)
Zn10.33194 (2)0.37866 (2)0.75889 (2)0.01671 (4)
Zn310.09979 (2)0.30267 (2)0.90801 (2)0.01559 (4)
Zn610.48983 (2)0.83366 (2)0.65355 (2)0.02684 (5)
Zn620.31979 (2)0.83012 (2)0.51943 (2)0.02048 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0196 (9)0.0251 (10)0.0234 (9)0.0034 (7)0.0012 (7)0.0090 (8)
C20.0123 (8)0.0167 (8)0.0186 (8)0.0008 (6)0.0045 (6)0.0024 (7)
C30.0137 (8)0.0171 (8)0.0203 (9)0.0007 (6)0.0043 (7)0.0039 (7)
C40.0166 (9)0.0232 (9)0.0179 (9)0.0004 (7)0.0023 (7)0.0026 (7)
C50.0207 (9)0.0226 (9)0.0217 (9)0.0001 (7)0.0058 (7)0.0028 (7)
C60.0176 (9)0.0164 (8)0.0263 (10)0.0015 (7)0.0070 (7)0.0008 (7)
C70.0120 (8)0.0178 (8)0.0214 (9)0.0006 (6)0.0041 (7)0.0029 (7)
C80.0147 (8)0.0160 (8)0.0264 (9)0.0016 (7)0.0052 (7)0.0050 (7)
C90.0240 (10)0.0222 (9)0.0266 (10)0.0066 (8)0.0093 (8)0.0120 (8)
C100.0479 (14)0.0233 (10)0.0322 (12)0.0106 (10)0.0100 (10)0.0101 (9)
C110.0564 (16)0.0257 (11)0.0414 (13)0.0165 (11)0.0133 (12)0.0172 (10)
C120.0456 (14)0.0345 (12)0.0338 (12)0.0181 (10)0.0133 (10)0.0212 (10)
C130.0358 (12)0.0325 (11)0.0253 (10)0.0139 (9)0.0115 (9)0.0142 (9)
C140.0230 (9)0.0246 (10)0.0254 (10)0.0082 (8)0.0110 (8)0.0130 (8)
C150.0263 (10)0.0294 (10)0.0183 (9)0.0111 (8)0.0084 (8)0.0118 (8)
C160.0232 (9)0.0265 (10)0.0167 (9)0.0087 (8)0.0064 (7)0.0060 (7)
C170.0275 (10)0.0363 (11)0.0157 (9)0.0130 (9)0.0065 (8)0.0066 (8)
C180.0278 (10)0.0358 (11)0.0156 (9)0.0116 (9)0.0058 (8)0.0001 (8)
C190.0221 (9)0.0242 (9)0.0203 (9)0.0075 (7)0.0068 (7)0.0006 (7)
C200.0174 (8)0.0227 (9)0.0157 (8)0.0059 (7)0.0055 (7)0.0044 (7)
C210.0158 (8)0.0231 (9)0.0152 (8)0.0046 (7)0.0054 (7)0.0034 (7)
C220.0337 (11)0.0204 (9)0.0227 (9)0.0112 (8)0.0079 (8)0.0051 (7)
C310.0365 (12)0.0235 (10)0.0281 (10)0.0128 (9)0.0128 (9)0.0127 (8)
C320.0142 (8)0.0209 (9)0.0151 (8)0.0010 (7)0.0044 (6)0.0032 (7)
C330.0182 (9)0.0224 (9)0.0162 (8)0.0006 (7)0.0049 (7)0.0051 (7)
C340.0227 (10)0.0272 (10)0.0201 (9)0.0010 (8)0.0047 (7)0.0105 (8)
C350.0248 (10)0.0368 (11)0.0152 (9)0.0005 (8)0.0038 (7)0.0089 (8)
C360.0236 (10)0.0349 (11)0.0147 (9)0.0006 (8)0.0056 (7)0.0013 (8)
C370.0163 (9)0.0255 (9)0.0162 (8)0.0006 (7)0.0040 (7)0.0011 (7)
C380.0195 (9)0.0268 (10)0.0194 (9)0.0008 (7)0.0070 (7)0.0049 (7)
C390.0132 (8)0.0196 (9)0.0311 (10)0.0003 (7)0.0073 (7)0.0037 (8)
C400.0210 (10)0.0288 (11)0.0335 (11)0.0024 (8)0.0075 (8)0.0077 (9)
C410.0241 (11)0.0268 (11)0.0467 (14)0.0030 (8)0.0110 (10)0.0134 (10)
C420.0271 (11)0.0215 (10)0.0552 (15)0.0063 (8)0.0143 (10)0.0046 (10)
C430.0240 (10)0.0240 (10)0.0418 (12)0.0064 (8)0.0111 (9)0.0017 (9)
C440.0136 (8)0.0193 (9)0.0336 (11)0.0008 (7)0.0085 (8)0.0020 (8)
C450.0185 (9)0.0201 (9)0.0315 (10)0.0044 (7)0.0069 (8)0.0081 (8)
C460.0180 (9)0.0271 (10)0.0223 (9)0.0051 (7)0.0061 (7)0.0092 (8)
C470.0287 (11)0.0354 (11)0.0287 (11)0.0141 (9)0.0082 (9)0.0160 (9)
C480.0309 (11)0.0510 (14)0.0221 (10)0.0184 (10)0.0046 (9)0.0156 (10)
C490.0239 (10)0.0454 (13)0.0178 (9)0.0115 (9)0.0032 (8)0.0031 (9)
C500.0182 (9)0.0305 (10)0.0201 (9)0.0086 (8)0.0064 (7)0.0046 (8)
C510.0133 (8)0.0264 (9)0.0173 (8)0.0048 (7)0.0046 (7)0.0066 (7)
C520.0291 (11)0.0359 (12)0.0319 (11)0.0050 (9)0.0084 (9)0.0106 (9)
C610.0646 (18)0.0433 (14)0.0188 (11)0.0173 (13)0.0060 (11)0.0061 (10)
C620.0201 (9)0.0229 (9)0.0195 (9)0.0061 (7)0.0057 (7)0.0006 (7)
C630.0237 (10)0.0277 (10)0.0207 (9)0.0078 (8)0.0058 (8)0.0001 (8)
C640.0257 (10)0.0277 (10)0.0261 (10)0.0035 (8)0.0080 (8)0.0053 (8)
C650.0299 (11)0.0222 (10)0.0343 (11)0.0043 (8)0.0125 (9)0.0009 (8)
C660.0260 (10)0.0257 (10)0.0293 (10)0.0068 (8)0.0101 (8)0.0068 (8)
C670.0194 (9)0.0236 (9)0.0230 (9)0.0059 (7)0.0076 (7)0.0031 (7)
C680.0214 (9)0.0270 (10)0.0209 (9)0.0097 (8)0.0063 (7)0.0071 (7)
C690.0184 (9)0.0316 (10)0.0173 (9)0.0069 (8)0.0030 (7)0.0033 (8)
C700.0281 (11)0.0350 (11)0.0241 (10)0.0106 (9)0.0016 (8)0.0074 (9)
C710.0327 (12)0.0464 (14)0.0218 (10)0.0137 (10)0.0020 (9)0.0083 (9)
C720.0258 (11)0.0457 (13)0.0197 (10)0.0089 (9)0.0015 (8)0.0002 (9)
C730.0214 (10)0.0351 (11)0.0208 (9)0.0075 (8)0.0019 (8)0.0011 (8)
C740.0174 (9)0.0315 (10)0.0182 (9)0.0071 (8)0.0036 (7)0.0027 (8)
C750.0231 (10)0.0290 (10)0.0194 (9)0.0057 (8)0.0036 (7)0.0010 (8)
C760.0245 (10)0.0251 (10)0.0240 (10)0.0075 (8)0.0059 (8)0.0019 (8)
C770.0328 (11)0.0277 (11)0.0289 (11)0.0086 (9)0.0056 (9)0.0025 (8)
C780.0386 (13)0.0240 (10)0.0405 (13)0.0118 (9)0.0082 (10)0.0005 (9)
C790.0308 (11)0.0266 (10)0.0344 (11)0.0105 (9)0.0060 (9)0.0090 (9)
C800.0251 (10)0.0254 (10)0.0252 (10)0.0056 (8)0.0034 (8)0.0052 (8)
C810.0238 (10)0.0235 (10)0.0243 (10)0.0068 (8)0.0048 (8)0.0040 (8)
C820.0391 (13)0.0318 (12)0.0307 (12)0.0076 (10)0.0074 (10)0.0110 (9)
C910.0268 (10)0.0187 (9)0.0299 (10)0.0098 (8)0.0077 (8)0.0036 (8)
C920.0475 (15)0.0749 (19)0.0237 (11)0.0415 (14)0.0138 (10)0.0202 (12)
C930.0250 (12)0.0307 (13)0.108 (3)0.0047 (10)0.0126 (14)0.0171 (15)
C1010.0227 (10)0.0243 (10)0.0259 (10)0.0037 (8)0.0061 (8)0.0016 (8)
C1020.068 (2)0.0219 (12)0.081 (2)0.0044 (12)0.0373 (17)0.0059 (13)
C1030.0339 (14)0.0588 (18)0.0582 (18)0.0103 (12)0.0206 (13)0.0121 (14)
C1100.0610 (18)0.0378 (14)0.0460 (16)0.0085 (13)0.0150 (13)0.0151 (12)
C1110.055 (2)0.120 (3)0.063 (2)0.011 (2)0.0313 (18)0.032 (2)
C1120.063 (2)0.0597 (19)0.0393 (15)0.0102 (15)0.0151 (14)0.0039 (13)
C1210.0257 (10)0.0320 (11)0.0178 (9)0.0088 (8)0.0072 (8)0.0050 (8)
C1310.0194 (9)0.0208 (9)0.0205 (9)0.0063 (7)0.0046 (7)0.0026 (7)
C1410.0299 (11)0.0188 (9)0.0167 (9)0.0037 (8)0.0019 (8)0.0025 (7)
C1510.0466 (14)0.0459 (14)0.0160 (9)0.0193 (11)0.0061 (9)0.0082 (9)
C1610.058 (5)0.035 (4)0.0200 (16)0.028 (3)0.004 (3)0.006 (2)
C9610.023 (5)0.012 (4)0.0205 (18)0.001 (3)0.000 (3)0.004 (2)
N10.0218 (8)0.0227 (8)0.0208 (8)0.0079 (6)0.0090 (6)0.0104 (6)
N20.0185 (8)0.0181 (7)0.0229 (8)0.0034 (6)0.0060 (6)0.0082 (6)
N310.0142 (7)0.0173 (7)0.0264 (8)0.0021 (6)0.0060 (6)0.0021 (6)
N320.0154 (7)0.0196 (8)0.0230 (8)0.0003 (6)0.0061 (6)0.0034 (6)
N510.0190 (8)0.0264 (8)0.0175 (7)0.0057 (6)0.0025 (6)0.0019 (6)
N520.0186 (8)0.0264 (8)0.0173 (7)0.0066 (6)0.0032 (6)0.0039 (6)
N910.0232 (9)0.0289 (9)0.0323 (10)0.0107 (7)0.0026 (7)0.0065 (7)
N1010.0271 (9)0.0283 (9)0.0315 (9)0.0031 (7)0.0113 (8)0.0045 (7)
N1100.0518 (14)0.0428 (12)0.0386 (12)0.0103 (10)0.0170 (10)0.0082 (9)
N1210.0223 (9)0.0261 (9)0.0289 (9)0.0065 (7)0.0105 (7)0.0110 (7)
N1310.0180 (8)0.0192 (8)0.0199 (8)0.0015 (6)0.0050 (6)0.0013 (6)
N1410.0318 (10)0.0248 (9)0.0227 (8)0.0073 (7)0.0092 (7)0.0053 (7)
N1510.0349 (10)0.0315 (10)0.0240 (9)0.0115 (8)0.0014 (8)0.0066 (7)
N1610.0470 (12)0.0336 (10)0.0224 (8)0.0123 (9)0.0039 (8)0.0024 (7)
O10.0206 (6)0.0190 (6)0.0178 (6)0.0053 (5)0.0029 (5)0.0052 (5)
O20.0179 (6)0.0157 (6)0.0153 (6)0.0012 (5)0.0044 (5)0.0028 (5)
O30.0223 (6)0.0178 (6)0.0129 (6)0.0039 (5)0.0056 (5)0.0038 (5)
O40.0261 (7)0.0173 (6)0.0156 (6)0.0064 (5)0.0066 (5)0.0033 (5)
O310.0312 (7)0.0205 (7)0.0172 (6)0.0104 (6)0.0088 (5)0.0076 (5)
O320.0177 (6)0.0195 (6)0.0130 (6)0.0040 (5)0.0043 (5)0.0035 (5)
O330.0178 (6)0.0226 (6)0.0152 (6)0.0058 (5)0.0042 (5)0.0040 (5)
O340.0266 (7)0.0283 (7)0.0208 (7)0.0098 (6)0.0054 (6)0.0005 (6)
O610.0418 (9)0.0290 (8)0.0188 (7)0.0112 (7)0.0050 (6)0.0029 (6)
O620.0295 (8)0.0216 (7)0.0193 (7)0.0064 (6)0.0015 (6)0.0023 (5)
O630.0347 (8)0.0217 (7)0.0203 (7)0.0092 (6)0.0016 (6)0.0023 (5)
O640.0382 (9)0.0243 (7)0.0240 (7)0.0072 (6)0.0024 (6)0.0073 (6)
O910.0223 (7)0.0218 (7)0.0211 (7)0.0077 (5)0.0059 (5)0.0050 (5)
O1010.0267 (7)0.0197 (7)0.0252 (7)0.0010 (5)0.0093 (6)0.0047 (5)
O1100.0822 (17)0.0565 (14)0.0609 (15)0.0144 (12)0.0128 (13)0.0216 (11)
O9710.032 (3)0.026 (3)0.031 (3)0.004 (2)0.004 (2)0.001 (2)
S1210.0194 (3)0.0920 (6)0.0300 (3)0.0114 (3)0.0091 (2)0.0001 (3)
S1310.0325 (3)0.0404 (3)0.0586 (4)0.0051 (3)0.0200 (3)0.0198 (3)
S1410.0280 (3)0.0428 (3)0.0449 (3)0.0059 (2)0.0148 (3)0.0029 (3)
S1510.0513 (5)0.1423 (9)0.0340 (4)0.0500 (5)0.0135 (3)0.0104 (5)
S1610.1116 (17)0.0738 (13)0.0242 (5)0.0725 (14)0.0286 (7)0.0186 (6)
S9610.0349 (12)0.0298 (12)0.0178 (8)0.0150 (10)0.0082 (7)0.0042 (7)
Sm10.01849 (5)0.01405 (4)0.01404 (4)0.00403 (3)0.00687 (3)0.00452 (3)
Zn10.01724 (10)0.01703 (10)0.01765 (10)0.00387 (8)0.00633 (8)0.00702 (8)
Zn310.01394 (10)0.01608 (10)0.01577 (10)0.00152 (7)0.00384 (7)0.00109 (7)
Zn610.03172 (13)0.02864 (12)0.01707 (11)0.00918 (10)0.00126 (9)0.00330 (9)
Zn620.02403 (11)0.02136 (11)0.01524 (10)0.00642 (9)0.00265 (8)0.00237 (8)
Geometric parameters (Å, º) top
C1—H1A0.9800C67—C681.452 (3)
C1—H1B0.9800C68—H680.9500
C1—H1C0.9800C68—N521.284 (3)
C1—O11.431 (2)C69—C701.396 (3)
C2—C31.421 (2)C69—C741.408 (3)
C2—C71.415 (3)C69—N521.417 (2)
C2—O21.329 (2)C70—H700.9500
C3—C41.379 (3)C70—C711.386 (3)
C3—O11.367 (2)C71—H710.9500
C4—H40.9500C71—C721.386 (3)
C4—C51.400 (3)C72—H720.9500
C5—H50.9500C72—C731.379 (3)
C5—C61.367 (3)C73—H730.9500
C6—H60.9500C73—C741.396 (3)
C6—C71.415 (3)C74—N511.418 (2)
C7—C81.444 (3)C75—H750.9500
C8—H80.9500C75—C761.451 (3)
C8—N21.285 (3)C75—N511.287 (3)
C9—C101.400 (3)C76—C771.417 (3)
C9—C141.405 (3)C76—C811.410 (3)
C9—N21.420 (2)C77—H770.9500
C10—H100.9500C77—C781.369 (3)
C10—C111.380 (3)C78—H780.9500
C11—H110.9500C78—C791.400 (3)
C11—C121.384 (4)C79—H790.9500
C12—H120.9500C79—C801.374 (3)
C12—C131.386 (3)C80—C811.420 (3)
C13—H130.9500C80—O641.365 (3)
C13—C141.397 (3)C81—O631.317 (2)
C14—N11.417 (2)C82—H82A0.9800
C15—H150.9500C82—H82B0.9800
C15—C161.445 (3)C82—H82C0.9800
C15—N11.283 (3)C82—O641.421 (2)
C16—C171.412 (3)C91—H910.9500
C16—C211.411 (3)C91—N911.317 (3)
C17—H170.9500C91—O911.241 (2)
C17—C181.369 (3)C92—H92A0.9800
C18—H180.9500C92—H92B0.9800
C18—C191.402 (3)C92—H92C0.9800
C19—H190.9500C92—N911.452 (3)
C19—C201.378 (3)C93—H93A0.9800
C20—C211.406 (3)C93—H93B0.9800
C20—O41.381 (2)C93—H93C0.9800
C21—O31.333 (2)C93—N911.451 (3)
C22—H22A0.9800C101—H1010.9500
C22—H22B0.9800C101—N1011.305 (3)
C22—H22C0.9800C101—O1011.243 (2)
C22—O41.436 (2)C102—H10A0.9800
C31—H31A0.9800C102—H10B0.9800
C31—H31B0.9800C102—H10C0.9800
C31—H31C0.9800C102—N1011.446 (3)
C31—O311.429 (2)C103—H10D0.9800
C32—C331.409 (3)C103—H10E0.9800
C32—C371.415 (3)C103—H10F0.9800
C32—O321.321 (2)C103—N1011.461 (3)
C33—C341.378 (3)C110—H1100.9500
C33—O311.376 (2)C110—N1101.347 (4)
C34—H340.9500C110—O1101.235 (4)
C34—C351.402 (3)C111—H11A0.9800
C35—H350.9500C111—H11B0.9800
C35—C361.367 (3)C111—H11C0.9800
C36—H360.9500C111—N1101.424 (4)
C36—C371.416 (3)C112—H11D0.9800
C37—C381.449 (3)C112—H11E0.9800
C38—H380.9500C112—H11F0.9800
C38—N321.282 (3)C112—N1101.437 (4)
C39—C401.401 (3)C121—N1211.159 (3)
C39—C441.401 (3)C121—S1211.626 (2)
C39—N321.417 (2)C131—N1311.157 (3)
C40—H400.9500C131—S1311.620 (2)
C40—C411.383 (3)C141—N1411.158 (3)
C41—H410.9500C141—S1411.619 (2)
C41—C421.377 (4)C151—N1511.150 (3)
C42—H420.9500C151—S1511.624 (3)
C42—C431.385 (3)C161—N1611.203 (7)
C43—H430.9500C161—S1611.635 (6)
C43—C441.399 (3)C961—N1611.070 (14)
C44—N311.424 (2)C961—S9611.626 (13)
C45—H450.9500N1—Zn12.0863 (16)
C45—C461.442 (3)N2—Zn12.0451 (16)
C45—N311.286 (3)N31—Zn312.0534 (16)
C46—C471.416 (3)N32—Zn312.0644 (16)
C46—C511.414 (3)N51—Zn622.0508 (16)
C47—H470.9500N52—Zn622.0486 (16)
C47—C481.366 (3)N121—Zn11.9842 (17)
C48—H480.9500N131—Zn311.9786 (16)
C48—C491.399 (3)N141—Zn621.9687 (18)
C49—H490.9500N151—Zn611.949 (2)
C49—C501.382 (3)N161—Zn611.943 (2)
C50—C511.412 (3)O2—Sm12.4417 (12)
C50—O341.366 (2)O2—Zn12.0395 (12)
C51—O331.329 (2)O3—Sm12.3348 (12)
C52—H52A0.9800O3—Zn11.9985 (13)
C52—H52B0.9800O4—Sm12.6707 (13)
C52—H52C0.9800O31—Sm12.6934 (13)
C52—O341.432 (2)O32—Sm12.3599 (12)
C61—H61A0.9800O32—Zn312.0143 (13)
C61—H61B0.9800O33—Sm12.4038 (13)
C61—H61C0.9800O33—Zn312.0175 (13)
C61—O611.418 (3)O62—Zn612.0267 (14)
C62—C631.419 (3)O62—Zn622.0132 (14)
C62—C671.408 (3)O63—Zn612.0135 (14)
C62—O621.321 (2)O63—Zn622.0073 (14)
C63—C641.372 (3)O91—Sm12.3831 (13)
C63—O611.369 (3)O101—Sm12.3476 (13)
C64—H640.9500O971—H97A0.8700
C64—C651.399 (3)O971—H97B0.8699
C65—H650.9500Sm1—Zn13.5372 (2)
C65—C661.373 (3)Sm1—Zn313.5444 (2)
C66—H660.9500Zn61—Zn623.1201 (3)
C66—C671.414 (3)
H1A—C1—H1B109.5N91—C91—H91117.8
H1A—C1—H1C109.5O91—C91—H91117.8
H1B—C1—H1C109.5O91—C91—N91124.34 (19)
O1—C1—H1A109.5H92A—C92—H92B109.5
O1—C1—H1B109.5H92A—C92—H92C109.5
O1—C1—H1C109.5H92B—C92—H92C109.5
C7—C2—C3117.35 (16)N91—C92—H92A109.5
O2—C2—C3118.66 (16)N91—C92—H92B109.5
O2—C2—C7123.99 (16)N91—C92—H92C109.5
C4—C3—C2121.73 (17)H93A—C93—H93B109.5
O1—C3—C2113.53 (16)H93A—C93—H93C109.5
O1—C3—C4124.74 (17)H93B—C93—H93C109.5
C3—C4—H4120.0N91—C93—H93A109.5
C3—C4—C5120.00 (18)N91—C93—H93B109.5
C5—C4—H4120.0N91—C93—H93C109.5
C4—C5—H5120.1N101—C101—H101117.9
C6—C5—C4119.80 (18)O101—C101—H101117.9
C6—C5—H5120.1O101—C101—N101124.2 (2)
C5—C6—H6119.3H10A—C102—H10B109.5
C5—C6—C7121.31 (18)H10A—C102—H10C109.5
C7—C6—H6119.3H10B—C102—H10C109.5
C2—C7—C8124.65 (17)N101—C102—H10A109.5
C6—C7—C2119.60 (17)N101—C102—H10B109.5
C6—C7—C8115.71 (17)N101—C102—H10C109.5
C7—C8—H8117.3H10D—C103—H10E109.5
N2—C8—C7125.39 (17)H10D—C103—H10F109.5
N2—C8—H8117.3H10E—C103—H10F109.5
C10—C9—C14120.05 (18)N101—C103—H10D109.5
C10—C9—N2123.68 (19)N101—C103—H10E109.5
C14—C9—N2116.17 (17)N101—C103—H10F109.5
C9—C10—H10120.1N110—C110—H110117.8
C11—C10—C9119.8 (2)O110—C110—H110117.8
C11—C10—H10120.1O110—C110—N110124.4 (3)
C10—C11—H11119.8H11A—C111—H11B109.5
C10—C11—C12120.3 (2)H11A—C111—H11C109.5
C12—C11—H11119.8H11B—C111—H11C109.5
C11—C12—H12119.7N110—C111—H11A109.5
C11—C12—C13120.6 (2)N110—C111—H11B109.5
C13—C12—H12119.7N110—C111—H11C109.5
C12—C13—H13120.0H11D—C112—H11E109.5
C12—C13—C14120.1 (2)H11D—C112—H11F109.5
C14—C13—H13120.0H11E—C112—H11F109.5
C9—C14—N1115.65 (17)N110—C112—H11D109.5
C13—C14—C9119.10 (19)N110—C112—H11E109.5
C13—C14—N1125.23 (19)N110—C112—H11F109.5
C16—C15—H15117.6N121—C121—S121178.9 (2)
N1—C15—H15117.6N131—C131—S131178.92 (19)
N1—C15—C16124.87 (17)N141—C141—S141179.4 (2)
C17—C16—C15117.83 (17)N151—C151—S151177.7 (2)
C21—C16—C15123.11 (17)N161—C161—S161179.4 (8)
C21—C16—C17118.86 (18)N161—C961—S961177.1 (16)
C16—C17—H17119.4C14—N1—Zn1111.82 (13)
C18—C17—C16121.11 (18)C15—N1—C14123.18 (17)
C18—C17—H17119.4C15—N1—Zn1124.87 (13)
C17—C18—H18119.7C8—N2—C9121.74 (17)
C17—C18—C19120.54 (18)C8—N2—Zn1125.65 (13)
C19—C18—H18119.7C9—N2—Zn1112.50 (13)
C18—C19—H19120.5C44—N31—Zn31112.56 (13)
C20—C19—C18118.94 (18)C45—N31—C44122.48 (17)
C20—C19—H19120.5C45—N31—Zn31124.93 (14)
C19—C20—C21121.94 (17)C38—N32—C39123.60 (17)
C19—C20—O4125.38 (17)C38—N32—Zn31123.97 (14)
O4—C20—C21112.63 (15)C39—N32—Zn31112.41 (13)
C20—C21—C16118.57 (17)C74—N51—Zn62110.35 (13)
O3—C21—C16124.27 (17)C75—N51—C74122.96 (17)
O3—C21—C20117.06 (16)C75—N51—Zn62126.57 (14)
H22A—C22—H22B109.5C68—N52—C69123.05 (17)
H22A—C22—H22C109.5C68—N52—Zn62126.59 (14)
H22B—C22—H22C109.5C69—N52—Zn62110.33 (13)
O4—C22—H22A109.5C91—N91—C92121.3 (2)
O4—C22—H22B109.5C91—N91—C93122.6 (2)
O4—C22—H22C109.5C93—N91—C92116.1 (2)
H31A—C31—H31B109.5C101—N101—C102121.1 (2)
H31A—C31—H31C109.5C101—N101—C103122.1 (2)
H31B—C31—H31C109.5C102—N101—C103116.8 (2)
O31—C31—H31A109.5C110—N110—C111121.5 (3)
O31—C31—H31B109.5C110—N110—C112119.5 (2)
O31—C31—H31C109.5C111—N110—C112118.9 (3)
C33—C32—C37118.09 (17)C121—N121—Zn1176.12 (18)
O32—C32—C33117.14 (16)C131—N131—Zn31172.86 (16)
O32—C32—C37124.68 (17)C141—N141—Zn62175.46 (17)
C34—C33—C32122.15 (18)C151—N151—Zn61173.9 (2)
O31—C33—C32112.33 (15)C161—N161—Zn61170.9 (5)
O31—C33—C34125.46 (18)C961—N161—Zn61164.2 (7)
C33—C34—H34120.4C3—O1—C1116.75 (15)
C33—C34—C35119.25 (19)C2—O2—Sm1130.20 (11)
C35—C34—H34120.4C2—O2—Zn1122.79 (11)
C34—C35—H35120.0Zn1—O2—Sm1103.89 (5)
C36—C35—C34120.03 (18)C21—O3—Sm1127.23 (11)
C36—C35—H35120.0C21—O3—Zn1123.57 (11)
C35—C36—H36119.2Zn1—O3—Sm1109.18 (5)
C35—C36—C37121.59 (19)C20—O4—C22116.69 (14)
C37—C36—H36119.2C20—O4—Sm1115.77 (10)
C32—C37—C36118.72 (18)C22—O4—Sm1126.89 (11)
C32—C37—C38123.00 (17)C31—O31—Sm1124.14 (11)
C36—C37—C38118.06 (18)C33—O31—C31117.42 (15)
C37—C38—H38118.0C33—O31—Sm1118.41 (11)
N32—C38—C37124.09 (17)C32—O32—Sm1130.47 (11)
N32—C38—H38118.0C32—O32—Zn31120.58 (11)
C40—C39—C44119.82 (19)Zn31—O32—Sm1107.99 (5)
C40—C39—N32124.1 (2)C51—O33—Sm1130.64 (11)
C44—C39—N32116.04 (17)C51—O33—Zn31122.08 (11)
C39—C40—H40120.2Zn31—O33—Sm1106.25 (5)
C41—C40—C39119.6 (2)C50—O34—C52116.72 (17)
C41—C40—H40120.2C63—O61—C61117.58 (18)
C40—C41—H41119.7C62—O62—Zn61132.34 (12)
C42—C41—C40120.6 (2)C62—O62—Zn62125.95 (12)
C42—C41—H41119.7Zn62—O62—Zn61101.13 (6)
C41—C42—H42119.6C81—O63—Zn61129.26 (13)
C41—C42—C43120.7 (2)C81—O63—Zn62128.36 (13)
C43—C42—H42119.6Zn62—O63—Zn61101.79 (6)
C42—C43—H43120.2C80—O64—C82118.24 (17)
C42—C43—C44119.6 (2)C91—O91—Sm1131.76 (12)
C44—C43—H43120.2C101—O101—Sm1136.34 (13)
C39—C44—N31116.47 (17)H97A—O971—H97B109.5
C43—C44—C39119.62 (19)O2—Sm1—O4119.60 (4)
C43—C44—N31123.9 (2)O2—Sm1—O31111.28 (4)
C46—C45—H45117.3O2—Sm1—Zn134.04 (3)
N31—C45—H45117.3O2—Sm1—Zn3175.83 (3)
N31—C45—C46125.38 (18)O3—Sm1—O266.10 (4)
C47—C46—C45116.73 (18)O3—Sm1—O460.69 (4)
C51—C46—C45124.06 (17)O3—Sm1—O31159.39 (4)
C51—C46—C47119.19 (19)O3—Sm1—O32134.80 (4)
C46—C47—H47119.5O3—Sm1—O3380.48 (4)
C48—C47—C46120.9 (2)O3—Sm1—O9189.74 (5)
C48—C47—H47119.5O3—Sm1—O101119.90 (5)
C47—C48—H48119.9O3—Sm1—Zn132.25 (3)
C47—C48—C49120.27 (19)O3—Sm1—Zn31108.18 (3)
C49—C48—H48119.9O4—Sm1—O31108.63 (4)
C48—C49—H49120.0O4—Sm1—Zn190.48 (3)
C50—C49—C48119.9 (2)O4—Sm1—Zn31146.28 (3)
C50—C49—H49120.0O31—Sm1—Zn1142.97 (3)
C49—C50—C51121.15 (19)O31—Sm1—Zn3190.16 (3)
O34—C50—C49125.60 (19)O32—Sm1—O278.61 (4)
O34—C50—C51113.25 (16)O32—Sm1—O4161.77 (4)
C50—C51—C46118.34 (17)O32—Sm1—O3159.85 (4)
O33—C51—C46123.33 (17)O32—Sm1—O3365.80 (4)
O33—C51—C50118.33 (17)O32—Sm1—O91114.01 (4)
H52A—C52—H52B109.5O32—Sm1—Zn1107.06 (3)
H52A—C52—H52C109.5O32—Sm1—Zn3132.72 (3)
H52B—C52—H52C109.5O33—Sm1—O279.92 (4)
O34—C52—H52A109.5O33—Sm1—O4115.61 (4)
O34—C52—H52B109.5O33—Sm1—O31119.80 (4)
O34—C52—H52C109.5O33—Sm1—Zn175.67 (3)
H61A—C61—H61B109.5O33—Sm1—Zn3133.13 (3)
H61A—C61—H61C109.5O91—Sm1—O283.29 (4)
H61B—C61—H61C109.5O91—Sm1—O470.36 (4)
O61—C61—H61A109.5O91—Sm1—O3169.71 (4)
O61—C61—H61B109.5O91—Sm1—O33162.88 (5)
O61—C61—H61C109.5O91—Sm1—Zn188.55 (3)
C67—C62—C63118.03 (18)O91—Sm1—Zn31143.36 (3)
O62—C62—C63117.98 (17)O101—Sm1—O2167.46 (5)
O62—C62—C67123.98 (17)O101—Sm1—O471.53 (4)
C64—C63—C62121.73 (19)O101—Sm1—O3167.27 (5)
O61—C63—C62112.25 (18)O101—Sm1—O3290.46 (5)
O61—C63—C64126.02 (19)O101—Sm1—O3390.05 (5)
C63—C64—H64120.2O101—Sm1—O91107.03 (5)
C63—C64—C65119.57 (19)O101—Sm1—Zn1149.69 (4)
C65—C64—H64120.2O101—Sm1—Zn3191.66 (4)
C64—C65—H65119.9Zn1—Sm1—Zn3190.491 (5)
C66—C65—C64120.1 (2)N1—Zn1—Sm1117.86 (5)
C66—C65—H65119.9N2—Zn1—N179.60 (6)
C65—C66—H66119.4N2—Zn1—Sm1118.28 (4)
C65—C66—C67121.1 (2)N121—Zn1—N1108.05 (7)
C67—C66—H66119.4N121—Zn1—N2112.95 (7)
C62—C67—C66119.13 (18)N121—Zn1—O2104.31 (6)
C62—C67—C68123.64 (18)N121—Zn1—O3108.25 (6)
C66—C67—C68117.22 (18)N121—Zn1—Sm1115.01 (5)
C67—C68—H68117.6O2—Zn1—N1147.54 (6)
N52—C68—C67124.86 (18)O2—Zn1—N290.27 (6)
N52—C68—H68117.6O2—Zn1—Sm142.08 (4)
C70—C69—C74119.76 (19)O3—Zn1—N187.12 (6)
C70—C69—N52124.25 (19)O3—Zn1—N2138.79 (6)
C74—C69—N52115.97 (17)O3—Zn1—O280.40 (5)
C69—C70—H70120.2O3—Zn1—Sm138.57 (4)
C71—C70—C69119.7 (2)N31—Zn31—N3280.42 (7)
C71—C70—H70120.2N31—Zn31—Sm1116.69 (4)
C70—C71—H71119.8N32—Zn31—Sm1120.54 (4)
C72—C71—C70120.5 (2)N131—Zn31—N31120.99 (6)
C72—C71—H71119.8N131—Zn31—N32104.40 (6)
C71—C72—H72119.7N131—Zn31—O32102.67 (6)
C73—C72—C71120.5 (2)N131—Zn31—O33105.95 (6)
C73—C72—H72119.7N131—Zn31—Sm1110.51 (5)
C72—C73—H73120.0O32—Zn31—N31136.30 (6)
C72—C73—C74120.0 (2)O32—Zn31—N3287.56 (6)
C74—C73—H73120.0O32—Zn31—O3379.86 (5)
C69—C74—N51116.15 (17)O32—Zn31—Sm139.29 (3)
C73—C74—C69119.59 (18)O33—Zn31—N3189.29 (6)
C73—C74—N51124.22 (19)O33—Zn31—N32149.00 (6)
C76—C75—H75117.3O33—Zn31—Sm140.63 (4)
N51—C75—H75117.3N151—Zn61—O62114.80 (7)
N51—C75—C76125.49 (18)N151—Zn61—O63112.60 (7)
C77—C76—C75117.14 (19)N151—Zn61—Zn62129.02 (5)
C81—C76—C75124.22 (18)N161—Zn61—N151119.03 (8)
C81—C76—C77118.60 (19)N161—Zn61—O62112.66 (7)
C76—C77—H77119.3N161—Zn61—O63113.62 (8)
C78—C77—C76121.4 (2)N161—Zn61—Zn62111.94 (6)
C78—C77—H77119.3O62—Zn61—Zn6239.28 (4)
C77—C78—H78119.9O63—Zn61—O6276.86 (6)
C77—C78—C79120.2 (2)O63—Zn61—Zn6239.03 (4)
C79—C78—H78119.9N51—Zn62—Zn61123.45 (5)
C78—C79—H79120.2N52—Zn62—N5180.67 (7)
C80—C79—C78119.5 (2)N52—Zn62—Zn61125.32 (5)
C80—C79—H79120.2N141—Zn62—N51110.27 (7)
C79—C80—C81121.6 (2)N141—Zn62—N52106.67 (7)
O64—C80—C79126.19 (19)N141—Zn62—O62111.31 (7)
O64—C80—C81112.22 (18)N141—Zn62—O63108.59 (7)
C76—C81—C80118.54 (19)N141—Zn62—Zn61107.65 (5)
O63—C81—C76123.47 (18)O62—Zn62—N51138.41 (6)
O63—C81—C80117.98 (18)O62—Zn62—N5288.34 (6)
H82A—C82—H82B109.5O62—Zn62—Zn6139.59 (4)
H82A—C82—H82C109.5O63—Zn62—N5188.94 (6)
H82B—C82—H82C109.5O63—Zn62—N52144.69 (7)
O64—C82—H82A109.5O63—Zn62—O6277.30 (6)
O64—C82—H82B109.5O63—Zn62—Zn6139.18 (4)
O64—C82—H82C109.5
C2—C3—C4—C50.6 (3)C49—C50—C51—C462.9 (3)
C2—C3—O1—C1175.17 (15)C49—C50—C51—O33176.88 (18)
C2—C7—C8—N213.1 (3)C49—C50—O34—C5213.0 (3)
C3—C2—C7—C65.3 (2)C50—C51—O33—Sm148.7 (2)
C3—C2—C7—C8172.50 (16)C50—C51—O33—Zn31144.55 (14)
C3—C2—O2—Sm153.4 (2)C51—C46—C47—C483.9 (3)
C3—C2—O2—Zn1149.98 (13)C51—C50—O34—C52167.24 (17)
C3—C4—C5—C62.0 (3)C62—C63—C64—C653.9 (3)
C4—C3—O1—C14.9 (3)C62—C63—O61—C61166.0 (2)
C4—C5—C6—C70.3 (3)C62—C67—C68—N5215.0 (3)
C5—C6—C7—C24.1 (3)C63—C62—C67—C662.9 (3)
C5—C6—C7—C8173.92 (17)C63—C62—C67—C68175.68 (18)
C6—C7—C8—N2164.79 (18)C63—C62—O62—Zn6110.8 (3)
C7—C2—C3—C43.1 (3)C63—C62—O62—Zn62158.78 (14)
C7—C2—C3—O1176.96 (15)C63—C64—C65—C661.3 (3)
C7—C2—O2—Sm1126.30 (15)C64—C63—O61—C6114.7 (3)
C7—C2—O2—Zn130.4 (2)C64—C65—C66—C674.3 (3)
C7—C8—N2—C9176.64 (17)C65—C66—C67—C622.1 (3)
C7—C8—N2—Zn17.3 (3)C65—C66—C67—C68179.25 (19)
C9—C10—C11—C121.0 (4)C66—C67—C68—N52166.43 (19)
C9—C14—N1—C15170.83 (18)C67—C62—C63—C645.9 (3)
C9—C14—N1—Zn113.1 (2)C67—C62—C63—O61173.43 (17)
C10—C9—C14—C133.9 (3)C67—C62—O62—Zn61167.78 (14)
C10—C9—C14—N1174.41 (19)C67—C62—O62—Zn6222.6 (3)
C10—C9—N2—C823.7 (3)C67—C68—N52—C69177.88 (18)
C10—C9—N2—Zn1159.72 (18)C67—C68—N52—Zn620.1 (3)
C10—C11—C12—C132.4 (4)C69—C70—C71—C720.1 (4)
C11—C12—C13—C140.6 (4)C69—C74—N51—C75159.30 (19)
C12—C13—C14—C92.6 (3)C69—C74—N51—Zn6217.0 (2)
C12—C13—C14—N1175.6 (2)C70—C69—C74—C731.4 (3)
C13—C14—N1—C1510.9 (3)C70—C69—C74—N51176.47 (18)
C13—C14—N1—Zn1165.10 (17)C70—C69—N52—C6823.3 (3)
C14—C9—C10—C112.2 (4)C70—C69—N52—Zn62158.57 (17)
C14—C9—N2—C8160.00 (18)C70—C71—C72—C730.6 (4)
C14—C9—N2—Zn116.6 (2)C71—C72—C73—C740.3 (3)
C15—C16—C17—C18175.54 (19)C72—C73—C74—C690.7 (3)
C15—C16—C21—C20173.49 (18)C72—C73—C74—N51177.04 (19)
C15—C16—C21—O32.8 (3)C73—C74—N51—C7522.9 (3)
C16—C15—N1—C14177.64 (18)C73—C74—N51—Zn62160.84 (16)
C16—C15—N1—Zn16.9 (3)C74—C69—C70—C711.2 (3)
C16—C17—C18—C191.4 (3)C74—C69—N52—C68158.65 (19)
C16—C21—O3—Sm1151.92 (14)C74—C69—N52—Zn6219.5 (2)
C16—C21—O3—Zn129.7 (2)C75—C76—C77—C78179.7 (2)
C17—C16—C21—C201.3 (3)C75—C76—C81—C80177.5 (2)
C17—C16—C21—O3177.59 (18)C75—C76—C81—O632.0 (3)
C17—C18—C19—C200.4 (3)C76—C75—N51—C74178.54 (19)
C18—C19—C20—C211.5 (3)C76—C75—N51—Zn622.9 (3)
C18—C19—C20—O4175.67 (18)C76—C77—C78—C792.4 (4)
C19—C20—C21—C162.3 (3)C76—C81—O63—Zn61153.77 (16)
C19—C20—C21—O3178.87 (17)C76—C81—O63—Zn6215.7 (3)
C19—C20—O4—C2210.7 (3)C77—C76—C81—C800.0 (3)
C19—C20—O4—Sm1160.67 (15)C77—C76—C81—O63179.5 (2)
C20—C21—O3—Sm124.4 (2)C77—C78—C79—C800.7 (4)
C20—C21—O3—Zn1153.97 (13)C78—C79—C80—C811.4 (3)
C21—C16—C17—C180.5 (3)C78—C79—C80—O64179.9 (2)
C21—C20—O4—C22171.90 (16)C79—C80—C81—C761.7 (3)
C21—C20—O4—Sm116.70 (19)C79—C80—C81—O63178.8 (2)
C32—C33—C34—C352.8 (3)C79—C80—O64—C822.3 (3)
C32—C33—O31—C31176.21 (16)C80—C81—O63—Zn6125.7 (3)
C32—C33—O31—Sm15.8 (2)C80—C81—O63—Zn62164.81 (15)
C32—C37—C38—N3218.3 (3)C81—C76—C77—C782.0 (3)
C33—C32—C37—C363.0 (3)C81—C80—O64—C82178.91 (19)
C33—C32—C37—C38171.44 (17)N1—C15—C16—C17170.43 (19)
C33—C32—O32—Sm115.5 (2)N1—C15—C16—C2114.8 (3)
C33—C32—O32—Zn31151.84 (13)N2—C9—C10—C11178.3 (2)
C33—C34—C35—C361.0 (3)N2—C9—C14—C13179.61 (18)
C34—C33—O31—C316.4 (3)N2—C9—C14—N12.0 (3)
C34—C33—O31—Sm1171.61 (15)N31—C45—C46—C47163.73 (19)
C34—C35—C36—C372.6 (3)N31—C45—C46—C5114.5 (3)
C35—C36—C37—C320.6 (3)N32—C39—C40—C41177.57 (18)
C35—C36—C37—C38175.31 (19)N32—C39—C44—C43176.90 (17)
C36—C37—C38—N32167.26 (19)N32—C39—C44—N313.3 (2)
C37—C32—C33—C344.8 (3)N51—C75—C76—C77170.7 (2)
C37—C32—C33—O31172.72 (16)N51—C75—C76—C8111.7 (3)
C37—C32—O32—Sm1161.14 (13)N52—C69—C70—C71179.1 (2)
C37—C32—O32—Zn3131.5 (2)N52—C69—C74—C73179.59 (18)
C37—C38—N32—C39173.79 (17)N52—C69—C74—N511.7 (3)
C37—C38—N32—Zn317.9 (3)N91—C91—O91—Sm1159.59 (15)
C39—C40—C41—C420.6 (3)N101—C101—O101—Sm1165.90 (15)
C39—C44—N31—C45170.26 (18)O1—C3—C4—C5179.35 (17)
C39—C44—N31—Zn317.9 (2)O2—C2—C3—C4176.60 (16)
C40—C39—C44—C432.0 (3)O2—C2—C3—O13.3 (2)
C40—C39—C44—N31177.82 (17)O2—C2—C7—C6174.33 (16)
C40—C39—N32—C3810.1 (3)O2—C2—C7—C87.8 (3)
C40—C39—N32—Zn31168.42 (16)O4—C20—C21—C16175.19 (16)
C40—C41—C42—C431.6 (3)O4—C20—C21—O31.4 (2)
C41—C42—C43—C440.8 (3)O31—C33—C34—C35174.34 (18)
C42—C43—C44—C391.0 (3)O32—C32—C33—C34178.39 (17)
C42—C43—C44—N31178.85 (19)O32—C32—C33—O314.1 (2)
C43—C44—N31—C459.9 (3)O32—C32—C37—C36179.60 (17)
C43—C44—N31—Zn31171.95 (15)O32—C32—C37—C385.1 (3)
C44—C39—C40—C411.3 (3)O34—C50—C51—C46177.34 (16)
C44—C39—N32—C38168.79 (18)O34—C50—C51—O332.9 (2)
C44—C39—N32—Zn3112.7 (2)O61—C63—C64—C65175.4 (2)
C45—C46—C47—C48174.4 (2)O62—C62—C63—C64175.42 (19)
C45—C46—C51—C50173.08 (18)O62—C62—C63—O615.2 (3)
C45—C46—C51—O337.2 (3)O62—C62—C67—C66178.57 (18)
C46—C45—N31—C44178.56 (18)O62—C62—C67—C682.9 (3)
C46—C45—N31—Zn313.5 (3)O64—C80—C81—C76179.37 (18)
C46—C47—C48—C490.4 (3)O64—C80—C81—O630.1 (3)
C46—C51—O33—Sm1131.01 (16)O91—C91—N91—C922.5 (3)
C46—C51—O33—Zn3135.7 (2)O91—C91—N91—C93178.8 (2)
C47—C46—C51—C505.1 (3)O101—C101—N101—C1020.1 (4)
C47—C46—C51—O33174.67 (18)O101—C101—N101—C103179.0 (2)
C47—C48—C49—C501.9 (3)O110—C110—N110—C1111.3 (5)
C48—C49—C50—C510.6 (3)O110—C110—N110—C112176.7 (3)
C48—C49—C50—O34179.11 (19)
Selected geometric parameters (Å, °) top
N1—Zn12.0863 (16)O3—Zn11.9985 (13)
N2—Zn12.0451 (16)O4—Sm12.6707 (13)
N31—Zn312.0534 (16)O31—Sm12.6934 (13)
N32—Zn312.0644 (16)O32—Sm12.3599 (12)
N121—Zn11.9842 (17)O32—Zn312.0143 (13)
N131—Zn311.9786 (16)O33—Sm12.4038 (13)
O2—Sm12.4417 (12)O33—Zn312.0175 (13)
O2—Zn12.0395 (12)O91—Sm12.3831 (13)
O3—Sm12.3348 (12)O101—Sm12.3476 (13)
O2—Sm1—O4119.60 (4)O32—Sm1—O3159.85 (4)
O2—Sm1—O31111.28 (4)O32—Sm1—O3365.80 (4)
O3—Sm1—O266.10 (4)O91—Sm1—O283.29 (4)
O3—Sm1—O460.69 (4)O91—Sm1—O470.36 (4)
O3—Sm1—O31159.39 (4)O91—Sm1—O3169.71 (4)
O3—Sm1—O32134.80 (4)O91—Sm1—O33162.88 (5)
O3—Sm1—O3380.48 (4)N121—Zn1—N1108.05 (7)
O32—Sm1—O278.61 (4)N121—Zn1—N2112.95 (7)
O32—Sm1—O4161.77 (4)N121—Zn1—O2104.31 (6)
 

Funding information

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CrossRef Web of Science Google Scholar
First citationAndrez, J., Guidal, V., Scopelliti, R., Pécaut, J., Gambarelli, S. & Mazzanti, M. (2017). J. Am. Chem. Soc. 139, 8628–8638.  CrossRef Google Scholar
First citationAndruh, M. (2011). Chem. Commun. 47, 3025–3042.  Web of Science CrossRef CAS Google Scholar
First citationBi, W.-Y., Lü, X., Chai, W.-L., Jin, W.-J. J.-R., Song, J. & Wong, W. (2008b). Inorg. Chem. Commun. 11, 1316–1319.  CrossRef Google Scholar
First citationBi, W.-Y., Lü, Y., Chai, W.-L., Song, J.-R., Wong, W.-K., Yang, X.-P. & Jones, R. A. (2008a). Z. Anorg. Allg. Chem. 634, 1795–1800.  CrossRef Google Scholar
First citationBi, W.-Y., Lü, X., Chai, W.-L., Wei, T., Song, J.-R., Zhao, S.-S. & Wong, W.-K. (2009). Inorg. Chem. Commun. 12, 267–271.  CrossRef Google Scholar
First citationBian, J. (2008). Acta Cryst. E64, m625.  CrossRef IUCr Journals Google Scholar
First citationBiswas, A., Mandal, L., Mondal, S., Lucas, R. & Mohanta, S. (2013a). CrystEngComm, 15, 5888–5897.  CrossRef Google Scholar
First citationBiswas, A., Mondal, S. & Mohanta, S. (2013b). J. Coord. Chem. 66, 152–170.  CrossRef Google Scholar
First citationChen, P., Chen, H., Yan, P., Wang, Y. & Li, G. (2011). CrystEngComm, 13, 6237–6242.  CrossRef Google Scholar
First citationChesman, A. S. R., Turner, D. R., Moubaraki, B., Murray, K. S., Deacon, G. B. & Batten, S. R. (2012). Inorg. Chim. Acta, 389, 99–106.  CrossRef Google Scholar
First citationCristóvão, B. & Miroslaw, B. (2013). Inorg. Chim. Acta, 401, 50–57.  Google Scholar
First citationCristóvão, B., Miroslaw, B. & Bartyzel, A. (2017). Inorg. Chim. Acta, 466, 160–165.  Google Scholar
First citationDas, M., Chatterjee, S. & Chattopadhyay, S. (2011). Inorg. Chem. Commun. 14, 1337–1340.  CrossRef Google Scholar
First citationDing, D.-D., Gao, T., Sun, O., Li, G.-M., Wu, Y.-H., Xu, M.-M., Zou, X.-Y. & Yan, P.-F. (2015). Inorg. Chem. Commun. 51, 21–25.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, X., Wu, K. Y., Xie, S. Y., Li, R. & Wang, L. (2017). Inorg. Nano-Met. Chem. 47, 1134–1140.  Google Scholar
First citationFu, G., Su, P., Lü, X. & Wong, W.-K. (2017). Inorg. Chem. Commun. 76, 12–14.  CrossRef Google Scholar
First citationGao, T., Xu, L.-L., Zhang, Q., Li, G.-M. & Yan, P.-F. (2012). Inorg. Chem. Commun. 26, 60–63.  CrossRef Google Scholar
First citationGhosh, S. & Ghosh, A. (2016). Inorg. Chim. Acta, 442, 64–69.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKlokishner, S. & Reu, O. (2012). Chem. Phys. Lett. 552, 130–135.  CrossRef Google Scholar
First citationKou, H.-Z., Yang, G.-M., Liao, D.-Z., Cheng, P., Jiang, Z.-H., Yan, S.-P., Huang, X.-Y. & Wang, G.-L. (1998). J. Chem. Crystallogr. 28, 303–307.  Web of Science CrossRef Google Scholar
First citationLan, T.-X., Gao, W.-S., Chen, C.-N., Wang, H.-S., Wang, M. & Fan, Y. (2018). New J. Chem. 42, 5798–5805.  CrossRef Google Scholar
First citationLiao, A., Yang, X., Stanley, J. M., Jones, R. A. & Holliday, B. J. (2010). J. Chem. Crystallogr. 40, 1060–1064.  CrossRef Google Scholar
First citationLiu, L., Li, H., Su, P., Zhang, Z., Fu, G., Li, B. & Lü, X. (2017). J. Mater. Chem. C. 5, 4780–4787.  CrossRef Google Scholar
First citationLiu, D.-F., Wu, L.-Y., Feng, W.-X., Zhang, X.-M., Wu, J., Zhu, L.-Q., Fan, D.-D., Lü, X.-Q. & Shi, Q. (2014). J. Mol. Catal. A Chem. 382, 136–145.  CrossRef Google Scholar
First citationLo, W.-K., Wong, W.-K., Wong, W.-Y., Guo, J., Yeung, K.-T., Cheng, W.-K., Yang, X. & Jones, R. A. (2006). Inorg. Chem. 45, 9315–9325.  CrossRef Google Scholar
First citationMa, Q., Feng, X., Cao, W., Wang, H. & Jiang, J. (2013). CrystEngComm, 15, 10383–10388.  CrossRef Google Scholar
First citationMa, Q., Zeng, S., Feng, X., Cao, W., Wang, H., Dou, J. & Jiang, J. (2016). Eur. J. Inorg. Chem. 2016, 4194–4198.  CrossRef Google Scholar
First citationNandy, M., Saha, D., Rizzoli, C. & Shit, S. (2017). Z. Naturforsch. Teil B, 72, 133–140.  CrossRef Google Scholar
First citationPasatoiu, T. D., Madalan, A. M., Zamfirescu, M., Tiseanu, C. & Andruh, M. (2012). Phys. Chem. Chem. Phys. 14, 11448–11456.  CrossRef Google Scholar
First citationPushkarev, A. P., Balashova, T. V., Kukinov, A. A., Arsenyev, M. V., Yablonskiy, A. N., Kryzhkov, D. I., Andreev, B. A., Rumyantcev, R. V., Fukin, G. K. & Bochkarev, M. N. (2017). Dalton Trans. 46, 10408–10417.  CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRossi, P., Ciattini, S., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M. & Paoli, P. (2018). Inorg. Chim. Acta, 470, 254–262.  CrossRef Google Scholar
First citationSarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018). Eur. J. Chem. 9, 67–73.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, W.-B., Yan, P.-F., Jiang, S.-D., Wang, B.-W., Zhang, Y.-Q., Li, H.-F., Chen, P., Wang, Z.-M. & Gao, S. (2016). Chem. Sci. 7, 684–691.  CrossRef Google Scholar
First citationTian, Y.-M., Li, H.-F., Han, B.-L., Zhang, Q. & Sun, W.-B. (2012). Acta Cryst. E68, m1500–m1501.  CrossRef IUCr Journals Google Scholar
First citationWang, H., Cao, W., Liu, T., Duan, C. & Jiang, J. (2013). Chem. Eur. J. 19, 2266–2270.  CrossRef Google Scholar
First citationWang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L. & Jiang, J. (2009). Inorg. Chem. 48, 5946–5956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, H., Zhang, D., Tian, L. & Zhang, L.-F. (2008b). Acta Cryst. E64, m1460.  CrossRef IUCr Journals Google Scholar
First citationWang, H., Zhang, D. & Zhang, L.-F. (2008a). Acta Cryst. E64, m1408–m1409.  CrossRef IUCr Journals Google Scholar
First citationWong, W.-K., Yang, X., Jones, R. A., Rivers, J. H., Lynch, V., Lo, W.-K., Xiao, D., Oye, M. M. & Holmes, A. L. (2006). Inorg. Chem. 45, 4340–4345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, B. & Hou, T. (2010). Acta Cryst. E66, m457.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, X., Jones, R. A., Wu, Q., Oye, M. M., Lo, W.-K., Wong, W.-K. & Holmes, A. L. (2006). Polyhedron, 25, 271–278.  CrossRef Google Scholar
First citationYang, F., Li, G.-M., Chen, P., Yan, P.-F. & Hou, G.-F. (2011). Acta Cryst. E67, m1185.  CrossRef IUCr Journals Google Scholar
First citationYang, X., Schipper, D., Liao, A., Stanley, J. M., Jones, R. A. & Holliday, B. J. (2013). Polyhedron, 52, 165–169.  CrossRef Google Scholar
First citationYin, J.-C., Qin, T.-Z., Hu, C., He, G.-M., Zhao, B.-W., Zhang, C. & Wang, J. (2017). Mater. Lett. 197, 221–223.  CrossRef Google Scholar
First citationZhang, Y., Zhang, W.-X. & Zheng, J.-M. (2016). Z. Anorg. Allg. Chem. 642, 461–466.  CrossRef Google Scholar
First citationZhao, S., Liu, X., Wong, W.-Y., Lü, X. & Wong, W.-K. (2014). Inorg. Chim. Acta, 414, 160–164.  CrossRef Google Scholar
First citationZhou, H., Chen, C., Liu, Y. & Shen, X. (2015). Inorg. Chim. Acta, 437, 188–194.  CrossRef Google Scholar
First citationZhu, T., Yu, Z., Yang, X., Bo, L., Jiang, D. & Chen, H. (2018). Polyhedron, 148, 124–128.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds