research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Investigation of nitro–nitrito photoisomerization: crystal structures of trans-{2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}(pyridine/4-methyl­pyridine)­nitro­cobalt(III)

CROSSMARK_Color_square_no_text.svg

aResearch and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan, bDepartment of Chemistry, Chiba Institute of Technology, Shibazono 2-1-1, Narashino, Chiba 275-0023, Japan, and cDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: ohba@a3.keio.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 October 2018; accepted 1 November 2018; online 9 November 2018)

The reaction cavities of the nitro groups in the title compounds, trans-{2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4O,N,N′,O′}(nitro-κN)(pyridine-κN)cobalt(III), [Co(C16H14N2O2)(NO2)(C5H5N)], (I), and trans-{2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4O,N,N′,O′}(4-methyl­pyridine-κN)(nitro-κN)cobalt(III), [Co(C16H14N2O2)(NO2)(C6H7N)], (II), have been investigated to reveal that the inter­molecular CMe—H⋯O(nitro) contacts in (II) are unfeasible for the nitro–nitrito photochemical linkage isomerization process. In (I), there are two independent complexes showing similar conformations, and the central five-membered chelate ring of the tetra­dentate salen ligand adopts the same absolute configuration. This is the result of pseudo-spontaneous resolution, since the configuration of the five-membered chelate ring may frequently be reversed in solution. In the crystals of (I) and (II), the mol­ecules are linked into three-dimensional networks by C—H⋯O hydrogen bonds.

1. Chemical context

The nitrite ion is an ambidentate ligand, which shows linkage isomerism. In a CoIII complex, nitro (N-bonded) coordination is thermodynamically more stable than the nitrito (O-bonded) form, but nitro-nitrito linkage isomerization may occur in the solid state by irradiation with visible or UV light (Balzani et al., 1968[Balzani, V., Ballardini, R., Sabbatini, N. & Moggi, L. (1968). Inorg. Chem. 7, 1398-1404.]; Coppens et al., 2002[Coppens, P., Novozhilova, I. & Kovalevsky, A. (2002). Chem. Rev. 102, 861-883.]). The crystal structures of trans-[Co(en)2(NO2)(NCS)]NCS (Ohba, Tsuchimoto & Kurachi, 2018[Ohba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526-1531.]) and trans-[Co(acac)2(NO2)(pyridine derivative)] (Ohba, Tsuchimoto & Miyazaki, 2018[Ohba, S., Tsuchimoto, M. & Miyazaki, H. (2018). Acta Cryst. E74, 1637-1642.]) indicated that a certain geometry of the inter­molecular N/C—H⋯O contacts restricts the photoisomerization. In the present study, we investigated another type of nitro­cobalt complex, trans-[Co(salen)(NO2)(X-py)], where H2salen is N,N′-bis­(salicyl­idene)-1,2-ethane­di­amine, and X-py is pyridine in (I)[link] or 4-methyl­pyridine in (II)[link].

[Scheme 1]

When the KBr disk of the py complex (I)[link] was irradiated for 30 min with a Xe lamp, the colour changed from brown to reddish brown, and the IR spectrum showed an increase in intensity of the absorption peak in the region of 1040–1060 cm−1 (see figure in the supporting information), which corresponds to the symmetric N—O stretching mode of the nitrito form (Heyns & De Waal, 1989[Heyns, A. M. & de Waal, D. (1989). Spectrochim. Acta A, 45, 905-909.]). The colour and IR spectrum reverted to those before irradiation on standing at room temperature for 2 h. On the other hand, the 4-Me-py complex (II)[link] was photo-stable and did not show any change in the colour or IR spectrum upon irradiation. The crystal structures of (I)[link] and (II)[link] were determined to investigate the steric circumstances of the nitro ligand.

The photo-reactivities of nitro­cobalt complexes in the solid state depend not only on the steric conditions but also on the electronic effects of the co-existing ligands (Miyoshi et al., 1983[Miyoshi, K., Katoda, N. & Yoneda, H. (1983). Inorg. Chem. 22, 1839-1843.]). The change of the IR spectrum of (I)[link] upon irradiation was less apparent and it disappeared much more quickly after irradiation than that of trans-[Co(acac)2(NO2)(py)] (Ohba, Tsuchimoto& Miyazaki, 2018[Ohba, S., Tsuchimoto, M. & Miyazaki, H. (2018). Acta Cryst. E74, 1637-1642.]), indicating that salen2− is not as suitable as acac for stabilization of the nitrito form.

2. Structural commentary

The mol­ecular structures of (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively. In (I)[link], there are two independent complex mol­ecules, which have similar conformations, the five-membered chelate ring of salen being gauche with a λ form. The chirality of the crystal structure indicates that the crystals are pseudo-racemic conglomerates, because the configuration of the chelate ring may frequently switch from λ to δ, and vice versa, in solution. The Co—N(nitro) bond lengths are 1.944 (4) and 1.950 (3) Å in (I)[link] and 1.916 (4) Å in (II)[link]. In each case, the coordination geometry around the Co atom is a distorted octa­hedron with the N(nitro) and N(py) atoms at the trans positions.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing displacement ellipsoids at the 30% probability level.

3. Supra­molecular features

The crystal structures of (I)[link] and (II)[link] are shown in Figs. 3[link] and 4[link], respectively. In both (I)[link] and (II)[link], the mol­ecules are connected by C—H⋯O hydrogen bonds (Tables 1[link] and 2[link]), forming a three-dimensional network. There are ππ inter­actions between the pyridine rings in (I)[link] (see Figs. 1[link] and 3[link]), the distance between the centroids being 3.82 (1) Å with a dihedral angle of 15.74 (8)°. The shortest contact between the rings is C39⋯C59 of 3.351 (6) Å.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O3i 0.93 2.48 3.341 (5) 154
C38—H38⋯O9ii 0.93 2.39 3.280 (5) 160
C48—H48B⋯O8ii 0.97 2.48 3.285 (7) 140
C54—H54⋯O7iii 0.93 2.54 3.291 (7) 138
C59—H59⋯O6 0.93 2.38 3.213 (5) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.93 2.58 3.358 (6) 141
C31—H31B⋯O2ii 0.96 2.51 3.429 (7) 159
C31—H31C⋯O3iii 0.96 2.55 3.483 (7) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal structure of (I)[link], projected along a. The C—H⋯O hydrogen bonds are shown as blue dashed lines.
[Figure 4]
Figure 4
The crystal structure of (II)[link], projected along c. The C—H⋯O hydrogen bonds are shown as blue dashed lines.

Slices of the reaction cavities around the NO2 group near its plane in (I)[link] and (II)[link] are compared in Fig. 5[link], where the radii of neighboring atoms are assumed to be 1.0 Å greater than the corresponding van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) except for Co, its radius being set to 1.90 Å. The shape of the cavity in the nitro plane is mainly defined by the C—H⋯O(nitro) contacts, which are shown in Figs. 6[link] and 7[link]. In (I)[link], the cavity of O3—N11—O4 is wide enough to rotate in the original plane to achieve the N,O-bidentate transition state toward the nitrito form, in accord with the observed photo-activity of (I)[link]. In (II)[link], the cavity of O2—N6—O3 has a tail, which is connected to that of the symmetry-related one, as seen in Fig. 7[link]. These nitro groups are connected via CMe—H⋯O hydrogen bonds to form an R44(12) ring, there being a narrow void around the center of the ring. The photo-stability of (II)[link] suggests that the rotation of the NO2 group in its plane will be blocked by the C—H⋯O hydrogen bonds. The steric condition of O7—N15—O8 in (I)[link] is similar to that in (II)[link], suggesting that the photoreaction in (I)[link] mainly occurs at the Co1 complex site.

[Figure 5]
Figure 5
Comparison of the slices of the cavity around the nitro group within 0.1 Å from the plane in (I)[link] and (II)[link].
[Figure 6]
Figure 6
The steric circumstances of the nitro groups in (I)[link]. Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines. The green dashed lines indicate other O⋯H contacts shorter than 2.8 Å, O4⋯H30v = 2.77 Å and O8⋯H37vii = 2.66 Å. Symmetry codes: (i) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (ii) x + 1, y, z; (iii) −x, y + [{1\over 2}], −z + [{1\over 2}]; (iv) x − [{1\over 2}], −y + [{3\over 2}], −z + 1; (v) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (vi) −x, y − [{1\over 2}], −z + [{1\over 2}];; (vii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].
[Figure 7]
Figure 7
The steric circumstance of the nitro group in (II)[link]. Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines. Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (iii) x + 1, −y + [{1\over 2}], z + [{1\over 2}]; (iv) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (v) x − 1, −y + [{1\over 2}], z − [{1\over 2}]; (vi) −x, 1 − y, 1 − z.

4. Database survey

There is no entry for trans-[Co(salen)(NO2)(X-py)] in the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), although the structures of related compounds have been published, for example trans-[Co(salen)(py)2][BPh4] (Shi et al., 1995[Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206-207.]) and trans-[Co(salen)(4-Cl-py)2][ClO4]·CH3OH (Zhang, 2010[Zhang, D. (2010). Acta Cryst. E66, m1633.]).

5. Synthesis and crystallization

Cobalt(II) acetate tetra­hydrate, sodium nitrite, H2salen, and pyridine/4-methyl­pyridine (molar ratio 1:1:1:1) were reacted in methanol. Air was bubbled through the solution at 328 K for 1 h to precipitate the title compound. Brown needles of (I)[link] and (II)[link] were grown from a dimethyl sulfoxide solution and an N, N′-di­methyl­formamide solution, respectively, by diffusion of diethyl ether vapour.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms bound to C were positioned geometrically, the methyl H atoms being introduced by an HFIX 137 command. They were refined as riding, with C—H = 0.93–0.97 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CMe). (I)[link]: Since the c axis is longer than 40 Å, the overlapping of reflections was avoided in the intensity measurement by a longer sample-to-detector distance than the usual. (II)[link]: Six reflections showing poor agreement were omitted from the final refinement.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [Co(C16H14N2O2)(NO2)(C5H5N)] [Co(C16H14N2O2)(NO2)(C6H7N)]
Mr 450.33 464.36
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/c
Temperature (K) 302 301
a, b, c (Å) 6.924 (2), 14.007 (3), 40.339 (8) 9.7430 (4), 18.0136 (6), 12.8488 (5)
α, β, γ (°) 90, 90, 90 90, 106.476 (1), 90
V3) 3912.3 (16) 2162.45 (14)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.91 0.83
Crystal size (mm) 0.29 × 0.06 × 0.04 0.30 × 0.10 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.841, 0.965 0.847, 0.952
No. of measured, independent and observed [I > 2σ(I)] reflections 52512, 9036, 6955 23719, 5114, 3793
Rint 0.057 0.034
(sin θ/λ)max−1) 0.656 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.11 0.055, 0.192, 1.08
No. of reflections 9036 5114
No. of parameters 541 281
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.38 1.25, −0.61
Absolute structure Flack x determined using 2597 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (6)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CAVITY (Ohashi et al., 1981[Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805-5812.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and CAVITY (Ohashi et al., 1981); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

trans-{2,2'-[Ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-κ4O,N,N',O'}(nitro-κN)(pyridine-κN)cobalt(III) (I) top
Crystal data top
[Co(C16H14N2O2)(NO2)(C5H5N)]Dx = 1.529 Mg m3
Mr = 450.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9904 reflections
a = 6.924 (2) Åθ = 2.5–26.4°
b = 14.007 (3) ŵ = 0.91 mm1
c = 40.339 (8) ÅT = 302 K
V = 3912.3 (16) Å3Needle, brown
Z = 80.29 × 0.06 × 0.04 mm
F(000) = 1856
Data collection top
Bruker D8 VENTURE
diffractometer
6955 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 27.8°, θmin = 2.1°
Tmin = 0.841, Tmax = 0.965h = 99
52512 measured reflectionsk = 1818
9036 independent reflectionsl = 5252
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0226P)2 + 1.3354P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.41 e Å3
9036 reflectionsΔρmin = 0.38 e Å3
541 parametersAbsolute structure: Flack x determined using 2597 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.010 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.85121 (8)0.53498 (3)0.44179 (2)0.02769 (12)
Co20.35957 (8)0.26710 (4)0.28219 (2)0.03077 (13)
O30.6714 (6)0.6081 (3)0.49733 (8)0.0730 (12)
O40.7526 (7)0.4641 (3)0.50386 (8)0.0762 (12)
O50.6418 (4)0.61244 (17)0.42729 (6)0.0339 (6)
O60.6913 (4)0.42812 (18)0.43168 (6)0.0330 (7)
O70.2938 (7)0.0765 (3)0.26808 (10)0.0924 (16)
O80.1576 (7)0.1673 (3)0.23428 (10)0.0816 (13)
O90.1581 (4)0.24890 (18)0.31341 (6)0.0352 (6)
O100.1888 (4)0.3519 (2)0.25961 (6)0.0384 (7)
N110.7471 (5)0.5353 (3)0.48670 (8)0.0372 (8)
N121.0111 (5)0.6392 (2)0.45445 (8)0.0340 (8)
N131.0645 (5)0.4574 (3)0.45381 (7)0.0327 (8)
N140.9458 (5)0.5370 (2)0.39372 (7)0.0311 (7)
N150.2570 (5)0.1572 (3)0.25859 (9)0.0396 (8)
N160.5391 (5)0.1846 (3)0.30391 (9)0.0389 (9)
N170.5586 (5)0.2833 (3)0.25025 (8)0.0392 (9)
N180.4514 (5)0.3825 (2)0.30847 (8)0.0352 (8)
C190.6357 (7)0.7062 (3)0.42854 (9)0.0347 (9)
C200.4657 (7)0.7517 (3)0.41647 (10)0.0453 (11)
H200.36640.71490.40760.054*
C210.4467 (9)0.8500 (3)0.41780 (12)0.0565 (14)
H210.33310.87830.41040.068*
C220.5943 (9)0.9073 (3)0.43004 (12)0.0588 (15)
H220.57900.97320.43070.071*
C230.7612 (8)0.8667 (3)0.44100 (11)0.0485 (12)
H230.86010.90570.44880.058*
C240.7873 (6)0.7656 (3)0.44078 (10)0.0370 (10)
C250.9653 (7)0.7287 (3)0.45369 (9)0.0396 (10)
H251.05410.77220.46210.048*
C261.1903 (6)0.6075 (3)0.47122 (10)0.0426 (11)
H26A1.16850.60100.49490.051*
H26B1.29270.65370.46780.051*
C271.2453 (6)0.5121 (3)0.45626 (11)0.0420 (11)
H27A1.30240.52080.43450.050*
H27B1.33740.47920.47030.050*
C281.0614 (7)0.3662 (3)0.45981 (9)0.0369 (10)
H281.17590.33760.46660.044*
C290.8932 (7)0.3063 (3)0.45665 (9)0.0350 (10)
C300.9070 (8)0.2098 (3)0.46782 (10)0.0443 (12)
H301.02240.18790.47680.053*
C310.7526 (9)0.1493 (3)0.46547 (11)0.0524 (13)
H310.76200.08710.47340.063*
C320.5809 (8)0.1813 (3)0.45115 (11)0.0497 (13)
H320.47630.13990.44950.060*
C330.5639 (7)0.2740 (3)0.43937 (10)0.0398 (10)
H330.45000.29310.42910.048*
C340.7180 (6)0.3401 (3)0.44278 (10)0.0333 (9)
C350.9600 (6)0.6196 (3)0.37649 (10)0.0377 (10)
H350.94830.67710.38780.045*
C360.9910 (7)0.6218 (3)0.34278 (10)0.0438 (11)
H360.99960.68010.33180.053*
C371.0094 (6)0.5382 (4)0.32536 (10)0.0452 (11)
H371.02700.53870.30250.054*
C381.0009 (6)0.4531 (3)0.34269 (10)0.0407 (10)
H381.01630.39520.33170.049*
C390.9692 (6)0.4549 (3)0.37652 (10)0.0357 (9)
H390.96380.39730.38790.043*
C400.1643 (7)0.1934 (3)0.33973 (9)0.0341 (9)
C410.0003 (7)0.1897 (3)0.36051 (10)0.0413 (11)
H410.10750.22620.35520.050*
C420.0040 (9)0.1333 (4)0.38859 (11)0.0534 (13)
H420.11520.13140.40150.064*
C430.1563 (9)0.0792 (3)0.39774 (11)0.0581 (13)
H430.15350.04210.41690.070*
C440.3176 (8)0.0815 (3)0.37825 (11)0.0523 (13)
H440.42370.04450.38410.063*
C450.3277 (7)0.1381 (3)0.34951 (9)0.0381 (10)
C460.5049 (7)0.1355 (3)0.33027 (11)0.0430 (11)
H460.60210.09480.33760.052*
C470.7144 (6)0.1661 (4)0.28403 (12)0.0505 (12)
H47A0.69590.11020.27020.061*
H47B0.82420.15490.29850.061*
C480.7488 (6)0.2536 (4)0.26278 (12)0.0524 (13)
H48A0.80670.30420.27580.063*
H48B0.83460.23840.24450.063*
C490.5353 (7)0.3142 (3)0.22032 (10)0.0455 (11)
H490.64170.31220.20620.055*
C500.3591 (8)0.3512 (3)0.20717 (10)0.0451 (10)
C510.3481 (9)0.3711 (4)0.17269 (11)0.0595 (13)
H510.45410.35770.15930.071*
C520.1864 (9)0.4093 (4)0.15869 (12)0.0676 (17)
H520.17930.41840.13590.081*
C530.0304 (9)0.4347 (4)0.17923 (13)0.0624 (15)
H530.07730.46420.17010.075*
C540.0354 (7)0.4162 (3)0.21282 (11)0.0495 (12)
H540.06840.43430.22600.059*
C550.1962 (6)0.3703 (3)0.22745 (10)0.0386 (11)
C560.4742 (6)0.4679 (3)0.29333 (10)0.0412 (10)
H560.46930.47060.27030.049*
C570.5047 (7)0.5513 (3)0.31087 (11)0.0487 (12)
H570.52010.60880.29970.058*
C580.5122 (7)0.5488 (4)0.34477 (11)0.0479 (12)
H580.52880.60460.35690.058*
C590.4945 (6)0.4619 (4)0.36050 (10)0.0434 (11)
H590.50310.45790.38350.052*
C600.4639 (6)0.3808 (3)0.34170 (10)0.0401 (10)
H600.45150.32250.35250.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0270 (3)0.0279 (3)0.0282 (2)0.0004 (3)0.0004 (2)0.0005 (2)
Co20.0271 (3)0.0352 (3)0.0299 (3)0.0001 (3)0.0000 (2)0.0016 (2)
O30.099 (3)0.061 (2)0.058 (2)0.027 (2)0.031 (2)0.0067 (17)
O40.124 (3)0.055 (2)0.0490 (19)0.014 (2)0.032 (2)0.0148 (18)
O50.0319 (15)0.0253 (13)0.0445 (15)0.0007 (14)0.0021 (14)0.0007 (11)
O60.0332 (17)0.0265 (14)0.0394 (15)0.0010 (12)0.0037 (12)0.0017 (11)
O70.143 (4)0.044 (2)0.090 (3)0.018 (3)0.041 (3)0.001 (2)
O80.087 (3)0.071 (2)0.087 (3)0.013 (3)0.047 (3)0.034 (2)
O90.0356 (15)0.0402 (16)0.0299 (13)0.0024 (15)0.0034 (13)0.0058 (12)
O100.0383 (18)0.0445 (16)0.0324 (14)0.0029 (14)0.0005 (12)0.0024 (13)
N110.0356 (19)0.0391 (19)0.0368 (18)0.0019 (19)0.0010 (15)0.0020 (17)
N120.0295 (19)0.039 (2)0.0335 (17)0.0033 (16)0.0021 (15)0.0028 (15)
N130.0288 (18)0.0395 (19)0.0299 (16)0.0015 (16)0.0009 (14)0.0012 (16)
N140.0311 (18)0.0334 (18)0.0289 (15)0.0008 (16)0.0019 (14)0.0001 (15)
N150.035 (2)0.043 (2)0.040 (2)0.0008 (18)0.0034 (17)0.0072 (18)
N160.030 (2)0.040 (2)0.046 (2)0.0021 (17)0.0002 (16)0.0003 (17)
N170.032 (2)0.050 (2)0.0354 (18)0.0015 (18)0.0003 (16)0.0023 (17)
N180.0326 (19)0.040 (2)0.0334 (18)0.0018 (17)0.0033 (15)0.0005 (15)
C190.043 (2)0.030 (2)0.0306 (19)0.003 (2)0.009 (2)0.0021 (15)
C200.046 (3)0.038 (3)0.052 (3)0.007 (2)0.002 (2)0.006 (2)
C210.074 (4)0.040 (3)0.055 (3)0.023 (3)0.002 (3)0.005 (2)
C220.095 (5)0.030 (2)0.051 (3)0.013 (3)0.000 (3)0.000 (2)
C230.074 (3)0.033 (2)0.039 (2)0.004 (2)0.004 (2)0.004 (2)
C240.050 (3)0.029 (2)0.032 (2)0.001 (2)0.0057 (19)0.0049 (18)
C250.047 (3)0.037 (2)0.035 (2)0.013 (2)0.0022 (19)0.0079 (19)
C260.035 (3)0.054 (3)0.038 (2)0.010 (2)0.0066 (19)0.002 (2)
C270.028 (2)0.055 (3)0.043 (2)0.001 (2)0.0018 (19)0.009 (2)
C280.038 (2)0.042 (3)0.031 (2)0.012 (2)0.0025 (18)0.0004 (18)
C290.048 (3)0.034 (2)0.0234 (18)0.003 (2)0.0027 (18)0.0009 (16)
C300.068 (4)0.035 (2)0.030 (2)0.011 (2)0.004 (2)0.0010 (18)
C310.094 (4)0.028 (2)0.036 (2)0.000 (3)0.008 (3)0.0025 (19)
C320.072 (4)0.033 (2)0.044 (3)0.013 (2)0.016 (2)0.007 (2)
C330.043 (2)0.035 (2)0.041 (2)0.006 (2)0.007 (2)0.004 (2)
C340.039 (2)0.030 (2)0.0306 (19)0.0006 (18)0.0044 (18)0.0008 (18)
C350.042 (3)0.035 (2)0.037 (2)0.001 (2)0.0011 (19)0.0017 (19)
C360.047 (3)0.047 (3)0.037 (2)0.003 (2)0.005 (2)0.010 (2)
C370.042 (3)0.061 (3)0.033 (2)0.008 (3)0.0024 (19)0.005 (2)
C380.040 (3)0.044 (3)0.038 (2)0.004 (2)0.0013 (19)0.012 (2)
C390.034 (2)0.034 (2)0.039 (2)0.003 (2)0.0006 (18)0.0036 (19)
C400.040 (3)0.029 (2)0.033 (2)0.004 (2)0.004 (2)0.0044 (16)
C410.047 (3)0.042 (3)0.035 (2)0.004 (2)0.005 (2)0.0027 (19)
C420.067 (4)0.058 (3)0.034 (2)0.014 (3)0.013 (2)0.001 (2)
C430.082 (4)0.057 (3)0.035 (2)0.007 (3)0.003 (3)0.014 (2)
C440.062 (4)0.047 (3)0.048 (3)0.002 (3)0.006 (3)0.011 (2)
C450.045 (3)0.035 (2)0.034 (2)0.004 (2)0.003 (2)0.0020 (17)
C460.041 (3)0.037 (2)0.052 (3)0.002 (2)0.011 (2)0.005 (2)
C470.032 (2)0.061 (3)0.059 (3)0.011 (2)0.002 (2)0.002 (3)
C480.027 (2)0.075 (4)0.055 (3)0.002 (3)0.005 (2)0.001 (3)
C490.041 (3)0.061 (3)0.035 (2)0.008 (2)0.007 (2)0.001 (2)
C500.044 (3)0.056 (3)0.036 (2)0.009 (3)0.001 (2)0.003 (2)
C510.063 (3)0.078 (4)0.038 (2)0.015 (3)0.005 (3)0.008 (2)
C520.085 (5)0.077 (4)0.041 (3)0.015 (3)0.012 (3)0.017 (3)
C530.068 (4)0.063 (4)0.056 (3)0.004 (3)0.021 (3)0.019 (3)
C540.050 (3)0.051 (3)0.047 (3)0.005 (2)0.009 (2)0.011 (2)
C550.043 (3)0.040 (2)0.032 (2)0.007 (2)0.0061 (18)0.0035 (18)
C560.045 (3)0.041 (2)0.037 (2)0.009 (2)0.0022 (19)0.000 (2)
C570.049 (3)0.041 (3)0.056 (3)0.010 (2)0.002 (2)0.002 (2)
C580.040 (3)0.051 (3)0.053 (3)0.005 (2)0.003 (2)0.017 (2)
C590.038 (3)0.057 (3)0.035 (2)0.002 (2)0.0058 (19)0.005 (2)
C600.039 (3)0.045 (3)0.036 (2)0.002 (2)0.0060 (19)0.001 (2)
Geometric parameters (Å, º) top
Co1—N131.896 (3)C30—H300.9300
Co1—N121.901 (3)C31—C321.396 (7)
Co1—O51.903 (3)C31—H310.9300
Co1—O61.906 (3)C32—C331.389 (6)
Co1—N111.950 (3)C32—H320.9300
Co1—N142.047 (3)C33—C341.419 (6)
Co2—O91.897 (3)C33—H330.9300
Co2—N171.900 (4)C35—C361.377 (6)
Co2—O101.908 (3)C35—H350.9300
Co2—N161.910 (4)C36—C371.372 (6)
Co2—N151.944 (4)C36—H360.9300
Co2—N182.035 (3)C37—C381.384 (6)
O3—N111.224 (5)C37—H370.9300
O4—N111.215 (4)C38—C391.382 (5)
O5—C191.315 (4)C38—H380.9300
O6—C341.325 (4)C39—H390.9300
O7—N151.220 (5)C40—C411.412 (6)
O8—N151.206 (5)C40—C451.427 (6)
O9—C401.316 (4)C41—C421.382 (6)
O10—C551.324 (5)C41—H410.9300
N12—C251.295 (5)C42—C431.394 (7)
N12—C261.481 (5)C42—H420.9300
N13—C281.300 (5)C43—C441.366 (7)
N13—C271.471 (5)C43—H430.9300
N14—C391.353 (5)C44—C451.407 (6)
N14—C351.353 (5)C44—H440.9300
N16—C461.289 (5)C45—C461.452 (6)
N16—C471.477 (5)C46—H460.9300
N17—C491.293 (5)C47—C481.514 (7)
N17—C481.471 (6)C47—H47A0.9700
N18—C601.343 (5)C47—H47B0.9700
N18—C561.352 (5)C48—H48A0.9700
C19—C201.424 (6)C48—H48B0.9700
C19—C241.428 (6)C49—C501.427 (6)
C20—C211.385 (6)C49—H490.9300
C20—H200.9300C50—C551.419 (6)
C21—C221.389 (8)C50—C511.421 (6)
C21—H210.9300C51—C521.363 (7)
C22—C231.362 (7)C51—H510.9300
C22—H220.9300C52—C531.407 (8)
C23—C241.428 (6)C52—H520.9300
C23—H230.9300C53—C541.380 (7)
C24—C251.434 (6)C53—H530.9300
C25—H250.9300C54—C551.415 (6)
C26—C271.515 (6)C54—H540.9300
C26—H26A0.9700C56—C571.382 (6)
C26—H26B0.9700C56—H560.9300
C27—H27A0.9700C57—C581.369 (6)
C27—H27B0.9700C57—H570.9300
C28—C291.441 (6)C58—C591.378 (6)
C28—H280.9300C58—H580.9300
C29—C341.417 (6)C59—C601.382 (6)
C29—C301.428 (5)C59—H590.9300
C30—C311.368 (7)C60—H600.9300
N13—Co1—N1285.27 (15)C31—C30—H30119.6
N13—Co1—O5176.89 (12)C29—C30—H30119.6
N12—Co1—O595.08 (13)C30—C31—C32119.7 (4)
N13—Co1—O693.28 (13)C30—C31—H31120.2
N12—Co1—O6176.70 (12)C32—C31—H31120.2
O5—Co1—O686.52 (12)C33—C32—C31121.0 (5)
N13—Co1—N1192.96 (14)C33—C32—H32119.5
N12—Co1—N1187.92 (14)C31—C32—H32119.5
O5—Co1—N1190.14 (14)C32—C33—C34120.9 (4)
O6—Co1—N1189.20 (13)C32—C33—H33119.6
N13—Co1—N1490.07 (13)C34—C33—H33119.6
N12—Co1—N1493.29 (14)O6—C34—C29124.3 (4)
O5—Co1—N1486.83 (12)O6—C34—C33118.0 (4)
O6—Co1—N1489.67 (13)C29—C34—C33117.7 (4)
N11—Co1—N14176.83 (14)N14—C35—C36122.6 (4)
O9—Co2—N17178.70 (14)N14—C35—H35118.7
O9—Co2—O1086.83 (12)C36—C35—H35118.7
N17—Co2—O1092.95 (14)C37—C36—C35120.0 (4)
O9—Co2—N1695.33 (13)C37—C36—H36120.0
N17—Co2—N1684.91 (16)C35—C36—H36120.0
O10—Co2—N16177.68 (15)C36—C37—C38118.2 (4)
O9—Co2—N1587.13 (14)C36—C37—H37120.9
N17—Co2—N1591.59 (15)C38—C37—H37120.9
O10—Co2—N1591.87 (15)C39—C38—C37119.3 (4)
N16—Co2—N1589.08 (16)C39—C38—H38120.4
O9—Co2—N1889.46 (13)C37—C38—H38120.4
N17—Co2—N1891.81 (15)N14—C39—C38122.8 (4)
O10—Co2—N1887.00 (13)N14—C39—H39118.6
N16—Co2—N1892.18 (15)C38—C39—H39118.6
N15—Co2—N18176.46 (15)O9—C40—C41118.3 (4)
C19—O5—Co1125.6 (3)O9—C40—C45124.7 (4)
C34—O6—Co1125.3 (3)C41—C40—C45117.0 (4)
C40—O9—Co2126.2 (3)C42—C41—C40121.7 (5)
C55—O10—Co2124.4 (3)C42—C41—H41119.2
O4—N11—O3119.9 (3)C40—C41—H41119.2
O4—N11—Co1121.0 (3)C41—C42—C43120.7 (5)
O3—N11—Co1119.1 (3)C41—C42—H42119.6
C25—N12—C26120.4 (4)C43—C42—H42119.6
C25—N12—Co1126.5 (3)C44—C43—C42119.1 (4)
C26—N12—Co1112.4 (3)C44—C43—H43120.5
C28—N13—C27120.9 (4)C42—C43—H43120.5
C28—N13—Co1126.7 (3)C43—C44—C45121.9 (5)
C27—N13—Co1112.4 (3)C43—C44—H44119.1
C39—N14—C35117.0 (3)C45—C44—H44119.1
C39—N14—Co1120.8 (3)C44—C45—C40119.6 (4)
C35—N14—Co1121.5 (3)C44—C45—C46117.9 (4)
O8—N15—O7118.9 (4)C40—C45—C46122.4 (4)
O8—N15—Co2120.9 (3)N16—C46—C45125.6 (4)
O7—N15—Co2120.2 (3)N16—C46—H46117.2
C46—N16—C47120.3 (4)C45—C46—H46117.2
C46—N16—Co2125.6 (3)N16—C47—C48107.1 (4)
C47—N16—Co2113.1 (3)N16—C47—H47A110.3
C49—N17—C48121.8 (4)C48—C47—H47A110.3
C49—N17—Co2125.6 (3)N16—C47—H47B110.3
C48—N17—Co2112.5 (3)C48—C47—H47B110.3
C60—N18—C56117.3 (4)H47A—C47—H47B108.5
C60—N18—Co2121.7 (3)N17—C48—C47106.4 (4)
C56—N18—Co2120.3 (3)N17—C48—H48A110.4
O5—C19—C20117.4 (4)C47—C48—H48A110.4
O5—C19—C24124.9 (4)N17—C48—H48B110.4
C20—C19—C24117.7 (4)C47—C48—H48B110.4
C21—C20—C19120.7 (5)H48A—C48—H48B108.6
C21—C20—H20119.7N17—C49—C50125.1 (4)
C19—C20—H20119.7N17—C49—H49117.5
C20—C21—C22121.2 (5)C50—C49—H49117.5
C20—C21—H21119.4C55—C50—C51119.0 (5)
C22—C21—H21119.4C55—C50—C49122.3 (3)
C23—C22—C21119.9 (4)C51—C50—C49118.7 (5)
C23—C22—H22120.0C52—C51—C50121.8 (5)
C21—C22—H22120.0C52—C51—H51119.1
C22—C23—C24121.3 (5)C50—C51—H51119.1
C22—C23—H23119.4C51—C52—C53119.0 (5)
C24—C23—H23119.4C51—C52—H52120.5
C19—C24—C23119.2 (4)C53—C52—H52120.5
C19—C24—C25123.2 (4)C54—C53—C52120.8 (5)
C23—C24—C25117.6 (4)C54—C53—H53119.6
N12—C25—C24124.6 (4)C52—C53—H53119.6
N12—C25—H25117.7C53—C54—C55121.0 (5)
C24—C25—H25117.7C53—C54—H54119.5
N12—C26—C27107.0 (3)C55—C54—H54119.5
N12—C26—H26A110.3O10—C55—C54117.8 (4)
C27—C26—H26A110.3O10—C55—C50124.0 (4)
N12—C26—H26B110.3C54—C55—C50118.1 (4)
C27—C26—H26B110.3N18—C56—C57122.3 (4)
H26A—C26—H26B108.6N18—C56—H56118.8
N13—C27—C26105.8 (3)C57—C56—H56118.8
N13—C27—H27A110.6C58—C57—C56119.7 (4)
C26—C27—H27A110.6C58—C57—H57120.2
N13—C27—H27B110.6C56—C57—H57120.2
C26—C27—H27B110.6C57—C58—C59118.6 (4)
H27A—C27—H27B108.7C57—C58—H58120.7
N13—C28—C29124.6 (4)C59—C58—H58120.7
N13—C28—H28117.7C58—C59—C60119.1 (4)
C29—C28—H28117.7C58—C59—H59120.4
C34—C29—C30119.9 (4)C60—C59—H59120.4
C34—C29—C28122.2 (4)N18—C60—C59122.9 (4)
C30—C29—C28118.0 (4)N18—C60—H60118.6
C31—C30—C29120.9 (5)C59—C60—H60118.6
O10—Co2—O9—C40179.8 (3)N14—C35—C36—C370.2 (7)
N16—Co2—O9—C401.0 (3)C35—C36—C37—C381.7 (7)
N15—Co2—O9—C4087.8 (3)C36—C37—C38—C391.7 (7)
N18—Co2—O9—C4093.1 (3)C35—N14—C39—C381.8 (6)
N12—Co1—N13—C28162.7 (3)Co1—N14—C39—C38168.8 (3)
O6—Co1—N13—C2814.4 (3)C37—C38—C39—N140.0 (7)
N11—Co1—N13—C2875.0 (3)Co2—O9—C40—C41179.2 (3)
N14—Co1—N13—C28104.0 (3)Co2—O9—C40—C451.1 (5)
N12—Co1—N13—C2716.8 (3)O9—C40—C41—C42179.9 (4)
O6—Co1—N13—C27166.1 (3)C45—C40—C41—C421.6 (6)
N11—Co1—N13—C27104.5 (3)C40—C41—C42—C431.3 (7)
N14—Co1—N13—C2776.5 (3)C41—C42—C43—C441.0 (8)
Co1—O5—C19—C20180.0 (3)C42—C43—C44—C451.1 (8)
Co1—O5—C19—C240.6 (5)C43—C44—C45—C401.5 (7)
O5—C19—C20—C21178.3 (4)C43—C44—C45—C46179.7 (4)
C24—C19—C20—C212.3 (6)O9—C40—C45—C44179.9 (4)
C19—C20—C21—C221.8 (7)C41—C40—C45—C441.7 (6)
C20—C21—C22—C230.0 (7)O9—C40—C45—C462.0 (6)
C21—C22—C23—C241.2 (7)C41—C40—C45—C46179.8 (4)
O5—C19—C24—C23179.4 (4)C47—N16—C46—C45171.7 (4)
C20—C19—C24—C231.1 (6)Co2—N16—C46—C454.0 (6)
O5—C19—C24—C250.8 (6)C44—C45—C46—N16178.2 (4)
C20—C19—C24—C25179.8 (4)C40—C45—C46—N163.7 (7)
C22—C23—C24—C190.6 (6)C46—N16—C47—C48160.9 (4)
C22—C23—C24—C25178.2 (4)Co2—N16—C47—C4829.9 (4)
C26—N12—C25—C24174.1 (4)C49—N17—C48—C47140.7 (4)
Co1—N12—C25—C244.6 (6)Co2—N17—C48—C4737.5 (5)
C19—C24—C25—N122.9 (6)N16—C47—C48—N1741.9 (5)
C23—C24—C25—N12178.4 (4)C48—N17—C49—C50174.9 (4)
C25—N12—C26—C27157.0 (4)Co2—N17—C49—C507.1 (7)
Co1—N12—C26—C2732.1 (4)N17—C49—C50—C559.1 (8)
C28—N13—C27—C26141.8 (4)N17—C49—C50—C51172.0 (4)
Co1—N13—C27—C2637.8 (4)C55—C50—C51—C521.0 (7)
N12—C26—C27—N1343.5 (4)C49—C50—C51—C52177.9 (5)
C27—N13—C28—C29177.2 (4)C50—C51—C52—C533.7 (8)
Co1—N13—C28—C293.3 (6)C51—C52—C53—C543.8 (8)
N13—C28—C29—C347.6 (6)C52—C53—C54—C550.8 (8)
N13—C28—C29—C30172.8 (4)Co2—O10—C55—C54165.5 (3)
C34—C29—C30—C310.3 (6)Co2—O10—C55—C5017.9 (6)
C28—C29—C30—C31179.9 (4)C53—C54—C55—O10177.8 (4)
C29—C30—C31—C321.8 (6)C53—C54—C55—C505.4 (7)
C30—C31—C32—C330.3 (7)C51—C50—C55—O10178.0 (4)
C31—C32—C33—C342.6 (6)C49—C50—C55—O103.2 (7)
Co1—O6—C34—C2916.9 (5)C51—C50—C55—C545.5 (6)
Co1—O6—C34—C33165.7 (3)C49—C50—C55—C54173.4 (4)
C30—C29—C34—O6179.8 (4)C60—N18—C56—C571.6 (6)
C28—C29—C34—O60.3 (6)Co2—N18—C56—C57169.0 (4)
C30—C29—C34—C332.5 (6)N18—C56—C57—C580.1 (7)
C28—C29—C34—C33177.1 (3)C56—C57—C58—C591.9 (7)
C32—C33—C34—O6178.5 (4)C57—C58—C59—C602.0 (7)
C32—C33—C34—C293.9 (6)C56—N18—C60—C591.4 (6)
C39—N14—C35—C361.9 (6)Co2—N18—C60—C59169.0 (3)
Co1—N14—C35—C36168.7 (3)C58—C59—C60—N180.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O3i0.932.483.341 (5)154
C38—H38···O9ii0.932.393.280 (5)160
C48—H48B···O8ii0.972.483.285 (7)140
C54—H54···O7iii0.932.543.291 (7)138
C59—H59···O60.932.383.213 (5)149
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
trans-{2,2'-[Ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-κ4O,N,N',O'}(4-methylpyridine-κN)(nitro-κN)cobalt(III) (II) top
Crystal data top
[Co(C16H14N2O2)(NO2)(C6H7N)]F(000) = 960
Mr = 464.36Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7430 (4) ÅCell parameters from 9569 reflections
b = 18.0136 (6) Åθ = 2.5–27.9°
c = 12.8488 (5) ŵ = 0.83 mm1
β = 106.476 (1)°T = 301 K
V = 2162.45 (14) Å3Needle, brown
Z = 40.30 × 0.10 × 0.07 mm
Data collection top
Bruker D8 VENTURE
diffractometer
3793 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 27.9°, θmin = 2.0°
Tmin = 0.847, Tmax = 0.952h = 1112
23719 measured reflectionsk = 2323
5114 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0929P)2 + 3.2082P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5114 reflectionsΔρmax = 1.25 e Å3
281 parametersΔρmin = 0.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.43909 (5)0.31776 (2)0.59728 (3)0.03638 (18)
O20.3197 (5)0.4571 (2)0.5824 (3)0.0871 (12)
O30.2071 (5)0.3868 (2)0.4603 (4)0.1114 (17)
O40.4759 (3)0.35464 (13)0.74031 (19)0.0418 (6)
O50.2919 (3)0.26205 (15)0.6288 (2)0.0468 (6)
N60.3024 (4)0.39475 (19)0.5412 (3)0.0518 (8)
N70.5772 (4)0.37838 (17)0.5612 (2)0.0454 (7)
N80.4123 (4)0.27543 (18)0.4586 (2)0.0452 (7)
N90.5822 (3)0.23582 (16)0.6577 (2)0.0383 (6)
C100.5620 (4)0.40889 (18)0.7823 (3)0.0400 (8)
C110.5769 (4)0.4281 (2)0.8917 (3)0.0458 (9)
H110.52570.40190.93080.055*
C120.6657 (5)0.4847 (2)0.9408 (3)0.0558 (10)
H120.67460.49561.01320.067*
C130.7428 (5)0.5262 (2)0.8859 (4)0.0580 (11)
H130.80140.56500.92010.070*
C140.7303 (5)0.5087 (2)0.7802 (4)0.0522 (10)
H140.78080.53670.74240.063*
C150.6436 (4)0.44982 (19)0.7263 (3)0.0418 (8)
C160.6455 (5)0.4327 (2)0.6194 (3)0.0478 (9)
H160.70030.46300.58820.057*
C170.5788 (7)0.3687 (3)0.4473 (4)0.0743 (15)
H17A0.51740.40530.40150.089*
H17B0.67520.37520.44160.089*
C180.5273 (7)0.2937 (3)0.4122 (4)0.0723 (14)
H18A0.49290.29180.33360.087*
H18B0.60480.25830.43620.087*
C190.3099 (5)0.2321 (2)0.4085 (3)0.0511 (10)
H190.30950.21500.34010.061*
C200.1964 (4)0.2085 (2)0.4515 (3)0.0482 (9)
C210.0852 (6)0.1644 (3)0.3846 (4)0.0669 (14)
H210.08960.15060.31590.080*
C220.0288 (6)0.1418 (3)0.4196 (5)0.0764 (16)
H220.10020.11240.37520.092*
C230.0370 (5)0.1626 (3)0.5200 (5)0.0748 (15)
H230.11590.14840.54250.090*
C240.0683 (5)0.2037 (3)0.5877 (5)0.0647 (12)
H240.06050.21680.65580.078*
C250.1902 (4)0.2270 (2)0.5558 (3)0.0475 (9)
C260.7169 (4)0.2496 (2)0.7154 (3)0.0467 (9)
H260.74660.29880.72660.056*
C270.8141 (5)0.1943 (2)0.7592 (4)0.0535 (10)
H270.90660.20680.79920.064*
C280.7751 (5)0.1207 (2)0.7443 (3)0.0512 (9)
C290.6333 (4)0.1068 (2)0.6881 (3)0.0474 (9)
H290.59960.05830.67900.057*
C300.5427 (4)0.1645 (2)0.6460 (3)0.0434 (8)
H300.44890.15340.60720.052*
C310.8785 (6)0.0589 (3)0.7867 (5)0.0770 (15)
H31A0.91350.04000.72920.116*
H31B0.83100.01990.81390.116*
H31C0.95720.07720.84420.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0462 (3)0.0347 (3)0.0287 (3)0.00394 (18)0.0115 (2)0.00221 (16)
O20.108 (3)0.0533 (19)0.093 (3)0.023 (2)0.017 (2)0.0042 (19)
O30.115 (4)0.087 (3)0.094 (3)0.044 (3)0.033 (3)0.008 (2)
O40.0575 (16)0.0381 (13)0.0329 (11)0.0110 (11)0.0176 (11)0.0052 (10)
O50.0464 (15)0.0498 (15)0.0444 (14)0.0112 (12)0.0133 (12)0.0081 (11)
N60.059 (2)0.0461 (18)0.0486 (18)0.0042 (15)0.0132 (16)0.0021 (14)
N70.062 (2)0.0422 (16)0.0365 (15)0.0051 (14)0.0220 (14)0.0011 (12)
N80.060 (2)0.0472 (17)0.0300 (14)0.0024 (15)0.0151 (13)0.0021 (12)
N90.0462 (17)0.0395 (15)0.0306 (13)0.0046 (12)0.0131 (12)0.0060 (11)
C100.051 (2)0.0279 (15)0.0373 (17)0.0030 (14)0.0066 (15)0.0005 (12)
C110.061 (2)0.0393 (18)0.0354 (17)0.0030 (16)0.0102 (16)0.0036 (14)
C120.068 (3)0.050 (2)0.043 (2)0.005 (2)0.0054 (19)0.0155 (17)
C130.059 (3)0.040 (2)0.063 (3)0.0035 (18)0.002 (2)0.0124 (18)
C140.051 (2)0.0339 (18)0.067 (3)0.0048 (16)0.0082 (19)0.0005 (17)
C150.048 (2)0.0313 (16)0.0429 (18)0.0022 (14)0.0082 (15)0.0007 (14)
C160.060 (2)0.0386 (18)0.050 (2)0.0051 (17)0.0229 (18)0.0058 (16)
C170.114 (4)0.073 (3)0.051 (2)0.023 (3)0.048 (3)0.009 (2)
C180.097 (4)0.081 (3)0.049 (2)0.016 (3)0.036 (3)0.020 (2)
C190.071 (3)0.0423 (19)0.0305 (16)0.0027 (18)0.0010 (17)0.0048 (14)
C200.051 (2)0.0380 (18)0.0448 (19)0.0009 (16)0.0049 (17)0.0030 (15)
C210.077 (3)0.045 (2)0.054 (2)0.004 (2)0.020 (2)0.0030 (19)
C220.062 (3)0.053 (3)0.089 (4)0.016 (2)0.020 (3)0.010 (3)
C230.051 (3)0.066 (3)0.099 (4)0.017 (2)0.007 (3)0.005 (3)
C240.050 (3)0.057 (3)0.086 (3)0.009 (2)0.018 (2)0.004 (2)
C250.043 (2)0.0383 (18)0.056 (2)0.0010 (15)0.0057 (17)0.0003 (16)
C260.046 (2)0.0418 (19)0.052 (2)0.0082 (16)0.0138 (17)0.0057 (16)
C270.043 (2)0.055 (2)0.061 (3)0.0071 (18)0.0127 (19)0.0006 (19)
C280.055 (2)0.048 (2)0.051 (2)0.0003 (18)0.0162 (18)0.0015 (17)
C290.058 (2)0.0370 (18)0.0455 (19)0.0040 (16)0.0125 (17)0.0018 (15)
C300.050 (2)0.0414 (18)0.0364 (17)0.0061 (16)0.0086 (15)0.0040 (14)
C310.060 (3)0.065 (3)0.104 (4)0.014 (2)0.019 (3)0.014 (3)
Geometric parameters (Å, º) top
Co1—O51.886 (3)C17—H17A0.9700
Co1—N81.887 (3)C17—H17B0.9700
Co1—O41.890 (2)C18—H18A0.9700
Co1—N71.891 (3)C18—H18B0.9700
Co1—N61.916 (4)C19—C201.433 (6)
Co1—N92.027 (3)C19—H190.9300
O2—N61.233 (5)C20—C251.399 (6)
O3—N61.190 (5)C20—C211.419 (6)
O4—C101.301 (4)C21—C221.373 (8)
O5—C251.317 (4)C21—H210.9300
N7—C161.295 (5)C22—C231.367 (8)
N7—C171.478 (5)C22—H220.9300
N8—C191.287 (5)C23—C241.360 (7)
N8—C181.449 (6)C23—H230.9300
N9—C261.335 (5)C24—C251.426 (6)
N9—C301.338 (5)C24—H240.9300
C10—C111.414 (5)C26—C271.380 (6)
C10—C151.421 (5)C26—H260.9300
C11—C121.371 (6)C27—C281.378 (6)
C11—H110.9300C27—H270.9300
C12—C131.387 (7)C28—C291.388 (6)
C12—H120.9300C28—C311.496 (6)
C13—C141.366 (6)C29—C301.371 (6)
C13—H130.9300C29—H290.9300
C14—C151.410 (5)C30—H300.9300
C14—H140.9300C31—H31A0.9600
C15—C161.412 (5)C31—H31B0.9600
C16—H160.9300C31—H31C0.9600
C17—C181.465 (7)
O5—Co1—N894.47 (13)N7—C17—H17A110.0
O5—Co1—O485.66 (11)C18—C17—H17B110.0
N8—Co1—O4175.79 (13)N7—C17—H17B110.0
O5—Co1—N7176.15 (13)H17A—C17—H17B108.4
N8—Co1—N785.35 (14)N8—C18—C17108.7 (4)
O4—Co1—N794.80 (12)N8—C18—H18A110.0
O5—Co1—N688.63 (14)C17—C18—H18A110.0
N8—Co1—N692.44 (15)N8—C18—H18B110.0
O4—Co1—N691.77 (13)C17—C18—H18B110.0
N7—Co1—N687.54 (15)H18A—C18—H18B108.3
O5—Co1—N990.72 (12)N8—C19—C20124.1 (3)
N8—Co1—N987.88 (13)N8—C19—H19117.9
O4—Co1—N987.91 (11)C20—C19—H19117.9
N7—Co1—N993.11 (13)C25—C20—C21118.8 (4)
N6—Co1—N9179.30 (14)C25—C20—C19123.1 (3)
C10—O4—Co1126.1 (2)C21—C20—C19118.2 (4)
C25—O5—Co1124.5 (3)C22—C21—C20121.1 (5)
O3—N6—O2117.5 (4)C22—C21—H21119.4
O3—N6—Co1121.9 (3)C20—C21—H21119.4
O2—N6—Co1120.2 (3)C23—C22—C21119.8 (5)
C16—N7—C17120.9 (3)C23—C22—H22120.1
C16—N7—Co1125.4 (3)C21—C22—H22120.1
C17—N7—Co1112.5 (3)C24—C23—C22121.1 (5)
C19—N8—C18120.8 (3)C24—C23—H23119.4
C19—N8—Co1126.7 (3)C22—C23—H23119.4
C18—N8—Co1112.4 (3)C23—C24—C25121.0 (5)
C26—N9—C30116.6 (3)C23—C24—H24119.5
C26—N9—Co1122.6 (2)C25—C24—H24119.5
C30—N9—Co1120.8 (3)O5—C25—C20124.7 (4)
O4—C10—C11117.9 (3)O5—C25—C24117.2 (4)
O4—C10—C15124.6 (3)C20—C25—C24118.1 (4)
C11—C10—C15117.6 (3)N9—C26—C27123.0 (4)
C12—C11—C10120.9 (4)N9—C26—H26118.5
C12—C11—H11119.6C27—C26—H26118.5
C10—C11—H11119.6C28—C27—C26120.5 (4)
C11—C12—C13121.9 (4)C28—C27—H27119.7
C11—C12—H12119.0C26—C27—H27119.7
C13—C12—H12119.0C27—C28—C29116.1 (4)
C14—C13—C12118.3 (4)C27—C28—C31122.4 (4)
C14—C13—H13120.9C29—C28—C31121.6 (4)
C12—C13—H13120.9C30—C29—C28120.3 (4)
C13—C14—C15122.3 (4)C30—C29—H29119.9
C13—C14—H14118.9C28—C29—H29119.9
C15—C14—H14118.9N9—C30—C29123.4 (4)
C14—C15—C16118.1 (4)N9—C30—H30118.3
C14—C15—C10119.0 (3)C29—C30—H30118.3
C16—C15—C10122.9 (3)C28—C31—H31A109.5
N7—C16—C15125.5 (3)C28—C31—H31B109.5
N7—C16—H16117.3H31A—C31—H31B109.5
C15—C16—H16117.3C28—C31—H31C109.5
C18—C17—N7108.4 (4)H31A—C31—H31C109.5
C18—C17—H17A110.0H31B—C31—H31C109.5
O5—Co1—O4—C10170.8 (3)C17—N7—C16—C15175.7 (4)
N7—Co1—O4—C105.4 (3)Co1—N7—C16—C159.2 (6)
N6—Co1—O4—C1082.3 (3)C14—C15—C16—N7176.7 (4)
N9—Co1—O4—C1098.3 (3)C10—C15—C16—N71.3 (6)
N8—Co1—O5—C2517.1 (3)C16—N7—C17—C18165.0 (5)
O4—Co1—O5—C25167.1 (3)Co1—N7—C17—C1826.9 (6)
N6—Co1—O5—C2575.3 (3)C19—N8—C18—C17149.1 (4)
N9—Co1—O5—C25105.0 (3)Co1—N8—C18—C1733.8 (6)
N8—Co1—N7—C16174.4 (4)N7—C17—C18—N838.1 (6)
O4—Co1—N7—C169.8 (4)C18—N8—C19—C20176.8 (4)
N6—Co1—N7—C1681.8 (4)Co1—N8—C19—C200.1 (6)
N9—Co1—N7—C1698.0 (3)N8—C19—C20—C253.8 (6)
N8—Co1—N7—C176.9 (3)N8—C19—C20—C21176.0 (4)
O4—Co1—N7—C17177.3 (3)C25—C20—C21—C221.8 (6)
N6—Co1—N7—C1785.7 (3)C19—C20—C21—C22178.1 (4)
N9—Co1—N7—C1794.5 (3)C20—C21—C22—C230.8 (7)
O5—Co1—N8—C198.3 (3)C21—C22—C23—C241.9 (8)
N7—Co1—N8—C19167.8 (4)C22—C23—C24—C250.5 (8)
N6—Co1—N8—C1980.5 (3)Co1—O5—C25—C2018.4 (5)
N9—Co1—N8—C1998.9 (3)Co1—O5—C25—C24164.4 (3)
O5—Co1—N8—C18168.7 (3)C21—C20—C25—O5174.0 (4)
N7—Co1—N8—C1815.2 (3)C19—C20—C25—O56.1 (6)
N6—Co1—N8—C18102.5 (4)C21—C20—C25—C243.1 (6)
N9—Co1—N8—C1878.1 (3)C19—C20—C25—C24176.7 (4)
Co1—O4—C10—C11179.3 (3)C23—C24—C25—O5175.3 (4)
Co1—O4—C10—C150.0 (5)C23—C24—C25—C202.1 (7)
O4—C10—C11—C12179.9 (4)C30—N9—C26—C271.8 (6)
C15—C10—C11—C120.8 (6)Co1—N9—C26—C27178.3 (3)
C10—C11—C12—C131.0 (6)N9—C26—C27—C280.3 (7)
C11—C12—C13—C141.0 (7)C26—C27—C28—C292.9 (6)
C12—C13—C14—C150.7 (6)C26—C27—C28—C31177.6 (4)
C13—C14—C15—C16175.6 (4)C27—C28—C29—C303.4 (6)
C13—C14—C15—C102.4 (6)C31—C28—C29—C30177.0 (4)
O4—C10—C15—C14178.4 (3)C26—N9—C30—C291.2 (5)
C11—C10—C15—C142.4 (5)Co1—N9—C30—C29177.8 (3)
O4—C10—C15—C163.7 (6)C28—C29—C30—N91.5 (6)
C11—C10—C15—C16175.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.583.358 (6)141
C31—H31B···O2ii0.962.513.429 (7)159
C31—H31C···O3iii0.962.553.483 (7)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Takashi Nemoto, Kyoto University, for making the program CAVITY available to the public.

References

First citationBalzani, V., Ballardini, R., Sabbatini, N. & Moggi, L. (1968). Inorg. Chem. 7, 1398–1404.  CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoppens, P., Novozhilova, I. & Kovalevsky, A. (2002). Chem. Rev. 102, 861–883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeyns, A. M. & de Waal, D. (1989). Spectrochim. Acta A, 45, 905–909.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyoshi, K., Katoda, N. & Yoneda, H. (1983). Inorg. Chem. 22, 1839–1843.  CrossRef CAS Web of Science Google Scholar
First citationOhashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805–5812.  CrossRef CAS Web of Science Google Scholar
First citationOhba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526–1531.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOhba, S., Tsuchimoto, M. & Miyazaki, H. (2018). Acta Cryst. E74, 1637–1642.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206–207.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D. (2010). Acta Cryst. E66, m1633.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds