research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two 1,3-thia­zolidin-4-one derivatives featuring sulfide and sulfone functional groups

CROSSMARK_Color_square_no_text.svg

aDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA, bDepartment of Chemistry, The Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, Pennsylvania, 17972, USA, cDepartment of Chemistry, The Pennsylvania State University, Abington College, 1600 Woodland Road, Abington, Pennsylvania, 19001, USA, and dDepartment of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania, 19122, USA
*Correspondence e-mail: auy3@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 October 2018; accepted 25 October 2018; online 6 November 2018)

The crystal structures of two closely related compounds, 1-cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one, C15H18N2O3S, (1) and 1-cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one 1,1-dioxide, C15H18N2O5S, (2), are presented. These compounds are comprised of three types of rings: thia­zolidinone, nitrophenyl and cyclo­hexyl. In both structures, the rings are close to mutually perpendicular, with inter­planar dihedral angles greater than 80° in each case. The thia­zol­idinone rings in both structures exhibit envelope puckering with the S atom as flap and the cyclo­hexyl rings are in their expected chair conformations. The two structures superpose fairly well, except for the orientation of the nitro groups with respect to their host phenyl ring, with a difference of about 10° between 1 and 2. The extended structure of 1 has two kinds of weak C—H⋯O inter­actions, giving rise to a closed ring formation involving three symmetry-related mol­ecules. Structure 2 has four C—H⋯O inter­actions, two of which are exclusively between symmetry-related thia­zolidinone dioxide moieties and have a parallel `give-and-take-fashion' counterpart. In the other two inter­actions, the nitrophenyl ring and the cyclo­hexane ring each offer an H atom to the two O atoms on the sulfone group. Additionally, a C—H⋯π inter­action between a C—H group of the cyclo­hexane ring and the nitrophenyl ring of an adjacent mol­ecule helps to consolidate the structure.

1. Chemical context

The title compounds were synthesized as a part of our ongoing work on the synthesis of new types of 2,3-disubstituted 1,3-thia­zolidin-4-ones. We have reported the crystal structures of a number of these compounds before (Nuriye et al., 2018[Nuriye, A., Yennawar, H., Cannon, K. & Tierney, J. (2018). Acta Cryst. E74, 1509-1512.]; Yennawar et al., 2015[Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264-267.]). These compounds are synthesized by a tandem nucleophilic addition-carbonyl condensation of thio­glycolic acid with the desired in situ-generated imine. The variation in substitution pattern is set during the synthesis of the imine where alkyl or aryl amines are condensed with an aldehyde (Surrey, 1947[Surrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911-2912.]; von Erlenmeyer & Oberlin, 1947[Erlenmeyer, H. & Oberlin, V. (1947). Helv. Chim. Acta, 30, 1329-1335.]). In addition, the S atom in the thia­zolidinone ring can be oxidized to the sulfoxide or the sulfone to produce structures with different properties. Thia­zolidinones have well documented biological activity (Thakare et al., 2018[Thakare, M. P., Shaikh, R. & Tayade, D. (2018). Heterocycl. Lett. 8, 493-506.]; Brown, 1961[Brown, F. (1961). Chem. Rev. 61, 463-521.]; Abdel Rahman et al., 1990[Abdel Rahman, R. M., El Gendy, Z. & Mahmoud, M. B. (1990). J. Indian Chem. Soc. 67, 61.]; Joshi et al., 2014[Joshi, A., Anderson, C., Binch, H., Hadida, S., Yoo, S., Bergeron, D., Decker, C., terHaar, E., Moore, J., Garcia-Guzman, M. & Termin, A. (2014). Bioorg. Med. Chem. Lett. 24, 845-849.]; Suryawanshi et al., 2017[Suryawanshi, R., Jadhav, S., Makwana, N., Desai, D., Chaturbhuj, D., Sonawani, A., Idicula-Thomas, S., Murugesan, V., Katti, S. B., Tripathy, S., Paranjape, R. & Kulkarni, S. (2017). Bioorg. Chem. 71, 211-218.]; Kaushal & Kaur, 2016[Kaushal, M. & Kaur, A. (2016). World J. Pharm. Res. 5, 1966-1977.]; Kumar et al., 2015[Kumar, D., Kumar, V., Mundlia, J., Pradhan, D. & Malik, S. (2015). Cent. Nerv. Syst. Agent. Med. Chem. 15, 23-27.]; Tripathi et al., 2014[Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52-77.]; Jain et al., 2012[Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. A. (2012). Bioorg. Med. Chem. 20, 3378-3395.]; Abhinit et al. 2009[Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47-64.]; Hamama et al., 2008[Hamama, W. S., Ismail, M. A., Shaaban, S. & Zoorob, H. H. (2008). J. Het. Chem. 45, 939-956.]; Singh et al., 1981[Singh, S. P., Parmar, S. S., Raman, R. & Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.]). The synthesis and characterization of these compounds could be valuable in investigations for the practical applications of their activities. To the best of our knowledge, only two crystal structures of thia­zolidinone sulfones have been reported in the literature (Orsini et al., 1995[Orsini, F., Bombieri, G., Benetollo, F., Vigorita, M. G. & Previtera, T. (1995). J. Chem. Crystallogr. 25, 589-595.]; Glasl et al., 1997[Glasl, D., Otto, H. & Rihs, G. (1997). Helv. Chim. Acta, 80, 671-683.]). The compounds presented in this paper both feature an ortho-nitro­phenyl ring at position 2 and a cyclo­hexane ring at the 3-position of the thia­zolidinone ring. Compound 1 is a sulfide, while compound 2 contains a fully oxidized sulfone functional group.

[Scheme 1]

2. Structural commentary

Compound 2 is the dioxide version of 1, both comprising of three types of rings, a thia­zolidinone (A), a nitrophenyl (B) and a cyclo­hexyl (C) ring. In each structure, the inter­planar dihedral angles between the three pairs of rings are close to orthogonal, with values of (in ascending order) A/C = 84.04 (9), B/C = 84.98 (10) and A/B = 85.85 (9)°. The corres­ponding data for 2 span a slightly wider range: B/C = 80.74 (6), A/B = 83.12 (6) and A/C = 87.96 (6)° (Figs. 1[link] and 2[link]). In both structures, the thia­zolidinone rings exhibit an envelope pucker conformation with the sulfur atom as a flap. The cyclo­hexyl rings are in the most stable chair conformation in both structures. An overlay of the two structures (Fig. 3[link]) shows that they overlap well. Fig. 3[link] also shows that the nitro group plane in 2 is twisted further away by ca 10° from the nitrophenyl ring plane as compared to that in 1; the dihedral angles between the nitro group plane and the host phenyl ring plane were found to be 18.3 (5)° in 1 and 28.3 (5)° in 2.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Overlay image of the two title mol­ecules showing the difference in the orientation of the nitro group with respect to the nitrophenyl ring plane.

Looking at the thia­zolidinone ring systems, the C1—N1 and C1—S1 bond lengths are 1.438 (3) and 1.839 (3) Å, respectively, for structure 1 and 1.4527 (13) and 1.8382 (12) Å for structure 2. The N—C—S bond angle is found to be 105.22 (12)° in structure 1 and 101.36 (7)° in structure 2 indicating a compression of the N—C—S bond angle going from the sulfide to the sulfone. Bond length and angle values in the thia­zolidinone ring of the sulfide appear to be typical and match data that we have previously reported (Nuriye et al., 2018[Nuriye, A., Yennawar, H., Cannon, K. & Tierney, J. (2018). Acta Cryst. E74, 1509-1512.]). Although structural data for the sulfone are scarce, the data reported by Orsini et al. (1995[Orsini, F., Bombieri, G., Benetollo, F., Vigorita, M. G. & Previtera, T. (1995). J. Chem. Crystallogr. 25, 589-595.]) matches our findings.

3. Supra­molecular features

In structure 1, two weak C—H⋯O type inter­actions (Table 1[link]) result in a closed-ring formation of three symmetry-related mol­ecules (Fig. 4[link]). One of the nitrophenyl-ring carbon atoms donates its H atom to the oxygen atom on the thia­zolidinone ring of a neighboring mol­ecule [C8⋯O1 = 3.411 (5) Å, C—H⋯O = 140°], which then inter­acts with a third symmetry-related mol­ecule through a symmetry-equivalent contact. Finally, this third mol­ecule donates one of its cyclo­hexane protons to the nitro­phenyl oxygen atom of the first mol­ecule [C15⋯O3 = 3.437 (5) Å, 138°], thus completing the three-mol­ecule ring arrangement. In the extended structure, the mol­ecules arrange themselves in distinct layers in (020) planes. Perpendicular to c, the longest axis, there is an alternating pattern of hydro­phobic and hydro­philic surfaces of the mol­ecules, as is evident in the packing diagram (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.65 3.411 (5) 140
C15—H15B⋯O3ii 0.97 2.66 3.437 (5) 138
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.
[Figure 4]
Figure 4
Hydrogen-bond inter­actions between three symmetry-related mol­ecules of 1 forming a closed-ring system.
[Figure 5]
Figure 5
View down the a axis of the packing of 1. The layering of mol­ecules in the (020) plane as well as the alternating pattern of hydro­phobic and hydro­philic regions perpendicular to c axis can be seen.

In structure 2, we observe four C—H⋯O type inter­actions (Table 2[link]). Two of these involve the thia­zolidinone dioxide moieties exclusively and have parallel `give-and-take' type counterparts [C⋯O = 3.4594 (16) Å, 161° and 3.3068 (16) Å, 157°], forming continuous chains propagating along the b-axis direction. The remaining two inter­actions are weaker and involve the carbon atoms of nitrophenyl rings and cyclo­hexane rings of one mol­ecule offering protons to the oxygen pair of the dioxide group [C9⋯O1 3.5144 (16) Å, 132.6° and 3.4381 (16) Å, 129°] of a symmetry-related mol­ecule. Similar to packing of 1, the mol­ecules are arranged in distinct layers but this time in ([\overline{2}]02) planes. Also seen is the alternating pattern of hydro­phobic and hydro­philic surfaces perpendic­ular to the c-axis direction (Fig. 6[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.99 2.51 3.4594 (16) 161
C3—H3B⋯O3ii 0.99 2.37 3.3068 (16) 157
C9—H9⋯O1iii 0.95 2.80 3.5144 (16) 133
C10—H10⋯O2iii 1.00 2.72 3.4381 (16) 129
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z.
[Figure 6]
Figure 6
View down the b axis of the packing arrangement of 2. The layering of mol­ecules in the ([\overline{2}]02) plane as well as the alternating pattern of hydro­phobic and hydro­philic regions perpendicular to the c axis can be seen.

4. Synthesis and crystallization

1-Cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one: Following the reported method (Cannon et al., 2015[Cannon, K. C., Gandla, D., Lauro, S., Silverberg, L. J., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7, 73-84.]), 2-nitro­benzaldehyde (0.725 g, 4.80 mmol) was dissolved in CH2Cl2 (20 ml) and anhydrous MgSO4 (3.0 g) and cyclo­hexyamine (0.5 g, 5 mmol) were added sequentially and stirred for 4 h at r.t. under nitro­gen. The MgSO4 was filtered off and the reaction was concentrated in vacuo to give 0.9826 g of an orange oil, which solidified upon sitting in a freezer and remained solid upon warming up to room temperature.

The crude imine was resuspended in toluene (25 ml) and thio­glycolic acid (0.55 g, 6.0 mmol) was added and the reaction was heated at reflux for 1.5 h with a Dean–Stark trap attached. The reaction was then cooled to room temperature and washed with aqueous NaHCO3 (2 × 35 ml). The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to give an orange oil. The crude substance was purified by flash column chro­ma­tography on silica gel (15 g) using 20–60% ethyl acetate in hexa­nes as the eluent to yield a yellow solid (0.720 g). The solid was recrystallized from ethanol solution to give a pale-yellow solid (0.508 g, 36.4% over two steps). mp 373–383 K; IR: cm−1 1671.1 (C=O); 1H NMR (CDCl3): 8.08–7.46 (4H, m, aromatics), 6.25 (1H, C2), 3.94 (1H, tt, J = 12.2 Hz, and J = 3.6 Hz, NCH), 3.76 (1H, dd, C5, J = 0.7 Hz, and J = 15.7 Hz), 3.47 (1H, d, C5, J = 15.7 Hz), 1.96–0.86 (10H, m, cyclo­hexyls); 13C NMR: 172.95 (C4), 146.05, 139.12, 134.02, 129.04, 126.72, 125.68, 58.82 (C2), 55.74, 32.20(C5), 31.25, 30.29, 25.89, 25.70, 25.19; MS: (m/z) 306 (M+) C15H18O3N2S (306.10).

Crystals for X-ray data collection were grown by dissolving 0.101 g of the solid in hot ethanol and slow evaporation of the solvent.

1-Cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one 1,1-dioxide: 1-Cyclo­hexyl-2-(2-nitro­phen­yl)-1,3-thia­zolidin-4-one (0.553 mmol) was dissolved in glacial acetic acid (2.4 ml), to which an aqueous solution of KMnO4 (175 mg, 1.11 mmol, in 3.0 ml water) was added dropwise at room temperature with vigorous stirring, and stirred for an additional 5 min. Solid sodium bis­ulfite (NaHSO3/Na2S2O5) was then added until the solution remained colorless; 3.0 ml of water was then added and the mixture was stirred for a further 10 min. The resulting solid precipitate was filtered and rinsed with water. The resulting powder was purified by recrystallization from CH3OH solution. Yield (64%); m.p. 471–472 K; IR: cm−1 1689.6 (C=O), 1326.9, 1308.1, 1162.7 (S=O); 1H NMR (CDCl3): 8.38 (1H, dd, J = 8.0, and J = 1.2 Hz, aromatic), 7.78 (1H, dddd, J = 8.0, 8.0, 1.2, 0.8 Hz, aromatic), 7.68 (1H, ddd, J = 8.0, 8.0, 1.2 Hz, aromatic), 7.54 (1H, dd, J = 7.6, 1.2 Hz, aromatic), 6.77 (1H, s, C2), 4.41 (1H, tt, J = 12.0, and J = 3.6 Hz, NCH), 3.76 (dd, J = 16.0 Hz, and J = 0.4 Hz, 1H), 3.69 (d, J = 16.4 Hz, 1 H), 1.96–0.82 (10 H, m, cyclo­hexyls); 13C NMR: 163.41 (C4), 147.80, 134.43, 131.22, 128.82, 126.92 75.77, 54.52, 50.16, 31.39, 29.67, 25.50, 25.16, 24.84; MS: (m/z) 339 ([M + H]+) C15H18O5N2S (338.09).

Crystals for X-ray data collection were grown by slow evaporation of a hot methanol solution of the compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 Å (aromatic), 0.97 Å (methyl­ene) and 0.98 Å (meth­yl), with Uiso(H) = 1.2Ueq(aromatic or methyl­ene C) or 1.5Ueq(methyl C).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C15H18N2O3S C15H18N2O5S
Mr 306.37 338.37
Crystal system, space group Orthorhombic, Pbca Triclinic, P[\overline{1}]
Temperature (K) 298 100
a, b, c (Å) 9.582 (13), 11.444 (15), 26.69 (4) 7.114 (2), 9.401 (3), 12.038 (3)
α, β, γ (°) 90, 90, 90 94.808 (5), 92.110 (5), 107.198 (5)
V3) 2927 (7) 764.8 (4)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.23 0.24
Crystal size (mm) 0.27 × 0.25 × 0.2 0.29 × 0.11 × 0.06
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.732, 0.955 0.815, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 24930, 3685, 2924 9076, 3728, 3475
Rint 0.029 0.015
(sin θ/λ)max−1) 0.673 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 1.08 0.030, 0.082, 1.05
No. of reflections 3685 3728
No. of parameters 190 208
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.17 0.45, −0.34
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), COSMO and SAINT (Bruker, 2013[Bruker (2013). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001) for (1); COSMO (Bruker, 2013) for (2). Cell refinement: SAINT (Bruker, 2001) for (1); SAINT (Bruker, 2013) for (2). Data reduction: SAINT (Bruker, 2001) for (1); SAINT (Bruker, 2013) for (2). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) for (1); SHELXL2014 (Sheldrick, 2015) for (2). For both structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one (1) top
Crystal data top
C15H18N2O3SDx = 1.391 Mg m3
Mr = 306.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5287 reflections
a = 9.582 (13) Åθ = 2.6–24.3°
b = 11.444 (15) ŵ = 0.23 mm1
c = 26.69 (4) ÅT = 298 K
V = 2927 (7) Å3Plate, colorless
Z = 80.27 × 0.25 × 0.2 mm
F(000) = 1296
Data collection top
Bruker SMART CCD area detector
diffractometer
2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 28.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.732, Tmax = 0.955k = 1315
24930 measured reflectionsl = 3435
3685 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.9885P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3685 reflectionsΔρmax = 0.35 e Å3
190 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64305 (5)0.59741 (4)0.55845 (2)0.05141 (17)
O10.95808 (13)0.40036 (13)0.55305 (5)0.0543 (4)
O20.43309 (16)0.62101 (16)0.64290 (7)0.0743 (5)
O30.23757 (18)0.55133 (18)0.66333 (8)0.0905 (6)
N10.76951 (13)0.42423 (13)0.60346 (5)0.0360 (3)
N20.34792 (16)0.54315 (17)0.64206 (6)0.0524 (4)
C10.63847 (16)0.48476 (15)0.60757 (7)0.0374 (4)
H10.6312650.5218430.6405640.045*
C20.84294 (17)0.43948 (18)0.56067 (7)0.0417 (4)
C30.7632 (2)0.5110 (2)0.52278 (7)0.0533 (5)
H3A0.7136660.4605390.4996250.064*
H3B0.8261290.5606510.5038720.064*
C40.51274 (17)0.40812 (15)0.59855 (6)0.0371 (4)
C50.37756 (17)0.43693 (18)0.61324 (7)0.0418 (4)
C60.26504 (19)0.3690 (2)0.60127 (8)0.0533 (5)
H60.1761940.3903770.6119010.064*
C70.2834 (2)0.2698 (2)0.57371 (8)0.0603 (6)
H70.2067000.2247200.5646270.072*
C80.4151 (2)0.2367 (2)0.55939 (8)0.0585 (5)
H80.4283650.1682900.5411580.070*
C90.5272 (2)0.30517 (18)0.57219 (7)0.0470 (4)
H90.6161670.2812830.5627340.056*
C100.83474 (16)0.37054 (16)0.64788 (6)0.0359 (4)
H100.9110450.3208330.6359010.043*
C110.73624 (19)0.29343 (17)0.67713 (6)0.0438 (4)
H11A0.7018990.2316080.6555390.053*
H11B0.6568280.3392710.6881650.053*
C120.8082 (2)0.2396 (2)0.72259 (7)0.0544 (5)
H12A0.7403810.1954400.7418030.065*
H12B0.8797570.1858140.7112730.065*
C130.8736 (2)0.3306 (2)0.75583 (7)0.0580 (6)
H13A0.9245270.2925800.7826740.070*
H13B0.8011300.3784810.7707460.070*
C140.9720 (2)0.4073 (2)0.72616 (8)0.0602 (6)
H14A1.0501300.3608100.7144710.072*
H14B1.0083450.4683730.7477200.072*
C150.89855 (19)0.46261 (18)0.68135 (8)0.0498 (5)
H15A0.8259730.5149020.6931590.060*
H15B0.9651520.5083610.6622670.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0457 (3)0.0450 (3)0.0635 (3)0.0006 (2)0.0051 (2)0.0116 (2)
O10.0367 (7)0.0788 (10)0.0473 (8)0.0056 (6)0.0121 (5)0.0074 (7)
O20.0446 (8)0.0696 (11)0.1087 (14)0.0105 (8)0.0022 (8)0.0240 (10)
O30.0650 (10)0.0923 (14)0.1142 (15)0.0137 (10)0.0447 (11)0.0008 (12)
N10.0265 (6)0.0465 (8)0.0350 (7)0.0030 (6)0.0009 (5)0.0024 (6)
N20.0391 (8)0.0655 (11)0.0525 (10)0.0153 (8)0.0033 (7)0.0072 (8)
C10.0293 (7)0.0437 (9)0.0392 (9)0.0029 (7)0.0013 (6)0.0000 (7)
C20.0358 (8)0.0510 (10)0.0384 (9)0.0043 (7)0.0015 (7)0.0026 (8)
C30.0499 (10)0.0674 (13)0.0427 (10)0.0001 (10)0.0020 (8)0.0133 (9)
C40.0297 (7)0.0488 (10)0.0328 (8)0.0009 (7)0.0028 (6)0.0050 (7)
C50.0335 (8)0.0559 (11)0.0361 (9)0.0031 (7)0.0018 (7)0.0113 (8)
C60.0319 (8)0.0767 (15)0.0514 (11)0.0066 (9)0.0026 (8)0.0171 (10)
C70.0471 (11)0.0782 (16)0.0557 (12)0.0246 (11)0.0119 (9)0.0133 (12)
C80.0618 (13)0.0614 (13)0.0522 (12)0.0143 (11)0.0078 (10)0.0044 (10)
C90.0401 (9)0.0551 (11)0.0458 (10)0.0031 (8)0.0012 (8)0.0047 (9)
C100.0277 (7)0.0446 (9)0.0354 (8)0.0052 (6)0.0010 (6)0.0004 (7)
C110.0447 (9)0.0524 (11)0.0341 (9)0.0078 (8)0.0021 (7)0.0002 (8)
C120.0598 (11)0.0640 (13)0.0395 (10)0.0026 (10)0.0014 (9)0.0090 (9)
C130.0509 (11)0.0862 (16)0.0368 (10)0.0024 (11)0.0085 (8)0.0009 (10)
C140.0443 (10)0.0800 (16)0.0564 (12)0.0056 (10)0.0177 (9)0.0020 (11)
C150.0384 (9)0.0538 (12)0.0570 (12)0.0061 (8)0.0118 (8)0.0006 (9)
Geometric parameters (Å, º) top
S1—C11.839 (3)C8—H80.9300
S1—C31.792 (3)C8—C91.373 (3)
O1—C21.208 (2)C9—H90.9300
O2—N21.209 (3)C10—H100.9800
O3—N21.204 (2)C10—C111.510 (3)
N1—C11.438 (3)C10—C151.511 (3)
N1—C21.353 (3)C11—H11A0.9700
N1—C101.474 (2)C11—H11B0.9700
N2—C51.466 (3)C11—C121.525 (3)
C1—H10.9800C12—H12A0.9700
C1—C41.509 (3)C12—H12B0.9700
C2—C31.508 (3)C12—C131.505 (3)
C3—H3A0.9700C13—H13A0.9700
C3—H3B0.9700C13—H13B0.9700
C4—C51.393 (3)C13—C141.511 (3)
C4—C91.379 (3)C14—H14A0.9700
C5—C61.367 (3)C14—H14B0.9700
C6—H60.9300C14—C151.525 (3)
C6—C71.364 (4)C15—H15A0.9700
C7—H70.9300C15—H15B0.9700
C7—C81.372 (4)
C3—S1—C190.40 (12)C8—C9—C4122.42 (19)
C1—N1—C10120.64 (14)C8—C9—H9118.8
C2—N1—C1117.15 (15)N1—C10—H10107.2
C2—N1—C10120.80 (16)N1—C10—C11113.22 (15)
O2—N2—C5119.36 (17)N1—C10—C15110.87 (17)
O3—N2—O2121.8 (2)C11—C10—H10107.2
O3—N2—C5118.8 (2)C11—C10—C15110.80 (17)
S1—C1—H1109.8C15—C10—H10107.2
N1—C1—S1105.22 (12)C10—C11—H11A109.4
N1—C1—H1109.8C10—C11—H11B109.4
N1—C1—C4113.88 (17)C10—C11—C12111.39 (17)
C4—C1—S1108.22 (12)H11A—C11—H11B108.0
C4—C1—H1109.8C12—C11—H11A109.4
O1—C2—N1124.72 (17)C12—C11—H11B109.4
O1—C2—C3123.40 (17)C11—C12—H12A109.2
N1—C2—C3111.88 (17)C11—C12—H12B109.2
S1—C3—H3A110.6H12A—C12—H12B107.9
S1—C3—H3B110.6C13—C12—C11112.2 (2)
C2—C3—S1105.59 (16)C13—C12—H12A109.2
C2—C3—H3A110.6C13—C12—H12B109.2
C2—C3—H3B110.6C12—C13—H13A109.5
H3A—C3—H3B108.8C12—C13—H13B109.5
C5—C4—C1124.04 (18)C12—C13—C14110.66 (19)
C9—C4—C1119.83 (16)H13A—C13—H13B108.1
C9—C4—C5116.05 (17)C14—C13—H13A109.5
C4—C5—N2121.60 (17)C14—C13—H13B109.5
C6—C5—N2116.18 (18)C13—C14—H14A109.4
C6—C5—C4122.2 (2)C13—C14—H14B109.4
C5—C6—H6120.1C13—C14—C15111.34 (18)
C7—C6—C5119.84 (19)H14A—C14—H14B108.0
C7—C6—H6120.1C15—C14—H14A109.4
C6—C7—H7120.0C15—C14—H14B109.4
C6—C7—C8119.92 (19)C10—C15—C14111.15 (19)
C8—C7—H7120.0C10—C15—H15A109.4
C7—C8—H8120.3C10—C15—H15B109.4
C7—C8—C9119.5 (2)C14—C15—H15A109.4
C9—C8—H8120.3C14—C15—H15B109.4
C4—C9—H9118.8H15A—C15—H15B108.0
S1—C1—C4—C581.4 (2)C2—N1—C1—C4102.13 (19)
S1—C1—C4—C995.38 (19)C2—N1—C10—C11143.59 (18)
O1—C2—C3—S1155.76 (17)C2—N1—C10—C1591.2 (2)
O2—N2—C5—C418.2 (3)C3—S1—C1—N125.72 (13)
O2—N2—C5—C6161.08 (19)C3—S1—C1—C496.37 (16)
O3—N2—C5—C4163.46 (19)C4—C5—C6—C70.5 (3)
O3—N2—C5—C617.2 (3)C5—C4—C9—C82.3 (3)
N1—C1—C4—C5162.03 (16)C5—C6—C7—C82.0 (3)
N1—C1—C4—C921.2 (2)C6—C7—C8—C91.3 (3)
N1—C2—C3—S124.8 (2)C7—C8—C9—C41.0 (3)
N1—C10—C11—C12179.86 (15)C9—C4—C5—N2179.17 (16)
N1—C10—C15—C14177.41 (15)C9—C4—C5—C61.6 (3)
N2—C5—C6—C7178.77 (17)C10—N1—C1—S1150.33 (13)
C1—S1—C3—C228.32 (15)C10—N1—C1—C491.31 (19)
C1—N1—C2—O1175.24 (18)C10—N1—C2—O18.7 (3)
C1—N1—C2—C35.3 (2)C10—N1—C2—C3171.82 (16)
C1—N1—C10—C1150.3 (2)C10—C11—C12—C1354.7 (2)
C1—N1—C10—C1574.9 (2)C11—C10—C15—C1456.0 (2)
C1—C4—C5—N24.0 (3)C11—C12—C13—C1454.6 (2)
C1—C4—C5—C6175.29 (17)C12—C13—C14—C1555.4 (3)
C1—C4—C9—C8174.68 (18)C13—C14—C15—C1056.6 (2)
C2—N1—C1—S116.23 (18)C15—C10—C11—C1254.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.653.411 (5)140
C15—H15B···O3ii0.972.663.437 (5)138
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z.
1-Cyclohexyl-2-(2-nitrophenyl)-1,3-thiazolidin-4-one 1,1-dioxide (2) top
Crystal data top
C15H18N2O5SZ = 2
Mr = 338.37F(000) = 356
Triclinic, P1Dx = 1.469 Mg m3
a = 7.114 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.401 (3) ÅCell parameters from 1021 reflections
c = 12.038 (3) Åθ = 2.6–25.0°
α = 94.808 (5)°µ = 0.24 mm1
β = 92.110 (5)°T = 100 K
γ = 107.198 (5)°Block, colorless
V = 764.8 (4) Å30.29 × 0.11 × 0.06 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube3475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 99
Tmin = 0.815, Tmax = 0.989k = 1212
9076 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4077P]
where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60965 (4)0.67214 (3)0.85449 (2)0.01180 (8)
O10.67190 (12)0.55058 (9)0.89218 (7)0.01731 (18)
O20.74722 (12)0.78778 (9)0.80246 (8)0.01862 (18)
O30.27805 (12)0.90586 (9)0.92007 (7)0.01539 (17)
O40.54722 (14)0.41291 (10)0.63921 (8)0.0228 (2)
O50.57817 (15)0.22722 (11)0.72569 (10)0.0296 (2)
N10.29029 (13)0.71982 (10)0.78749 (8)0.01082 (18)
N20.49472 (15)0.32058 (11)0.70700 (9)0.0170 (2)
C10.38198 (15)0.60257 (11)0.76329 (9)0.0105 (2)
H10.41470.59830.68320.013*
C20.34073 (16)0.80345 (12)0.88860 (9)0.0114 (2)
C30.49252 (16)0.75554 (12)0.95740 (9)0.0136 (2)
H3A0.42760.68271.00940.016*
H3B0.58810.84291.00070.016*
C40.26158 (16)0.44866 (12)0.79064 (9)0.0112 (2)
C50.31876 (16)0.31896 (12)0.76822 (9)0.0130 (2)
C60.21380 (18)0.18142 (13)0.80081 (10)0.0166 (2)
H60.25920.09680.78580.020*
C70.04245 (19)0.16798 (14)0.85541 (11)0.0198 (2)
H70.03180.07400.87730.024*
C80.01917 (18)0.29359 (14)0.87772 (10)0.0193 (2)
H80.13750.28500.91430.023*
C90.08976 (17)0.43194 (13)0.84728 (10)0.0146 (2)
H90.04640.51690.86540.018*
C100.18316 (16)0.76881 (12)0.69763 (9)0.0117 (2)
H100.11910.84080.73350.014*
C110.02037 (16)0.63935 (12)0.63537 (9)0.0137 (2)
H11A0.07430.58950.68860.016*
H11B0.07830.56470.59970.016*
C120.08705 (17)0.69932 (13)0.54591 (10)0.0167 (2)
H12A0.19030.61510.50430.020*
H12B0.15220.76880.58240.020*
C130.05666 (19)0.78087 (14)0.46475 (10)0.0190 (2)
H13A0.01500.82070.40900.023*
H13B0.11510.70980.42440.023*
C140.22021 (18)0.90929 (13)0.52708 (10)0.0188 (2)
H14A0.16270.98480.56180.023*
H14B0.31500.95820.47350.023*
C150.32904 (17)0.85282 (13)0.61788 (10)0.0156 (2)
H15A0.39840.78540.58270.019*
H15B0.42870.93870.66020.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00952 (13)0.01062 (13)0.01482 (14)0.00278 (9)0.00059 (9)0.00021 (9)
O10.0150 (4)0.0156 (4)0.0222 (4)0.0069 (3)0.0040 (3)0.0006 (3)
O20.0134 (4)0.0156 (4)0.0239 (4)0.0002 (3)0.0037 (3)0.0016 (3)
O30.0187 (4)0.0137 (4)0.0148 (4)0.0072 (3)0.0002 (3)0.0008 (3)
O40.0229 (4)0.0203 (4)0.0274 (5)0.0086 (4)0.0096 (4)0.0034 (4)
O50.0233 (5)0.0216 (5)0.0491 (6)0.0149 (4)0.0014 (4)0.0033 (4)
N10.0128 (4)0.0093 (4)0.0114 (4)0.0050 (3)0.0005 (3)0.0008 (3)
N20.0142 (4)0.0121 (4)0.0240 (5)0.0047 (4)0.0021 (4)0.0039 (4)
C10.0104 (4)0.0090 (5)0.0123 (5)0.0033 (4)0.0000 (4)0.0008 (4)
C20.0116 (5)0.0102 (5)0.0115 (5)0.0015 (4)0.0010 (4)0.0024 (4)
C30.0154 (5)0.0142 (5)0.0119 (5)0.0062 (4)0.0010 (4)0.0001 (4)
C40.0109 (5)0.0104 (5)0.0115 (5)0.0022 (4)0.0022 (4)0.0014 (4)
C50.0116 (5)0.0121 (5)0.0144 (5)0.0031 (4)0.0030 (4)0.0003 (4)
C60.0201 (5)0.0104 (5)0.0179 (5)0.0030 (4)0.0065 (4)0.0017 (4)
C70.0213 (6)0.0147 (5)0.0190 (6)0.0023 (4)0.0036 (4)0.0065 (4)
C80.0160 (5)0.0221 (6)0.0176 (6)0.0010 (4)0.0028 (4)0.0062 (5)
C90.0143 (5)0.0151 (5)0.0147 (5)0.0047 (4)0.0007 (4)0.0022 (4)
C100.0131 (5)0.0104 (5)0.0122 (5)0.0046 (4)0.0015 (4)0.0015 (4)
C110.0130 (5)0.0122 (5)0.0145 (5)0.0025 (4)0.0009 (4)0.0002 (4)
C120.0153 (5)0.0189 (5)0.0156 (5)0.0062 (4)0.0030 (4)0.0011 (4)
C130.0228 (6)0.0224 (6)0.0130 (5)0.0089 (5)0.0028 (4)0.0022 (4)
C140.0224 (6)0.0173 (5)0.0169 (5)0.0052 (5)0.0017 (4)0.0067 (4)
C150.0155 (5)0.0147 (5)0.0160 (5)0.0029 (4)0.0007 (4)0.0047 (4)
Geometric parameters (Å, º) top
S1—O11.4419 (9)C7—C81.3858 (18)
S1—O21.4360 (9)C8—H80.9500
S1—C11.8382 (12)C8—C91.3896 (16)
S1—C31.7729 (12)C9—H90.9500
O3—C21.2143 (14)C10—H101.0000
O4—N21.2281 (14)C10—C111.5276 (15)
O5—N21.2267 (14)C10—C151.5291 (16)
N1—C11.4527 (13)C11—H11A0.9900
N1—C21.3671 (14)C11—H11B0.9900
N1—C101.4810 (14)C11—C121.5354 (16)
N2—C51.4726 (15)C12—H12A0.9900
C1—H11.0000C12—H12B0.9900
C1—C41.5177 (15)C12—C131.5242 (17)
C2—C31.5294 (15)C13—H13A0.9900
C3—H3A0.9900C13—H13B0.9900
C3—H3B0.9900C13—C141.5257 (17)
C4—C51.4040 (15)C14—H14A0.9900
C4—C91.3963 (16)C14—H14B0.9900
C5—C61.3853 (16)C14—C151.5342 (16)
C6—H60.9500C15—H15A0.9900
C6—C71.3841 (18)C15—H15B0.9900
C7—H70.9500
O1—S1—C1111.35 (5)C9—C8—H8119.5
O1—S1—C3113.14 (6)C4—C9—H9119.3
O2—S1—O1119.26 (6)C8—C9—C4121.39 (11)
O2—S1—C1108.34 (5)C8—C9—H9119.3
O2—S1—C3109.11 (6)N1—C10—H10107.5
C3—S1—C192.26 (5)N1—C10—C11112.55 (9)
C1—N1—C10120.68 (9)N1—C10—C15109.90 (9)
C2—N1—C1117.45 (9)C11—C10—H10107.5
C2—N1—C10120.48 (9)C11—C10—C15111.61 (9)
O4—N2—C5118.45 (10)C15—C10—H10107.5
O5—N2—O4123.92 (11)C10—C11—H11A109.8
O5—N2—C5117.62 (11)C10—C11—H11B109.8
S1—C1—H1110.0C10—C11—C12109.49 (9)
N1—C1—S1101.36 (7)H11A—C11—H11B108.2
N1—C1—H1110.0C12—C11—H11A109.8
N1—C1—C4114.61 (9)C12—C11—H11B109.8
C4—C1—S1110.64 (7)C11—C12—H12A109.5
C4—C1—H1110.0C11—C12—H12B109.5
O3—C2—N1124.96 (10)H12A—C12—H12B108.1
O3—C2—C3123.40 (10)C13—C12—C11110.88 (10)
N1—C2—C3111.61 (9)C13—C12—H12A109.5
S1—C3—H3A111.1C13—C12—H12B109.5
S1—C3—H3B111.1C12—C13—H13A109.5
C2—C3—S1103.22 (8)C12—C13—H13B109.5
C2—C3—H3A111.1C12—C13—C14110.58 (10)
C2—C3—H3B111.1H13A—C13—H13B108.1
H3A—C3—H3B109.1C14—C13—H13A109.5
C5—C4—C1123.62 (10)C14—C13—H13B109.5
C9—C4—C1120.00 (10)C13—C14—H14A109.4
C9—C4—C5116.27 (10)C13—C14—H14B109.4
C4—C5—N2121.73 (10)C13—C14—C15111.06 (10)
C6—C5—N2115.57 (10)H14A—C14—H14B108.0
C6—C5—C4122.70 (11)C15—C14—H14A109.4
C5—C6—H6120.2C15—C14—H14B109.4
C7—C6—C5119.66 (11)C10—C15—C14110.26 (10)
C7—C6—H6120.2C10—C15—H15A109.6
C6—C7—H7120.5C10—C15—H15B109.6
C6—C7—C8119.05 (11)C14—C15—H15A109.6
C8—C7—H7120.5C14—C15—H15B109.6
C7—C8—H8119.5H15A—C15—H15B108.1
C7—C8—C9120.90 (12)
S1—C1—C4—C569.60 (12)C1—C4—C5—C6175.39 (10)
S1—C1—C4—C9106.31 (10)C1—C4—C9—C8177.24 (10)
O1—S1—C1—N1148.94 (7)C2—N1—C1—S124.61 (11)
O1—S1—C1—C426.96 (9)C2—N1—C1—C494.57 (11)
O1—S1—C3—C2147.19 (7)C2—N1—C10—C11138.49 (10)
O2—S1—C1—N178.01 (8)C2—N1—C10—C1596.45 (12)
O2—S1—C1—C4160.01 (7)C3—S1—C1—N132.98 (7)
O2—S1—C3—C277.52 (8)C3—S1—C1—C488.99 (8)
O3—C2—C3—S1153.99 (9)C4—C5—C6—C71.63 (17)
O4—N2—C5—C428.26 (16)C5—C4—C9—C81.03 (16)
O4—N2—C5—C6151.15 (11)C5—C6—C7—C80.87 (17)
O5—N2—C5—C4152.98 (11)C6—C7—C8—C90.79 (18)
O5—N2—C5—C627.60 (15)C7—C8—C9—C41.78 (18)
N1—C1—C4—C5176.56 (10)C9—C4—C5—N2178.71 (10)
N1—C1—C4—C97.52 (14)C9—C4—C5—C60.67 (16)
N1—C2—C3—S124.31 (11)C10—N1—C1—S1141.97 (8)
N1—C10—C11—C12178.54 (9)C10—N1—C1—C498.85 (11)
N1—C10—C15—C14177.81 (9)C10—N1—C2—O312.62 (16)
N2—C5—C6—C7177.78 (10)C10—N1—C2—C3165.64 (9)
C1—S1—C3—C232.79 (8)C10—C11—C12—C1357.68 (12)
C1—N1—C2—O3179.23 (10)C11—C10—C15—C1456.59 (12)
C1—N1—C2—C30.97 (13)C11—C12—C13—C1457.84 (13)
C1—N1—C10—C1155.34 (13)C12—C13—C14—C1556.73 (13)
C1—N1—C10—C1569.72 (12)C13—C14—C15—C1055.78 (13)
C1—C4—C5—N25.23 (16)C15—C10—C11—C1257.33 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.992.513.4594 (16)161
C3—H3B···O3ii0.992.373.3068 (16)157
C9—H9···O1iii0.952.803.5144 (16)133
C10—H10···O2iii1.002.723.4381 (16)129
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x1, y, z.
 

Funding information

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer at The Pennsylvania State University, University Park campus.

References

First citationAbdel Rahman, R. M., El Gendy, Z. & Mahmoud, M. B. (1990). J. Indian Chem. Soc. 67, 61.  Google Scholar
First citationAbhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64.  CAS Google Scholar
First citationBrown, F. (1961). Chem. Rev. 61, 463–521.  CrossRef Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannon, K. C., Gandla, D., Lauro, S., Silverberg, L. J., Tierney, J. & Lagalante, A. (2015). Int. J. Chem. 7, 73–84.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErlenmeyer, H. & Oberlin, V. (1947). Helv. Chim. Acta, 30, 1329–1335.  CrossRef PubMed Web of Science Google Scholar
First citationGlasl, D., Otto, H. & Rihs, G. (1997). Helv. Chim. Acta, 80, 671–683.  CrossRef Google Scholar
First citationHamama, W. S., Ismail, M. A., Shaaban, S. & Zoorob, H. H. (2008). J. Het. Chem. 45, 939–956.  CrossRef Google Scholar
First citationJain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. A. (2012). Bioorg. Med. Chem. 20, 3378–3395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJoshi, A., Anderson, C., Binch, H., Hadida, S., Yoo, S., Bergeron, D., Decker, C., terHaar, E., Moore, J., Garcia-Guzman, M. & Termin, A. (2014). Bioorg. Med. Chem. Lett. 24, 845–849.  CrossRef PubMed Google Scholar
First citationKaushal, M. & Kaur, A. (2016). World J. Pharm. Res. 5, 1966–1977.  Google Scholar
First citationKumar, D., Kumar, V., Mundlia, J., Pradhan, D. & Malik, S. (2015). Cent. Nerv. Syst. Agent. Med. Chem. 15, 23–27.  CrossRef Google Scholar
First citationNuriye, A., Yennawar, H., Cannon, K. & Tierney, J. (2018). Acta Cryst. E74, 1509–1512.  CrossRef IUCr Journals Google Scholar
First citationOrsini, F., Bombieri, G., Benetollo, F., Vigorita, M. G. & Previtera, T. (1995). J. Chem. Crystallogr. 25, 589–595.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S. P., Parmar, S. S., Raman, R. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.  CrossRef CAS Web of Science Google Scholar
First citationSurrey, A. R. (1947). J. Am. Chem. Soc. 69, 2911–2912.  CrossRef PubMed Web of Science Google Scholar
First citationSuryawanshi, R., Jadhav, S., Makwana, N., Desai, D., Chaturbhuj, D., Sonawani, A., Idicula-Thomas, S., Murugesan, V., Katti, S. B., Tripathy, S., Paranjape, R. & Kulkarni, S. (2017). Bioorg. Chem. 71, 211–218.  CrossRef PubMed Google Scholar
First citationThakare, M. P., Shaikh, R. & Tayade, D. (2018). Heterocycl. Lett. 8, 493–506.  Google Scholar
First citationTripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52–77.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). Acta Cryst. E71, 264–267.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds