research communications
H-indazole
DFT calculations and Hirshfeld surface analysis of 3-(4-methylphenyl)-6-nitro-1aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bDepartment of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation, cDepartment of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yns.elbakri@gmail.com
The 14H11N3O3, consists of two independent molecules having very similar conformations in which the indazole moieties are planar. The independent molecules are distinguished by small differences in the rotational orientations of the nitro groups. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form zigzag chains along the b-axis direction. Additional C—H⋯O hydrogen bonds link the chains into layers parallel to (10). These are connected by slipped π-stacking and C—H⋯π(ring) interactions.
of the title compound, CKeywords: crystal structure; indazole; hydrogen bonds; π-stacking.
CCDC reference: 1879920
1. Chemical context
Indazoles are an important class of H and 2H-indazoles are well recognized for their anti-hypertensive and anti-cancer properties while other indazole derivatives are a versatile class of compounds that have found use in biology, catalysis and medicinal chemistry (Schmidt et al., 2008). Although rare in nature (Liu et al., 2004; Ali et al., 2008), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), antiarrhythmic and analgesic activities (Mosti et al., 2000) and antitumor activity and antihypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). As a continuation of our studies of indazole derivatives (Mohamed Abdelahi et al., 2017a,b,c), we report the synthesis and structure of the title compound, (I).
having a wide range of biological and pharmaceutical applications. There is enormous potential in the synthesis of novel heterocyclic systems to be used as building blocks for the next generation of pharmaceuticals as anti-bacterial, anti-depressant and anti-inflammatory agents. Fused aromatic 12. Structural commentary
The consists of two independent molecules differing only slightly in conformation (Fig. 1, Table 1). The largest difference is in the twist of the nitro group as indicated by the torsion angles O2—N3—C3—C2 and O5—N6—C17—C16 which are −1.1 (9) and 4.0 (9)°, respectively. In the molecule containing N1, the indazole portion is planar to within 0.045 (6) Å (r.m.s. deviation = 0.007 Å) and the C8–C13 ring is inclined to this plane by 30.8 (3)°. In the molecule containing N4, the indazole portion is planar to within 0.036 (5) Å (r.m.s. deviation = 0.007 Å) and the C22–C27 ring is inclined to this plane by 31.6 (3)°.
of (I)3. Supramolecular features
In the crystal of (I), alternating N2—H2A⋯O5 and N4—H4A⋯O2 hydrogen bonds coupled with C16—H16⋯O1 hydrogen bonds form zigzag chains extending along the b-axis direction (Table 1 and Fig. 2). These chains are connected into layers parallel to (10) by C4—H4⋯O1 hydrogen bonds (Table 1 and Fig. 3). The layers bound to one another by a combination of slipped π-stacking interactions between the C1–C6 and N1/N2/C1/C6/C7 rings [centroid–centroid distance = 3.699 (4) Å, dihedral angle = 2.4 (4)°] and between the N4/N5/C21/C20/C15 and C15–C20 rings [centroid–centroid distance= 3.636 (4) Å, dihedral angle = 2.6 (4)°]. These are reinforced by the C—H⋯π(ring) interactions (C10—H10⋯Cg3, C13—H13⋯Cg7, C23—H23⋯Cg7 and C26—H26⋯Cg3; Table 1 and Fig. 4).
4. Database survey
A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016) found 70 structures of indazoles not containing a substituent on the secondary nitrogen atom and not ligands in metal complexes. Of these, only seven are nitro derivatives. These are 3,7-dinitroindazole (Cabildo et al., 2011), two determinations of 7-nitroindazole (Ooms et al., 2000; Sopková-de Oliveira Santos et al., 2000), 7-nitro-1H-indazol-3-ol (Claramunt et al., 2009), 3-(4-methylphenyl)-6-nitro-1H-indazole (Liu et al., 2014) and 5-nitro-3-thiomorpholino-1H-indazole and 5-nitro-3-(4-methylpiperazino)-1H-indazole (Gzella & Wrzeciono, 2001). The structures of the nitro derivatives are fairly similar to that in the present work in that the indazole moieties are essentially planar with the nitro groups twisted out the plane by 3–6°. In the 4-methylphenyl derivative, the phenyl ring is inclined to the plane of the indazole moiety by 12.94 (8)°.
5. DFT calculations and Hirshfeld surface analysis
5.1. DFT calculations
The structure of the title compound in the gas phase was optimized by means of density functional theory. The DFT calculation was performed by the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (HF) and DFT exchange utilizing the B3 functional together with the LYP correlation functional (Becke, 1993; Lee et al., 1988; Miehlich et al., 1989). The B3LYP calculation was performed in conjunction with a triple-x basis set which was designed for the DFT optimization [designated as TZVP (DFT orbital); Godbout et al., 1992]. After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of the imaginary frequency is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were carried out with the Gaussian16 program (Frisch et al., 2016).
5.2. Hirshfeld surface calculations
Both the definition of a molecule in a condensed phase and the recognition of distinct entities in molecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld's partitioning scheme, a method to divide the electron distribution in a crystalline phase into molecular fragments was proposed (Spackman & Byrom, 1997; McKinnon et al., 2004; Spackman & Jayatilaka, 2009). This partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the molecule dominates over the corresponding sum of the crystal. Because it derived from Hirshfeld's stockholder partitioning, the molecular surface is named the Hirshfeld surface. In this study, the Hirshfeld surface analysis of the title compound was performed using the CrystalExplorer program (Turner et al., 2017).
5.3. theoretical comparison of the title compound
The results of the B3LYP geometry optimization of (I) are depicted in Fig. 5 and a comparative study of the gas-phase structure and the solid-phase one for (I) was performed, with the results summarized in Table 2 together with a previous geometrical study on 1H-indazole itself (Hathaway et al., 1998). The discrepancy between our B3LYP result and the previous MP2(fc) calculations may be due to the substitutent effects of both the NO2 and methoxyphenyl groups (Hathaway et al., 1998).
5.4. Hirshfeld analysis of the title compound
The standard resolution molecular Hirshfeld surface (dnorm) of the title compound is shown in Fig. 6 and is transparent so the molecular moiety can be visualized in a similar orientation for all of the structures around which they were calculated. The 3D dnorm surface can be used to identify very close intermolecular interactions with dnorm being negative (positive) when intermolecular contacts are shorter (longer) than the sum of the van der Waals radii. The dnorm value is mapped onto the Hirshfeld surface by red, white or blue colours. The red regions represent closer contacts with a negative dnorm while the blue regions represent longer contacts with a positive dnorm and the white regions represent contacts equal to the van der Waals separation with dnorm equal to zero. As depicted in Fig. 6, the major interactions in the title compound are the intermolecular H⋯O and H⋯N hydrogen bonds.
The 2D fingerprint plots highlight particular atom-pair contacts and enable the separation of contributions from different interaction types that overlap in the full fingerprint. Using the standard 0.6–2.6 Å view with the de and di distance scales displayed on the graph axes, the 2D fingerprint plot for the title compound is shown in Fig. 7(a). Including the reciprocal contacts, the contribution of the O⋯H contacts (15.7%) for the title compound is larger than that of the N⋯H contacts (4.6%) [Fig. 7(b) and 7(c)].
6. Synthesis and crystallization
6-Nitro-3-(4-methoxyphenyl)-1H-indazole (I):
To a solution of 6-nitroindazole (0.1 g) dissolved in 1.5 mL of a mixture of 1,4-dioxane/EtOH (3/1, v/v) in a microwave tube with a stir bar were added p-methoxyphenylboronic acid (1.5 equiv.), a solution of caesium carbonate (1.3 equiv.) dissolved in 0.5 mL of H2O and Pd(PPh3)4 (0.1 equiv.) under argon. The reaction vessel was sealed with a silicone septum and was subjected to microwave irradiation at 413 K with stirring. The reaction mixture was then allowed to cool to room temperature, diluted with ethyl acetate (15 mL) and water (10 mL) and extracted (3 times). The combined organic layer was dried over MgSO4 and concentrated under reduced pressure. The crude material was purified by on silica gel (EtOAc/Ether) to give the desired final product. Yield: 74%. Orange solid, m.p. 503–505 K. 1H NMR (400 MHz, DMSO-d6) δ 13.74 (s, 1H), 8.46 (d, J = 1.5 Hz, 1H), 8.24 (d, J = 9.0 Hz, 1H), 7.96 (dd, J = 1.5, 9.0 Hz, 1H), 7.92 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 3.82 (3H, s). 13C NMR (100 MHz, DMSO-d6) δ 159.8, 146.1, 144.2, 140.7, 128.7, 125.3, 123.3, 122.4, 115.5, 114.9, 107.8, 55.6. HRMS (ESI) m/z calculated for C14H11N3O3 [M + H]+: 270.0834, found 270.0780.
7. Refinement
Crystal data, data collection and structure . H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with Uiso(H) = 1.2–1.5Ueq(C,N).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1879920
https://doi.org/10.1107/S205698901801647X/ff2156sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901801647X/ff2156Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901801647X/ff2156Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698901801647X/ff2156Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H11N3O3 | F(000) = 560 |
Mr = 269.26 | Dx = 1.448 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 14.1447 (14) Å | Cell parameters from 1994 reflections |
b = 11.8380 (12) Å | θ = 3.4–24.8° |
c = 7.4252 (8) Å | µ = 0.11 mm−1 |
β = 96.681 (7)° | T = 180 K |
V = 1234.9 (2) Å3 | Needle, orange |
Z = 4 | 0.18 × 0.02 × 0.02 mm |
Bruker SMART APEX diffractometer | 6667 independent reflections |
Radiation source: fine-focus sealed tube | 2803 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.111 |
Detector resolution: 8.333 pixels mm-1 | θmax = 30.5°, θmin = 1.7° |
ω–φ scans | h = −20→19 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −16→16 |
Tmin = 0.70, Tmax = 0.75 | l = −10→10 |
25051 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.0622P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.94 | (Δ/σ)max < 0.001 |
6667 reflections | Δρmax = 0.46 e Å−3 |
363 parameters | Δρmin = −0.32 e Å−3 |
2 restraints | Absolute structure: Flack x determined using 891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.6 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4650 (5) | 0.7694 (5) | 0.4740 (8) | 0.0490 (17) | |
O2 | 0.5455 (5) | 0.6197 (5) | 0.5579 (8) | 0.0492 (19) | |
O3 | −0.2022 (4) | 0.3751 (4) | −0.0943 (6) | 0.0305 (14) | |
N1 | 0.2293 (4) | 0.2766 (6) | 0.2357 (7) | 0.0253 (17) | |
H2A | 0.3518 | 0.2443 | 0.3613 | 0.030* | |
N2 | 0.3179 (4) | 0.3039 (6) | 0.3141 (7) | 0.0248 (15) | |
N3 | 0.4744 (5) | 0.6668 (7) | 0.4797 (9) | 0.0311 (16) | |
C1 | 0.3319 (5) | 0.4178 (7) | 0.3224 (9) | 0.0237 (18) | |
C2 | 0.4084 (5) | 0.4805 (7) | 0.3985 (9) | 0.0259 (19) | |
H2 | 0.4654 | 0.4459 | 0.4523 | 0.031* | |
C3 | 0.3978 (6) | 0.5954 (7) | 0.3925 (9) | 0.0231 (17) | |
C4 | 0.3146 (6) | 0.6497 (6) | 0.3121 (9) | 0.0234 (18) | |
H4 | 0.3106 | 0.7298 | 0.3115 | 0.028* | |
C5 | 0.2396 (5) | 0.5862 (6) | 0.2349 (9) | 0.0221 (18) | |
H5 | 0.1834 | 0.6216 | 0.1790 | 0.026* | |
C6 | 0.2473 (5) | 0.4667 (7) | 0.2400 (8) | 0.0180 (17) | |
C7 | 0.1848 (6) | 0.3728 (6) | 0.1920 (9) | 0.019 (2) | |
C8 | 0.0853 (6) | 0.3749 (7) | 0.1091 (9) | 0.021 (2) | |
C9 | 0.0491 (4) | 0.4629 (5) | −0.0003 (8) | 0.0244 (14) | |
H9 | 0.0904 | 0.5223 | −0.0269 | 0.029* | |
C10 | −0.0468 (4) | 0.4668 (5) | −0.0732 (9) | 0.0260 (14) | |
H10 | −0.0702 | 0.5277 | −0.1490 | 0.031* | |
C11 | −0.1067 (6) | 0.3808 (6) | −0.0330 (9) | 0.0205 (19) | |
C12 | −0.0721 (4) | 0.2916 (5) | 0.0784 (8) | 0.0281 (15) | |
H12 | −0.1135 | 0.2324 | 0.1054 | 0.034* | |
C13 | 0.0229 (4) | 0.2896 (5) | 0.1498 (8) | 0.0248 (14) | |
H13 | 0.0459 | 0.2293 | 0.2274 | 0.030* | |
C14 | −0.2404 (5) | 0.4616 (6) | −0.2163 (10) | 0.0406 (18) | |
H14A | −0.2092 | 0.4586 | −0.3273 | 0.061* | |
H14B | −0.2291 | 0.5356 | −0.1586 | 0.061* | |
H14C | −0.3090 | 0.4499 | −0.2464 | 0.061* | |
O4 | 0.5210 (5) | −0.2692 (5) | 0.0879 (8) | 0.0461 (16) | |
O5 | 0.4437 (4) | −0.1201 (5) | −0.0121 (8) | 0.0434 (18) | |
O6 | 1.1756 (4) | 0.1266 (4) | 0.7138 (6) | 0.0322 (14) | |
N4 | 0.6648 (4) | 0.1951 (6) | 0.2571 (7) | 0.0262 (15) | |
H4A | 0.6277 | 0.2544 | 0.2145 | 0.031* | |
N5 | 0.7533 (4) | 0.2231 (6) | 0.3387 (7) | 0.0252 (17) | |
N6 | 0.5133 (5) | −0.1670 (8) | 0.0758 (8) | 0.0323 (17) | |
C15 | 0.6528 (5) | 0.0827 (6) | 0.2389 (9) | 0.0195 (16) | |
C16 | 0.5754 (5) | 0.0192 (6) | 0.1567 (9) | 0.0234 (18) | |
H16 | 0.5186 | 0.0528 | 0.0999 | 0.028* | |
C17 | 0.5892 (6) | −0.0958 (7) | 0.1658 (9) | 0.0236 (17) | |
C18 | 0.6700 (6) | −0.1506 (7) | 0.2516 (10) | 0.0273 (19) | |
H18 | 0.6730 | −0.2307 | 0.2574 | 0.033* | |
C19 | 0.7451 (6) | −0.0852 (6) | 0.3273 (9) | 0.0239 (18) | |
H19 | 0.8013 | −0.1198 | 0.3848 | 0.029* | |
C20 | 0.7376 (5) | 0.0320 (7) | 0.3184 (8) | 0.0185 (17) | |
C21 | 0.7974 (6) | 0.1252 (6) | 0.3794 (9) | 0.021 (2) | |
C22 | 0.8960 (6) | 0.1244 (6) | 0.4662 (9) | 0.019 (2) | |
C23 | 0.9577 (5) | 0.0380 (5) | 0.4298 (9) | 0.0273 (14) | |
H23 | 0.9348 | −0.0213 | 0.3501 | 0.033* | |
C24 | 1.0518 (5) | 0.0361 (5) | 0.5068 (8) | 0.0284 (15) | |
H24 | 1.0929 | −0.0232 | 0.4787 | 0.034* | |
C25 | 1.0852 (6) | 0.1210 (7) | 0.6245 (9) | 0.024 (2) | |
C26 | 1.0248 (4) | 0.2077 (5) | 0.6667 (8) | 0.0267 (15) | |
H26 | 1.0479 | 0.2652 | 0.7496 | 0.032* | |
C27 | 0.9311 (4) | 0.2099 (5) | 0.5878 (8) | 0.0261 (14) | |
H27 | 0.8903 | 0.2695 | 0.6159 | 0.031* | |
C28 | 1.2406 (5) | 0.0424 (7) | 0.6675 (11) | 0.0450 (19) | |
H28A | 1.2483 | 0.0484 | 0.5384 | 0.067* | |
H28B | 1.2159 | −0.0326 | 0.6926 | 0.067* | |
H28C | 1.3024 | 0.0535 | 0.7398 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.049 (4) | 0.028 (5) | 0.067 (4) | −0.012 (4) | −0.006 (3) | −0.007 (3) |
O2 | 0.035 (4) | 0.038 (4) | 0.067 (4) | −0.006 (3) | −0.023 (3) | −0.001 (3) |
O3 | 0.024 (3) | 0.030 (3) | 0.036 (3) | −0.001 (2) | −0.005 (2) | 0.004 (2) |
N1 | 0.016 (3) | 0.026 (5) | 0.032 (3) | 0.000 (3) | −0.002 (3) | 0.001 (3) |
N2 | 0.027 (4) | 0.012 (3) | 0.033 (3) | −0.001 (3) | −0.004 (3) | 0.004 (3) |
N3 | 0.032 (4) | 0.026 (4) | 0.036 (4) | −0.012 (4) | 0.006 (3) | −0.003 (4) |
C1 | 0.023 (4) | 0.024 (5) | 0.024 (4) | 0.001 (4) | 0.003 (3) | 0.002 (3) |
C2 | 0.018 (4) | 0.034 (6) | 0.025 (4) | 0.007 (4) | 0.001 (3) | 0.007 (3) |
C3 | 0.022 (4) | 0.019 (4) | 0.028 (4) | −0.009 (4) | 0.000 (3) | 0.000 (3) |
C4 | 0.025 (4) | 0.015 (4) | 0.030 (4) | 0.002 (4) | −0.001 (3) | 0.001 (3) |
C5 | 0.019 (4) | 0.024 (5) | 0.023 (4) | 0.000 (4) | 0.000 (3) | −0.001 (3) |
C6 | 0.016 (4) | 0.018 (4) | 0.020 (3) | 0.001 (4) | 0.002 (3) | 0.000 (3) |
C7 | 0.019 (5) | 0.021 (6) | 0.016 (4) | 0.000 (3) | 0.001 (4) | 0.002 (3) |
C8 | 0.019 (5) | 0.026 (6) | 0.017 (4) | 0.003 (3) | 0.002 (4) | 0.000 (3) |
C9 | 0.026 (3) | 0.025 (3) | 0.024 (3) | −0.005 (3) | 0.006 (3) | 0.003 (3) |
C10 | 0.024 (4) | 0.024 (3) | 0.029 (3) | −0.001 (3) | −0.003 (3) | 0.000 (3) |
C11 | 0.020 (5) | 0.019 (5) | 0.023 (4) | −0.001 (3) | 0.003 (3) | −0.003 (3) |
C12 | 0.031 (4) | 0.023 (4) | 0.029 (3) | −0.004 (3) | −0.004 (3) | 0.004 (3) |
C13 | 0.029 (4) | 0.023 (3) | 0.021 (3) | 0.000 (3) | −0.002 (3) | 0.003 (3) |
C14 | 0.035 (4) | 0.042 (4) | 0.041 (4) | 0.000 (3) | −0.012 (3) | 0.014 (4) |
O4 | 0.042 (4) | 0.028 (5) | 0.067 (4) | −0.010 (4) | −0.001 (3) | −0.005 (3) |
O5 | 0.029 (4) | 0.045 (5) | 0.053 (4) | −0.004 (3) | −0.009 (3) | 0.001 (3) |
O6 | 0.023 (3) | 0.030 (3) | 0.041 (3) | −0.001 (2) | −0.008 (2) | −0.004 (2) |
N4 | 0.020 (4) | 0.024 (4) | 0.034 (3) | 0.007 (3) | −0.003 (3) | 0.001 (3) |
N5 | 0.026 (4) | 0.021 (4) | 0.027 (3) | −0.005 (3) | −0.001 (3) | −0.001 (3) |
N6 | 0.027 (4) | 0.037 (5) | 0.032 (4) | −0.010 (4) | 0.003 (3) | −0.004 (3) |
C15 | 0.016 (4) | 0.020 (5) | 0.023 (3) | 0.001 (4) | 0.003 (3) | −0.005 (3) |
C16 | 0.026 (4) | 0.020 (5) | 0.024 (4) | −0.005 (4) | 0.001 (3) | −0.004 (3) |
C17 | 0.022 (4) | 0.028 (5) | 0.021 (3) | −0.009 (4) | 0.004 (3) | −0.010 (3) |
C18 | 0.033 (5) | 0.022 (4) | 0.029 (4) | −0.006 (4) | 0.013 (4) | −0.002 (4) |
C19 | 0.027 (5) | 0.019 (4) | 0.026 (4) | 0.004 (4) | 0.004 (3) | 0.005 (3) |
C20 | 0.024 (4) | 0.017 (4) | 0.015 (3) | 0.003 (4) | 0.002 (3) | 0.000 (3) |
C21 | 0.026 (6) | 0.014 (6) | 0.023 (4) | −0.001 (4) | 0.002 (4) | 0.002 (3) |
C22 | 0.022 (5) | 0.013 (5) | 0.022 (4) | −0.002 (3) | 0.002 (4) | −0.002 (3) |
C23 | 0.027 (4) | 0.026 (4) | 0.028 (3) | −0.002 (3) | 0.001 (3) | −0.003 (3) |
C24 | 0.027 (4) | 0.032 (4) | 0.027 (3) | 0.003 (3) | 0.007 (3) | −0.002 (3) |
C25 | 0.021 (5) | 0.032 (6) | 0.018 (4) | −0.003 (4) | −0.005 (4) | 0.001 (3) |
C26 | 0.032 (4) | 0.030 (4) | 0.018 (3) | −0.010 (3) | 0.002 (3) | −0.002 (3) |
C27 | 0.030 (4) | 0.020 (3) | 0.029 (3) | 0.000 (3) | 0.005 (3) | −0.001 (3) |
C28 | 0.024 (4) | 0.054 (5) | 0.054 (5) | 0.004 (3) | −0.005 (3) | −0.010 (4) |
O1—N3 | 1.222 (8) | O4—N6 | 1.217 (9) |
O2—N3 | 1.233 (9) | O5—N6 | 1.248 (8) |
O3—C11 | 1.377 (9) | O6—C25 | 1.372 (9) |
O3—C14 | 1.431 (7) | O6—C28 | 1.425 (8) |
N1—C7 | 1.323 (9) | N4—C15 | 1.346 (10) |
N1—N2 | 1.358 (8) | N4—N5 | 1.367 (8) |
N2—C1 | 1.363 (10) | N4—H4A | 0.9100 |
N2—H2A | 0.9007 | N5—C21 | 1.334 (9) |
N3—C3 | 1.465 (10) | N6—C17 | 1.463 (10) |
C1—C2 | 1.378 (11) | C15—C16 | 1.407 (10) |
C1—C6 | 1.404 (10) | C15—C20 | 1.408 (10) |
C2—C3 | 1.368 (9) | C16—C17 | 1.375 (10) |
C2—H2 | 0.9500 | C16—H16 | 0.9500 |
C3—C4 | 1.410 (11) | C17—C18 | 1.401 (12) |
C4—C5 | 1.370 (10) | C18—C19 | 1.380 (11) |
C4—H4 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.420 (10) | C19—C20 | 1.393 (10) |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C6—C7 | 1.438 (10) | C20—C21 | 1.431 (10) |
C7—C8 | 1.470 (11) | C21—C22 | 1.467 (12) |
C8—C9 | 1.381 (9) | C22—C23 | 1.392 (9) |
C8—C13 | 1.398 (9) | C22—C27 | 1.407 (9) |
C9—C10 | 1.402 (8) | C23—C24 | 1.385 (8) |
C9—H9 | 0.9500 | C23—H23 | 0.9500 |
C10—C11 | 1.378 (9) | C24—C25 | 1.379 (9) |
C10—H10 | 0.9500 | C24—H24 | 0.9500 |
C11—C12 | 1.395 (9) | C25—C26 | 1.394 (9) |
C12—C13 | 1.385 (8) | C26—C27 | 1.385 (7) |
C12—H12 | 0.9500 | C26—H26 | 0.9500 |
C13—H13 | 0.9500 | C27—H27 | 0.9500 |
C14—H14A | 0.9800 | C28—H28A | 0.9800 |
C14—H14B | 0.9800 | C28—H28B | 0.9800 |
C14—H14C | 0.9800 | C28—H28C | 0.9800 |
C11—O3—C14 | 117.2 (5) | C25—O6—C28 | 116.2 (6) |
C7—N1—N2 | 106.8 (7) | C15—N4—N5 | 112.5 (6) |
N1—N2—C1 | 112.1 (6) | C15—N4—H4A | 131.8 |
N1—N2—H2A | 113.8 | N5—N4—H4A | 115.3 |
C1—N2—H2A | 133.6 | C21—N5—N4 | 105.7 (7) |
O1—N3—O2 | 123.0 (9) | O4—N6—O5 | 122.7 (9) |
O1—N3—C3 | 119.1 (8) | O4—N6—C17 | 119.0 (8) |
O2—N3—C3 | 117.9 (8) | O5—N6—C17 | 118.3 (8) |
N2—C1—C2 | 130.9 (7) | N4—C15—C16 | 130.9 (7) |
N2—C1—C6 | 106.0 (7) | N4—C15—C20 | 106.7 (6) |
C2—C1—C6 | 123.0 (7) | C16—C15—C20 | 122.4 (7) |
C3—C2—C1 | 116.3 (8) | C17—C16—C15 | 114.1 (8) |
C3—C2—H2 | 121.8 | C17—C16—H16 | 122.9 |
C1—C2—H2 | 121.8 | C15—C16—H16 | 122.9 |
C2—C3—C4 | 123.4 (8) | C16—C17—C18 | 125.7 (8) |
C2—C3—N3 | 119.0 (8) | C16—C17—N6 | 117.1 (8) |
C4—C3—N3 | 117.5 (7) | C18—C17—N6 | 117.2 (8) |
C5—C4—C3 | 119.6 (7) | C19—C18—C17 | 118.3 (7) |
C5—C4—H4 | 120.2 | C19—C18—H18 | 120.8 |
C3—C4—H4 | 120.2 | C17—C18—H18 | 120.8 |
C4—C5—C6 | 118.8 (8) | C18—C19—C20 | 119.2 (8) |
C4—C5—H5 | 120.6 | C18—C19—H19 | 120.4 |
C6—C5—H5 | 120.6 | C20—C19—H19 | 120.4 |
C1—C6—C5 | 118.8 (8) | C19—C20—C15 | 120.1 (8) |
C1—C6—C7 | 104.9 (7) | C19—C20—C21 | 135.6 (7) |
C5—C6—C7 | 136.1 (7) | C15—C20—C21 | 104.3 (7) |
N1—C7—C6 | 110.1 (7) | N5—C21—C20 | 110.8 (7) |
N1—C7—C8 | 121.5 (7) | N5—C21—C22 | 120.0 (7) |
C6—C7—C8 | 128.4 (7) | C20—C21—C22 | 129.1 (7) |
C9—C8—C13 | 118.1 (7) | C23—C22—C27 | 118.1 (7) |
C9—C8—C7 | 122.0 (7) | C23—C22—C21 | 120.3 (6) |
C13—C8—C7 | 119.7 (7) | C27—C22—C21 | 121.6 (6) |
C8—C9—C10 | 121.8 (6) | C24—C23—C22 | 121.7 (6) |
C8—C9—H9 | 119.1 | C24—C23—H23 | 119.2 |
C10—C9—H9 | 119.1 | C22—C23—H23 | 119.2 |
C11—C10—C9 | 118.9 (6) | C25—C24—C23 | 119.5 (6) |
C11—C10—H10 | 120.6 | C25—C24—H24 | 120.3 |
C9—C10—H10 | 120.6 | C23—C24—H24 | 120.3 |
O3—C11—C10 | 124.7 (6) | O6—C25—C24 | 125.0 (7) |
O3—C11—C12 | 115.0 (6) | O6—C25—C26 | 114.7 (7) |
C10—C11—C12 | 120.4 (7) | C24—C25—C26 | 120.3 (7) |
C13—C12—C11 | 119.9 (6) | C27—C26—C25 | 120.0 (6) |
C13—C12—H12 | 120.1 | C27—C26—H26 | 120.0 |
C11—C12—H12 | 120.1 | C25—C26—H26 | 120.0 |
C12—C13—C8 | 120.9 (6) | C26—C27—C22 | 120.4 (6) |
C12—C13—H13 | 119.6 | C26—C27—H27 | 119.8 |
C8—C13—H13 | 119.6 | C22—C27—H27 | 119.8 |
O3—C14—H14A | 109.5 | O6—C28—H28A | 109.5 |
O3—C14—H14B | 109.5 | O6—C28—H28B | 109.5 |
H14A—C14—H14B | 109.5 | H28A—C28—H28B | 109.5 |
O3—C14—H14C | 109.5 | O6—C28—H28C | 109.5 |
H14A—C14—H14C | 109.5 | H28A—C28—H28C | 109.5 |
H14B—C14—H14C | 109.5 | H28B—C28—H28C | 109.5 |
C7—N1—N2—C1 | 0.1 (7) | C15—N4—N5—C21 | −2.4 (7) |
N1—N2—C1—C2 | 176.2 (7) | N5—N4—C15—C16 | −176.9 (6) |
N1—N2—C1—C6 | −1.4 (7) | N5—N4—C15—C20 | 1.9 (7) |
N2—C1—C2—C3 | −176.4 (7) | N4—C15—C16—C17 | −179.6 (6) |
C6—C1—C2—C3 | 0.9 (10) | C20—C15—C16—C17 | 1.8 (9) |
C1—C2—C3—C4 | −0.7 (10) | C15—C16—C17—C18 | 1.8 (10) |
C1—C2—C3—N3 | 176.7 (6) | C15—C16—C17—N6 | −177.3 (5) |
O1—N3—C3—C2 | 179.9 (7) | O4—N6—C17—C16 | −176.7 (7) |
O2—N3—C3—C2 | −1.1 (9) | O5—N6—C17—C16 | 4.0 (9) |
O1—N3—C3—C4 | −2.5 (9) | O4—N6—C17—C18 | 4.2 (9) |
O2—N3—C3—C4 | 176.5 (6) | O5—N6—C17—C18 | −175.1 (6) |
C2—C3—C4—C5 | −0.1 (10) | C16—C17—C18—C19 | −3.2 (11) |
N3—C3—C4—C5 | −177.6 (6) | N6—C17—C18—C19 | 175.8 (6) |
C3—C4—C5—C6 | 0.8 (10) | C17—C18—C19—C20 | 0.9 (10) |
N2—C1—C6—C5 | 177.6 (6) | C18—C19—C20—C15 | 2.4 (10) |
C2—C1—C6—C5 | −0.2 (10) | C18—C19—C20—C21 | 179.5 (7) |
N2—C1—C6—C7 | 2.0 (6) | N4—C15—C20—C19 | 177.2 (6) |
C2—C1—C6—C7 | −175.8 (6) | C16—C15—C20—C19 | −3.9 (10) |
C4—C5—C6—C1 | −0.6 (9) | N4—C15—C20—C21 | −0.7 (6) |
C4—C5—C6—C7 | 173.2 (6) | C16—C15—C20—C21 | 178.2 (5) |
N2—N1—C7—C6 | 1.3 (7) | N4—N5—C21—C20 | 1.8 (7) |
N2—N1—C7—C8 | −177.9 (6) | N4—N5—C21—C22 | 178.7 (6) |
C1—C6—C7—N1 | −2.1 (7) | C19—C20—C21—N5 | −178.2 (7) |
C5—C6—C7—N1 | −176.5 (7) | C15—C20—C21—N5 | −0.7 (7) |
C1—C6—C7—C8 | 177.0 (6) | C19—C20—C21—C22 | 5.3 (12) |
C5—C6—C7—C8 | 2.6 (11) | C15—C20—C21—C22 | −177.2 (7) |
N1—C7—C8—C9 | −153.8 (7) | N5—C21—C22—C23 | −147.3 (7) |
C6—C7—C8—C9 | 27.2 (10) | C20—C21—C22—C23 | 28.9 (10) |
N1—C7—C8—C13 | 30.2 (9) | N5—C21—C22—C27 | 32.7 (10) |
C6—C7—C8—C13 | −148.8 (7) | C20—C21—C22—C27 | −151.0 (7) |
C13—C8—C9—C10 | −1.4 (9) | C27—C22—C23—C24 | −1.4 (10) |
C7—C8—C9—C10 | −177.4 (6) | C21—C22—C23—C24 | 178.7 (6) |
C8—C9—C10—C11 | 0.5 (9) | C22—C23—C24—C25 | 0.9 (9) |
C14—O3—C11—C10 | 3.6 (9) | C28—O6—C25—C24 | 5.4 (9) |
C14—O3—C11—C12 | −177.0 (6) | C28—O6—C25—C26 | −177.1 (6) |
C9—C10—C11—O3 | 179.4 (6) | C23—C24—C25—O6 | 177.7 (6) |
C9—C10—C11—C12 | 0.0 (9) | C23—C24—C25—C26 | 0.4 (10) |
O3—C11—C12—C13 | −179.2 (6) | O6—C25—C26—C27 | −178.7 (5) |
C10—C11—C12—C13 | 0.2 (9) | C24—C25—C26—C27 | −1.1 (9) |
C11—C12—C13—C8 | −1.1 (9) | C25—C26—C27—C22 | 0.6 (8) |
C9—C8—C13—C12 | 1.7 (9) | C23—C22—C27—C26 | 0.6 (9) |
C7—C8—C13—C12 | 177.8 (6) | C21—C22—C27—C26 | −179.5 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O5i | 0.90 | 2.11 | 3.005 (9) | 173 |
C2—H2···O4i | 0.95 | 2.41 | 3.201 (10) | 140 |
C4—H4···O6ii | 0.95 | 2.60 | 3.329 (9) | 134 |
N4—H4A···O2iii | 0.91 | 2.15 | 3.043 (9) | 168 |
C16—H16···O1iii | 0.95 | 2.39 | 3.171 (10) | 139 |
C18—H18···O3iv | 0.95 | 2.61 | 3.340 (10) | 134 |
Symmetry codes: (i) x, −y, z+1/2; (ii) x−1, −y+1, z−1/2; (iii) x, −y+1, z−1/2; (iv) x+1, −y, z+1/2. |
B3LYP | X-ray | 1H-indazolea | |
N1—N2 | 1.357 | 1.358 (8) | 1.349 |
N1—C7 | 1.328 | 1.323 (9) | 1.337 |
N2—C1 | 1.365 | 1.363 (10) | 1.367 |
C1—C2 | 1.394 | 1.378 (11) | 1.406 |
C1—C6 | 1.417 | 1.404 (10) | 1.422 |
C2—C3 | 1.328 | 1.368 (9) | 1.389 |
C3—C4 | 1.408 | 1.410 (11) | 1.419 |
C4—C5 | 1.380 | 1.370 (10) | 1.388 |
C5—C6 | 1.405 | 1.420 (10) | 1.412 |
C6—C7 | 1.439 | 1.438 (10) | 1.424 |
C7—N1—N2 | 107.1 | 106.8 (7) | 105.5 |
Note: (a) MP2(fc)/6-311G** calculated values (Hathaway et al., 1998). |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. This publication was prepared with the support of the RUDN University Program 5–100.
References
Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. Web of Science CrossRef CAS PubMed Google Scholar
Ali, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111–1112. Web of Science CrossRef PubMed CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabildo, P., Claramunt, R. M., López, C., García, M. A., Pérez-Torralba, M., Pinilla, E., Torres, M. R., Alkorta, I. & Elguero, J. (2011). J. Mol. Struct. 985, 75–81. CrossRef Google Scholar
Claramunt, R. M., Sanz, D., López, C., Pinilla, E., Torres, M. R., Elguero, J., Nioche, P. & Raman, C. S. (2009). Helv. Chim. Acta, 92, 1952–1962. CrossRef Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian16, Revision A. 03. Gaussian, Inc., Wallingford CT. Google Scholar
Godbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560–571. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gzella, A. & Wrzeciono, U. (2001). Acta Cryst. C57, 1189–1191. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hathaway, B. A., Day, G., Lewis, M. & Glaser, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2713–2720. CrossRef Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Liu, Z., Wang, L., Tan, H., Zhou, S., Fu, T., Xia, Y., Zhang, Y. & Wang, J. (2014). Chem. Commun. 50, 5061–5063. CrossRef Google Scholar
Liu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454–455. Web of Science CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206. CrossRef CAS Web of Science Google Scholar
Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170637. Google Scholar
Mohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170660. Google Scholar
Mohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017c). IUCrData, 2, x170652. Google Scholar
Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963–972. CAS Google Scholar
Ooms, F., Norberg, B., Isin, E. M., Castagnoli, N., Van der Schyf, C. J. & Wouters, J. (2000). Acta Cryst. C56, e474–e475. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220. Web of Science CrossRef PubMed CAS Google Scholar
Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073–4095. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sopková-de Oliveira Santos, J., Collot, V. & Rault, S. (2000). Acta Cryst. C56, 1503–1504. CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.