research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the lead-containing organic–inorganic hybrid: (C18H26N2)3[Pb4I14(DMSO)2]·2DMSO

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China, and bSchool of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
*Correspondence e-mail: lz@sdu.edu.cn

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 2 October 2018; accepted 21 November 2018; online 27 November 2018)

The title compound, tris­(1,1′-dibutyl-4,4′-bi­pyridine-1,1′-diium) bis­(dimethyl sulfoxide)di-μ3-iodido-tetra-μ2-iodido-octa­iodido­tetra­lead(II) dimethyl sulfoxide di­solvate, (C18H26N2)3[Pb4I14(C2H6OS)2]·2C2H6OS, belongs to a class of organic–inorganic hybrid materials with novel functionalities. In this compound, C—H⋯O and C—H⋯I hydrogen-bonding inter­actions, ππ inter­actions, other short contacts and Pb octa­hedral chains are present, extending the crystal structure into a three-dimensional supra­molecular network.

1. Chemical context

Organic–inorganic hybrid materials have attracted more and more attention from researchers because of their inter­esting physical properties and novel functionalities, such as magnetism, ferroelectricity, electrical/optical properties and photochromism (Yao et al., 2017[Yao, Z.-Y., Zou, Y., Chen, X. & Ren, X.-M. (2017). Inorg. Chem. Commun. 81, 5-9.]). The inorganic components provide rich structural possibilities, including discrete clusters, chains, layers and open frameworks, which dominate the significant electrical, optical and magnetic properties in hybrids (Sun et al., 2018[Sun, C., Du, M. X., Xu, J. G., Mao, F. F., Wang, M. S. & Guo, G. C. (2018). Dalton Trans. 47, 1023-1026.]). The organic moieties may exhibit unique mol­ecular properties such as hyperpolarizability, photochromicity and polymerizability (Tang & Guloy, 1999[Tang, Z. & Guloy, A. M. (1999). J. Am. Chem. Soc. 121, 452-453.]). The title mol­ecule was prepared by the reaction of viologens (N,N′-disubstituted-4,4′-bipyridinium) and a metal halide. Viologens show excellent redox and chemical stability. In addition, they can act as effective templates for the construction of various organic–inorganic hybrids, charge-transfer complexes and supra­molecular systems (Liu et al., 2017[Liu, G., Liu, J., Nie, L., Ban, R., Armatas, G. S., Tao, X. & Zhang, Q. (2017). Inorg. Chem. 56, 5498-5501.]). As lead is a heavy p-block metal in the IVA group, lead(II) halide-based organic–inorganic hybrids possess a large radius, a flexible coordination environment, and variable stereochemical activities of the lead center (Li et al., 2012[Li, H.-H., Wang, Y.-J., Lian, Z.-X., Xu, Y.-F., Wang, M., Huang, S.-W. & Chen, Z.-R. (2012). J. Mol. Struct. 1016, 118-125.]).

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic system in space group Pī. The asymmetric unit consists of half a [(Pb4I14)]6− trianion, one and a half BV2+ (BV2+ = 1,1′-dibutyl-4,4′- bipyridinium) dications and two DMSO mol­ecules, as shown in Fig. 1[link]. The BV2+ cation is located on a general position and adopts a non-planar structure, with a dihedral angle of 27.5 (3)° between the planes of the pyridinium rings. In the bipyridinium rings, C—N bond lengths vary from 1.335 (9) to 1.499 (10) Å and C—C bond lengths from 1.336 (17) to 1.636 (17) Å. C—N—C bond angles are in the range 118.6 (6)–121.1 (7)° and C—C—C bond angles in the range 107.9 (9)–122.1 (6)°. The inorganic anion can be considered as a set of mixed face-shared/edge-shared octa­hedra (Krautscheid et al., 2001[Krautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099-1104.]). Pb1—I bond lengths range from 3.0765 (5) to 3.4315 (5) Å and Pb2—I bond lengths from 3.0802 (5) to 3.4010 (5) Å. I—Pb1—I bond angles are in the range 82.007 (13)–172.112 (13)° and O—Pb2—I bond angles in the range 82.78 (10)-174.71 (9)°. All the above angles deviate from the angles of an ideal octa­hedron (90 and 180°) due to the stereochemical activity of the Pb (6s2) lone pairs (Li et al., 2005[Li, H.-H., Chen, Z.-R., Li, J.-Q., Huang, C.-C., Xiao, G.-C., Lian, Z.-X. & Hu, X.-L. (2005). Acta Chim. Sin. 63, 697-702.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 25% probability level. The second lattice DMSO molecule and the third VB cation, generated by symmetry, are omitted for clarity. Symmetry code: (A) −x, −y, −z.

3. Supra­molecular features

In the compound, the organic species inter­act with the inorganic [(Pb4I14)]6− and DMSO via C—H⋯I and C—H⋯O hydrogen bonds (Table 1[link]). The C⋯I distances are in the range 3.668 (8)–3.940 (10) Å while the C⋯O distances are 3.093 (9) and 3.517 (10) Å. The C—H⋯I angle values vary from 136 to 168°. Hydrogen bonds between the anionic entities [(Pb4I14)]6− and organic species play an important role in stabilizing the crystal structure (Fig. 2[link]). In addition, there are weak ππ inter­actions between adjacent free BV2+ cations with centroid-to-centroid distances between the pyridyl groups ranging from 4.249 (4) to 4.796 (4) Å (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯I2i 0.93 2.94 3.668 (8) 136
C18—H18⋯O1ii 0.93 2.30 3.093 (9) 142
C21—H21⋯I7iii 0.93 2.95 3.780 (7) 150
C22—H22⋯I2ii 0.93 2.86 3.776 (8) 168
C23—H23⋯I1iv 0.93 2.85 3.753 (7) 165
C24—H24B⋯I5v 0.97 2.99 3.940 (10) 166
C30—H30C⋯O2ii 0.96 2.57 3.517 (10) 169
Symmetry codes: (i) x+1, y+1, z-1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y+1, z; (v) x, y+1, z.

Table 2
Analysis of short ring–ring inter­actions (Å, °)

Cg(I)⋯Cg(J): ring centroid I,J (numbered as in Fig. 1[link]); CgCg: distance between ring centroids; α: dihedral angle between planes I and J; CgI_Perp: perpendicular distance of Cg(I) on ring J; CgJ_Perp: perpendicular distance of Cg(J) on ring I.

Cg(I)⋯Cg(J) CgCg α CgI_Perp CgJ_Perp
Cg(2)⋯Cg(3)vi 4.796 (4) 27.5 (3) 3.481 (3) 3.970 (3)
Cg(3)⋯Cg(2)vi 4.795 (4) 27.5 (3) 3.970 (3) 3.480 (3)
Cg(3)⋯Cg(3)vi 4.249 (4) 0.0 (4) 3.507 (3) 3.507 (3)
Symmetry code: (vi) 1 − x, 2 − y, 1 − z.
[Figure 2]
Figure 2
The crystal packing of the title compound with hydrogen bonds (Table 1[link]) shown as dashed lines.

4. Database survey

Lead(II) iodide complexes have been reported whose structures include chains of face-sharing ideal PbI6 octa­hedra (Krautscheid et al., 2001[Krautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099-1104.]; She et al., 2014[She, Y.-J., Zhao, S.-P., Tian, Z.-F. & Ren, X.-M. (2014). Inorg. Chem. Commun. 46, 29-32.]) and chains of corner-sharing PbI6 octa­hedra (Wang et al., 1995[Wang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297-5302.]). The structure of 1,1′-dibutyl-4,4′-bipyridinium diiodide was reported by our research group (Zhao et al., 2012[Zhao, D., Liu, Z., Shi, L.-Q., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 245-246.]). Typical Pb–I-based hybrids templated with alkyl viologen cations include, for example, [(Pb6I22)(DMF)2(DPB)5] (Zhang et al., 2015[Zhang, W., Zhang, N., Shen, L., Wu, H., Li, X., Li, S., Yue, J. & Niu, Y. (2015). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1347-1351.]), (C21H27N3)[Pb3I9] (Hong-Xu et al., 2010[Hong-Xu, G., Xi-Zhong, L., Wen-Bing, W. & Wen, W. (2010). Chin. J. Struct. Chem. 29, 181-186.]), (C14H18N2)[Pb2I6] (Pradeesh et al., 2010[Pradeesh, K., Agarwal, M., Rao, K. K. & Prakash, G. V. (2010). Solid State Sci. 12, 95-98.]) and [IV][Pb2I6] (Kim et al., 2018[Kim, K. J., Kim, G. H., Lampande, R., Ahn, D. H., Im, J. B., Moon, J. S., Lee, J. K., Lee, J. Y., Lee, J. Y. & Kwon, J. H. (2018). J. Mater. Chem. C. 6, 1343-1348.]).

5. Synthesis and crystallization

NaI (0.23 g, 1.5 mmol), PbI2 (0.46 g, 1.0 mmol) and 10 ml of methanol were stirred under an argon atmosphere until dissolved. 1,1′-Dibutyl-4,4′-bipyridyl cation salt (0.52 g, 1.0 mmol) dissolved in methanol (5 ml) was added to the reaction mixture at room temperature. The resulting precipitate was dissolved in DMSO (3 ml) and placed in a sealed jar of anhydrous ether. Red crystals were produced two weeks later under an argon-protected atmosphere. After filtering and drying under vacuum, red needle-shaped crystals of 0.73 g (72.3%) with high quality were obtained. Analysis calculated for C62H102I14N6O4Pb4S4: C 19.97, H 2.70, N 2.25%. Found: C 19.80, H 2.82, N 2.25%. IR (cm−1): 3291 (w), 3108 (m), 3035 (s), 2931 (w), 2958 (w), 2857 (w), 944 (w), 1636 (m), 1634 (s), 1441 (m), 1060 (s), 833 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H)= 1.2-1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula (C18H26N2)3[Pb4I14(C2H6OS)2]·2C2H6OS
Mr 1864.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 11.5011 (10), 14.2262 (13), 16.2969 (14)
α, β, γ (°) 80.305 (1), 78.449 (1), 81.753 (1)
V3) 2558.5 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.90
Crystal size (mm) 0.55 × 0.50 × 0.09
 
Data collection
Diffractometer Bruker APEX3 CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.065, 0.440
No. of measured, independent and observed [I > 2σ(I)] reflections 24466, 8975, 8219
Rint 0.040
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.07
No. of reflections 8975
No. of parameters 432
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.47, −1.72
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tris(1,1'-dibutyl-4,4'-bipyridine-1,1'-diium) bis(dimethyl sulfoxide)di-µ3-iodido-tetra-µ2-iodido-octaiodidotetralead(II) dimethyl sulfoxide disolvate top
Crystal data top
(C18H26N2)3[Pb4I14(C2H6OS)2]·2C2H6OSZ = 2
Mr = 1864.54F(000) = 1682
Triclinic, P1Dx = 2.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5011 (10) ÅCell parameters from 29882 reflections
b = 14.2262 (13) Åθ = 1.8–25°
c = 16.2969 (14) ŵ = 10.90 mm1
α = 80.305 (1)°T = 296 K
β = 78.449 (1)°Needle, red
γ = 81.753 (1)°0.55 × 0.50 × 0.09 mm
V = 2558.5 (4) Å3
Data collection top
Bruker APEX3 CCD area-detector
diffractometer
8975 independent reflections
Radiation source: fine-focus sealed tube8219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1313
Tmin = 0.065, Tmax = 0.440k = 1616
24466 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0562P)2 + 3.2208P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.059
8975 reflectionsΔρmax = 2.47 e Å3
432 parametersΔρmin = 1.72 e Å3
0 restraintsExtinction correction: SHELXTL (Bruker, 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00081 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.019011 (19)0.115698 (16)0.614407 (14)0.02456 (9)
Pb20.056844 (19)0.234124 (16)0.300143 (15)0.02475 (9)
I30.12457 (3)0.27930 (3)0.48471 (3)0.02923 (11)
I40.07737 (4)0.39067 (3)0.18256 (3)0.04282 (14)
I50.27864 (4)0.19949 (4)0.16274 (3)0.04566 (14)
I60.15180 (4)0.24586 (3)0.65461 (3)0.04339 (14)
I70.22112 (4)0.16826 (4)0.75974 (3)0.04122 (13)
C70.9915 (6)0.9485 (5)0.0111 (4)0.0338 (15)
N20.4596 (5)0.6917 (4)0.7240 (4)0.0363 (13)
C10.5880 (9)0.6807 (9)0.1101 (8)0.087 (3)
H1A0.57790.70780.05350.130*
H1B0.52980.71320.14990.130*
H1C0.57750.61370.11930.130*
C20.7139 (8)0.6923 (7)0.1220 (7)0.068 (3)
H2A0.72390.76010.11200.082*
H2B0.72180.66810.18010.082*
C30.8105 (7)0.6412 (5)0.0644 (5)0.050 (2)
H3A0.80060.66410.00640.060*
H3B0.80120.57330.07560.060*
C40.9363 (7)0.6536 (5)0.0728 (5)0.0496 (19)
H4A0.94790.62990.13030.059*
H4B0.99350.61610.03520.059*
N10.9583 (5)0.7570 (4)0.0515 (4)0.0368 (13)
C50.9825 (8)0.8037 (6)0.1095 (5)0.055 (2)
H50.98810.77150.16350.066*
C60.9992 (8)0.8996 (6)0.0897 (5)0.055 (2)
H61.01600.93140.13060.067*
C90.9507 (8)0.8038 (7)0.0262 (5)0.060 (2)
H90.93430.77100.06660.072*
C80.9665 (9)0.8976 (7)0.0468 (5)0.063 (3)
H80.96040.92840.10110.076*
C100.2978 (9)0.6823 (9)1.0341 (6)0.084 (3)
H10A0.25720.63971.07930.127*
H10B0.24070.73161.01270.127*
H10C0.35470.71101.05480.127*
C110.3623 (9)0.6262 (7)0.9635 (6)0.067 (3)
H11A0.31500.57650.95940.081*
H11B0.43820.59510.97710.081*
C120.3845 (7)0.6903 (6)0.8783 (5)0.0481 (19)
H12A0.30910.72370.86560.058*
H12B0.43530.73800.88120.058*
C130.4431 (7)0.6323 (5)0.8086 (5)0.0446 (18)
H13A0.52030.60180.82010.054*
H13B0.39440.58210.80830.054*
C140.3627 (6)0.7293 (5)0.6908 (5)0.0381 (16)
H140.28720.71850.72130.046*
C150.3738 (5)0.7837 (5)0.6123 (5)0.0393 (17)
H150.30590.80960.58990.047*
C160.4857 (5)0.8001 (5)0.5664 (5)0.0310 (15)
C190.4996 (5)0.8580 (5)0.4816 (5)0.0330 (16)
C230.5989 (6)0.9090 (5)0.4521 (5)0.0392 (16)
H230.65630.90580.48560.047*
C220.6111 (6)0.9628 (6)0.3748 (5)0.0468 (19)
H220.67750.99620.35550.056*
N30.5285 (5)0.9690 (4)0.3252 (4)0.0419 (15)
C240.5471 (8)1.0264 (7)0.2402 (6)0.064 (3)
H24A0.60191.07290.23830.077*
H24B0.47171.06130.22900.077*
C250.5966 (9)0.9636 (9)0.1732 (6)0.076 (3)
H25A0.53860.92160.17030.091*
H25B0.66850.92420.18640.091*
C260.6271 (12)1.0332 (11)0.0828 (8)0.112 (5)
H26A0.55731.07790.07350.134*
H26B0.69131.06990.08420.134*
C270.6594 (15)0.9805 (13)0.0197 (10)0.140 (6)
H27A0.72930.93710.02860.209*
H27B0.67671.02190.03310.209*
H27C0.59550.94450.01830.209*
C210.4319 (6)0.9209 (5)0.3527 (5)0.0430 (19)
H210.37550.92530.31810.052*
C200.4156 (5)0.8659 (5)0.4301 (5)0.0363 (16)
H200.34800.83380.44830.044*
C170.5853 (5)0.7597 (5)0.6030 (5)0.0378 (16)
H170.66190.76930.57400.045*
C180.5692 (6)0.7060 (5)0.6819 (5)0.0372 (16)
H180.63530.67940.70620.045*
S10.09717 (14)0.45421 (12)0.35969 (11)0.0341 (4)
O10.1616 (4)0.3631 (3)0.3269 (3)0.0348 (11)
C300.1581 (7)0.4585 (6)0.4499 (5)0.058 (2)
H30A0.13520.40600.49280.087*
H30B0.12850.51810.47100.087*
H30C0.24360.45370.43490.087*
C310.1638 (9)0.5487 (6)0.2894 (7)0.078 (3)
H31A0.24700.54370.29260.117*
H31B0.12480.60920.30470.117*
H31C0.15590.54450.23260.117*
S20.44397 (18)0.46100 (15)0.66133 (14)0.0493 (5)
O20.5347 (5)0.5287 (4)0.6236 (4)0.0671 (18)
C280.3245 (8)0.4909 (6)0.6066 (6)0.062 (2)
H28A0.28310.55190.61880.092*
H28B0.27070.44260.62400.092*
H28C0.35430.49450.54690.092*
C290.4998 (9)0.3496 (7)0.6250 (9)0.091 (4)
H29A0.49610.35490.56600.136*
H29B0.45230.30080.65660.136*
H29C0.58120.33270.63270.136*
I20.10647 (3)0.07348 (3)0.72885 (3)0.02993 (12)
I10.16306 (3)0.05420 (3)0.56721 (3)0.02845 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02601 (14)0.02141 (14)0.02844 (15)0.00252 (10)0.00949 (10)0.00442 (10)
Pb20.02510 (14)0.02060 (14)0.03053 (15)0.00131 (10)0.00997 (10)0.00449 (10)
I30.0275 (2)0.0228 (2)0.0371 (2)0.00003 (16)0.00946 (17)0.00164 (18)
I40.0412 (3)0.0305 (3)0.0544 (3)0.0011 (2)0.0192 (2)0.0108 (2)
I50.0392 (3)0.0600 (3)0.0366 (3)0.0084 (2)0.0076 (2)0.0147 (2)
I60.0441 (3)0.0374 (3)0.0561 (3)0.0159 (2)0.0173 (2)0.0080 (2)
I70.0369 (2)0.0492 (3)0.0397 (3)0.0072 (2)0.00319 (19)0.0148 (2)
C70.029 (3)0.044 (4)0.032 (4)0.002 (3)0.010 (3)0.011 (3)
N20.032 (3)0.036 (3)0.043 (3)0.002 (2)0.005 (2)0.021 (3)
C10.061 (6)0.100 (9)0.100 (9)0.029 (6)0.022 (6)0.008 (7)
C20.058 (5)0.063 (6)0.086 (7)0.017 (5)0.012 (5)0.009 (5)
C30.072 (5)0.026 (4)0.056 (5)0.014 (4)0.031 (4)0.009 (3)
C40.063 (5)0.037 (4)0.053 (5)0.004 (4)0.027 (4)0.001 (4)
N10.043 (3)0.032 (3)0.040 (3)0.003 (3)0.016 (3)0.008 (3)
C50.088 (6)0.041 (5)0.039 (4)0.013 (4)0.037 (4)0.000 (4)
C60.093 (6)0.043 (5)0.045 (5)0.006 (4)0.046 (4)0.018 (4)
C90.091 (7)0.071 (6)0.031 (4)0.046 (5)0.013 (4)0.008 (4)
C80.106 (7)0.069 (6)0.028 (4)0.053 (6)0.019 (4)0.001 (4)
C100.072 (7)0.132 (11)0.045 (5)0.002 (6)0.003 (5)0.018 (6)
C110.074 (6)0.071 (7)0.055 (6)0.006 (5)0.013 (5)0.007 (5)
C120.036 (4)0.059 (5)0.051 (5)0.002 (4)0.005 (3)0.020 (4)
C130.049 (4)0.040 (4)0.047 (5)0.004 (3)0.012 (3)0.014 (4)
C140.029 (3)0.040 (4)0.046 (4)0.003 (3)0.002 (3)0.015 (3)
C150.018 (3)0.046 (4)0.058 (5)0.001 (3)0.007 (3)0.024 (4)
C160.025 (3)0.029 (3)0.043 (4)0.000 (3)0.007 (3)0.019 (3)
C190.020 (3)0.033 (4)0.050 (4)0.002 (3)0.004 (3)0.024 (3)
C230.026 (3)0.047 (4)0.047 (4)0.010 (3)0.010 (3)0.007 (4)
C220.027 (3)0.049 (5)0.067 (5)0.006 (3)0.008 (3)0.014 (4)
N30.029 (3)0.044 (4)0.048 (4)0.008 (3)0.005 (3)0.008 (3)
C240.040 (4)0.082 (7)0.063 (6)0.016 (4)0.015 (4)0.002 (5)
C250.072 (6)0.108 (9)0.049 (6)0.012 (6)0.015 (5)0.011 (6)
C260.108 (10)0.143 (12)0.092 (9)0.056 (9)0.055 (8)0.052 (9)
C270.136 (13)0.164 (16)0.130 (14)0.020 (11)0.042 (11)0.062 (12)
C210.020 (3)0.043 (4)0.072 (6)0.007 (3)0.017 (3)0.023 (4)
C200.023 (3)0.040 (4)0.050 (4)0.001 (3)0.008 (3)0.017 (4)
C170.021 (3)0.038 (4)0.058 (5)0.000 (3)0.011 (3)0.015 (4)
C180.029 (3)0.033 (4)0.055 (5)0.004 (3)0.014 (3)0.020 (3)
S10.0289 (8)0.0265 (8)0.0481 (10)0.0021 (6)0.0051 (7)0.0117 (7)
O10.026 (2)0.031 (2)0.052 (3)0.0029 (18)0.007 (2)0.021 (2)
C300.056 (5)0.064 (6)0.065 (6)0.002 (4)0.013 (4)0.040 (5)
C310.065 (6)0.039 (5)0.123 (9)0.012 (4)0.009 (6)0.006 (5)
S20.0485 (11)0.0429 (11)0.0629 (13)0.0001 (9)0.0184 (9)0.0197 (10)
O20.049 (3)0.050 (4)0.113 (5)0.012 (3)0.015 (3)0.037 (4)
C280.066 (5)0.037 (5)0.088 (7)0.012 (4)0.040 (5)0.009 (4)
C290.060 (6)0.050 (6)0.168 (12)0.004 (5)0.011 (7)0.049 (7)
I20.0277 (2)0.0258 (2)0.0380 (2)0.00431 (17)0.00994 (17)0.00347 (18)
I10.0271 (2)0.0254 (2)0.0363 (2)0.00027 (16)0.01434 (17)0.00608 (18)
Geometric parameters (Å, º) top
Pb1—I73.0765 (5)C14—H140.9300
Pb1—I63.1121 (5)C15—C161.383 (9)
Pb1—I33.1493 (5)C15—H150.9300
Pb1—I23.3282 (5)C16—C171.403 (9)
Pb1—I13.3858 (5)C16—C191.476 (10)
Pb2—O12.473 (4)C19—C201.384 (9)
Pb2—I53.0802 (5)C19—C231.400 (9)
Pb2—I43.1266 (5)C23—C221.351 (11)
Pb2—I2i3.3053 (5)C23—H230.9300
Pb2—I1i3.3187 (5)C22—N31.350 (10)
Pb2—I33.4010 (5)C22—H220.9300
C7—C61.364 (10)N3—C211.348 (9)
C7—C81.378 (10)N3—C241.479 (11)
C7—C7ii1.481 (14)C24—C251.499 (13)
N2—C181.335 (9)C24—H24A0.9700
N2—C141.340 (9)C24—H24B0.9700
N2—C131.483 (10)C25—C261.636 (17)
C1—C21.534 (13)C25—H25A0.9700
C1—H1A0.9600C25—H25B0.9700
C1—H1B0.9600C26—C271.336 (17)
C1—H1C0.9600C26—H26A0.9700
C2—C31.491 (12)C26—H26B0.9700
C2—H2A0.9700C27—H27A0.9600
C2—H2B0.9700C27—H27B0.9600
C3—C41.518 (11)C27—H27C0.9600
C3—H3A0.9700C21—C201.361 (11)
C3—H3B0.9700C21—H210.9300
C4—N11.499 (9)C20—H200.9300
C4—H4A0.9700C17—C181.373 (10)
C4—H4B0.9700C17—H170.9300
N1—C51.336 (9)C18—H180.9300
N1—C91.341 (10)S1—O11.522 (4)
C5—C61.380 (11)S1—C301.763 (8)
C5—H50.9300S1—C311.770 (9)
C6—H60.9300C30—H30A0.9600
C9—C81.349 (12)C30—H30B0.9600
C9—H90.9300C30—H30C0.9600
C8—H80.9300C31—H31A0.9600
C10—C111.520 (13)C31—H31B0.9600
C10—H10A0.9600C31—H31C0.9600
C10—H10B0.9600S2—O21.492 (6)
C10—H10C0.9600S2—C281.749 (8)
C11—C121.524 (12)S2—C291.774 (9)
C11—H11A0.9700C28—H28A0.9600
C11—H11B0.9700C28—H28B0.9600
C12—C131.508 (10)C28—H28C0.9600
C12—H12A0.9700C29—H29A0.9600
C12—H12B0.9700C29—H29B0.9600
C13—H13A0.9700C29—H29C0.9600
C13—H13B0.9700I2—Pb2i3.3053 (5)
C14—C151.371 (10)I1—Pb2i3.3187 (5)
I7—Pb1—I693.528 (15)C12—C13—H13B109.1
I7—Pb1—I391.655 (15)H13A—C13—H13B107.8
I6—Pb1—I393.038 (15)N2—C14—C15120.7 (6)
I7—Pb1—I295.153 (14)N2—C14—H14119.7
I6—Pb1—I290.519 (14)C15—C14—H14119.7
I3—Pb1—I2172.112 (13)C14—C15—C16120.2 (7)
I7—Pb1—I193.512 (14)C14—C15—H15119.9
I6—Pb1—I1170.159 (14)C16—C15—H15119.9
I3—Pb1—I193.622 (13)C15—C16—C17117.8 (7)
I2—Pb1—I182.007 (13)C15—C16—C19121.0 (6)
O1—Pb2—I584.47 (10)C17—C16—C19121.2 (6)
O1—Pb2—I487.45 (11)C20—C19—C23118.0 (7)
I5—Pb2—I494.693 (16)C20—C19—C16122.1 (6)
O1—Pb2—I2i174.71 (9)C23—C19—C16119.9 (6)
I5—Pb2—I2i100.234 (14)C22—C23—C19119.9 (7)
I4—Pb2—I2i89.734 (15)C22—C23—H23120.0
O1—Pb2—I1i99.08 (11)C19—C23—H23120.0
I5—Pb2—I1i90.803 (14)N3—C22—C23121.1 (7)
I4—Pb2—I1i171.859 (14)N3—C22—H22119.5
I2i—Pb2—I1i83.372 (13)C23—C22—H22119.5
O1—Pb2—I382.78 (10)C21—N3—C22119.9 (7)
I5—Pb2—I3162.883 (14)C21—N3—C24120.8 (7)
I4—Pb2—I396.095 (14)C22—N3—C24119.3 (7)
I2i—Pb2—I393.076 (12)N3—C24—C25111.0 (8)
I1i—Pb2—I380.016 (12)N3—C24—H24A109.4
Pb1—I3—Pb2100.953 (13)C25—C24—H24A109.4
C6—C7—C8116.9 (7)N3—C24—H24B109.4
C6—C7—C7ii121.8 (7)C25—C24—H24B109.4
C8—C7—C7ii121.3 (8)H24A—C24—H24B108.0
C18—N2—C14121.1 (7)C24—C25—C26107.9 (9)
C18—N2—C13120.3 (6)C24—C25—H25A110.1
C14—N2—C13118.6 (6)C26—C25—H25A110.1
C2—C1—H1A109.5C24—C25—H25B110.1
C2—C1—H1B109.5C26—C25—H25B110.1
H1A—C1—H1B109.5H25A—C25—H25B108.4
C2—C1—H1C109.5C27—C26—C25110.1 (14)
H1A—C1—H1C109.5C27—C26—H26A109.6
H1B—C1—H1C109.5C25—C26—H26A109.6
C3—C2—C1113.3 (9)C27—C26—H26B109.7
C3—C2—H2A108.9C25—C26—H26B109.6
C1—C2—H2A108.9H26A—C26—H26B108.1
C3—C2—H2B108.9C26—C27—H27A109.5
C1—C2—H2B108.9C26—C27—H27B109.5
H2A—C2—H2B107.7H27A—C27—H27B109.5
C2—C3—C4114.6 (7)C26—C27—H27C109.5
C2—C3—H3A108.6H27A—C27—H27C109.5
C4—C3—H3A108.6H27B—C27—H27C109.5
C2—C3—H3B108.6N3—C21—C20121.1 (6)
C4—C3—H3B108.6N3—C21—H21119.4
H3A—C3—H3B107.6C20—C21—H21119.4
N1—C4—C3111.1 (6)C21—C20—C19119.9 (6)
N1—C4—H4A109.4C21—C20—H20120.1
C3—C4—H4A109.4C19—C20—H20120.1
N1—C4—H4B109.4C18—C17—C16119.7 (6)
C3—C4—H4B109.4C18—C17—H17120.1
H4A—C4—H4B108.0C16—C17—H17120.1
C5—N1—C9119.6 (7)N2—C18—C17120.6 (6)
C5—N1—C4120.8 (6)N2—C18—H18119.7
C9—N1—C4119.6 (6)C17—C18—H18119.7
N1—C5—C6120.2 (7)O1—S1—C30104.1 (3)
N1—C5—H5119.9O1—S1—C31104.7 (4)
C6—C5—H5119.9C30—S1—C3199.9 (5)
C7—C6—C5121.0 (7)S1—O1—Pb2123.4 (2)
C7—C6—H6119.5S1—C30—H30A109.5
C5—C6—H6119.5S1—C30—H30B109.5
N1—C9—C8121.2 (7)H30A—C30—H30B109.5
N1—C9—H9119.4S1—C30—H30C109.5
C8—C9—H9119.4H30A—C30—H30C109.5
C9—C8—C7121.1 (8)H30B—C30—H30C109.5
C9—C8—H8119.4S1—C31—H31A109.5
C7—C8—H8119.5S1—C31—H31B109.5
C11—C10—H10A109.5H31A—C31—H31B109.5
C11—C10—H10B109.5S1—C31—H31C109.5
H10A—C10—H10B109.5H31A—C31—H31C109.5
C11—C10—H10C109.5H31B—C31—H31C109.5
H10A—C10—H10C109.5O2—S2—C28108.1 (4)
H10B—C10—H10C109.5O2—S2—C29107.1 (4)
C10—C11—C12112.1 (8)C28—S2—C2998.0 (5)
C10—C11—H11A109.2S2—C28—H28A109.5
C12—C11—H11A109.2S2—C28—H28B109.5
C10—C11—H11B109.2H28A—C28—H28B109.5
C12—C11—H11B109.2S2—C28—H28C109.5
H11A—C11—H11B107.9H28A—C28—H28C109.5
C13—C12—C11111.1 (7)H28B—C28—H28C109.5
C13—C12—H12A109.4S2—C29—H29A109.5
C11—C12—H12A109.4S2—C29—H29B109.5
C13—C12—H12B109.4H29A—C29—H29B109.5
C11—C12—H12B109.4S2—C29—H29C109.5
H12A—C12—H12B108.0H29A—C29—H29C109.5
N2—C13—C12112.5 (6)H29B—C29—H29C109.5
N2—C13—H13A109.1Pb2i—I2—Pb197.673 (13)
C12—C13—H13A109.1Pb2i—I1—Pb196.290 (13)
N2—C13—H13B109.1
I7—Pb1—I3—Pb2173.613 (13)C17—C16—C19—C2328.4 (9)
I6—Pb1—I3—Pb292.765 (15)C20—C19—C23—C220.9 (10)
I2—Pb1—I3—Pb223.93 (9)C16—C19—C23—C22179.3 (6)
I1—Pb1—I3—Pb279.987 (13)C19—C23—C22—N30.4 (11)
O1—Pb2—I3—Pb198.01 (11)C23—C22—N3—C210.0 (11)
I5—Pb2—I3—Pb155.87 (5)C23—C22—N3—C24178.2 (7)
I4—Pb2—I3—Pb1175.355 (13)C21—N3—C24—C2579.3 (9)
I2i—Pb2—I3—Pb185.294 (14)C22—N3—C24—C2598.9 (9)
I1i—Pb2—I3—Pb12.580 (11)N3—C24—C25—C26174.4 (8)
C1—C2—C3—C4178.3 (8)C24—C25—C26—C27173.3 (11)
C2—C3—C4—N161.5 (9)C22—N3—C21—C200.2 (10)
C3—C4—N1—C5117.3 (8)C24—N3—C21—C20178.4 (7)
C3—C4—N1—C961.1 (10)N3—C21—C20—C190.7 (10)
C9—N1—C5—C60.2 (12)C23—C19—C20—C211.1 (9)
C4—N1—C5—C6178.2 (8)C16—C19—C20—C21179.4 (6)
C8—C7—C6—C50.1 (13)C15—C16—C17—C180.0 (9)
C7ii—C7—C6—C5179.7 (8)C19—C16—C17—C18179.8 (6)
N1—C5—C6—C70.0 (14)C14—N2—C18—C170.2 (9)
C5—N1—C9—C80.4 (13)C13—N2—C18—C17179.1 (6)
C4—N1—C9—C8178.1 (8)C16—C17—C18—N20.2 (10)
N1—C9—C8—C70.3 (15)C30—S1—O1—Pb2126.1 (4)
C6—C7—C8—C90.1 (14)C31—S1—O1—Pb2129.5 (5)
C7ii—C7—C8—C9179.8 (9)I5—Pb2—O1—S1150.1 (3)
C10—C11—C12—C13177.2 (8)I4—Pb2—O1—S155.2 (3)
C18—N2—C13—C12112.7 (7)I2i—Pb2—O1—S12.7 (15)
C14—N2—C13—C1268.0 (8)I1i—Pb2—O1—S1119.9 (3)
C11—C12—C13—N2176.7 (7)I3—Pb2—O1—S141.3 (3)
C18—N2—C14—C150.1 (10)I7—Pb1—I2—Pb2i86.695 (15)
C13—N2—C14—C15179.2 (6)I6—Pb1—I2—Pb2i179.716 (13)
N2—C14—C15—C160.1 (10)I3—Pb1—I2—Pb2i62.87 (9)
C14—C15—C16—C170.2 (9)I1—Pb1—I2—Pb2i6.140 (11)
C14—C15—C16—C19179.6 (6)I7—Pb1—I1—Pb2i88.621 (15)
C15—C16—C19—C2026.5 (9)I6—Pb1—I1—Pb2i46.99 (9)
C17—C16—C19—C20153.3 (6)I3—Pb1—I1—Pb2i179.495 (10)
C15—C16—C19—C23151.8 (6)I2—Pb1—I1—Pb2i6.097 (11)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···I2iii0.932.943.668 (8)136
C18—H18···O1iv0.932.303.093 (9)142
C21—H21···I7v0.932.953.780 (7)150
C22—H22···I2iv0.932.863.776 (8)168
C23—H23···I1vi0.932.853.753 (7)165
C24—H24B···I5vii0.972.993.940 (10)166
C30—H30C···O2iv0.962.573.517 (10)169
Symmetry codes: (iii) x+1, y+1, z1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y+1, z; (vii) x, y+1, z.
Analysis of short ring–ring interactions (Å, °) top
Cg(I)···Cg(J): ring centroid I,J (numbered as in Fig. 1); Cg···Cg: distance between ring centroids; α: dihedral angle between planes I andJ; CgI_Perp: perpendicular distance of Cg(I) on ring J; CgJ_Perp: perpendicular distance of Cg(J) on ring I.
Cg(I)···Cg(J)Cg···CgαCgI_PerpCgJ_Perp
Cg(2)···Cg(3)vi4.796 (4)27.5 (3)3.481 (3)3.970 (3)
Cg(3)···Cg(2)vi4.795 (4)27.5 (3)3.970 (3)3.480 (3)
Cg(3)···Cg(3)vi4.249 (4)0.0 (4)3.507 (3)3.507 (3)
Symmetry code: (vi) 1 - x, 2 - y, 1 - z.
The fractional coordinates of Cg(I) top
Cg(I)xyz
Cg(1)0.9749 (3)0.8517 (2)0.03147 (19)
Cg(2)0.4727 (2)0.7451 (2)0.6464 (2)
Cg(3)0.5142 (2)0.9143 (2)0.4028 (2)

Funding information

The research was supported by the Natural Science Foundation of Shandong Province (grant No. ZR2010EM017).

References

First citationBruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHong-Xu, G., Xi-Zhong, L., Wen-Bing, W. & Wen, W. (2010). Chin. J. Struct. Chem. 29, 181–186.  Google Scholar
First citationKim, K. J., Kim, G. H., Lampande, R., Ahn, D. H., Im, J. B., Moon, J. S., Lee, J. K., Lee, J. Y., Lee, J. Y. & Kwon, J. H. (2018). J. Mater. Chem. C. 6, 1343–1348.  CrossRef Google Scholar
First citationKrautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104.  Web of Science CrossRef Google Scholar
First citationLi, H.-H., Chen, Z.-R., Li, J.-Q., Huang, C.-C., Xiao, G.-C., Lian, Z.-X. & Hu, X.-L. (2005). Acta Chim. Sin. 63, 697–702.  Google Scholar
First citationLi, H.-H., Wang, Y.-J., Lian, Z.-X., Xu, Y.-F., Wang, M., Huang, S.-W. & Chen, Z.-R. (2012). J. Mol. Struct. 1016, 118–125.  CrossRef CAS Google Scholar
First citationLiu, G., Liu, J., Nie, L., Ban, R., Armatas, G. S., Tao, X. & Zhang, Q. (2017). Inorg. Chem. 56, 5498–5501.  CrossRef Google Scholar
First citationPradeesh, K., Agarwal, M., Rao, K. K. & Prakash, G. V. (2010). Solid State Sci. 12, 95–98.  CrossRef Google Scholar
First citationShe, Y.-J., Zhao, S.-P., Tian, Z.-F. & Ren, X.-M. (2014). Inorg. Chem. Commun. 46, 29–32.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C., Du, M. X., Xu, J. G., Mao, F. F., Wang, M. S. & Guo, G. C. (2018). Dalton Trans. 47, 1023–1026.  CrossRef Google Scholar
First citationTang, Z. & Guloy, A. M. (1999). J. Am. Chem. Soc. 121, 452–453.  Web of Science CrossRef CAS Google Scholar
First citationWang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297–5302.  CrossRef CAS Web of Science Google Scholar
First citationYao, Z.-Y., Zou, Y., Chen, X. & Ren, X.-M. (2017). Inorg. Chem. Commun. 81, 5–9.  CrossRef Google Scholar
First citationZhang, W., Zhang, N., Shen, L., Wu, H., Li, X., Li, S., Yue, J. & Niu, Y. (2015). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45, 1347–1351.  CrossRef Google Scholar
First citationZhao, D., Liu, Z., Shi, L.-Q., Yu, W.-T., Cui, D.-L. & Tao, X.-T. (2012). Z. Kristallogr. New Cryst. Struct. 227, 245–246.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds