research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A 1:2 co-crystal of 2,2′-thiodi­benzoic acid and tri­phenyl­phosphane oxide: crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: alant@sunway.edu.my, edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 October 2018; accepted 31 October 2018; online 9 November 2018)

The asymmetric unit of the title co-crystal, 2,2′-thiodi­benzoic acid–tri­phenyl­phosphane oxide (1/2), C14H10O4S·2C18H15OP, comprises two mol­ecules of 2,2′-thiodi­benzoic acid [TDBA; systematic name: 2-[(2-carb­oxy­phen­yl)sulfan­yl]benzoic acid] and four mol­ecules of tri­phenyl­phosphane oxide [TPPO; systematic name: (di­phenyl­phosphor­yl)benzene]. The two TDBA mol­ecules are twisted about their di­sulfide bonds and exhibit dihedral angles of 74.40 (5) and 72.58 (5)° between the planes through the two SC6H4 residues. The carb­oxy­lic acid groups are tilted out of the planes of the rings to which they are attached forming a range of CO2/C6 dihedral angles of 19.87 (6)–60.43 (8)°. Minor conformational changes are exhibited in the TPPO mol­ecules with the range of dihedral angles between phenyl rings being −2.1 (1) to −62.8 (1)°. In the mol­ecular packing, each TDBA acid mol­ecule bridges two TPPO mol­ecules via hy­droxy-O—H⋯O(oxide) hydrogen bonds to form two three-mol­ecule aggregates. These are connected into a three-dimensional architecture by TPPO-C—H⋯O(oxide, carbon­yl) and TDBA-C—H⋯(oxide, carbon­yl) inter­actions. The importance of H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts to the calculated Hirshfeld surfaces has been demonstrated. In terms of individual mol­ecules, O⋯H/H⋯O contacts are more important for the TDBA (ca 28%) than for the TPPO mol­ecules (ca 13%), as expected from the chemical composition of these species. Computational chemistry indicates the four independent hy­droxy-O—H⋯O(oxide) hydrogen bonds in the crystal impart about the same energy (ca 52 kJ mol−1), with DTBA-phenyl-C—H⋯O(oxide) inter­actions being next most stabilizing (ca 40 kJ mol−1).

1. Chemical context

2-Thio­salicylic acid, also known as 2-mercapto­benzoic acid, being an analogue to salicylic acid, has many applications. In medicine, is dianion is found in the salt Na[EtHg(SC6H4CO2)], which displays anti-fungal and anti-septic activities (Bigham & Copes, 2005[Bigham, M. & Copes, R. (2005). Drug Saf. 28, 89-101.]). Other uses include as anti-corrosion agents (Chien et al., 2012[Chien, C. W., Liu, C. L., Chen, F. J., Lin, K. H. & Lin, C. S. (2012). Electrochim. Acta, 72, 74-80.]), as reactive agents or modifiers for nanoparticles and electrochemical sensing (Cang et al., 2017[Cang, J., Wang, C.-W., Chen, P.-C., Lin, Y.-J., Li, Y.-C. & Chang, H.-T. (2017). Anal. Methods 9, 5254-5259.]; Sikarwar et al., 2014[Sikarwar, B., Sharma, P. K., Srivastava, A., Agarwal, G. S., Boopathi, M., Singh, B. & Jaiswal, Y. K. (2014). Biosens. Bioelectron. 60, 201-209.]), as catalysts for organic syntheses (Yang et al., 2018[Yang, Q.-Q., Xiao, W., Du, W., Ouyang, Q. & Chen, Y.-C. (2018). Chem. Commun. 54, 1129-1132.]; Selig & Miller, 2011[Selig, P. S. & Miller, S. J. (2011). Tetrahedron Lett. 52, 2148-2151.]) as well as being the precursor for some anti-viral and anti-microbial agents (Saha et al., 2017[Saha, M., Scerba, M. T., Shank, N. I., Hartman, T. L., Buchholz, C. A., Buckheit, R. W. Jr, Durell, S. R. & Appella, D. H. (2017). ChemMedChem, 12, 714-721.]). The compound readily coordinates a wide variety of metals, in both neutral and anionic form, due to the presence of both hard (oxygen) and soft (sulfur) donor atoms and exhibits different modes of coordination. Very recent reviews of the coordination chemistry of 2-thio­salicylic acid (Wehr-Candler & Henderson, 2016[Wehr-Candler, T. & Henderson, W. (2016). Coord. Chem. Rev. 313, 111-155.]) and the isomeric 3- and 4-species (Tiekink & Henderson, 2017[Tiekink, E. R. T. & Henderson, W. (2017). Coord. Chem. Rev. 341, 19-52.]) are available. However, a restriction in the chemistry of this mol­ecule is found as it can undergo various pH-dependent transformations, i.e. it remains intact in acidic condition but may be oxidized to form 2,2′-di­thiodi­benzoic acid at neutral pH. For example and relevant to the present contribution, are studies of co-crystal formation between 2-thio­salicylic acid and bipyridyl-type mol­ecules (Broker & Tiekink, 2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]) whereby 2-thio­salicylic acid was oxidized to 2,2′-di­thiodi­benzoic acid during co-crystallization. During attempts to react 2-thio­salicylic acid with copper(I) chloride in the presence of two equivalents of tri­phenyl­phosphane, motivated by the desire to prepare analogues of phosphanecopper(I) di­thio­carbamate derivatives which exhibit promising anti-bacterial activity (Jamaludin et al., 2016[Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341-349.]), the title co-crystal was isolated, i.e. the 1:2 co-crystal of 2,2′-thiodi­benzoic acid and tri­phenyl­phosphane oxide (I)[link]. Unexpectedly, both organic reagents were found to have oxidized in the presence of copper(I) chloride in aceto­nitrile solution under neutral conditions. While the actual mechanism remains unclear, a very recent study describes related synthetic outcomes (Gorobet et al., 2018[Gorobet, A., Vitiu, A., Petuhov, O. & Croitor, L. (2018). Polyhedron, 151, 51-57.]). Herein, the crystal and mol­ecular structures, the analysis of the calculated Hirshfeld surface and calculation of the inter­action energies through a computational approach for (I)[link] are described.

[Scheme 1]

2. Structural commentary

X-ray crystallography reveals the title co-crystal to comprise 2,2′-thiodi­benzoic acid (TDBA) and tri­phenyl­phosphane oxide (TPPO) in the ratio 1:2, but with two independent TDBA mol­ecules, Fig. 1[link], and four independent TPPO mol­ecules, Fig. 2[link], in the asymmetric unit.

[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules of 2,2′-thiodi­benzoic acid in the asymmetric unit of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2]
Figure 2
The mol­ecular structures of the four independent mol­ecules of tri­phenyl­phosphane oxide in the asymmetric unit of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Each TDBA mol­ecule comprises two benzoic acid residues connected in the 2-positions by a sulfur bridge. The confirmation of the presence of carb­oxy­lic acid groups is readily seen in the disparity in the C—O(hy­droxy) and C=O(carbon­yl) bond lengths with the minimum difference seen for the C100=O11 and C100—O12 bonds of 1.3126 (15) and 1.2075 (16) Å, respectively. As expected, the thio­phenyl residues are almost planar with the maximum r.m.s. deviation of 0.053 Å being found for the S1,C80–C85 atoms. The thio­phenyl rings are deviated from the perfect perpendicular bis­ector with dihedral angles of 74.40 (5) and 72.58 (5)° for the S1- and S2-mol­ecules, respectively. Finally, the O6-, O8-, O10- and O12- carb­oxy­lic acid groups are tilted from the phenyl rings they are connected to by 60.43 (8), 24.24 (7), 19.87 (6) and 45.78 (7)°, respectively. That there are no major conformational differences between the mol­ecules is evidenced from the overlay diagram of Fig. 3[link] (r.m.s. deviation = 0.118 Å).

[Figure 3]
Figure 3
An overlay diagram of the two independent mol­ecules of 2,2′-thiodi­benzoic, with S1-mol­ecule (purple) and S2-mol­ecule (light-blue) superimposed so that a pair thio­phenyl moieties are coincident.

The mol­ecular structures of the TPPO coformers are more rigid. This is seen in the O—P—C—C torsion angles, which range from 17.7 (1) to 61.6 (1), 19.8 (1) to 61.5 (1), −2.1 (1) to −62.8 (1) and −19.2 (1) to −44.5 (1)° for the P1–P4-mol­ecules, respectively. In the same way, the P=O bond lengths span an experimentally equivalent range, i.e. 1.4975 (8) [P4=O4] to 1.5018 (8) Å [P1=O1].

3. Supra­molecular features

Geometric parameters characterizing the identified (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) inter­atomic contacts in the crystal of (I)[link] are given in Table 1[link]. The most prominent feature of the mol­ecular packing is the formation of hy­droxy-O—H⋯O(oxide) hydrogen bonds. These occur so that each mol­ecule of 2,2′-thiodi­benzoic acid (TDBA) links two tri­phenyl­phosphane oxide (TPPO) mol­ecules to form a pair of three-mol­ecule aggregates with a 13-membered, linear {O⋯HOC3SC3OH⋯O} heterosynthon as illustrated in Fig. 4[link]. These aggregates are connected into a three-dimensional architecture by a large number of C—H⋯O inter­actions. Two of these contacts, i.e. TPPO-C47—H⋯O11(carbon­yl) and TPPO-C71—H⋯O5(carbon­yl), operate in concert with hy­droxy-O12—H⋯O3(oxide) and hy­droxy-O6—H⋯O4(oxide) hydrogen bonds, respectively, to close a nine-membered {HC2PO⋯HOCO⋯} synthon. The C—H⋯O contacts are of the type TPPO-C—H⋯O(oxide, carbon­yl) and TDBA-C—H⋯O(oxide, carbon­yl), Table 1[link]. In addition to participating in hy­droxy-O—H⋯O(oxide) hydrogen bonds, each of the O1–O3 atoms of TPPO form an additional C—H⋯O(oxide) contact whereas the O4 atom participates in two such inter­actions. One carbonyl group of each TDBA mol­ecule, i.e. the O5 and O11 atoms, participates in two C—H⋯O(carbon­yl) inter­actions, leaving no formal role for the carbonyl-O7 and O9 atoms in the mol­ecular packing. A view of the unit-cell contents is shown in Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O4 0.95 (2) 1.66 (2) 2.6070 (12) 171 (2)
O8—H8O⋯O1i 0.90 (2) 1.70 (2) 2.5763 (12) 163 (2)
O10—H10O⋯O2ii 0.91 (2) 1.72 (2) 2.6077 (12) 163 (2)
O12—H12O⋯O3iii 0.90 (2) 1.71 (2) 2.5978 (12) 170.9 (19)
C16—H16⋯O4 0.93 2.53 3.3333 (15) 144
C44—H44⋯O4iv 0.93 2.43 3.2404 (17) 145
C52—H52⋯O11v 0.93 2.49 3.3231 (16) 149
C62—H62⋯O11i 0.93 2.51 3.367 (2) 153
C64—H64⋯O5vi 0.93 2.46 3.263 (2) 144
C68—H68⋯O3vi 0.93 2.55 3.2747 (17) 135
C71—H71⋯O5 0.93 2.59 3.2765 (18) 131
C75—H75⋯O2i 0.93 2.41 3.1184 (16) 133
C96—H96⋯O1 0.93 2.49 3.1832 (15) 132
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
The two three-mol­ecule aggregates in the crystal of (I)[link]. The hy­droxy-O—H⋯O(oxide) hydrogen bonds are shown as red dashed lines. Colour code: S1-containing mol­ecule, purple; S2, red; P1, green; P2, blue; P3, yellow; P4, light-blue.
[Figure 5]
Figure 5
A view of the unit-cell contents shown in projection down the a axis. The mol­ecules are colour-coded as for Fig. 4[link].

In terms of distinguishing between mol­ecules based on inter­molecular contacts, the carbonyl-O5 atom of DTBA accepts C—H⋯O inter­actions from phenyl rings derived from TPPO and DTBA, whereas the carbonyl-O11 atom accepts contacts from TPPO only. The DPPO-O4 atom is distinct from the O1–O3 atoms based on the number of inter­actions it forms. In common with the O4 atom, O3 accepts a C—H⋯O inter­action from TPPO, whereas each of the O1 and O2 participates in DTBA-C—H⋯O contacts.

4. Hirshfeld surface analysis

The independent 2,2′-thiodi­benzoic acid (TDBA) and tri­phenyl­phosphane oxide (TPPO) mol­ecules of (I)[link] were subjected to Hirshfeld surface analysis following a literature precedent on a multi-component crystal (Jotani et al., 2018[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2018). Z. Kristallogr. Cryst. Mat. doi: https://doi. org/10.1515/zkri-2018-2101.]) to further understand the nature of the inter­molecular inter­actions in the crystal. As shown in Fig. 6[link](a)–(f), the pair of TDBA-S1 and -S2 mol­ecules, shown with the respective pairs of hydrogen bonded TPPO mol­ecules, as well as the TPPO-P1–P4 mol­ecules exhibit some similarities especially on the prominent close contacts as represented by the intense red regions on the corresponding dnorm surface mappings, which are mainly dominated by hydroxy-O—H⋯O(oxide) inter­actions.

[Figure 6]
Figure 6
Views of the Hirshfeld surfaces mapped over dnorm for components of (I)[link] for the: (a) S1-DTBA mol­ecule hydrogen bonded (red dashed lines) to the P1- (left) and P4-TPPO mol­ecules, (b) P1-TPPO, (c) P4-TPPO, (d) S2-DTBA mol­ecule hydrogen bonded to the P2- (left) and P3-TPPO mol­ecules, (e) P2-TPPO and (f) P3-TPPO. The surfaces in (a)–(c) are mapped over the range −0.766 to 1.446 a.u., and those in (d)–(f) over the range −0.766 to 1.563 a.u.

Upon close inspection on the surface mapping, minor differences are observed between the pair of TDBA mol­ecules. Specifically, a diminutive red spot is observed near one of the terminal carb­oxy­lic groups of the S1-mol­ecule arising from a TPPO-phenyl-C—H⋯O(carbonyl) inter­action but, no such contact is apparent for the S2-mol­ecule. As for the two pairs of TPPO mol­ecules, the significant difference between the TPPO-P1 and -P4 mol­ecules, linked to S1-DTBA, and the TPPO-P2 and P3 mol­ecules, linked to the S2-TDBA, is the presence of additional red spots on the surface mapping of the phenyl rings for P1- and P2-mol­ecules in contrast to their P3- and P4-containing counterparts. This difference may be attributed to the complementary phenyl-C—H⋯π(phen­yl) inter­actions between centrosymmetrically-related mol­ecules, as illustrated in Fig. 7[link] and tabulated in Table 2[link]. Here, the inter­acting H10 and H28 atoms are directed towards two carbon atoms of a symmetry-related ring so that the inter­actions are best described as being semi-localized as opposed to delocalized, which corresponds to the situation where the inter­acting hydrogen atom is equally separated from all six carbon atoms of the ring (Schollmeyer et al., 2008[Schollmeyer, D., Shishkin, O. V., Rühl, T. & Vysotsky, M. O. (2008). CrystEngComm, 10, 715-723.]).

Table 2
Summary of short C⋯H inter­atomic contacts (Å) in (I)

Contact Separation Symmetry operation
C13⋯H10 2.80 1 − x, 1 − y, 1 − z
C14⋯H10 2.84 1 − x, 1 − y, 1 − z
C35⋯H28 2.77 -x, 1 − y, −z
C34⋯H28 2.94 -x, 1 − y, −z
[Figure 7]
Figure 7
Different views of the Hirshfeld surfaces mapped over electrostatic potential for the centrosymmetrically related mol­ecules of TPPO inter­acting via semi-localized phenyl-C—H⋯π(phen­yl) inter­actions: (a) P1-TPPO, in the range of −0.100 to 0.041 a.u. and (b) P2-TPPO mol­ecules (−0.100 to 0.041 a.u.).

Qu­anti­tative evaluation of the Hirshfeld surfaces by the combination of the di and de (i is inter­nal and e is external to the surface) contact distances in inter­vals of 0.01 Å gives the overall two-dimensional fingerprint plots for the entire asymmetric unit of (I)[link], Fig. 8[link](a), and each of the individual TDBA, Fig. 9[link](a), and TPPO, Fig. 10[link](a), mol­ecules. Further, these can be delineated into specific contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and Figs. 9[link]–10[link](b)–(d) give fingerprint plots delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts. The relative contributions of these contacts to the surfaces is given in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link] and for the the individual TDBA and DPPO mol­ecules

Contact Percentage contribution
  overall S1-TDBA S2-TDBA P1-DPPO P2-DPPO P3-DPPO P4-DPPO
H⋯H 49.4 42.3 40.7 49.8 49.6 49.7 51.4
O⋯H/H⋯O 13.7 28.1 28.1 14.1 13.6 11.7 12.7
C⋯H/H⋯C 30.1 21.9 23.4 30.2 30.9 33.4 31.3
[Figure 8]
Figure 8
(a) The full two-dimensional fingerprint plot for (I)[link] and (b)–(d) those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts, respectively.
[Figure 9]
Figure 9
(a) The full two-dimensional fingerprint plot for the two independent TDBA mol­ecules in (I)[link] and (b)–(d) those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts, respectively.
[Figure 10]
Figure 10
(a) The full two-dimensional fingerprint plot for the four independent TPPO mol­ecules in (I)[link] and (b)–(d) those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts, respectively.

The overall fingerprint plot for (I)[link], Fig. 8[link]a, is quite different for the individual components, Figs. 9[link]–10[link]a, as the former is a sum of all the individual surface contacts, which differ for the individual mol­ecules. As expected, the same is true for the corresponding decomposed fingerprint plots. The major contribution to the overall surface of (I)[link], i.e. 49.4%, comes from H⋯H contacts. The O⋯H/H⋯O contacts (de + di ∼ 2.34 Å) make a significant contribution at 13.7%, while the C⋯H/H⋯C inter­actions (de + di ∼ 2.66 Å), at 30.1%, play a more prominent role.

The formation of the 13-membered {O⋯HOC3SC3OH⋯O} heterosynthon, Fig. 4[link], is clearly reflected in the corresponding full fingerprint plots of the individual mol­ecules Figs. 9[link]–10[link](a), which exhibit an almost identical claw-like fingerprint profile but arranged in the exact reverse order, i.e. Fig. 9[link](a) cf. Fig. 10[link](a). Among all the close inter­actions, H⋯H contacts, Figs. 8[link]–9[link]b, represent the dominant inter­actions to the individual surfaces, i.e. 41–42% for the TDBA mol­ecules and 49–51% for the DPPO mol­ecules, and exhibit de + di contact distances ranging from 2.24 to 2.38 Å which is very close to the sum of van der Waals radii of 2.4 Å.

The O⋯H hydrogen bonds constitute the strongest among all inter­actions present in the co-crystal and lead to formation of asymmetric, forceps-like profiles in the corresponding decomposed fingerprint plots, Figs. 9[link]–10[link](c). These feature two tips – one at relatively short de + di ∼1.6 Å that can be attributed to the hydroxy-H⋯O(oxide) hydrogen bonds for the S1- and S2-TDBA mol­ecules, Fig. 10[link](c), or oxide-O⋯H(hydrox­y) hydrogen bonds for P1–P4-TPPO. The other tip has a relatively long de + di value of ∼2.4 Å and arises as a result of hy­droxy-O⋯H(phen­yl) contacts for S1- and S2-TDBA or phenyl-H⋯O(hydrox­y) for P1–P4-TPPO. The O⋯H/H⋯O contacts constitute the second most dominant inter­actions for the TDBA mol­ecules and third most for the TPPO mol­ecules, Table 3[link].

Similar to the H⋯H contacts, the C⋯H/H⋯C inter­actions contribute weakly to the mol­ecular packing of the co-crystal as evidenced from the de + di distance range of 2.7–2.8 Å, i.e. close to the sum of van der Waals radii of 2.9 Å, despite the contacts constituting the third most dominant inter­action in the TDBA mol­ecules (ca 22%) and being the second most dominant for the TPPO mol­ecules (ca 32%). An exception to the trend is found for the P1- and P2-TPPO mol­ecules, which display relatively short contact distances at ca 2.6 Å owing to the formation of C—H⋯π inter­actions as discussed above.

In summary the Hirshfeld surface analysis on (I)[link], with six individual constituents, was able to distinguish between these in terms of different inter­molecular inter­actions, akin to the recently reported analysis of a structure with four independent cation/anion pairs (Jotani et al., 2018[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2018). Z. Kristallogr. Cryst. Mat. doi: https://doi. org/10.1515/zkri-2018-2101.]).

5. Computational study

The co-crystal was subjected to inter­molecular inter­action energy calculations using CE-B3LYP/6-31G(d,p) available in Crystal Explorer (version 17; Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), with the crystal geometry being used as the input but, with hydrogen-atom positions normalized to the standard neutron diffraction values. By default, a cluster of mol­ecules (defined as density matrices) would need to be generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule (density matrix) within the radius of 3.8 Å for inter­action energy calculation (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). However, as the co-crystal contains multiple independent mol­ecules in the asymmetric unit, a cluster of mol­ecules was first generated surrounding the S1-mol­ecule of TDBA for the calculation and then the procedure was repeated for the cluster of mol­ecules surrounding the S2-mol­ecule. The total inter­molecular energy is the sum of energies of four main components comprising electrostatic, polarization, dispersion and exchange-repulsion with a scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]).

Selected results obtained from the inter­action energy calculations involving the DTBA mol­ecules as reference mol­ecules are tabulated in Table 4[link] and the environment about the S1-mol­ecule of TDBA is shown in Fig. 11[link]. As expected, O—H⋯O hydrogen bonding inter­actions give the greatest energies among the close contacts present in the crystal. The total inter­molecular energy (Etot) of the hy­droxy-O—H⋯O(oxide) hydrogen bonds is consistent across the series and lies in the range −50.7 to −53.3 kJ mol−1. The other close contacts which exerts a relatively strong influence in the energy frameworks of the co-crystal are DTBA-phenyl-C—H⋯O(oxide) inter­actions, with the Etot amounting of ca −40 kJ mol−1, Table 4[link].

Table 4
Inter­action energies (kJ mol−1) for selected close contacts

contact Eelectrostatic Epolarization Edispersion Eexchange-repulsion Etotal Symmetry operation
O6—H6O⋯O4 −76.5 −19.4 −17.8 95.2 −52.0 x, y, z
O8—H8O⋯O1 −72.8 −19.2 −14.9 82.3 −53.3 1 + x, y, z
O10—H10O⋯O2 −70.5 −18.3 −16.4 83.8 −50.7 1 + x, y, 1 + z
O12—H12O⋯O3 −72.3 −19.2 −13.9 81.2 −52.5 x, y, 1 + z
C75—H75⋯O2 −16.8 −6.6 −41.6 29.8 −40.4 1 + x, y, z
C96—H96⋯O1 −15.2 −6.1 −42.0 27.9 −40.0 x, y, z
[Figure 11]
Figure 11
The inter­action energy framework about the S1-mol­ecule of DTBA (indicated by an asterisk) viewed along the b-axis direction.

6. Database survey

The only other structure of 2,2′-thiodi­benzoic acid in the literature is that of the pure compound (Dai et al., 2005[Dai, Y.-M., Huang, J.-F. & Shen, H.-Y. (2005). Acta Cryst. E61, o3182-o3183.]). While this presents essentially the same features as for the two independent mol­ecules in (I)[link], the dihedral angle between the thio­phenyl rings is up to 4° smaller at 68.0 (2)°, and the tilts of the carb­oxy­lic acid groups are less pronounced at 6.9 (5) and 29.8 (5)°.

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), revealed 110 mol­ecules of (non-coordinated) tri­phenyl­phosphane oxide. A plot of the retrieved P=O bond lengths is shown in Fig. 12[link]. The mean value found for the P=O bond length is 1.494 Å with a standard deviation of 0.008 Å, with the minimum and maximum bond lengths being 1.478 (3) and 1.530 (7) Å, found in the multi-component structures of NUCHIC (Okawa et al., 1997[Okawa, T., Osakada, N., Eguchi, S. & Kakehi, A. (1997). Tetrahedron, 53, 16061-16082.]) and DUYXUQ (Arens et al., 1986[Arens, G., Sundermeyer, W. & Pritzkow, H. (1986). Chem. Ber. 119, 3631-3638.]), respectively. In the latter structure, charge-assisted hydrogen bonds are formed between Ph3P=O and Ph3P=O(+)H. The observed P=O bond lengths in (I)[link], i.e. in the range 1.4975 (8) to 1.5018 (8) Å are at the lower end of the range of such bonds.

[Figure 12]
Figure 12
Statistical data on the P=O bond lengths as calculated by Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.])

7. Synthesis and crystallization

All chemical precursors were of reagent grade and used as received without purification. Thio­salicylic acid (Merck; 0.154 g, 0.001 mol) and tri­phenyl­phosphane (Merck; 0.262 g, 0.002 mol) were dissolved in aceto­nitrile (40 ml) and the mixture subsequently added into an aceto­nitrile solution (25 ml) of copper(I) iodide (Merck; 0.19 g, 0.001 mol). The reaction mixture was stirred for 1 h at room temperature before the white product was filtered, washed with cold ethanol and dried in vacuo. The filtrate was left at room temperature, yielding colourless prisms after 1 week; Yield 74%. M.p. 457.7–459.2 K. IR (cm−1): 3062 ν(C—H), 1693 ν(COO), 1236 ν(P=O), 1116 ν(P—Ar), 719 δ(P—C), 617 ν(C—S).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The oxygen-bound H atoms were located from difference Fourier maps and refined without constraint. Owing to poor agreement, three reflections, i.e. ([\overline{1}] 5 9), ([\overline{3}] 15 3) and ([\overline{5}] 7 9), were omitted from the final cycles of refinement.

Table 5
Experimental details

Crystal data
Chemical formula 4C18H15OP·2C14H10O4S
Mr 1661.64
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.7085 (1), 41.9751 (2), 18.9268 (1)
β (°) 101.490 (1)
V3) 8336.92 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.83
Crystal size (mm) 0.17 × 0.16 × 0.09
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.])
Tmin, Tmax 0.653, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 94929, 17036, 15740
Rint 0.025
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.04
No. of reflections 17036
No. of parameters 1079
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.55
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[(2-Carboxyphenyl)sulfanyl]benzoic acid–(diphenylphosphoryl)benzene (1/2) top
Crystal data top
4C18H15OP·2C14H10O4SF(000) = 3472
Mr = 1661.64Dx = 1.324 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.7085 (1) ÅCell parameters from 52739 reflections
b = 41.9751 (2) Åθ = 4.2–75.9°
c = 18.9268 (1) ŵ = 1.83 mm1
β = 101.490 (1)°T = 100 K
V = 8336.92 (10) Å3Prism, colourless
Z = 40.17 × 0.16 × 0.09 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
17036 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source15740 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 5.2558 pixels mm-1θmax = 76.2°, θmin = 3.2°
ω scansh = 1313
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
k = 4952
Tmin = 0.653, Tmax = 1.000l = 2323
94929 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0481P)2 + 3.5049P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
17036 reflectionsΔρmax = 0.42 e Å3
1079 parametersΔρmin = 0.55 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86876 (3)0.60239 (2)0.45382 (2)0.01933 (7)
O50.66647 (18)0.68394 (3)0.41031 (6)0.0653 (5)
O60.63653 (11)0.64495 (2)0.48314 (5)0.0298 (2)
H6O0.644 (2)0.6616 (5)0.5178 (12)0.064 (7)*
O71.05664 (8)0.58755 (2)0.57331 (5)0.02348 (19)
O81.25159 (9)0.57343 (2)0.55791 (5)0.0250 (2)
H8O1.261 (2)0.5646 (5)0.6020 (12)0.059 (6)*
C730.57062 (11)0.63409 (3)0.30175 (6)0.0189 (2)
H730.5105040.6503460.2968610.023*
C740.56910 (12)0.61279 (3)0.24561 (7)0.0208 (2)
H740.5078920.6146470.2034160.025*
C750.65935 (13)0.58870 (3)0.25272 (7)0.0231 (3)
H750.6590190.5744530.2150580.028*
C760.75002 (12)0.58580 (3)0.31576 (7)0.0227 (3)
H760.8097790.5694670.3202150.027*
C770.75263 (11)0.60713 (3)0.37271 (6)0.0180 (2)
C780.66130 (11)0.63139 (3)0.36547 (6)0.0161 (2)
C790.65763 (12)0.65610 (3)0.42226 (6)0.0198 (2)
C801.01153 (11)0.61285 (3)0.42513 (6)0.0167 (2)
C811.01083 (13)0.62905 (3)0.36024 (7)0.0234 (3)
H810.9334780.6337230.3299070.028*
C821.12341 (14)0.63818 (4)0.34059 (8)0.0297 (3)
H821.1205950.6488920.2972810.036*
C831.24037 (13)0.63157 (4)0.38468 (8)0.0294 (3)
H831.3156810.6381620.3717820.035*
C841.24298 (12)0.61502 (3)0.44811 (7)0.0232 (3)
H841.3210380.6100790.4774250.028*
C851.13031 (11)0.60555 (3)0.46905 (6)0.0168 (2)
C861.14015 (11)0.58810 (3)0.53863 (6)0.0170 (2)
S20.36308 (3)0.60471 (2)0.95618 (2)0.01877 (7)
O90.56354 (8)0.58971 (2)1.06759 (4)0.02008 (18)
O100.75481 (8)0.57505 (2)1.04690 (5)0.02276 (19)
H10O0.766 (2)0.5668 (5)1.0924 (12)0.060 (6)*
O110.12548 (13)0.68518 (2)0.90397 (5)0.0423 (3)
O120.15116 (10)0.64745 (2)0.98809 (5)0.0254 (2)
H12O0.1545 (18)0.6638 (5)1.0188 (11)0.045 (5)*
C870.48876 (12)0.62911 (3)0.85303 (6)0.0184 (2)
H870.4085510.6347620.8272780.022*
C880.59558 (13)0.63654 (3)0.82546 (7)0.0231 (3)
H880.5863770.6472890.7817550.028*
C890.71638 (13)0.62809 (3)0.86246 (7)0.0253 (3)
H890.7879950.6329860.8436990.030*
C900.72868 (12)0.61226 (3)0.92771 (7)0.0213 (2)
H900.8093470.6064530.9525450.026*
C910.62200 (11)0.60484 (3)0.95702 (6)0.0154 (2)
C920.49939 (11)0.61319 (3)0.91922 (6)0.0151 (2)
C930.64177 (11)0.58925 (3)1.02911 (6)0.0160 (2)
C940.24038 (11)0.60750 (3)0.87723 (6)0.0179 (2)
C950.23738 (12)0.58484 (3)0.82279 (7)0.0225 (3)
H950.2974620.5685540.8289320.027*
C960.14576 (12)0.58636 (3)0.75969 (7)0.0234 (3)
H960.1450140.5712140.7237450.028*
C970.05526 (12)0.61046 (3)0.75020 (7)0.0223 (3)
H970.0063740.6114670.7080140.027*
C980.05714 (11)0.63302 (3)0.80384 (6)0.0194 (2)
H980.0031740.6492540.7971450.023*
C990.14835 (11)0.63174 (3)0.86788 (6)0.0164 (2)
C1000.14237 (11)0.65763 (3)0.92171 (6)0.0181 (2)
P10.45306 (3)0.53046 (2)0.69428 (2)0.01230 (6)
O10.32078 (8)0.54411 (2)0.67897 (4)0.01763 (17)
C10.61145 (11)0.53439 (3)0.83070 (6)0.0167 (2)
H10.6560910.5501770.8117340.020*
C20.65061 (12)0.52494 (3)0.90237 (6)0.0192 (2)
H20.7214980.5343510.9311970.023*
C30.58344 (12)0.50146 (3)0.93049 (6)0.0194 (2)
H30.6105990.4948130.9779390.023*
C40.47584 (12)0.48781 (3)0.88817 (7)0.0203 (2)
H40.4300030.4724690.9077170.024*
C50.43666 (11)0.49703 (3)0.81683 (6)0.0176 (2)
H50.3647540.4878400.7884740.021*
C60.50568 (11)0.52020 (3)0.78760 (6)0.0136 (2)
C70.53838 (12)0.46861 (3)0.66991 (7)0.0198 (2)
H70.5885500.4693210.7160340.024*
C80.54019 (13)0.44169 (3)0.62722 (8)0.0254 (3)
H80.5920860.4245230.6447950.030*
C90.46540 (14)0.44035 (3)0.55898 (8)0.0306 (3)
H90.4668810.4223310.5305690.037*
C100.38826 (17)0.46583 (4)0.53291 (8)0.0403 (4)
H100.3372650.4648220.4870390.048*
C110.38629 (15)0.49291 (4)0.57465 (7)0.0312 (3)
H110.3346590.5100430.5565550.037*
C120.46162 (11)0.49447 (3)0.64372 (6)0.0160 (2)
C130.68681 (11)0.54783 (3)0.66017 (6)0.0168 (2)
H130.7100470.5265220.6667940.020*
C140.77099 (12)0.56959 (3)0.63990 (6)0.0203 (2)
H140.8507630.5629410.6333910.024*
C150.73532 (12)0.60136 (3)0.62942 (7)0.0223 (3)
H150.7906960.6158620.6147660.027*
C160.61775 (13)0.61152 (3)0.64067 (7)0.0228 (3)
H160.5950840.6328700.6342560.027*
C170.53354 (12)0.58992 (3)0.66151 (6)0.0187 (2)
H170.4549030.5968200.6693570.022*
C180.56734 (11)0.55785 (3)0.67064 (6)0.0141 (2)
P20.04151 (3)0.53337 (2)0.18925 (2)0.01230 (6)
O20.17363 (8)0.54704 (2)0.17137 (4)0.01732 (17)
C190.11406 (11)0.53774 (3)0.32684 (6)0.0167 (2)
H190.1600100.5532590.3079090.020*
C200.15104 (12)0.52863 (3)0.39889 (6)0.0194 (2)
H200.2217430.5380050.4279760.023*
C210.08202 (12)0.50557 (3)0.42697 (6)0.0205 (2)
H210.1075160.4992400.4747650.025*
C220.02503 (12)0.49184 (3)0.38417 (7)0.0211 (2)
H220.0718980.4767020.4036340.025*
C230.06198 (11)0.50071 (3)0.31239 (6)0.0176 (2)
H230.1333660.4914570.2836870.021*
C240.00844 (11)0.52362 (3)0.28324 (6)0.0139 (2)
C250.04771 (12)0.47170 (3)0.16729 (6)0.0187 (2)
H250.0997160.4731620.2128010.022*
C260.04960 (12)0.44426 (3)0.12632 (7)0.0226 (3)
H260.1032580.4274860.1444510.027*
C270.02776 (13)0.44180 (3)0.05889 (7)0.0257 (3)
H270.0259830.4234580.0315420.031*
C280.10793 (15)0.46669 (4)0.03213 (8)0.0345 (3)
H280.1607260.4649590.0131020.041*
C290.11000 (14)0.49422 (3)0.07241 (7)0.0280 (3)
H290.1638340.5109120.0539610.034*
C300.03175 (11)0.49697 (3)0.14038 (6)0.0151 (2)
C310.03988 (12)0.59295 (3)0.15930 (7)0.0192 (2)
H310.0393780.5996630.1665450.023*
C320.12523 (13)0.61484 (3)0.14071 (7)0.0234 (3)
H320.1027250.6362360.1353350.028*
C330.24365 (12)0.60499 (3)0.13014 (7)0.0212 (3)
H330.2997010.6197410.1170040.025*
C340.27898 (11)0.57320 (3)0.13908 (6)0.0193 (2)
H340.3591080.5667100.1328230.023*
C350.19411 (11)0.55108 (3)0.15742 (6)0.0161 (2)
H350.2174650.5297560.1632870.019*
C360.07374 (11)0.56081 (3)0.16705 (6)0.0142 (2)
P30.09805 (3)0.71259 (2)0.12227 (2)0.01599 (7)
O30.17981 (8)0.69166 (2)0.08605 (5)0.02155 (18)
C370.08417 (12)0.68424 (3)0.19179 (7)0.0244 (3)
H370.0309880.6889820.2356590.029*
C380.19660 (13)0.66742 (3)0.19036 (8)0.0315 (3)
H380.2180070.6608390.2333400.038*
C390.27655 (13)0.66046 (3)0.12557 (9)0.0312 (3)
H390.3514720.6491490.1248750.037*
C400.24498 (14)0.67032 (3)0.06181 (8)0.0323 (3)
H400.2992420.6657980.0181640.039*
C410.13297 (14)0.68691 (3)0.06245 (7)0.0274 (3)
H410.1121580.6933730.0192340.033*
C420.05124 (12)0.69397 (3)0.12764 (7)0.0185 (2)
C430.03715 (12)0.76945 (3)0.08915 (8)0.0248 (3)
H430.0810000.7640030.1251650.030*
C440.06608 (13)0.79759 (3)0.05104 (8)0.0299 (3)
H440.1284790.8111100.0618530.036*
C450.00170 (14)0.80552 (3)0.00327 (8)0.0316 (3)
H450.0212370.8243610.0289570.038*
C460.09146 (14)0.78551 (3)0.01936 (8)0.0305 (3)
H460.1342340.7909460.0558530.037*
C470.12140 (12)0.75730 (3)0.01881 (7)0.0239 (3)
H470.1838160.7438500.0077520.029*
C480.05757 (12)0.74923 (3)0.07371 (7)0.0193 (2)
C490.29856 (12)0.70791 (3)0.23785 (7)0.0233 (3)
H490.3346410.6947460.2078310.028*
C500.36378 (13)0.71402 (3)0.30779 (8)0.0293 (3)
H500.4439120.7051700.3242580.035*
C510.30930 (14)0.73330 (3)0.35291 (8)0.0312 (3)
H510.3522660.7369940.3999330.037*
C520.19116 (14)0.74706 (3)0.32820 (8)0.0308 (3)
H520.1553410.7601380.3584970.037*
C530.12620 (13)0.74136 (3)0.25837 (7)0.0253 (3)
H530.0471510.7507670.2417950.030*
C540.17919 (12)0.72151 (3)0.21276 (7)0.0188 (2)
P40.59434 (3)0.71241 (2)0.62054 (2)0.01558 (7)
O40.65852 (8)0.68597 (2)0.58832 (4)0.01947 (18)
C550.36994 (13)0.67928 (3)0.59742 (8)0.0282 (3)
H550.3895940.6748630.5527290.034*
C560.26067 (15)0.66662 (4)0.61513 (9)0.0361 (3)
H560.2067160.6538740.5822080.043*
C570.23188 (14)0.67296 (4)0.68190 (9)0.0357 (3)
H570.1588040.6643120.6937910.043*
C580.31085 (14)0.69200 (4)0.73083 (8)0.0324 (3)
H580.2909450.6961730.7755640.039*
C590.42035 (13)0.70500 (3)0.71334 (7)0.0248 (3)
H590.4733710.7179290.7462900.030*
C600.45058 (12)0.69863 (3)0.64644 (7)0.0190 (2)
C610.77928 (13)0.70565 (3)0.74264 (7)0.0256 (3)
H610.7891900.6853560.7248290.031*
C620.85001 (14)0.71467 (4)0.80939 (8)0.0328 (3)
H620.9078270.7004980.8358640.039*
C630.83457 (14)0.74466 (4)0.83647 (7)0.0310 (3)
H630.8805480.7504660.8816350.037*
C640.75106 (15)0.76599 (4)0.79662 (8)0.0351 (3)
H640.7415360.7862420.8147440.042*
C650.68114 (14)0.75731 (3)0.72948 (8)0.0313 (3)
H650.6257320.7718610.7025230.038*
C660.69371 (11)0.72688 (3)0.70238 (7)0.0191 (2)
C670.45982 (12)0.76745 (3)0.56674 (7)0.0231 (3)
H670.4175470.7657120.6049880.028*
C680.43043 (13)0.79226 (3)0.51757 (8)0.0275 (3)
H680.3693870.8072820.5232960.033*
C690.49220 (13)0.79458 (3)0.46002 (8)0.0283 (3)
H690.4721960.8111390.4270550.034*
C700.58383 (13)0.77230 (3)0.45135 (7)0.0261 (3)
H700.6245120.7739210.4124300.031*
C710.61497 (12)0.74760 (3)0.50053 (7)0.0207 (2)
H710.6767900.7327910.4948120.025*
C720.55292 (11)0.74510 (3)0.55873 (7)0.0183 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01503 (14)0.02690 (16)0.01590 (14)0.00414 (11)0.00267 (11)0.00504 (11)
O50.1541 (15)0.0195 (5)0.0287 (6)0.0136 (7)0.0334 (8)0.0030 (4)
O60.0519 (6)0.0196 (5)0.0228 (5)0.0019 (4)0.0189 (4)0.0022 (4)
O70.0198 (4)0.0312 (5)0.0197 (4)0.0043 (4)0.0047 (3)0.0069 (4)
O80.0187 (4)0.0351 (5)0.0200 (4)0.0091 (4)0.0011 (3)0.0089 (4)
C730.0162 (5)0.0211 (6)0.0188 (6)0.0022 (5)0.0022 (4)0.0008 (5)
C740.0175 (6)0.0274 (6)0.0164 (6)0.0040 (5)0.0004 (4)0.0018 (5)
C750.0251 (6)0.0255 (6)0.0194 (6)0.0024 (5)0.0065 (5)0.0073 (5)
C760.0211 (6)0.0232 (6)0.0249 (6)0.0056 (5)0.0072 (5)0.0028 (5)
C770.0162 (5)0.0206 (6)0.0170 (5)0.0017 (5)0.0028 (4)0.0014 (5)
C780.0160 (5)0.0161 (5)0.0164 (5)0.0000 (4)0.0037 (4)0.0006 (4)
C790.0234 (6)0.0185 (6)0.0165 (6)0.0024 (5)0.0018 (5)0.0007 (5)
C800.0186 (6)0.0154 (5)0.0164 (5)0.0031 (4)0.0042 (4)0.0003 (4)
C810.0235 (6)0.0277 (7)0.0192 (6)0.0062 (5)0.0046 (5)0.0069 (5)
C820.0310 (7)0.0344 (7)0.0262 (7)0.0060 (6)0.0116 (6)0.0128 (6)
C830.0246 (7)0.0337 (7)0.0334 (7)0.0006 (6)0.0139 (6)0.0093 (6)
C840.0177 (6)0.0260 (6)0.0260 (6)0.0022 (5)0.0044 (5)0.0043 (5)
C850.0190 (6)0.0149 (5)0.0165 (5)0.0018 (4)0.0037 (4)0.0003 (4)
C860.0165 (5)0.0161 (5)0.0168 (5)0.0009 (4)0.0005 (4)0.0003 (4)
S20.01312 (13)0.02878 (16)0.01450 (13)0.00328 (11)0.00294 (10)0.00385 (11)
O90.0180 (4)0.0253 (4)0.0169 (4)0.0024 (3)0.0033 (3)0.0036 (3)
O100.0172 (4)0.0317 (5)0.0182 (4)0.0088 (4)0.0007 (3)0.0046 (4)
O110.0794 (9)0.0169 (5)0.0236 (5)0.0017 (5)0.0069 (5)0.0018 (4)
O120.0420 (6)0.0184 (4)0.0189 (4)0.0065 (4)0.0136 (4)0.0013 (4)
C870.0184 (6)0.0192 (6)0.0168 (5)0.0033 (5)0.0016 (4)0.0022 (4)
C880.0278 (7)0.0233 (6)0.0196 (6)0.0017 (5)0.0083 (5)0.0060 (5)
C890.0212 (6)0.0294 (7)0.0281 (7)0.0002 (5)0.0118 (5)0.0054 (5)
C900.0159 (6)0.0238 (6)0.0246 (6)0.0019 (5)0.0050 (5)0.0021 (5)
C910.0152 (5)0.0150 (5)0.0157 (5)0.0013 (4)0.0027 (4)0.0007 (4)
C920.0166 (5)0.0137 (5)0.0152 (5)0.0014 (4)0.0037 (4)0.0008 (4)
C930.0154 (5)0.0150 (5)0.0162 (5)0.0005 (4)0.0003 (4)0.0012 (4)
C940.0138 (5)0.0237 (6)0.0167 (5)0.0001 (5)0.0037 (4)0.0023 (5)
C950.0187 (6)0.0264 (6)0.0236 (6)0.0027 (5)0.0073 (5)0.0017 (5)
C960.0227 (6)0.0292 (7)0.0193 (6)0.0042 (5)0.0063 (5)0.0050 (5)
C970.0177 (6)0.0309 (7)0.0167 (6)0.0058 (5)0.0003 (5)0.0003 (5)
C980.0151 (5)0.0234 (6)0.0193 (6)0.0011 (5)0.0024 (5)0.0035 (5)
C990.0142 (5)0.0186 (6)0.0166 (5)0.0027 (4)0.0036 (4)0.0027 (4)
C1000.0155 (5)0.0191 (6)0.0179 (6)0.0015 (4)0.0007 (4)0.0024 (5)
P10.01150 (13)0.01351 (13)0.01110 (13)0.00026 (10)0.00034 (10)0.00070 (10)
O10.0128 (4)0.0217 (4)0.0176 (4)0.0025 (3)0.0013 (3)0.0031 (3)
C10.0172 (6)0.0182 (5)0.0144 (5)0.0027 (4)0.0023 (4)0.0004 (4)
C20.0172 (6)0.0259 (6)0.0133 (5)0.0021 (5)0.0001 (4)0.0022 (5)
C30.0210 (6)0.0254 (6)0.0120 (5)0.0037 (5)0.0035 (4)0.0022 (5)
C40.0228 (6)0.0210 (6)0.0180 (6)0.0027 (5)0.0062 (5)0.0037 (5)
C50.0172 (5)0.0188 (6)0.0161 (5)0.0027 (5)0.0014 (4)0.0002 (4)
C60.0146 (5)0.0137 (5)0.0125 (5)0.0017 (4)0.0024 (4)0.0003 (4)
C70.0202 (6)0.0193 (6)0.0196 (6)0.0003 (5)0.0030 (5)0.0023 (5)
C80.0257 (7)0.0180 (6)0.0349 (7)0.0006 (5)0.0118 (6)0.0047 (5)
C90.0329 (7)0.0278 (7)0.0336 (7)0.0083 (6)0.0124 (6)0.0168 (6)
C100.0489 (10)0.0429 (9)0.0232 (7)0.0014 (7)0.0069 (7)0.0169 (6)
C110.0382 (8)0.0311 (7)0.0190 (6)0.0060 (6)0.0069 (6)0.0056 (5)
C120.0155 (5)0.0173 (5)0.0149 (5)0.0032 (4)0.0026 (4)0.0016 (4)
C130.0167 (5)0.0175 (5)0.0153 (5)0.0000 (4)0.0015 (4)0.0014 (4)
C140.0156 (5)0.0280 (6)0.0172 (6)0.0037 (5)0.0032 (4)0.0022 (5)
C150.0227 (6)0.0253 (6)0.0175 (6)0.0089 (5)0.0009 (5)0.0035 (5)
C160.0272 (7)0.0166 (6)0.0232 (6)0.0022 (5)0.0016 (5)0.0043 (5)
C170.0186 (6)0.0174 (6)0.0195 (6)0.0016 (5)0.0024 (5)0.0015 (4)
C180.0155 (5)0.0162 (5)0.0096 (5)0.0013 (4)0.0000 (4)0.0002 (4)
P20.01140 (13)0.01358 (13)0.01122 (13)0.00096 (10)0.00054 (10)0.00039 (10)
O20.0131 (4)0.0211 (4)0.0170 (4)0.0036 (3)0.0013 (3)0.0014 (3)
C190.0175 (6)0.0175 (5)0.0151 (5)0.0020 (4)0.0028 (4)0.0006 (4)
C200.0178 (6)0.0253 (6)0.0136 (5)0.0021 (5)0.0002 (4)0.0030 (5)
C210.0222 (6)0.0265 (6)0.0126 (5)0.0023 (5)0.0031 (5)0.0018 (5)
C220.0235 (6)0.0232 (6)0.0171 (6)0.0031 (5)0.0058 (5)0.0032 (5)
C230.0169 (5)0.0193 (6)0.0159 (5)0.0023 (5)0.0019 (4)0.0003 (4)
C240.0148 (5)0.0140 (5)0.0129 (5)0.0023 (4)0.0027 (4)0.0005 (4)
C250.0184 (6)0.0192 (6)0.0176 (6)0.0011 (5)0.0013 (5)0.0015 (5)
C260.0228 (6)0.0175 (6)0.0288 (7)0.0017 (5)0.0085 (5)0.0025 (5)
C270.0255 (7)0.0243 (6)0.0288 (7)0.0048 (5)0.0093 (5)0.0125 (5)
C280.0375 (8)0.0377 (8)0.0231 (7)0.0042 (7)0.0066 (6)0.0143 (6)
C290.0323 (7)0.0288 (7)0.0183 (6)0.0086 (6)0.0062 (5)0.0050 (5)
C300.0142 (5)0.0166 (5)0.0146 (5)0.0010 (4)0.0030 (4)0.0014 (4)
C310.0189 (6)0.0175 (6)0.0215 (6)0.0031 (5)0.0046 (5)0.0019 (5)
C320.0275 (7)0.0154 (6)0.0273 (6)0.0013 (5)0.0051 (5)0.0048 (5)
C330.0218 (6)0.0221 (6)0.0189 (6)0.0056 (5)0.0020 (5)0.0043 (5)
C340.0155 (5)0.0247 (6)0.0176 (6)0.0018 (5)0.0027 (4)0.0016 (5)
C350.0169 (6)0.0154 (5)0.0153 (5)0.0010 (4)0.0012 (4)0.0010 (4)
C360.0157 (5)0.0158 (5)0.0101 (5)0.0001 (4)0.0002 (4)0.0002 (4)
P30.01686 (14)0.01392 (14)0.01790 (14)0.00187 (11)0.00514 (11)0.00059 (11)
O30.0249 (4)0.0197 (4)0.0215 (4)0.0058 (4)0.0082 (4)0.0020 (3)
C370.0198 (6)0.0265 (6)0.0257 (6)0.0007 (5)0.0020 (5)0.0058 (5)
C380.0247 (7)0.0321 (7)0.0380 (8)0.0025 (6)0.0066 (6)0.0114 (6)
C390.0210 (6)0.0197 (6)0.0507 (9)0.0035 (5)0.0018 (6)0.0018 (6)
C400.0296 (7)0.0229 (7)0.0390 (8)0.0050 (6)0.0060 (6)0.0052 (6)
C410.0332 (7)0.0230 (6)0.0245 (6)0.0046 (6)0.0020 (5)0.0029 (5)
C420.0184 (6)0.0124 (5)0.0241 (6)0.0016 (4)0.0032 (5)0.0001 (4)
C430.0209 (6)0.0217 (6)0.0337 (7)0.0023 (5)0.0102 (5)0.0037 (5)
C440.0231 (6)0.0202 (6)0.0472 (8)0.0053 (5)0.0085 (6)0.0047 (6)
C450.0305 (7)0.0203 (6)0.0432 (8)0.0004 (6)0.0054 (6)0.0114 (6)
C460.0315 (7)0.0281 (7)0.0339 (7)0.0005 (6)0.0109 (6)0.0091 (6)
C470.0231 (6)0.0227 (6)0.0273 (6)0.0015 (5)0.0083 (5)0.0032 (5)
C480.0182 (6)0.0162 (6)0.0234 (6)0.0002 (5)0.0039 (5)0.0014 (5)
C490.0202 (6)0.0230 (6)0.0270 (7)0.0017 (5)0.0051 (5)0.0018 (5)
C500.0215 (6)0.0308 (7)0.0325 (7)0.0011 (5)0.0021 (5)0.0002 (6)
C510.0353 (8)0.0301 (7)0.0249 (7)0.0059 (6)0.0019 (6)0.0052 (6)
C520.0379 (8)0.0267 (7)0.0279 (7)0.0008 (6)0.0065 (6)0.0095 (6)
C530.0257 (6)0.0234 (6)0.0266 (7)0.0039 (5)0.0046 (5)0.0051 (5)
C540.0185 (6)0.0165 (5)0.0215 (6)0.0015 (5)0.0040 (5)0.0014 (5)
P40.01651 (14)0.01290 (14)0.01749 (14)0.00079 (11)0.00375 (11)0.00068 (11)
O40.0241 (4)0.0156 (4)0.0196 (4)0.0037 (3)0.0063 (3)0.0012 (3)
C550.0279 (7)0.0244 (7)0.0328 (7)0.0063 (5)0.0073 (6)0.0046 (5)
C560.0295 (7)0.0259 (7)0.0530 (9)0.0089 (6)0.0084 (7)0.0013 (7)
C570.0253 (7)0.0294 (7)0.0562 (10)0.0005 (6)0.0170 (7)0.0153 (7)
C580.0294 (7)0.0373 (8)0.0344 (7)0.0095 (6)0.0157 (6)0.0123 (6)
C590.0236 (6)0.0267 (7)0.0251 (6)0.0043 (5)0.0071 (5)0.0026 (5)
C600.0193 (6)0.0143 (5)0.0239 (6)0.0025 (5)0.0055 (5)0.0036 (5)
C610.0236 (6)0.0248 (6)0.0268 (7)0.0015 (5)0.0015 (5)0.0020 (5)
C620.0287 (7)0.0372 (8)0.0288 (7)0.0001 (6)0.0033 (6)0.0010 (6)
C630.0282 (7)0.0435 (8)0.0216 (6)0.0135 (6)0.0058 (5)0.0076 (6)
C640.0381 (8)0.0325 (8)0.0342 (8)0.0052 (6)0.0061 (6)0.0163 (6)
C650.0340 (7)0.0241 (7)0.0330 (7)0.0036 (6)0.0001 (6)0.0085 (6)
C660.0173 (6)0.0205 (6)0.0202 (6)0.0024 (5)0.0050 (5)0.0025 (5)
C670.0192 (6)0.0202 (6)0.0309 (7)0.0021 (5)0.0072 (5)0.0029 (5)
C680.0197 (6)0.0213 (6)0.0414 (8)0.0045 (5)0.0056 (6)0.0067 (6)
C690.0258 (7)0.0227 (6)0.0352 (7)0.0012 (5)0.0028 (6)0.0117 (6)
C700.0260 (7)0.0248 (6)0.0282 (7)0.0024 (5)0.0074 (5)0.0056 (5)
C710.0189 (6)0.0181 (6)0.0255 (6)0.0010 (5)0.0052 (5)0.0006 (5)
C720.0164 (6)0.0153 (5)0.0226 (6)0.0020 (4)0.0024 (5)0.0009 (5)
Geometric parameters (Å, º) top
S1—C771.7839 (12)C20—H200.9300
S1—C801.7764 (12)C20—C211.3866 (18)
O5—C791.1978 (17)C21—H210.9300
O6—H6O0.95 (2)C21—C221.3902 (18)
O6—C791.3043 (15)C22—H220.9300
O7—C861.2104 (15)C22—C231.3880 (17)
O8—H8O0.90 (2)C23—H230.9300
O8—C861.3279 (15)C23—C241.4015 (16)
C73—H730.9300C25—H250.9300
C73—C741.3862 (17)C25—C261.3910 (17)
C73—C781.3942 (17)C25—C301.3914 (17)
C74—H740.9300C26—H260.9300
C74—C751.3866 (19)C26—C271.3799 (19)
C75—H750.9300C27—H270.9300
C75—C761.3854 (19)C27—C281.383 (2)
C76—H760.9300C28—H280.9300
C76—C771.3975 (17)C28—C291.3871 (19)
C77—C781.3996 (16)C29—H290.9300
C78—C791.4998 (16)C29—C301.3933 (17)
C80—C811.4024 (16)C31—H310.9300
C80—C851.4077 (17)C31—C321.3898 (18)
C81—H810.9300C31—C361.3969 (16)
C81—C821.3847 (19)C32—H320.9300
C82—H820.9300C32—C331.3857 (19)
C82—C831.388 (2)C33—H330.9300
C83—H830.9300C33—C341.3883 (18)
C83—C841.3826 (18)C34—H340.9300
C84—H840.9300C34—C351.3907 (17)
C84—C851.4004 (17)C35—H350.9300
C85—C861.4921 (16)C35—C361.3983 (16)
S2—C921.7760 (12)P3—O31.4991 (9)
S2—C941.7863 (12)P3—C421.8004 (13)
O9—C931.2147 (15)P3—C481.8001 (12)
O10—H10O0.91 (2)P3—C541.7989 (13)
O10—C931.3309 (14)C37—H370.9300
O11—C1001.2075 (16)C37—C381.3912 (19)
O12—H12O0.89 (2)C37—C421.3915 (17)
O12—C1001.3126 (15)C38—H380.9300
C87—H870.9300C38—C391.380 (2)
C87—C881.3842 (17)C39—H390.9300
C87—C921.4042 (16)C39—C401.380 (2)
C88—H880.9300C40—H400.9300
C88—C891.3887 (19)C40—C411.385 (2)
C89—H890.9300C41—H410.9300
C89—C901.3853 (18)C41—C421.3949 (18)
C90—H900.9300C43—H430.9300
C90—C911.4008 (16)C43—C441.3865 (19)
C91—C921.4087 (16)C43—C481.3973 (17)
C91—C931.4900 (16)C44—H440.9300
C94—C951.3980 (17)C44—C451.388 (2)
C94—C991.4031 (17)C45—H450.9300
C95—H950.9300C45—C461.384 (2)
C95—C961.3879 (18)C46—H460.9300
C96—H960.9300C46—C471.3911 (18)
C96—C971.3876 (19)C47—H470.9300
C97—H970.9300C47—C481.3943 (17)
C97—C981.3856 (18)C49—H490.9300
C98—H980.9300C49—C501.3919 (19)
C98—C991.3979 (16)C49—C541.3941 (18)
C99—C1001.4997 (17)C50—H500.9300
P1—O11.5018 (8)C50—C511.387 (2)
P1—C61.7961 (11)C51—H510.9300
P1—C121.8003 (12)C51—C521.385 (2)
P1—C181.7994 (12)C52—H520.9300
C1—H10.9300C52—C531.3863 (19)
C1—C21.3952 (16)C53—H530.9300
C1—C61.3909 (16)C53—C541.3987 (17)
C2—H20.9300P4—O41.4975 (8)
C2—C31.3874 (18)P4—C601.8014 (13)
C3—H30.9300P4—C661.8010 (13)
C3—C41.3890 (18)P4—C721.8005 (12)
C4—H40.9300C55—H550.9300
C4—C51.3868 (17)C55—C561.386 (2)
C5—H50.9300C55—C601.3955 (18)
C5—C61.4007 (16)C56—H560.9300
C7—H70.9300C56—C571.385 (2)
C7—C81.3915 (17)C57—H570.9300
C7—C121.3920 (17)C57—C581.378 (2)
C8—H80.9300C58—H580.9300
C8—C91.379 (2)C58—C591.3917 (19)
C9—H90.9300C59—H590.9300
C9—C101.381 (2)C59—C601.3937 (18)
C10—H100.9300C61—H610.9300
C10—C111.387 (2)C61—C621.3899 (19)
C11—H110.9300C61—C661.3915 (18)
C11—C121.3941 (17)C62—H620.9300
C13—H130.9300C62—C631.381 (2)
C13—C141.3901 (17)C63—H630.9300
C13—C181.3979 (16)C63—C641.379 (2)
C14—H140.9300C64—H640.9300
C14—C151.3902 (18)C64—C651.389 (2)
C15—H150.9300C65—H650.9300
C15—C161.3854 (19)C65—C661.3929 (18)
C16—H160.9300C67—H670.9300
C16—C171.3902 (17)C67—C681.3902 (18)
C17—H170.9300C67—C721.3991 (17)
C17—C181.3956 (16)C68—H680.9300
P2—O21.5014 (8)C68—C691.386 (2)
P2—C241.7997 (11)C69—H690.9300
P2—C301.7998 (12)C69—C701.389 (2)
P2—C361.7980 (12)C70—H700.9300
C19—H190.9300C70—C711.3889 (18)
C19—C201.3956 (16)C71—H710.9300
C19—C241.3927 (16)C71—C721.3990 (17)
C80—S1—C77101.78 (6)C21—C22—H22120.0
C79—O6—H6O109.8 (14)C23—C22—C21120.02 (11)
C86—O8—H8O111.7 (14)C23—C22—H22120.0
C74—C73—H73119.7C22—C23—H23120.0
C74—C73—C78120.70 (11)C22—C23—C24119.91 (11)
C78—C73—H73119.7C24—C23—H23120.0
C73—C74—H74120.2C19—C24—P2122.36 (9)
C73—C74—C75119.62 (11)C19—C24—C23119.73 (10)
C75—C74—H74120.2C23—C24—P2117.90 (9)
C74—C75—H75119.9C26—C25—H25119.9
C76—C75—C74120.21 (11)C26—C25—C30120.21 (11)
C76—C75—H75119.9C30—C25—H25119.9
C75—C76—H76119.6C25—C26—H26119.8
C75—C76—C77120.71 (12)C27—C26—C25120.31 (12)
C77—C76—H76119.6C27—C26—H26119.8
C76—C77—S1119.72 (9)C26—C27—H27120.1
C76—C77—C78118.98 (11)C26—C27—C28119.79 (12)
C78—C77—S1121.28 (9)C28—C27—H27120.1
C73—C78—C77119.77 (11)C27—C28—H28119.8
C73—C78—C79116.79 (11)C27—C28—C29120.33 (13)
C77—C78—C79123.40 (11)C29—C28—H28119.8
O5—C79—O6123.45 (12)C28—C29—H29119.9
O5—C79—C78121.67 (12)C28—C29—C30120.27 (13)
O6—C79—C78114.76 (11)C30—C29—H29119.9
C81—C80—S1122.19 (9)C25—C30—P2123.58 (9)
C81—C80—C85117.98 (11)C25—C30—C29119.09 (11)
C85—C80—S1119.81 (9)C29—C30—P2117.33 (9)
C80—C81—H81119.5C32—C31—H31120.2
C82—C81—C80121.10 (12)C32—C31—C36119.67 (11)
C82—C81—H81119.5C36—C31—H31120.2
C81—C82—H82119.6C31—C32—H32119.8
C81—C82—C83120.85 (12)C33—C32—C31120.40 (12)
C83—C82—H82119.6C33—C32—H32119.8
C82—C83—H83120.6C32—C33—H33119.9
C84—C83—C82118.84 (12)C32—C33—C34120.29 (11)
C84—C83—H83120.6C34—C33—H33119.9
C83—C84—H84119.4C33—C34—H34120.1
C83—C84—C85121.26 (12)C33—C34—C35119.76 (11)
C85—C84—H84119.4C35—C34—H34120.1
C80—C85—C86121.64 (11)C34—C35—H35119.9
C84—C85—C80119.94 (11)C34—C35—C36120.18 (11)
C84—C85—C86118.41 (11)C36—C35—H35119.9
O7—C86—O8124.24 (11)C31—C36—P2117.85 (9)
O7—C86—C85123.93 (11)C31—C36—C35119.68 (11)
O8—C86—C85111.83 (10)C35—C36—P2122.46 (9)
C92—S2—C94100.52 (5)O3—P3—C42112.18 (5)
C93—O10—H10O110.6 (14)O3—P3—C48111.75 (5)
C100—O12—H12O111.0 (12)O3—P3—C54110.01 (6)
C88—C87—H87119.4C48—P3—C42105.87 (6)
C88—C87—C92121.16 (11)C54—P3—C42107.61 (6)
C92—C87—H87119.4C54—P3—C48109.24 (6)
C87—C88—H88119.7C38—C37—H37120.0
C87—C88—C89120.59 (11)C38—C37—C42120.05 (13)
C89—C88—H88119.7C42—C37—H37120.0
C88—C89—H89120.5C37—C38—H38119.8
C90—C89—C88119.06 (12)C39—C38—C37120.41 (13)
C90—C89—H89120.5C39—C38—H38119.8
C89—C90—H90119.4C38—C39—H39120.1
C89—C90—C91121.30 (12)C38—C39—C40119.79 (13)
C91—C90—H90119.4C40—C39—H39120.1
C90—C91—C92119.64 (11)C39—C40—H40119.8
C90—C91—C93118.82 (11)C39—C40—C41120.39 (13)
C92—C91—C93121.50 (10)C41—C40—H40119.8
C87—C92—S2121.33 (9)C40—C41—H41119.9
C87—C92—C91118.24 (11)C40—C41—C42120.28 (13)
C91—C92—S2120.40 (9)C42—C41—H41119.9
O9—C93—O10123.83 (11)C37—C42—P3123.98 (10)
O9—C93—C91123.56 (11)C37—C42—C41119.08 (12)
O10—C93—C91112.61 (10)C41—C42—P3116.74 (10)
C95—C94—S2118.49 (9)C44—C43—H43119.8
C95—C94—C99119.21 (11)C44—C43—C48120.32 (12)
C99—C94—S2122.30 (9)C48—C43—H43119.8
C94—C95—H95119.6C43—C44—H44120.1
C96—C95—C94120.76 (12)C43—C44—C45119.82 (13)
C96—C95—H95119.6C45—C44—H44120.1
C95—C96—H96120.0C44—C45—H45119.9
C97—C96—C95120.05 (12)C46—C45—C44120.25 (13)
C97—C96—H96120.0C46—C45—H45119.9
C96—C97—H97120.1C45—C46—H46119.9
C98—C97—C96119.71 (12)C45—C46—C47120.28 (13)
C98—C97—H97120.1C47—C46—H46119.9
C97—C98—H98119.5C46—C47—H47120.1
C97—C98—C99120.98 (12)C46—C47—C48119.82 (12)
C99—C98—H98119.5C48—C47—H47120.1
C94—C99—C100124.32 (11)C43—C48—P3121.55 (10)
C98—C99—C94119.28 (11)C47—C48—P3118.94 (9)
C98—C99—C100116.38 (11)C47—C48—C43119.50 (12)
O11—C100—O12123.80 (12)C50—C49—H49120.0
O11—C100—C99121.95 (11)C50—C49—C54120.05 (12)
O12—C100—C99114.18 (10)C54—C49—H49120.0
O1—P1—C6112.35 (5)C49—C50—H50120.0
O1—P1—C12111.32 (5)C51—C50—C49120.01 (13)
O1—P1—C18111.73 (5)C51—C50—H50120.0
C6—P1—C12106.40 (5)C50—C51—H51119.9
C6—P1—C18107.57 (5)C52—C51—C50120.25 (13)
C18—P1—C12107.14 (5)C52—C51—H51119.9
C2—C1—H1120.0C51—C52—H52120.0
C6—C1—H1120.0C51—C52—C53120.08 (13)
C6—C1—C2120.03 (11)C53—C52—H52120.0
C1—C2—H2120.1C52—C53—H53119.9
C3—C2—C1119.77 (11)C52—C53—C54120.19 (13)
C3—C2—H2120.1C54—C53—H53119.9
C2—C3—H3119.8C49—C54—P3118.37 (9)
C2—C3—C4120.38 (11)C49—C54—C53119.40 (12)
C4—C3—H3119.8C53—C54—P3122.23 (10)
C3—C4—H4119.9O4—P4—C60111.07 (5)
C5—C4—C3120.12 (11)O4—P4—C66111.08 (5)
C5—C4—H4119.9O4—P4—C72111.95 (5)
C4—C5—H5120.1C66—P4—C60105.35 (6)
C4—C5—C6119.81 (11)C72—P4—C60107.95 (6)
C6—C5—H5120.1C72—P4—C66109.19 (6)
C1—C6—P1122.24 (9)C56—C55—H55119.9
C1—C6—C5119.86 (10)C56—C55—C60120.19 (13)
C5—C6—P1117.90 (9)C60—C55—H55119.9
C8—C7—H7119.9C55—C56—H56120.0
C8—C7—C12120.14 (12)C57—C56—C55119.95 (14)
C12—C7—H7119.9C57—C56—H56120.0
C7—C8—H8119.9C56—C57—H57119.8
C9—C8—C7120.28 (13)C58—C57—C56120.41 (13)
C9—C8—H8119.9C58—C57—H57119.8
C8—C9—H9120.1C57—C58—H58120.0
C8—C9—C10119.85 (12)C57—C58—C59120.05 (14)
C10—C9—H9120.1C59—C58—H58120.0
C9—C10—H10119.8C58—C59—H59120.0
C9—C10—C11120.47 (13)C58—C59—C60120.01 (13)
C11—C10—H10119.8C60—C59—H59120.0
C10—C11—H11120.0C55—C60—P4117.07 (10)
C10—C11—C12120.08 (13)C59—C60—P4123.46 (10)
C12—C11—H11120.0C59—C60—C55119.39 (12)
C7—C12—P1123.65 (9)C62—C61—H61119.9
C7—C12—C11119.17 (11)C62—C61—C66120.23 (13)
C11—C12—P1117.18 (10)C66—C61—H61119.9
C14—C13—H13119.9C61—C62—H62119.9
C14—C13—C18120.22 (11)C63—C62—C61120.12 (14)
C18—C13—H13119.9C63—C62—H62119.9
C13—C14—H14120.2C62—C63—H63120.0
C13—C14—C15119.66 (12)C64—C63—C62120.07 (13)
C15—C14—H14120.2C64—C63—H63120.0
C14—C15—H15119.8C63—C64—H64119.9
C16—C15—C14120.38 (12)C63—C64—C65120.19 (13)
C16—C15—H15119.8C65—C64—H64119.9
C15—C16—H16119.9C64—C65—H65119.9
C15—C16—C17120.22 (12)C64—C65—C66120.23 (14)
C17—C16—H16119.9C66—C65—H65119.9
C16—C17—H17120.1C61—C66—P4117.83 (10)
C16—C17—C18119.82 (11)C61—C66—C65119.14 (12)
C18—C17—H17120.1C65—C66—P4122.83 (10)
C13—C18—P1121.99 (9)C68—C67—H67120.0
C17—C18—P1118.34 (9)C68—C67—C72120.06 (12)
C17—C18—C13119.66 (11)C72—C67—H67120.0
O2—P2—C24113.00 (5)C67—C68—H68120.0
O2—P2—C30110.92 (5)C69—C68—C67119.93 (12)
O2—P2—C36111.25 (5)C69—C68—H68120.0
C24—P2—C30106.18 (5)C68—C69—H69119.8
C36—P2—C24107.09 (5)C68—C69—C70120.30 (12)
C36—P2—C30108.12 (5)C70—C69—H69119.8
C20—C19—H19120.0C69—C70—H70119.9
C24—C19—H19120.0C69—C70—C71120.30 (12)
C24—C19—C20120.09 (11)C71—C70—H70119.9
C19—C20—H20120.1C70—C71—H71120.2
C21—C20—C19119.78 (11)C70—C71—C72119.70 (12)
C21—C20—H20120.1C72—C71—H71120.2
C20—C21—H21119.8C67—C72—P4121.96 (10)
C20—C21—C22120.45 (11)C67—C72—C71119.70 (11)
C22—C21—H21119.8C71—C72—P4118.33 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O40.95 (2)1.66 (2)2.6070 (12)171 (2)
O8—H8O···O1i0.90 (2)1.70 (2)2.5763 (12)163 (2)
O10—H10O···O2ii0.91 (2)1.72 (2)2.6077 (12)163 (2)
O12—H12O···O3iii0.90 (2)1.71 (2)2.5978 (12)170.9 (19)
C16—H16···O40.932.533.3333 (15)144
C44—H44···O4iv0.932.433.2404 (17)145
C52—H52···O11v0.932.493.3231 (16)149
C62—H62···O11i0.932.513.367 (2)153
C64—H64···O5vi0.932.463.263 (2)144
C68—H68···O3vi0.932.553.2747 (17)135
C71—H71···O50.932.593.2765 (18)131
C75—H75···O2i0.932.413.1184 (16)133
C96—H96···O10.932.493.1832 (15)132
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x1, y+1/2, z3/2; (v) x, y+1/2, z3/2; (vi) x, y+1/2, z1/2.
Summary of short C···H interatomic contacts (Å) in (I) top
ContactSeparationSymmetry operation
C13···H102.801 - x, 1 - y, 1 - z
C14···H102.841 - x, 1 - y, 1 - z
C35···H282.77-x, 1 - y, -z
C34···H282.94-x, 1 - y, -z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) and for the the individual TDBA and DPPO molecules top
ContactPercentage contribution
overallS1-TDBAS2-TDBAP1-DPPOP2-DPPOP3-DPPOP4-DPPO
H···H49.442.340.749.849.649.751.4
O···H/H···O13.728.128.114.113.611.712.7
C···H/H···C30.121.923.430.230.933.431.3
Interaction energies (kJ mol-1) for selected close contacts top
contactEelectrostaticEpolarizationEdispersionEexchange-repulsionEtotalSymmetry operation
O6—H6O···O4-76.5-19.4-17.895.2-52.0x, y, z
O8—H8O···O1-72.8-19.2-14.982.3-53.31 + x, y, z
O10—H10O···O2-70.5-18.3-16.483.8-50.71 + x, y, 1+z
O12—H12O···O3-72.3-19.2-13.981.2-52.5x, y, 1 + z
C75—H75···O2-16.8-6.6-41.629.8-40.41+x, y, z
C96—H96···O1-15.2-6.1-42.027.9-40.0x, y, z
 

Funding information

The support of Sunway University for studies in co-crystals, through Grant No. INT-FST-RCCM-2016–01, is gratefully acknowledged.

References

First citationArens, G., Sundermeyer, W. & Pritzkow, H. (1986). Chem. Ber. 119, 3631–3638.  CrossRef Google Scholar
First citationBigham, M. & Copes, R. (2005). Drug Saf. 28, 89–101.  CrossRef PubMed Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCang, J., Wang, C.-W., Chen, P.-C., Lin, Y.-J., Li, Y.-C. & Chang, H.-T. (2017). Anal. Methods 9, 5254–5259.  CrossRef Google Scholar
First citationChien, C. W., Liu, C. L., Chen, F. J., Lin, K. H. & Lin, C. S. (2012). Electrochim. Acta, 72, 74–80.  CrossRef Google Scholar
First citationDai, Y.-M., Huang, J.-F. & Shen, H.-Y. (2005). Acta Cryst. E61, o3182–o3183.  CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorobet, A., Vitiu, A., Petuhov, O. & Croitor, L. (2018). Polyhedron, 151, 51–57.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349.  CAS Google Scholar
First citationJotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2018). Z. Kristallogr. Cryst. Mat. doi: https://doi. org/10.1515/zkri-2018-2101.  Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOkawa, T., Osakada, N., Eguchi, S. & Kakehi, A. (1997). Tetrahedron, 53, 16061–16082.  CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO Software system. Rigaku Corporation, Oxford, UK.  Google Scholar
First citationSaha, M., Scerba, M. T., Shank, N. I., Hartman, T. L., Buchholz, C. A., Buckheit, R. W. Jr, Durell, S. R. & Appella, D. H. (2017). ChemMedChem, 12, 714–721.  CrossRef PubMed Google Scholar
First citationSchollmeyer, D., Shishkin, O. V., Rühl, T. & Vysotsky, M. O. (2008). CrystEngComm, 10, 715–723.  Web of Science CrossRef Google Scholar
First citationSelig, P. S. & Miller, S. J. (2011). Tetrahedron Lett. 52, 2148–2151.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikarwar, B., Sharma, P. K., Srivastava, A., Agarwal, G. S., Boopathi, M., Singh, B. & Jaiswal, Y. K. (2014). Biosens. Bioelectron. 60, 201–209.  CrossRef PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Henderson, W. (2017). Coord. Chem. Rev. 341, 19–52.  CrossRef Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWehr-Candler, T. & Henderson, W. (2016). Coord. Chem. Rev. 313, 111–155.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Q.-Q., Xiao, W., Du, W., Ouyang, Q. & Chen, Y.-C. (2018). Chem. Commun. 54, 1129–1132.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds