research communications
Crystal structures of two 1,3-thiazolidin-4-one derivatives featuring sulfide and sulfone functional groups
aDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA, bDepartment of Chemistry, The Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, Pennsylvania, 17972, USA, cDepartment of Chemistry, The Pennsylvania State University, Abington College, 1600 Woodland Road, Abington, Pennsylvania, 19001, USA, and dDepartment of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania, 19122, USA
*Correspondence e-mail: auy3@psu.edu
The crystal structures of two closely related compounds, 1-cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one, C15H18N2O3S, (1) and 1-cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide, C15H18N2O5S, (2), are presented. These compounds are comprised of three types of rings: thiazolidinone, nitrophenyl and cyclohexyl. In both structures, the rings are close to mutually perpendicular, with interplanar dihedral angles greater than 80° in each case. The thiazolidinone rings in both structures exhibit envelope puckering with the S atom as flap and the cyclohexyl rings are in their expected chair conformations. The two structures superpose fairly well, except for the orientation of the nitro groups with respect to their host phenyl ring, with a difference of about 10° between 1 and 2. The extended structure of 1 has two kinds of weak C—H⋯O interactions, giving rise to a closed ring formation involving three symmetry-related molecules. Structure 2 has four C—H⋯O interactions, two of which are exclusively between symmetry-related thiazolidinone dioxide moieties and have a parallel `give-and-take-fashion' counterpart. In the other two interactions, the nitrophenyl ring and the cyclohexane ring each offer an H atom to the two O atoms on the sulfone group. Additionally, a C—H⋯π interaction between a C—H group of the cyclohexane ring and the nitrophenyl ring of an adjacent molecule helps to consolidate the structure.
1. Chemical context
The title compounds were synthesized as a part of our ongoing work on the synthesis of new types of 2,3-disubstituted 1,3-thiazolidin-4-ones. We have reported the crystal structures of a number of these compounds before (Nuriye et al., 2018; Yennawar et al., 2015). These compounds are synthesized by a tandem nucleophilic addition-carbonyl condensation of thioglycolic acid with the desired in situ-generated imine. The variation in substitution pattern is set during the synthesis of the imine where alkyl or aryl are condensed with an aldehyde (Surrey, 1947; von Erlenmeyer & Oberlin, 1947). In addition, the S atom in the thiazolidinone ring can be oxidized to the sulfoxide or the sulfone to produce structures with different properties. Thiazolidinones have well documented biological activity (Thakare et al., 2018; Brown, 1961; Abdel Rahman et al., 1990; Joshi et al., 2014; Suryawanshi et al., 2017; Kaushal & Kaur, 2016; Kumar et al., 2015; Tripathi et al., 2014; Jain et al., 2012; Abhinit et al. 2009; Hamama et al., 2008; Singh et al., 1981). The synthesis and characterization of these compounds could be valuable in investigations for the practical applications of their activities. To the best of our knowledge, only two crystal structures of thiazolidinone have been reported in the literature (Orsini et al., 1995; Glasl et al., 1997). The compounds presented in this paper both feature an ortho-nitrophenyl ring at position 2 and a cyclohexane ring at the 3-position of the thiazolidinone ring. Compound 1 is a sulfide, while compound 2 contains a fully oxidized sulfone functional group.
2. Structural commentary
Compound 2 is the dioxide version of 1, both comprising of three types of rings, a thiazolidinone (A), a nitrophenyl (B) and a cyclohexyl (C) ring. In each structure, the interplanar dihedral angles between the three pairs of rings are close to orthogonal, with values of (in ascending order) A/C = 84.04 (9), B/C = 84.98 (10) and A/B = 85.85 (9)°. The corresponding data for 2 span a slightly wider range: B/C = 80.74 (6), A/B = 83.12 (6) and A/C = 87.96 (6)° (Figs. 1 and 2). In both structures, the thiazolidinone rings exhibit an envelope pucker conformation with the sulfur atom as a flap. The cyclohexyl rings are in the most stable chair conformation in both structures. An overlay of the two structures (Fig. 3) shows that they overlap well. Fig. 3 also shows that the nitro group plane in 2 is twisted further away by ca 10° from the nitrophenyl ring plane as compared to that in 1; the dihedral angles between the nitro group plane and the host phenyl ring plane were found to be 18.3 (5)° in 1 and 28.3 (5)° in 2.
Looking at the thiazolidinone ring systems, the C1—N1 and C1—S1 bond lengths are 1.438 (3) and 1.839 (3) Å, respectively, for structure 1 and 1.4527 (13) and 1.8382 (12) Å for structure 2. The N—C—S bond angle is found to be 105.22 (12)° in structure 1 and 101.36 (7)° in structure 2 indicating a compression of the N—C—S bond angle going from the sulfide to the sulfone. Bond length and angle values in the thiazolidinone ring of the sulfide appear to be typical and match data that we have previously reported (Nuriye et al., 2018). Although structural data for the sulfone are scarce, the data reported by Orsini et al. (1995) matches our findings.
3. Supramolecular features
In structure 1, two weak C—H⋯O type interactions (Table 1) result in a closed-ring formation of three symmetry-related molecules (Fig. 4). One of the nitrophenyl-ring carbon atoms donates its H atom to the oxygen atom on the thiazolidinone ring of a neighboring molecule [C8⋯O1 = 3.411 (5) Å, C—H⋯O = 140°], which then interacts with a third symmetry-related molecule through a symmetry-equivalent contact. Finally, this third molecule donates one of its cyclohexane protons to the nitrophenyl oxygen atom of the first molecule [C15⋯O3 = 3.437 (5) Å, 138°], thus completing the three-molecule ring arrangement. In the extended structure, the molecules arrange themselves in distinct layers in (020) planes. Perpendicular to c, the longest axis, there is an alternating pattern of hydrophobic and hydrophilic surfaces of the molecules, as is evident in the packing diagram (Fig. 5).
|
In structure 2, we observe four C—H⋯O type interactions (Table 2). Two of these involve the thiazolidinone dioxide moieties exclusively and have parallel `give-and-take' type counterparts [C⋯O = 3.4594 (16) Å, 161° and 3.3068 (16) Å, 157°], forming continuous chains propagating along the b-axis direction. The remaining two interactions are weaker and involve the carbon atoms of nitrophenyl rings and cyclohexane rings of one molecule offering protons to the oxygen pair of the dioxide group [C9⋯O1 3.5144 (16) Å, 132.6° and 3.4381 (16) Å, 129°] of a symmetry-related molecule. Similar to packing of 1, the molecules are arranged in distinct layers but this time in (02) planes. Also seen is the alternating pattern of hydrophobic and hydrophilic surfaces perpendicular to the c-axis direction (Fig. 6).
4. Synthesis and crystallization
1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one: Following the reported method (Cannon et al., 2015), 2-nitrobenzaldehyde (0.725 g, 4.80 mmol) was dissolved in CH2Cl2 (20 ml) and anhydrous MgSO4 (3.0 g) and cyclohexyamine (0.5 g, 5 mmol) were added sequentially and stirred for 4 h at r.t. under nitrogen. The MgSO4 was filtered off and the reaction was concentrated in vacuo to give 0.9826 g of an orange oil, which solidified upon sitting in a freezer and remained solid upon warming up to room temperature.
The crude imine was resuspended in toluene (25 ml) and thioglycolic acid (0.55 g, 6.0 mmol) was added and the reaction was heated at reflux for 1.5 h with a Dean–Stark trap attached. The reaction was then cooled to room temperature and washed with aqueous NaHCO3 (2 × 35 ml). The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to give an orange oil. The crude substance was purified by flash column chromatography on silica gel (15 g) using 20–60% ethyl acetate in hexanes as the to yield a yellow solid (0.720 g). The solid was recrystallized from ethanol solution to give a pale-yellow solid (0.508 g, 36.4% over two steps). mp 373–383 K; IR: cm−1 1671.1 (C=O); 1H NMR (CDCl3): 8.08–7.46 (4H, m, aromatics), 6.25 (1H, C2), 3.94 (1H, tt, J = 12.2 Hz, and J = 3.6 Hz, NCH), 3.76 (1H, dd, C5, J = 0.7 Hz, and J = 15.7 Hz), 3.47 (1H, d, C5, J = 15.7 Hz), 1.96–0.86 (10H, m, cyclohexyls); 13C NMR: 172.95 (C4), 146.05, 139.12, 134.02, 129.04, 126.72, 125.68, 58.82 (C2), 55.74, 32.20(C5), 31.25, 30.29, 25.89, 25.70, 25.19; MS: (m/z) 306 (M+) C15H18O3N2S (306.10).
Crystals for X-ray data collection were grown by dissolving 0.101 g of the solid in hot ethanol and slow evaporation of the solvent.
1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide: 1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (0.553 mmol) was dissolved in glacial acetic acid (2.4 ml), to which an aqueous solution of KMnO4 (175 mg, 1.11 mmol, in 3.0 ml water) was added dropwise at room temperature with vigorous stirring, and stirred for an additional 5 min. Solid sodium bisulfite (NaHSO3/Na2S2O5) was then added until the solution remained colorless; 3.0 ml of water was then added and the mixture was stirred for a further 10 min. The resulting solid precipitate was filtered and rinsed with water. The resulting powder was purified by recrystallization from CH3OH solution. Yield (64%); m.p. 471–472 K; IR: cm−1 1689.6 (C=O), 1326.9, 1308.1, 1162.7 (S=O); 1H NMR (CDCl3): 8.38 (1H, dd, J = 8.0, and J = 1.2 Hz, aromatic), 7.78 (1H, dddd, J = 8.0, 8.0, 1.2, 0.8 Hz, aromatic), 7.68 (1H, ddd, J = 8.0, 8.0, 1.2 Hz, aromatic), 7.54 (1H, dd, J = 7.6, 1.2 Hz, aromatic), 6.77 (1H, s, C2), 4.41 (1H, tt, J = 12.0, and J = 3.6 Hz, NCH), 3.76 (dd, J = 16.0 Hz, and J = 0.4 Hz, 1H), 3.69 (d, J = 16.4 Hz, 1 H), 1.96–0.82 (10 H, m, cyclohexyls); 13C NMR: 163.41 (C4), 147.80, 134.43, 131.22, 128.82, 126.92 75.77, 54.52, 50.16, 31.39, 29.67, 25.50, 25.16, 24.84; MS: (m/z) 339 ([M + H]+) C15H18O5N2S (338.09).
Crystals for X-ray data collection were grown by slow evaporation of a hot methanol solution of the compound.
5. Refinement
Crystal data, data collection and structure . The H atoms were placed geometrically and allowed to ride on their parent C atoms during with C—H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methyl), with Uiso(H) = 1.2Ueq(aromatic or methylene C) or 1.5Ueq(methyl C).
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989018015098/hb7781sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989018015098/hb77811sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989018015098/hb77812sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015098/hb77811sup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015098/hb77812sup5.cml
Data collection: SMART (Bruker, 2001) for (1); COSMO (Bruker, 2013) for (2). Cell
SAINT (Bruker, 2001) for (1); SAINT (Bruker, 2013) for (2). Data reduction: SAINT (Bruker, 2001) for (1); SAINT (Bruker, 2013) for (2). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) for (1); SHELXL2014 (Sheldrick, 2015) for (2). For both structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C15H18N2O3S | Dx = 1.391 Mg m−3 |
Mr = 306.37 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 5287 reflections |
a = 9.582 (13) Å | θ = 2.6–24.3° |
b = 11.444 (15) Å | µ = 0.23 mm−1 |
c = 26.69 (4) Å | T = 298 K |
V = 2927 (7) Å3 | Plate, colorless |
Z = 8 | 0.27 × 0.25 × 0.2 mm |
F(000) = 1296 |
Bruker SMART CCD area detector diffractometer | 2924 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
phi and ω scans | θmax = 28.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −12→12 |
Tmin = 0.732, Tmax = 0.955 | k = −13→15 |
24930 measured reflections | l = −34→35 |
3685 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.9885P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3685 reflections | Δρmax = 0.35 e Å−3 |
190 parameters | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.64305 (5) | 0.59741 (4) | 0.55845 (2) | 0.05141 (17) | |
O1 | 0.95808 (13) | 0.40036 (13) | 0.55305 (5) | 0.0543 (4) | |
O2 | 0.43309 (16) | 0.62101 (16) | 0.64290 (7) | 0.0743 (5) | |
O3 | 0.23757 (18) | 0.55133 (18) | 0.66333 (8) | 0.0905 (6) | |
N1 | 0.76951 (13) | 0.42423 (13) | 0.60346 (5) | 0.0360 (3) | |
N2 | 0.34792 (16) | 0.54315 (17) | 0.64206 (6) | 0.0524 (4) | |
C1 | 0.63847 (16) | 0.48476 (15) | 0.60757 (7) | 0.0374 (4) | |
H1 | 0.631265 | 0.521843 | 0.640564 | 0.045* | |
C2 | 0.84294 (17) | 0.43948 (18) | 0.56067 (7) | 0.0417 (4) | |
C3 | 0.7632 (2) | 0.5110 (2) | 0.52278 (7) | 0.0533 (5) | |
H3A | 0.713666 | 0.460539 | 0.499625 | 0.064* | |
H3B | 0.826129 | 0.560651 | 0.503872 | 0.064* | |
C4 | 0.51274 (17) | 0.40812 (15) | 0.59855 (6) | 0.0371 (4) | |
C5 | 0.37756 (17) | 0.43693 (18) | 0.61324 (7) | 0.0418 (4) | |
C6 | 0.26504 (19) | 0.3690 (2) | 0.60127 (8) | 0.0533 (5) | |
H6 | 0.176194 | 0.390377 | 0.611901 | 0.064* | |
C7 | 0.2834 (2) | 0.2698 (2) | 0.57371 (8) | 0.0603 (6) | |
H7 | 0.206700 | 0.224720 | 0.564627 | 0.072* | |
C8 | 0.4151 (2) | 0.2367 (2) | 0.55939 (8) | 0.0585 (5) | |
H8 | 0.428365 | 0.168290 | 0.541158 | 0.070* | |
C9 | 0.5272 (2) | 0.30517 (18) | 0.57219 (7) | 0.0470 (4) | |
H9 | 0.616167 | 0.281283 | 0.562734 | 0.056* | |
C10 | 0.83474 (16) | 0.37054 (16) | 0.64788 (6) | 0.0359 (4) | |
H10 | 0.911045 | 0.320833 | 0.635901 | 0.043* | |
C11 | 0.73624 (19) | 0.29343 (17) | 0.67713 (6) | 0.0438 (4) | |
H11A | 0.701899 | 0.231608 | 0.655539 | 0.053* | |
H11B | 0.656828 | 0.339271 | 0.688165 | 0.053* | |
C12 | 0.8082 (2) | 0.2396 (2) | 0.72259 (7) | 0.0544 (5) | |
H12A | 0.740381 | 0.195440 | 0.741803 | 0.065* | |
H12B | 0.879757 | 0.185814 | 0.711273 | 0.065* | |
C13 | 0.8736 (2) | 0.3306 (2) | 0.75583 (7) | 0.0580 (6) | |
H13A | 0.924527 | 0.292580 | 0.782674 | 0.070* | |
H13B | 0.801130 | 0.378481 | 0.770746 | 0.070* | |
C14 | 0.9720 (2) | 0.4073 (2) | 0.72616 (8) | 0.0602 (6) | |
H14A | 1.050130 | 0.360810 | 0.714471 | 0.072* | |
H14B | 1.008345 | 0.468373 | 0.747720 | 0.072* | |
C15 | 0.89855 (19) | 0.46261 (18) | 0.68135 (8) | 0.0498 (5) | |
H15A | 0.825973 | 0.514902 | 0.693159 | 0.060* | |
H15B | 0.965152 | 0.508361 | 0.662267 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0457 (3) | 0.0450 (3) | 0.0635 (3) | 0.0006 (2) | −0.0051 (2) | 0.0116 (2) |
O1 | 0.0367 (7) | 0.0788 (10) | 0.0473 (8) | 0.0056 (6) | 0.0121 (5) | 0.0074 (7) |
O2 | 0.0446 (8) | 0.0696 (11) | 0.1087 (14) | 0.0105 (8) | −0.0022 (8) | −0.0240 (10) |
O3 | 0.0650 (10) | 0.0923 (14) | 0.1142 (15) | 0.0137 (10) | 0.0447 (11) | −0.0008 (12) |
N1 | 0.0265 (6) | 0.0465 (8) | 0.0350 (7) | 0.0030 (6) | 0.0009 (5) | 0.0024 (6) |
N2 | 0.0391 (8) | 0.0655 (11) | 0.0525 (10) | 0.0153 (8) | 0.0033 (7) | 0.0072 (8) |
C1 | 0.0293 (7) | 0.0437 (9) | 0.0392 (9) | 0.0029 (7) | −0.0013 (6) | 0.0000 (7) |
C2 | 0.0358 (8) | 0.0510 (10) | 0.0384 (9) | −0.0043 (7) | 0.0015 (7) | 0.0026 (8) |
C3 | 0.0499 (10) | 0.0674 (13) | 0.0427 (10) | −0.0001 (10) | 0.0020 (8) | 0.0133 (9) |
C4 | 0.0297 (7) | 0.0488 (10) | 0.0328 (8) | 0.0009 (7) | −0.0028 (6) | 0.0050 (7) |
C5 | 0.0335 (8) | 0.0559 (11) | 0.0361 (9) | 0.0031 (7) | −0.0018 (7) | 0.0113 (8) |
C6 | 0.0319 (8) | 0.0767 (15) | 0.0514 (11) | −0.0066 (9) | −0.0026 (8) | 0.0171 (10) |
C7 | 0.0471 (11) | 0.0782 (16) | 0.0557 (12) | −0.0246 (11) | −0.0119 (9) | 0.0133 (12) |
C8 | 0.0618 (13) | 0.0614 (13) | 0.0522 (12) | −0.0143 (11) | −0.0078 (10) | −0.0044 (10) |
C9 | 0.0401 (9) | 0.0551 (11) | 0.0458 (10) | −0.0031 (8) | −0.0012 (8) | −0.0047 (9) |
C10 | 0.0277 (7) | 0.0446 (9) | 0.0354 (8) | 0.0052 (6) | 0.0010 (6) | 0.0004 (7) |
C11 | 0.0447 (9) | 0.0524 (11) | 0.0341 (9) | −0.0078 (8) | −0.0021 (7) | −0.0002 (8) |
C12 | 0.0598 (11) | 0.0640 (13) | 0.0395 (10) | −0.0026 (10) | −0.0014 (9) | 0.0090 (9) |
C13 | 0.0509 (11) | 0.0862 (16) | 0.0368 (10) | 0.0024 (11) | −0.0085 (8) | −0.0009 (10) |
C14 | 0.0443 (10) | 0.0800 (16) | 0.0564 (12) | −0.0056 (10) | −0.0177 (9) | −0.0020 (11) |
C15 | 0.0384 (9) | 0.0538 (12) | 0.0570 (12) | −0.0061 (8) | −0.0118 (8) | −0.0006 (9) |
S1—C1 | 1.839 (3) | C8—H8 | 0.9300 |
S1—C3 | 1.792 (3) | C8—C9 | 1.373 (3) |
O1—C2 | 1.208 (2) | C9—H9 | 0.9300 |
O2—N2 | 1.209 (3) | C10—H10 | 0.9800 |
O3—N2 | 1.204 (2) | C10—C11 | 1.510 (3) |
N1—C1 | 1.438 (3) | C10—C15 | 1.511 (3) |
N1—C2 | 1.353 (3) | C11—H11A | 0.9700 |
N1—C10 | 1.474 (2) | C11—H11B | 0.9700 |
N2—C5 | 1.466 (3) | C11—C12 | 1.525 (3) |
C1—H1 | 0.9800 | C12—H12A | 0.9700 |
C1—C4 | 1.509 (3) | C12—H12B | 0.9700 |
C2—C3 | 1.508 (3) | C12—C13 | 1.505 (3) |
C3—H3A | 0.9700 | C13—H13A | 0.9700 |
C3—H3B | 0.9700 | C13—H13B | 0.9700 |
C4—C5 | 1.393 (3) | C13—C14 | 1.511 (3) |
C4—C9 | 1.379 (3) | C14—H14A | 0.9700 |
C5—C6 | 1.367 (3) | C14—H14B | 0.9700 |
C6—H6 | 0.9300 | C14—C15 | 1.525 (3) |
C6—C7 | 1.364 (4) | C15—H15A | 0.9700 |
C7—H7 | 0.9300 | C15—H15B | 0.9700 |
C7—C8 | 1.372 (4) | ||
C3—S1—C1 | 90.40 (12) | C8—C9—C4 | 122.42 (19) |
C1—N1—C10 | 120.64 (14) | C8—C9—H9 | 118.8 |
C2—N1—C1 | 117.15 (15) | N1—C10—H10 | 107.2 |
C2—N1—C10 | 120.80 (16) | N1—C10—C11 | 113.22 (15) |
O2—N2—C5 | 119.36 (17) | N1—C10—C15 | 110.87 (17) |
O3—N2—O2 | 121.8 (2) | C11—C10—H10 | 107.2 |
O3—N2—C5 | 118.8 (2) | C11—C10—C15 | 110.80 (17) |
S1—C1—H1 | 109.8 | C15—C10—H10 | 107.2 |
N1—C1—S1 | 105.22 (12) | C10—C11—H11A | 109.4 |
N1—C1—H1 | 109.8 | C10—C11—H11B | 109.4 |
N1—C1—C4 | 113.88 (17) | C10—C11—C12 | 111.39 (17) |
C4—C1—S1 | 108.22 (12) | H11A—C11—H11B | 108.0 |
C4—C1—H1 | 109.8 | C12—C11—H11A | 109.4 |
O1—C2—N1 | 124.72 (17) | C12—C11—H11B | 109.4 |
O1—C2—C3 | 123.40 (17) | C11—C12—H12A | 109.2 |
N1—C2—C3 | 111.88 (17) | C11—C12—H12B | 109.2 |
S1—C3—H3A | 110.6 | H12A—C12—H12B | 107.9 |
S1—C3—H3B | 110.6 | C13—C12—C11 | 112.2 (2) |
C2—C3—S1 | 105.59 (16) | C13—C12—H12A | 109.2 |
C2—C3—H3A | 110.6 | C13—C12—H12B | 109.2 |
C2—C3—H3B | 110.6 | C12—C13—H13A | 109.5 |
H3A—C3—H3B | 108.8 | C12—C13—H13B | 109.5 |
C5—C4—C1 | 124.04 (18) | C12—C13—C14 | 110.66 (19) |
C9—C4—C1 | 119.83 (16) | H13A—C13—H13B | 108.1 |
C9—C4—C5 | 116.05 (17) | C14—C13—H13A | 109.5 |
C4—C5—N2 | 121.60 (17) | C14—C13—H13B | 109.5 |
C6—C5—N2 | 116.18 (18) | C13—C14—H14A | 109.4 |
C6—C5—C4 | 122.2 (2) | C13—C14—H14B | 109.4 |
C5—C6—H6 | 120.1 | C13—C14—C15 | 111.34 (18) |
C7—C6—C5 | 119.84 (19) | H14A—C14—H14B | 108.0 |
C7—C6—H6 | 120.1 | C15—C14—H14A | 109.4 |
C6—C7—H7 | 120.0 | C15—C14—H14B | 109.4 |
C6—C7—C8 | 119.92 (19) | C10—C15—C14 | 111.15 (19) |
C8—C7—H7 | 120.0 | C10—C15—H15A | 109.4 |
C7—C8—H8 | 120.3 | C10—C15—H15B | 109.4 |
C7—C8—C9 | 119.5 (2) | C14—C15—H15A | 109.4 |
C9—C8—H8 | 120.3 | C14—C15—H15B | 109.4 |
C4—C9—H9 | 118.8 | H15A—C15—H15B | 108.0 |
S1—C1—C4—C5 | −81.4 (2) | C2—N1—C1—C4 | 102.13 (19) |
S1—C1—C4—C9 | 95.38 (19) | C2—N1—C10—C11 | −143.59 (18) |
O1—C2—C3—S1 | −155.76 (17) | C2—N1—C10—C15 | 91.2 (2) |
O2—N2—C5—C4 | 18.2 (3) | C3—S1—C1—N1 | 25.72 (13) |
O2—N2—C5—C6 | −161.08 (19) | C3—S1—C1—C4 | −96.37 (16) |
O3—N2—C5—C4 | −163.46 (19) | C4—C5—C6—C7 | −0.5 (3) |
O3—N2—C5—C6 | 17.2 (3) | C5—C4—C9—C8 | 2.3 (3) |
N1—C1—C4—C5 | 162.03 (16) | C5—C6—C7—C8 | 2.0 (3) |
N1—C1—C4—C9 | −21.2 (2) | C6—C7—C8—C9 | −1.3 (3) |
N1—C2—C3—S1 | 24.8 (2) | C7—C8—C9—C4 | −1.0 (3) |
N1—C10—C11—C12 | 179.86 (15) | C9—C4—C5—N2 | 179.17 (16) |
N1—C10—C15—C14 | −177.41 (15) | C9—C4—C5—C6 | −1.6 (3) |
N2—C5—C6—C7 | 178.77 (17) | C10—N1—C1—S1 | 150.33 (13) |
C1—S1—C3—C2 | −28.32 (15) | C10—N1—C1—C4 | −91.31 (19) |
C1—N1—C2—O1 | 175.24 (18) | C10—N1—C2—O1 | 8.7 (3) |
C1—N1—C2—C3 | −5.3 (2) | C10—N1—C2—C3 | −171.82 (16) |
C1—N1—C10—C11 | 50.3 (2) | C10—C11—C12—C13 | 54.7 (2) |
C1—N1—C10—C15 | −74.9 (2) | C11—C10—C15—C14 | 56.0 (2) |
C1—C4—C5—N2 | −4.0 (3) | C11—C12—C13—C14 | −54.6 (2) |
C1—C4—C5—C6 | 175.29 (17) | C12—C13—C14—C15 | 55.4 (3) |
C1—C4—C9—C8 | −174.68 (18) | C13—C14—C15—C10 | −56.6 (2) |
C2—N1—C1—S1 | −16.23 (18) | C15—C10—C11—C12 | −54.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.93 | 2.65 | 3.411 (5) | 140 |
C15—H15B···O3ii | 0.97 | 2.66 | 3.437 (5) | 138 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1, y, z. |
C15H18N2O5S | Z = 2 |
Mr = 338.37 | F(000) = 356 |
Triclinic, P1 | Dx = 1.469 Mg m−3 |
a = 7.114 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.401 (3) Å | Cell parameters from 1021 reflections |
c = 12.038 (3) Å | θ = 2.6–25.0° |
α = 94.808 (5)° | µ = 0.24 mm−1 |
β = 92.110 (5)° | T = 100 K |
γ = 107.198 (5)° | Block, colorless |
V = 764.8 (4) Å3 | 0.29 × 0.11 × 0.06 mm |
Bruker SMART CCD area detector diffractometer | 3728 independent reflections |
Radiation source: fine-focus sealed tube | 3475 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
phi and ω scans | θmax = 28.1°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −9→9 |
Tmin = 0.815, Tmax = 0.989 | k = −12→12 |
9076 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4077P] where P = (Fo2 + 2Fc2)/3 |
3728 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.60965 (4) | 0.67214 (3) | 0.85449 (2) | 0.01180 (8) | |
O1 | 0.67190 (12) | 0.55058 (9) | 0.89218 (7) | 0.01731 (18) | |
O2 | 0.74722 (12) | 0.78778 (9) | 0.80246 (8) | 0.01862 (18) | |
O3 | 0.27805 (12) | 0.90586 (9) | 0.92007 (7) | 0.01539 (17) | |
O4 | 0.54722 (14) | 0.41291 (10) | 0.63921 (8) | 0.0228 (2) | |
O5 | 0.57817 (15) | 0.22722 (11) | 0.72569 (10) | 0.0296 (2) | |
N1 | 0.29029 (13) | 0.71982 (10) | 0.78749 (8) | 0.01082 (18) | |
N2 | 0.49472 (15) | 0.32058 (11) | 0.70700 (9) | 0.0170 (2) | |
C1 | 0.38198 (15) | 0.60257 (11) | 0.76329 (9) | 0.0105 (2) | |
H1 | 0.4147 | 0.5983 | 0.6832 | 0.013* | |
C2 | 0.34073 (16) | 0.80345 (12) | 0.88860 (9) | 0.0114 (2) | |
C3 | 0.49252 (16) | 0.75554 (12) | 0.95740 (9) | 0.0136 (2) | |
H3A | 0.4276 | 0.6827 | 1.0094 | 0.016* | |
H3B | 0.5881 | 0.8429 | 1.0007 | 0.016* | |
C4 | 0.26158 (16) | 0.44866 (12) | 0.79064 (9) | 0.0112 (2) | |
C5 | 0.31876 (16) | 0.31896 (12) | 0.76822 (9) | 0.0130 (2) | |
C6 | 0.21380 (18) | 0.18142 (13) | 0.80081 (10) | 0.0166 (2) | |
H6 | 0.2592 | 0.0968 | 0.7858 | 0.020* | |
C7 | 0.04245 (19) | 0.16798 (14) | 0.85541 (11) | 0.0198 (2) | |
H7 | −0.0318 | 0.0740 | 0.8773 | 0.024* | |
C8 | −0.01917 (18) | 0.29359 (14) | 0.87772 (10) | 0.0193 (2) | |
H8 | −0.1375 | 0.2850 | 0.9143 | 0.023* | |
C9 | 0.08976 (17) | 0.43194 (13) | 0.84728 (10) | 0.0146 (2) | |
H9 | 0.0464 | 0.5169 | 0.8654 | 0.018* | |
C10 | 0.18316 (16) | 0.76881 (12) | 0.69763 (9) | 0.0117 (2) | |
H10 | 0.1191 | 0.8408 | 0.7335 | 0.014* | |
C11 | 0.02037 (16) | 0.63935 (12) | 0.63537 (9) | 0.0137 (2) | |
H11A | −0.0743 | 0.5895 | 0.6886 | 0.016* | |
H11B | 0.0783 | 0.5647 | 0.5997 | 0.016* | |
C12 | −0.08705 (17) | 0.69932 (13) | 0.54591 (10) | 0.0167 (2) | |
H12A | −0.1903 | 0.6151 | 0.5043 | 0.020* | |
H12B | −0.1522 | 0.7688 | 0.5824 | 0.020* | |
C13 | 0.05666 (19) | 0.78087 (14) | 0.46475 (10) | 0.0190 (2) | |
H13A | −0.0150 | 0.8207 | 0.4090 | 0.023* | |
H13B | 0.1151 | 0.7098 | 0.4244 | 0.023* | |
C14 | 0.22021 (18) | 0.90929 (13) | 0.52708 (10) | 0.0188 (2) | |
H14A | 0.1627 | 0.9848 | 0.5618 | 0.023* | |
H14B | 0.3150 | 0.9582 | 0.4735 | 0.023* | |
C15 | 0.32904 (17) | 0.85282 (13) | 0.61788 (10) | 0.0156 (2) | |
H15A | 0.3984 | 0.7854 | 0.5827 | 0.019* | |
H15B | 0.4287 | 0.9387 | 0.6602 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.00952 (13) | 0.01062 (13) | 0.01482 (14) | 0.00278 (9) | −0.00059 (9) | 0.00021 (9) |
O1 | 0.0150 (4) | 0.0156 (4) | 0.0222 (4) | 0.0069 (3) | −0.0040 (3) | 0.0006 (3) |
O2 | 0.0134 (4) | 0.0156 (4) | 0.0239 (4) | −0.0002 (3) | 0.0037 (3) | 0.0016 (3) |
O3 | 0.0187 (4) | 0.0137 (4) | 0.0148 (4) | 0.0072 (3) | 0.0002 (3) | −0.0008 (3) |
O4 | 0.0229 (4) | 0.0203 (4) | 0.0274 (5) | 0.0086 (4) | 0.0096 (4) | 0.0034 (4) |
O5 | 0.0233 (5) | 0.0216 (5) | 0.0491 (6) | 0.0149 (4) | 0.0014 (4) | 0.0033 (4) |
N1 | 0.0128 (4) | 0.0093 (4) | 0.0114 (4) | 0.0050 (3) | −0.0005 (3) | 0.0008 (3) |
N2 | 0.0142 (4) | 0.0121 (4) | 0.0240 (5) | 0.0047 (4) | −0.0021 (4) | −0.0039 (4) |
C1 | 0.0104 (4) | 0.0090 (5) | 0.0123 (5) | 0.0033 (4) | 0.0000 (4) | 0.0008 (4) |
C2 | 0.0116 (5) | 0.0102 (5) | 0.0115 (5) | 0.0015 (4) | 0.0010 (4) | 0.0024 (4) |
C3 | 0.0154 (5) | 0.0142 (5) | 0.0119 (5) | 0.0062 (4) | −0.0010 (4) | −0.0001 (4) |
C4 | 0.0109 (5) | 0.0104 (5) | 0.0115 (5) | 0.0022 (4) | −0.0022 (4) | 0.0014 (4) |
C5 | 0.0116 (5) | 0.0121 (5) | 0.0144 (5) | 0.0031 (4) | −0.0030 (4) | 0.0003 (4) |
C6 | 0.0201 (5) | 0.0104 (5) | 0.0179 (5) | 0.0030 (4) | −0.0065 (4) | 0.0017 (4) |
C7 | 0.0213 (6) | 0.0147 (5) | 0.0190 (6) | −0.0023 (4) | −0.0036 (4) | 0.0065 (4) |
C8 | 0.0160 (5) | 0.0221 (6) | 0.0176 (6) | 0.0010 (4) | 0.0028 (4) | 0.0062 (5) |
C9 | 0.0143 (5) | 0.0151 (5) | 0.0147 (5) | 0.0047 (4) | 0.0007 (4) | 0.0022 (4) |
C10 | 0.0131 (5) | 0.0104 (5) | 0.0122 (5) | 0.0046 (4) | −0.0015 (4) | 0.0015 (4) |
C11 | 0.0130 (5) | 0.0122 (5) | 0.0145 (5) | 0.0025 (4) | −0.0009 (4) | −0.0002 (4) |
C12 | 0.0153 (5) | 0.0189 (5) | 0.0156 (5) | 0.0062 (4) | −0.0030 (4) | −0.0011 (4) |
C13 | 0.0228 (6) | 0.0224 (6) | 0.0130 (5) | 0.0089 (5) | −0.0028 (4) | 0.0022 (4) |
C14 | 0.0224 (6) | 0.0173 (5) | 0.0169 (5) | 0.0052 (5) | −0.0017 (4) | 0.0067 (4) |
C15 | 0.0155 (5) | 0.0147 (5) | 0.0160 (5) | 0.0029 (4) | −0.0007 (4) | 0.0047 (4) |
S1—O1 | 1.4419 (9) | C7—C8 | 1.3858 (18) |
S1—O2 | 1.4360 (9) | C8—H8 | 0.9500 |
S1—C1 | 1.8382 (12) | C8—C9 | 1.3896 (16) |
S1—C3 | 1.7729 (12) | C9—H9 | 0.9500 |
O3—C2 | 1.2143 (14) | C10—H10 | 1.0000 |
O4—N2 | 1.2281 (14) | C10—C11 | 1.5276 (15) |
O5—N2 | 1.2267 (14) | C10—C15 | 1.5291 (16) |
N1—C1 | 1.4527 (13) | C11—H11A | 0.9900 |
N1—C2 | 1.3671 (14) | C11—H11B | 0.9900 |
N1—C10 | 1.4810 (14) | C11—C12 | 1.5354 (16) |
N2—C5 | 1.4726 (15) | C12—H12A | 0.9900 |
C1—H1 | 1.0000 | C12—H12B | 0.9900 |
C1—C4 | 1.5177 (15) | C12—C13 | 1.5242 (17) |
C2—C3 | 1.5294 (15) | C13—H13A | 0.9900 |
C3—H3A | 0.9900 | C13—H13B | 0.9900 |
C3—H3B | 0.9900 | C13—C14 | 1.5257 (17) |
C4—C5 | 1.4040 (15) | C14—H14A | 0.9900 |
C4—C9 | 1.3963 (16) | C14—H14B | 0.9900 |
C5—C6 | 1.3853 (16) | C14—C15 | 1.5342 (16) |
C6—H6 | 0.9500 | C15—H15A | 0.9900 |
C6—C7 | 1.3841 (18) | C15—H15B | 0.9900 |
C7—H7 | 0.9500 | ||
O1—S1—C1 | 111.35 (5) | C9—C8—H8 | 119.5 |
O1—S1—C3 | 113.14 (6) | C4—C9—H9 | 119.3 |
O2—S1—O1 | 119.26 (6) | C8—C9—C4 | 121.39 (11) |
O2—S1—C1 | 108.34 (5) | C8—C9—H9 | 119.3 |
O2—S1—C3 | 109.11 (6) | N1—C10—H10 | 107.5 |
C3—S1—C1 | 92.26 (5) | N1—C10—C11 | 112.55 (9) |
C1—N1—C10 | 120.68 (9) | N1—C10—C15 | 109.90 (9) |
C2—N1—C1 | 117.45 (9) | C11—C10—H10 | 107.5 |
C2—N1—C10 | 120.48 (9) | C11—C10—C15 | 111.61 (9) |
O4—N2—C5 | 118.45 (10) | C15—C10—H10 | 107.5 |
O5—N2—O4 | 123.92 (11) | C10—C11—H11A | 109.8 |
O5—N2—C5 | 117.62 (11) | C10—C11—H11B | 109.8 |
S1—C1—H1 | 110.0 | C10—C11—C12 | 109.49 (9) |
N1—C1—S1 | 101.36 (7) | H11A—C11—H11B | 108.2 |
N1—C1—H1 | 110.0 | C12—C11—H11A | 109.8 |
N1—C1—C4 | 114.61 (9) | C12—C11—H11B | 109.8 |
C4—C1—S1 | 110.64 (7) | C11—C12—H12A | 109.5 |
C4—C1—H1 | 110.0 | C11—C12—H12B | 109.5 |
O3—C2—N1 | 124.96 (10) | H12A—C12—H12B | 108.1 |
O3—C2—C3 | 123.40 (10) | C13—C12—C11 | 110.88 (10) |
N1—C2—C3 | 111.61 (9) | C13—C12—H12A | 109.5 |
S1—C3—H3A | 111.1 | C13—C12—H12B | 109.5 |
S1—C3—H3B | 111.1 | C12—C13—H13A | 109.5 |
C2—C3—S1 | 103.22 (8) | C12—C13—H13B | 109.5 |
C2—C3—H3A | 111.1 | C12—C13—C14 | 110.58 (10) |
C2—C3—H3B | 111.1 | H13A—C13—H13B | 108.1 |
H3A—C3—H3B | 109.1 | C14—C13—H13A | 109.5 |
C5—C4—C1 | 123.62 (10) | C14—C13—H13B | 109.5 |
C9—C4—C1 | 120.00 (10) | C13—C14—H14A | 109.4 |
C9—C4—C5 | 116.27 (10) | C13—C14—H14B | 109.4 |
C4—C5—N2 | 121.73 (10) | C13—C14—C15 | 111.06 (10) |
C6—C5—N2 | 115.57 (10) | H14A—C14—H14B | 108.0 |
C6—C5—C4 | 122.70 (11) | C15—C14—H14A | 109.4 |
C5—C6—H6 | 120.2 | C15—C14—H14B | 109.4 |
C7—C6—C5 | 119.66 (11) | C10—C15—C14 | 110.26 (10) |
C7—C6—H6 | 120.2 | C10—C15—H15A | 109.6 |
C6—C7—H7 | 120.5 | C10—C15—H15B | 109.6 |
C6—C7—C8 | 119.05 (11) | C14—C15—H15A | 109.6 |
C8—C7—H7 | 120.5 | C14—C15—H15B | 109.6 |
C7—C8—H8 | 119.5 | H15A—C15—H15B | 108.1 |
C7—C8—C9 | 120.90 (12) | ||
S1—C1—C4—C5 | −69.60 (12) | C1—C4—C5—C6 | 175.39 (10) |
S1—C1—C4—C9 | 106.31 (10) | C1—C4—C9—C8 | −177.24 (10) |
O1—S1—C1—N1 | 148.94 (7) | C2—N1—C1—S1 | −24.61 (11) |
O1—S1—C1—C4 | 26.96 (9) | C2—N1—C1—C4 | 94.57 (11) |
O1—S1—C3—C2 | −147.19 (7) | C2—N1—C10—C11 | −138.49 (10) |
O2—S1—C1—N1 | −78.01 (8) | C2—N1—C10—C15 | 96.45 (12) |
O2—S1—C1—C4 | 160.01 (7) | C3—S1—C1—N1 | 32.98 (7) |
O2—S1—C3—C2 | 77.52 (8) | C3—S1—C1—C4 | −88.99 (8) |
O3—C2—C3—S1 | −153.99 (9) | C4—C5—C6—C7 | 1.63 (17) |
O4—N2—C5—C4 | −28.26 (16) | C5—C4—C9—C8 | −1.03 (16) |
O4—N2—C5—C6 | 151.15 (11) | C5—C6—C7—C8 | −0.87 (17) |
O5—N2—C5—C4 | 152.98 (11) | C6—C7—C8—C9 | −0.79 (18) |
O5—N2—C5—C6 | −27.60 (15) | C7—C8—C9—C4 | 1.78 (18) |
N1—C1—C4—C5 | 176.56 (10) | C9—C4—C5—N2 | 178.71 (10) |
N1—C1—C4—C9 | −7.52 (14) | C9—C4—C5—C6 | −0.67 (16) |
N1—C2—C3—S1 | 24.31 (11) | C10—N1—C1—S1 | 141.97 (8) |
N1—C10—C11—C12 | 178.54 (9) | C10—N1—C1—C4 | −98.85 (11) |
N1—C10—C15—C14 | −177.81 (9) | C10—N1—C2—O3 | 12.62 (16) |
N2—C5—C6—C7 | −177.78 (10) | C10—N1—C2—C3 | −165.64 (9) |
C1—S1—C3—C2 | −32.79 (8) | C10—C11—C12—C13 | 57.68 (12) |
C1—N1—C2—O3 | 179.23 (10) | C11—C10—C15—C14 | 56.59 (12) |
C1—N1—C2—C3 | 0.97 (13) | C11—C12—C13—C14 | −57.84 (13) |
C1—N1—C10—C11 | 55.34 (13) | C12—C13—C14—C15 | 56.73 (13) |
C1—N1—C10—C15 | −69.72 (12) | C13—C14—C15—C10 | −55.78 (13) |
C1—C4—C5—N2 | −5.23 (16) | C15—C10—C11—C12 | −57.33 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O1i | 0.99 | 2.51 | 3.4594 (16) | 161 |
C3—H3B···O3ii | 0.99 | 2.37 | 3.3068 (16) | 157 |
C9—H9···O1iii | 0.95 | 2.80 | 3.5144 (16) | 133 |
C10—H10···O2iii | 1.00 | 2.72 | 3.4381 (16) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) x−1, y, z. |
Funding information
We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer at The Pennsylvania State University, University Park campus.
References
Abdel Rahman, R. M., El Gendy, Z. & Mahmoud, M. B. (1990). J. Indian Chem. Soc. 67, 61. Google Scholar
Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64. CAS Google Scholar
Brown, F. (1961). Chem. Rev. 61, 463–521. CrossRef Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cannon, K. C., Gandla, D., Lauro, S., Silverberg, L. J., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7, 73–84. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Erlenmeyer, H. & Oberlin, V. (1947). Helv. Chim. Acta, 30, 1329–1335. CrossRef PubMed Web of Science Google Scholar
Glasl, D., Otto, H. & Rihs, G. (1997). Helv. Chim. Acta, 80, 671–683. CrossRef Google Scholar
Hamama, W. S., Ismail, M. A., Shaaban, S. & Zoorob, H. H. (2008). J. Het. Chem. 45, 939–956. CrossRef Google Scholar
Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. A. (2012). Bioorg. Med. Chem. 20, 3378–3395. Web of Science CrossRef CAS PubMed Google Scholar
Joshi, A., Anderson, C., Binch, H., Hadida, S., Yoo, S., Bergeron, D., Decker, C., terHaar, E., Moore, J., Garcia-Guzman, M. & Termin, A. (2014). Bioorg. Med. Chem. Lett. 24, 845–849. CrossRef PubMed Google Scholar
Kaushal, M. & Kaur, A. (2016). World J. Pharm. Res. 5, 1966–1977. Google Scholar
Kumar, D., Kumar, V., Mundlia, J., Pradhan, D. & Malik, S. (2015). Cent. Nerv. Syst. Agent. Med. Chem. 15, 23–27. CrossRef Google Scholar
Nuriye, A., Yennawar, H., Cannon, K. & Tierney, J. (2018). Acta Cryst. E74, 1509–1512. CrossRef IUCr Journals Google Scholar
Orsini, F., Bombieri, G., Benetollo, F., Vigorita, M. G. & Previtera, T. (1995). J. Chem. Crystallogr. 25, 589–595. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, S. P., Parmar, S. S., Raman, R. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203. CrossRef CAS Web of Science Google Scholar
Surrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911–2912. CrossRef PubMed Web of Science Google Scholar
Suryawanshi, R., Jadhav, S., Makwana, N., Desai, D., Chaturbhuj, D., Sonawani, A., Idicula-Thomas, S., Murugesan, V., Katti, S. B., Tripathy, S., Paranjape, R. & Kulkarni, S. (2017). Bioorg. Chem. 71, 211–218. CrossRef PubMed Google Scholar
Thakare, M. P., Shaikh, R. & Tayade, D. (2018). Heterocycl. Lett. 8, 493–506. Google Scholar
Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52–77. Web of Science CrossRef CAS PubMed Google Scholar
Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264–267. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.