research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the 1:1 salts of 2-amino-4-nitro­benzoate with each of (2-hy­dr­oxy­eth­yl)di­methyl­aza­nium, tert-but­yl(2-hy­dr­oxy­eth­yl)aza­nium and 1,3-dihy­dr­oxy-2-(hy­dr­oxy­meth­yl)propan-2-aminium

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, and bResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 November 2018; accepted 2 November 2018; online 9 November 2018)

The crystal and mol­ecular structures of the title mol­ecular salts, C4H12NO+·C7H5N2O4, (I), C6H16NO+·C7H5N2O4, (II), and C4H12NO3+·C7H5N2O4, (III), are described. The common feature of these salts is the presence of the 2-amino-4-nitro­benzoate anion, which exhibit non-chemically significant variations in the conformational relationships between the carboxyl­ate and nitro groups, and between these and the benzene rings they are connected to. The number of ammonium-N—H H atoms in the cations increases from one to three in (I) to (III), respectively, and this variation significantly influences the supra­molecular aggregation patterns in the respective crystals. Thus, a linear supra­molecular chain along [100] sustained by charge-assisted tertiary-ammonium-N—H⋯O(carboxyl­ate), hy­droxy-O—H⋯O(carboxyl­ate) and amino-N—H⋯O(carboxyl­ate) hydrogen-bonds is apparent in the crystal of (I). Chains are connected into a three-dimensional architecture by methyl-C—H⋯O(hy­droxy) and ππ inter­actions, the latter between benzene rings [inter-centroid separation = 3.5796 (10) Å]. In the crystal of (II), a supra­molecular tube propagating along [901] arises as a result of charge-assisted secondary-ammonium-N—H⋯O(carboxyl­ate) and hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bonding. These are connected by methyl­ene- and methyl-C—H⋯O(nitro) and ππ stacking between benzene rings [inter-centroid separation = 3.5226 (10) Å]. Finally, double-layers parallel to (100) sustained by charge-assisted ammonium-N—H⋯O(carboxyl­ate), ammonium-N—H⋯O(hy­droxy) and hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bonds are apparent in the crystal of (III). These are connected in a three-dimensional architecture by amine-N—H⋯O(nitro) hydrogen-bonds.

1. Chemical context

Despite being tetra­morphic (Wardell & Tiekink, 2011[Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418-1424.]; Wardell & Wardell, 2016[Wardell, S. M. S. V. & Wardell, J. L. (2016). J. Chem. Crystallogr. 46, 34-43.]), readily forming co-crystals (Wardell & Tiekink, 2011[Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418-1424.]) and providing systematic series of crystals of alkali metal, e.g. Na+, K+ (Smith, 2013[Smith, G. (2013). Acta Cryst. C69, 1472-1477.]), Rb+ (Smith, 2014a[Smith, G. (2014a). Acta Cryst. E70, m192-m193.]) and Cs+ (Smith & Wermuth, 2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047-m1048.]), and ammonium salts, see below, studies of the relatively small benzoic acid derivative, 2-amino-4-nitro­benzoic acid, are still comparatively limited. Most crystallographic investigations of the acid have focused upon an evaluation of the hydrogen-bonding propensities occurring in derived ammonium salts of the 2-amino-4-nitro­benzoate anion. Thus, studies have been described with a range of salts, starting with the simplest, i.e. N(+)H4 (Smith, 2014b[Smith, G. (2014b). Private Communication (Refcode: DOBPIV). CCDC, Cambridge, England.]), H2NN(+)H3 (Wardell et al., 2017[Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 579-585.]) and (H2N)2C=N(+)H2 (Smith et al., 2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Acta Cryst. E63, o7-o9.]) to R2N(+)H2, i.e. R = Me, n-Bu (Wardell et al., 2016[Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1618-1627.]), cyclohexyl (Smith et al., 2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o684-o686.]) and R2 = (CH2CH2)2O (Smith & Lynch, 2016[Smith, G. & Lynch, D. E. (2016). Acta Cryst. C72, 105-111.]), and more complicated ammonium cations such as 4-(4-acetyl­phen­yl)piperazin-1-ium (Jotani et al., 2018[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2018). Z. Kristallogr. Cryst. Mat. doi: https://doi. org/10.1515/zkri-2018-2101.]) and the dication, H3N(+)CH2CH2N(+)H3 (Smith et al., 2002[Smith, G., Wermuth, U. D. & White, J. M. (2002). Acta Cryst. E58, o1088-o1090.]). As a continuation of on-going inter­est in this area, the results of co-crystallization experiments between 2-amino-4-nitro­benzoic acid (LH) and amines substituted with hy­droxy groups, i.e. each of Me2N(CH2CH2OH), (t-Bu)N(H)CH2CH2OH and (HOCH2)3CNH2 are described whereupon the anhydrous 1:1 salts, i.e. [Me2N(+)H(CH2CH2OH)]L (I)[link], [(t-Bu)N(+)H2(CH2CH2OH)]L (II)[link] and [(HOCH2)3CN(+)H3]L (III)[link], were isolated. Herein, a description of the crystal and mol­ecular structures of (I)–(III) are presented.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the constituent ions in (I)[link] are shown in Fig. 1[link] and selected geometric data for this and for (II)[link] and (III)[link], are collected in Table 1[link]. That proton transfer occurred during co-crystallization is confirmed by the experimental equivalence of the C7 O1, O2 bond lengths of 1.270 (2) and 1.258 (2) Å, respectively, in the 2-amino-4-nitro­benzoate anion and in the pattern of hydrogen-bonding inter­actions, as described below in Supra­molecular features. In the anion, the carboxyl­ate group is tilted out of the plane of the benzene ring to which it is connected with the dihedral angle being 6.7 (3)°. Similarly, the nitro group lies out of the plane of the benzene ring, forming a dihedral angle of 6.6 (3)°. A dis-rotatory relationship between the carboxyl­ate and nitro substituents is indicated by the dihedral angle between them of 11.5 (4)°. An intra­molecular amine-N1—H⋯O1(carboxyl­ate) hydrogen-bond is noted which closes an S(6) loop, Table 2[link]. In the Me2N(+)(H)CH2CH2OH cation, the N3—C8—C9—O5 torsion angle of −71.15 (19)° is indicative of a −syn-clinal conformation.

Table 1
Selected geometric data (Å, °) for (I)–(III)

Parameter (I) (II) (III)
C7 O1 1.270 (2) 1.259 (2) 1.270 (2)
C7 O2 1.258 (2) 1.2678 (19) 1.264 (2)
CO2/C6 6.7 (3) 6.21 (13) 14.80 (17)
NO2/C6 6.6 (3) 3.28 (13) 6.58 (18)
CO2/NO2 11.5 (4) 2.94 (17) 9.7 (3)

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.89 (2) 1.97 (2) 2.6698 (19) 135 (2)
N1—H2N⋯O2i 0.88 (1) 2.24 (2) 3.010 (2) 146 (2)
N3—H3N⋯O1 0.90 (1) 1.82 (1) 2.6722 (18) 156 (2)
O5—H5O⋯O2 0.84 (2) 1.83 (2) 2.6731 (19) 179 (3)
C10—H10B⋯O5ii 0.98 2.48 3.406 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structures of the ions comprising the asymmetric unit of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Dashed lines indicate a hydrogen bonds.

The anion in (II)[link], Fig. 2[link], presents essentially the same features as just described for (I)[link], Tables 1[link] and 3[link], with the exception of the con-rotatory relationship between the carboxyl­ate and nitro substituents. The (t-Bu)N(+)H2(CH2CH2OH) cation is relatively rare, being reported for the first time in its salt with sulfa­thia­zolate only in 2012 (Arman et al., 2012[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2662-o2663.]). As for the cation in (I)[link], the N3—C12—C13—O5 torsion angle for the cation in (II)[link] of −55.18 (18)° is indicative of a −syn-clinal conformation.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.87 (2) 2.00 (2) 2.665 (2) 132 (2)
N1—H2N⋯O5 0.89 (2) 2.17 (2) 3.058 (2) 176 (2)
N3—H3N⋯O1i 0.90 (2) 1.73 (2) 2.637 (2) 178 (2)
N3—H4N⋯O2ii 0.89 (2) 1.98 (2) 2.849 (2) 166 (2)
O5—H5O⋯O2i 0.84 (2) 1.92 (2) 2.7546 (18) 173 (2)
C11—H11A⋯O4iii 0.98 2.49 3.450 (3) 165
C12—H12A⋯O3 0.99 2.50 3.445 (2) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structures of the ions comprising the asymmetric unit of (II)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The dashed line indicates a hydrogen bond.

The anion in (III)[link], Fig. 3[link], exhibits the greatest twist between the carboxyl­ate and benzene groups among the series but, a con-rotatory relationship between the carboxyl­ate and nitro substituents means the dihedral angle between them is not as great as in the anion of (I)[link], Tables 1[link] and 4[link]. The (HOCH2)3CN(+)H3 cation exhibits N3—C8—C9—O5, N3—C8—C10—O6 and N3—C8—C11—O7 torsion angles of −59.01 (18), −49.84 (19) and −58.12 (18)°, respectively, indicating −syn-clinal relationships.

Table 4
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.88 (2) 2.02 (2) 2.678 (2) 131 (2)
N1—H1N⋯O3i 0.88 (2) 2.50 (2) 3.210 (2) 138 (1)
N1—H2N⋯O4ii 0.88 (1) 2.56 (2) 3.094 (2) 120 (2)
N3—H3N⋯O6iii 0.89 (2) 2.34 (2) 2.934 (2) 124 (1)
N3—H3N⋯O7iv 0.89 (2) 2.44 (2) 3.065 (2) 128 (2)
N3—H4N⋯O5v 0.89 (1) 2.08 (1) 2.945 (2) 165 (2)
N3—H5N⋯O2vi 0.89 (2) 1.92 (2) 2.773 (2) 160 (2)
O5—H5O⋯O2vii 0.85 (2) 1.90 (2) 2.7453 (18) 175 (2)
O6—H6O⋯O1viii 0.84 (2) 1.88 (2) 2.6993 (19) 163 (2)
O7—H7O⋯O1ix 0.84 (2) 2.07 (2) 2.8905 (18) 164 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) -x+1, -y+2, -z+1; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The mol­ecular structures of the ions comprising the asymmetric unit of (III)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

As expected from the chemical compositions of (I)–(III), significant charge-assisted hydrogen-bonding is apparent in their respective crystals. Geometric data characterizing these and other identified inter­actions are collated in Tables 2[link]–4[link][link], respectively.

As indicated in Fig. 1[link], the anion and cation in (I)[link] are linked via charge-assisted ammonium-N3—H⋯O(carboxyl­ate) and hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bonds to form a nine-membered {⋯OCO⋯HNC2OH} heterosynthon. These are connected into a linear, supra­molecular chain along the a-axis direction via amino-N—H⋯O(carboxyl­ate) hydrogen-bonds, Fig. 4[link](a). The chains are linked along the b axis via ππ inter­actions between benzene rings [inter-centroid separation = 3.5796 (10) Å for symmetry operation:x, −y, 1 − z], and methyl-C—H⋯O(hy­droxy) inter­actions link mol­ecules along the c-axis to consolidate the three-dimensional packing, Fig. 4[link](b).

[Figure 4]
Figure 4
The mol­ecular packing in (I)[link]: (a) linear, supra­molecular chain along the a axis sustained by charge-assisted amine-N—H⋯O(carboxyl­ate) and hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bonding inter­actions shown as blue and orange dashed lines, respectively; intra­molecular amine-N—H⋯O(carboxyl­ate) hydrogen bonds are represented by pink dashed lines, and (b) a view of the unit-cell contents in projection down the a axis. The methyl-C—H⋯O(hy­droxy) and ππ inter­actions are shown as green and purple dashed lines, respectively.

In the crystal of (II)[link], the charge-assisted ammonium-N3—H⋯O(carboxyl­ate) and hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bonds, that lead to the formation of a nine-membered {⋯OCO⋯HNC2OH} heterosynthon, observed in (I)[link] persist, Fig. 5[link](a). However, in (II)[link], through the agency of having two ammonium-N—H H atoms, the second H atom bridges a neighbouring carboxyl­ate-O2 atom leading to the formation of a supra­molecular tube, as highlighted in Fig. 5[link](b). As seen from Fig. 5[link](b), the benzene rings are aligned to be proximate and, indeed, they inter­act via ππ stacking with the inter-centroid separation being 3.4944 (9) Å (symmetry operation: 1 − x, y, [{1\over 2}] − z). The carboxyl­ate-O2 atom forms two hydrogen-bonds. The connections between the tubes are of the type methyl­ene- and methyl-C—H⋯O(nitro), involving both nitro-O atoms, as well as ππ stacking between benzene rings [inter-centroid separation = 3.5226 (10) Å for symmetry operation: 1 − x, 1 − y, −z]. A view of the unit-cell contents is shown in Fig. 5[link](c), highlighting the intra- and inter-tube ππ stacking along the c-axis direction.

[Figure 5]
Figure 5
The mol­ecular packing in (II)[link]: (a) linear, supra­molecular tube along [901] sustained by charge-assisted amine-N—H⋯O(carboxyl­ate) and hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bonding inter­actions shown as blue and orange dashed lines, respectively; intra­molecular amine-N—H⋯O(carboxyl­ate) hydrogen bonds are represented by pink dashed lines, (b) end-on view of the supra­molecular tube and (c) a view of the unit-cell contents in projection down the c axis. The methyl­ene-, methyl-C—H⋯O(nitro) and ππ inter­actions are shown as green and purple dashed lines, respectively. In each of (a) and (b), non-participating H atoms are omitted.

In the crystal of (III)[link], supra­molecular double-layers in the bc-plane are formed as a result of charge-assisted ammonium-N3—H⋯O(carboxyl­ate), ammonium-N3—H⋯O(hy­droxy) and hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bonds. The ammonium-N3—H3N atom is bifurcated, forming two weak ammonium-N3—H⋯O(hy­droxy) hydrogen-bonds. A view normal to the plane of the double-layer and a side-on view are shown in Fig. 6[link](a) and (b), respectively. From the latter, the intra-layer region comprises the ammonium groups, each of which forms four N—H⋯O hydrogen-bonds to carboxyl­ate and hy­droxy groups on either side. Each hy­droxy group of the cation forms a hy­droxy-O—H⋯O(carboxyl­ate) hydrogen-bond with a carboxyl­ate-O atom derived from a different anion, and each accepts an ammonium-N—H atom derived from a different cation. Each carboxyl­ate-O atom forms two hydrogen-bonds, the O1 accepts hydrogen-bonds from different hy­droxy groups, and the O2 atom accept hydrogen-bonds from hy­droxy and ammonium groups. Projecting to either side of the double-layer are the nitro­benzene groups, Fig. 6[link](c) and (d). These provide the links to construct the three-dimensional architecture, i.e. via amine-N—H⋯O(nitro) inter­actions, involving both nitro-O atoms.

[Figure 6]
Figure 6
The mol­ecular packing in (III)[link]: (a) plan and (b) views of the double-layer sustained by charge-assisted ammonium-N3—H⋯O(carboxyl­ate), ammonium-N3—H⋯O(hy­droxy) (blue dashed lines) and hy­droxy-O—H⋯O(carboxyl­ate) (orange dashed lines) hydrogen bonds, and views of the unit-cell contents in projection down the (c) c axis and (d) b axis. In (c) and (d), the intra­molecular amine-N—H⋯O(carboxyl­ate) and amine-N—H⋯O(nitro) inter­actions are represented by pink and brown dashed lines, respectively. In each of (a)–(d), non-participating H atoms are omitted.

The obvious trend from the present study is the increase in dimensionality of the supra­molecular aggregation pattern, i.e. chain in (I)[link], tube in (II)[link] and double-layer in (III)[link], as the number of acidic ammonium-N—H atoms increases.

4. Database survey

As indicated in the Chemical context, a number of ammonium salts of the anion derived from 2-amino-4-nitro­benzoic acid have now been described. The key conformational indicators for the anion are the dihedral angles formed between CO2/C6/NO2. The smallest dihedral angles between the CO2/C6, C6/NO2 and CO2/NO2 pairs of least-squares planes of 3.44 (14), 0.69 (11) and 3.2 (2)° are found for the anion in the salt with H3N(+)CH2CH2N(+)H3 (Smith et al., 2002[Smith, G., Wermuth, U. D. & White, J. M. (2002). Acta Cryst. E58, o1088-o1090.]). Conversely, the greatest CO2/C6, C6/NO2 and CO2/NO2 dihedral angles of 26.4 (3), 12.6 (3) and 26.73 (14)°, respectively, are found in the N(+)H4 (Smith, 2014b[Smith, G. (2014b). Private Communication (Refcode: DOBPIV). CCDC, Cambridge, England.]), n-Bu2N(+)H2 (Wardell et al., 2016[Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1618-1627.]) and H2NN(+)H3 (Wardell et al., 2017[Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 579-585.]) salts, respectively. The respective dihedral angles in (I)–(III), described herein, fall within these ranges.

5. Synthesis and crystallization

Preparation of dimeth­yl(2-hy­droxy­eth­yl)ammonium 2-amino-4-nitro­benzoate (I)[link]. To a solution of 2-amino-4-nitro­benzoic acid (1 mmol) in methanol (10 ml) was added a solution of dimeth­yl(2-hy­droxy­eth­yl)amine (1 mmol) in methanol (10 ml). The reaction mixture was refluxed for 15 mins, and then maintained at room temperature. Crystals of (I)[link] were collected after three days. M.p. 444–447 K. Anal. calcd.: C, 48.89; H, 5.97, N, 15.54. Found: C, 48.81; H, 5.89; N, 14.68%. IR (KBr, cm−1): 3500–2700 (br, s; with maxima at 3439, 3324, 3219, 2978, 2826), 1632, 1537, 1433, 1381, 1346, 1329, 1279, 1263, 1209, 1140, 1099, 1072, 1022, 918, 858, 823, 785, 731, 692, 684, 577, 513, 486.

Preparation of tert-but­yl(2-hy­droxy­eth­yl)ammonium 2-amino-4-nitro­benzoate (II)[link]. To a solution of 2-amino-4-nitro­benzoic acid (1 mmol) in methanol (10 ml) was added a solution of tert-but­yl(2-hy­droxy­eth­yl)amine (1 mmol) in methanol (10 ml). The reaction mixture was refluxed for 15 mins, and then maintained at room temperature. Crystals of (II)[link] were collected after 3 days. M.p. 429–431 K. Anal. calcd.: C, 52.34; H, 6.76, N, 14.09. Found: C, 52.27; H, 6.89; N, 13.99%. IR (KBr, cm−1): 3550–2700 (br, s, with maxima at 3430, 3327, 3224, 2968, 2810), 1640, 1446, 1370, 1351, 1329, 1269, 1221 1137, 1085, 1034, 858, 8245, 739, 687, 587.

Preparation of tris­(hy­droxy­meth­yl)methyl­ammonium 2-amino-4-nitro­benzoate (III)[link]: To a solution of 2-amino-4-nitro­benzoic acid (1 mmol) in ethanol (10 ml) was added a solution of tris­(hy­droxy­meth­yl)methyl­amine (1 mmol) in ethanol (10 ml). The reaction mixture was refluxed for 10 mins, and then maintained at room temperature. Crystals of (III)[link] were collected after two days. M.p. 460–463 K. Anal. calcd.: C, 51.06; H, 5.71, N, 14.89. Found: C, 50.94; H, 5.80; N, 14.79% IR (KBr, cm−1): 3700–2400 (br, s, with maxima at 3514, 3477, 3398, 3314, 3256, 3078, 2823 and 2538), 1647, 1431, 1350 1250, 1146, 1115, 1063, 1010, 872, 827, 736, 689, 596, 578 511, 484, 1549, 1356.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H atoms were located from difference maps, but refined with O—H = 0.84±0.01 Å and Uiso(H) = 1.5Ueq(O), and with N—H = 0.86–0.88±0.01 Å and Uiso(H) = 1.2Ueq(N), respectively. In the refinement of (II)[link], owing to poor agreement, a reflection, i.e. (0 2 0), was omitted from the final cycles of refinement.

Table 5
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C4H12NO+·C7H5N2O4 C6H16NO+·C7H5N2O4 C4H12NO3+·C7H5N2O4
Mr 271.27 299.33 303.27
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 120 120 120
a, b, c (Å) 6.6816 (2), 22.8286 (8), 8.6570 (3) 21.1138 (5), 12.3635 (5), 13.1909 (4) 13.6269 (6), 9.4976 (3), 10.2042 (4)
β (°) 104.551 (2) 120.627 (2) 90.355 (2)
V3) 1278.11 (7) 2963.02 (17) 1320.63 (9)
Z 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.10 0.13
Crystal size (mm) 0.22 × 0.10 × 0.06 0.62 × 0.26 × 0.10 0.38 × 0.22 × 0.09
 
Data collection
Diffractometer Bruker–Nonius Roper CCD camera on κ-goniostat Bruker–Nonius Roper CCD camera on κ-goniostat Bruker–Nonius Roper CCD camera on κ-goniostat
Absorption correction Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.847, 1.000 0.652, 0.746 0.656, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9689, 2911, 2380 18353, 3406, 2349 16747, 3027, 2183
Rint 0.043 0.065 0.069
(sin θ/λ)max−1) 0.649 0.651 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.123, 1.07 0.050, 0.135, 1.02 0.048, 0.122, 1.04
No. of reflections 2911 3406 3027
No. of parameters 186 208 214
No. of restraints 4 5 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.32 0.24, −0.33 0.31, −0.26
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Amino-4-nitrobenzoate (2-hydroxyethyl)dimethylazanium (I) top
Crystal data top
C4H12NO+·C7H5N2O4F(000) = 576
Mr = 271.27Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6816 (2) ÅCell parameters from 8678 reflections
b = 22.8286 (8) Åθ = 2.9–27.5°
c = 8.6570 (3) ŵ = 0.11 mm1
β = 104.551 (2)°T = 120 K
V = 1278.11 (7) Å3Blade, yellow
Z = 40.22 × 0.10 × 0.06 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2911 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ & ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2929
Tmin = 0.847, Tmax = 1.000l = 1110
9689 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0305P)2 + 1.1579P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2911 reflectionsΔρmax = 0.27 e Å3
186 parametersΔρmin = 0.31 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16272 (19)0.18360 (5)0.56894 (15)0.0234 (3)
O20.3854 (2)0.15398 (6)0.43175 (16)0.0276 (3)
O30.4660 (3)0.04973 (8)0.2249 (3)0.0617 (6)
O40.2616 (3)0.06559 (8)0.0708 (2)0.0553 (5)
N10.1707 (2)0.11839 (7)0.5634 (2)0.0270 (4)
H1N0.101 (3)0.1513 (6)0.593 (3)0.032*
H2N0.3042 (16)0.1187 (10)0.558 (3)0.032*
N20.3090 (3)0.03927 (8)0.1803 (2)0.0385 (4)
C10.0836 (3)0.09665 (7)0.4120 (2)0.0188 (3)
C20.1058 (3)0.08640 (7)0.4521 (2)0.0205 (4)
C30.2321 (3)0.04031 (8)0.3743 (2)0.0258 (4)
H30.36060.03240.39840.031*
C40.1684 (3)0.00696 (8)0.2634 (2)0.0275 (4)
C50.0187 (3)0.01502 (8)0.2244 (2)0.0283 (4)
H50.06020.00940.14910.034*
C60.1419 (3)0.06031 (8)0.3006 (2)0.0237 (4)
H60.27110.06700.27650.028*
C70.2213 (3)0.14808 (7)0.4763 (2)0.0190 (3)
O50.59794 (19)0.25309 (6)0.51573 (16)0.0249 (3)
H5O0.529 (3)0.2221 (7)0.489 (3)0.037*
N30.1711 (2)0.29912 (6)0.52114 (17)0.0189 (3)
H3N0.206 (3)0.2616 (5)0.548 (2)0.023*
C80.3578 (3)0.33333 (8)0.5092 (2)0.0250 (4)
H8A0.44010.34330.61800.030*
H8B0.31260.37050.45200.030*
C90.4932 (3)0.30024 (8)0.4229 (2)0.0256 (4)
H9A0.40670.28480.32090.031*
H9B0.59600.32740.39760.031*
C100.0140 (3)0.29638 (9)0.3653 (2)0.0252 (4)
H10A0.10420.27290.37680.038*
H10B0.07530.27830.28530.038*
H10C0.03270.33610.33110.038*
C110.0766 (3)0.32355 (8)0.6464 (2)0.0251 (4)
H11A0.03970.36470.62230.038*
H11B0.17600.32080.75080.038*
H11C0.04810.30120.64820.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (6)0.0214 (6)0.0258 (7)0.0023 (5)0.0074 (5)0.0044 (5)
O20.0251 (7)0.0280 (7)0.0326 (7)0.0051 (5)0.0126 (6)0.0029 (6)
O30.0404 (10)0.0457 (10)0.0971 (16)0.0189 (8)0.0135 (10)0.0275 (10)
O40.0809 (13)0.0412 (9)0.0422 (10)0.0246 (9)0.0125 (9)0.0190 (8)
N10.0216 (8)0.0259 (8)0.0358 (9)0.0034 (6)0.0115 (7)0.0050 (7)
N20.0422 (11)0.0233 (8)0.0432 (11)0.0063 (8)0.0018 (8)0.0034 (8)
C10.0206 (8)0.0158 (8)0.0182 (8)0.0004 (6)0.0015 (6)0.0023 (6)
C20.0206 (8)0.0171 (8)0.0214 (8)0.0016 (6)0.0009 (6)0.0034 (7)
C30.0214 (9)0.0200 (8)0.0328 (10)0.0014 (7)0.0005 (7)0.0039 (8)
C40.0332 (10)0.0169 (8)0.0266 (9)0.0031 (7)0.0028 (8)0.0002 (7)
C50.0388 (11)0.0197 (9)0.0253 (9)0.0016 (8)0.0061 (8)0.0015 (7)
C60.0269 (9)0.0219 (9)0.0217 (9)0.0030 (7)0.0052 (7)0.0019 (7)
C70.0196 (8)0.0177 (8)0.0185 (8)0.0005 (6)0.0025 (6)0.0046 (6)
O50.0202 (6)0.0237 (6)0.0296 (7)0.0017 (5)0.0041 (5)0.0036 (5)
N30.0183 (7)0.0195 (7)0.0186 (7)0.0002 (6)0.0042 (5)0.0013 (6)
C80.0218 (9)0.0229 (9)0.0304 (10)0.0054 (7)0.0067 (7)0.0026 (7)
C90.0225 (9)0.0256 (9)0.0307 (10)0.0007 (7)0.0106 (7)0.0070 (8)
C100.0208 (8)0.0318 (10)0.0209 (9)0.0013 (7)0.0014 (7)0.0028 (7)
C110.0288 (9)0.0273 (9)0.0211 (9)0.0027 (8)0.0099 (7)0.0034 (7)
Geometric parameters (Å, º) top
O1—C71.270 (2)O5—C91.418 (2)
O2—C71.258 (2)O5—H5O0.843 (10)
O3—N21.229 (3)N3—C101.488 (2)
O4—N21.229 (3)N3—C111.493 (2)
N1—C21.363 (2)N3—C81.498 (2)
N1—H1N0.886 (10)N3—H3N0.902 (9)
N1—H2N0.881 (9)C8—C91.512 (3)
N2—C41.474 (2)C8—H8A0.9900
C1—C61.399 (2)C8—H8B0.9900
C1—C21.413 (2)C9—H9A0.9900
C1—C71.509 (2)C9—H9B0.9900
C2—C31.410 (2)C10—H10A0.9800
C3—C41.374 (3)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C4—C51.387 (3)C11—H11A0.9800
C5—C61.382 (3)C11—H11B0.9800
C5—H50.9500C11—H11C0.9800
C6—H60.9500
C2—N1—H1N115.2 (14)C10—N3—C8111.68 (14)
C2—N1—H2N117.5 (15)C11—N3—C8111.54 (14)
H1N—N1—H2N117 (2)C10—N3—H3N105.8 (13)
O3—N2—O4123.56 (18)C11—N3—H3N107.4 (13)
O3—N2—C4118.39 (19)C8—N3—H3N110.1 (13)
O4—N2—C4118.05 (19)N3—C8—C9112.70 (14)
C6—C1—C2119.52 (16)N3—C8—H8A109.1
C6—C1—C7117.77 (15)C9—C8—H8A109.1
C2—C1—C7122.59 (15)N3—C8—H8B109.1
N1—C2—C3118.61 (16)C9—C8—H8B109.1
N1—C2—C1123.25 (15)H8A—C8—H8B107.8
C3—C2—C1118.14 (16)O5—C9—C8111.72 (15)
C4—C3—C2119.58 (17)O5—C9—H9A109.3
C4—C3—H3120.2C8—C9—H9A109.3
C2—C3—H3120.2O5—C9—H9B109.3
C3—C4—C5123.60 (17)C8—C9—H9B109.3
C3—C4—N2117.77 (18)H9A—C9—H9B107.9
C5—C4—N2118.63 (18)N3—C10—H10A109.5
C6—C5—C4116.63 (18)N3—C10—H10B109.5
C6—C5—H5121.7H10A—C10—H10B109.5
C4—C5—H5121.7N3—C10—H10C109.5
C5—C6—C1122.49 (18)H10A—C10—H10C109.5
C5—C6—H6118.8H10B—C10—H10C109.5
C1—C6—H6118.8N3—C11—H11A109.5
O2—C7—O1123.80 (16)N3—C11—H11B109.5
O2—C7—C1117.90 (15)H11A—C11—H11B109.5
O1—C7—C1118.28 (15)N3—C11—H11C109.5
C9—O5—H5O108.9 (16)H11A—C11—H11C109.5
C10—N3—C11110.07 (14)H11B—C11—H11C109.5
C6—C1—C2—N1177.60 (16)C3—C4—C5—C61.6 (3)
C7—C1—C2—N16.6 (3)N2—C4—C5—C6177.51 (17)
C6—C1—C2—C31.6 (2)C4—C5—C6—C10.1 (3)
C7—C1—C2—C3174.24 (15)C2—C1—C6—C51.5 (3)
N1—C2—C3—C4179.05 (17)C7—C1—C6—C5174.52 (16)
C1—C2—C3—C40.2 (2)C6—C1—C7—O23.1 (2)
C2—C3—C4—C51.5 (3)C2—C1—C7—O2178.95 (15)
C2—C3—C4—N2177.62 (16)C6—C1—C7—O1175.26 (15)
O3—N2—C4—C37.2 (3)C2—C1—C7—O10.6 (2)
O4—N2—C4—C3173.39 (19)C10—N3—C8—C973.87 (19)
O3—N2—C4—C5173.7 (2)C11—N3—C8—C9162.49 (15)
O4—N2—C4—C55.7 (3)N3—C8—C9—O571.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.89 (2)1.97 (2)2.6698 (19)135 (2)
N1—H2N···O2i0.88 (1)2.24 (2)3.010 (2)146 (2)
N3—H3N···O10.90 (1)1.82 (1)2.6722 (18)156 (2)
O5—H5O···O20.84 (2)1.83 (2)2.6731 (19)179 (3)
C10—H10B···O5ii0.982.483.406 (2)157
Symmetry codes: (i) x1, y, z; (ii) x3/2, y1/2, z3/2.
2-Amino-4-nitrobenzoate tert-butyl(2-hydroxyethyl)azanium (II) top
Crystal data top
C6H16NO+·C7H5N2O4F(000) = 1280
Mr = 299.33Dx = 1.342 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.1138 (5) ÅCell parameters from 8229 reflections
b = 12.3635 (5) Åθ = 2.9–27.5°
c = 13.1909 (4) ŵ = 0.10 mm1
β = 120.627 (2)°T = 120 K
V = 2963.02 (17) Å3Slab, orange
Z = 80.62 × 0.26 × 0.10 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
3406 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
φ & ω scansh = 2727
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1615
Tmin = 0.652, Tmax = 0.746l = 1717
18353 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.7685P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3406 reflectionsΔρmax = 0.24 e Å3
208 parametersΔρmin = 0.33 e Å3
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38287 (6)0.76025 (10)0.01169 (10)0.0301 (3)
O20.29310 (6)0.63783 (10)0.04670 (10)0.0263 (3)
O30.63480 (6)0.33794 (10)0.24135 (11)0.0305 (3)
O40.54488 (7)0.22405 (10)0.17418 (13)0.0400 (4)
N10.52324 (7)0.69991 (12)0.14202 (13)0.0241 (3)
N20.56872 (7)0.31665 (12)0.18823 (12)0.0241 (3)
C10.41726 (8)0.57689 (13)0.05554 (13)0.0188 (4)
C20.49416 (8)0.59915 (13)0.12014 (12)0.0187 (4)
C30.54245 (8)0.51022 (13)0.16275 (13)0.0192 (4)
H30.59410.52210.20730.023*
C40.51565 (8)0.40665 (13)0.14053 (13)0.0195 (4)
C50.44091 (8)0.38249 (14)0.07707 (13)0.0215 (4)
H50.42350.31010.06240.026*
C60.39357 (8)0.46956 (14)0.03667 (13)0.0214 (4)
H60.34210.45580.00630.026*
C70.36039 (8)0.66455 (14)0.00382 (13)0.0216 (4)
O50.69062 (6)0.71809 (10)0.29593 (11)0.0303 (3)
N30.79731 (7)0.56819 (12)0.45647 (12)0.0231 (3)
C80.84793 (9)0.47891 (15)0.53503 (16)0.0292 (4)
C90.80464 (11)0.37480 (16)0.5120 (2)0.0444 (5)
H9A0.76230.38760.52190.067*
H9B0.83630.31920.56780.067*
H9C0.78730.35030.43130.067*
C100.87684 (12)0.51860 (17)0.66040 (17)0.0448 (5)
H10A0.83550.52980.67320.067*
H10B0.90320.58700.67240.067*
H10C0.91040.46460.71630.067*
C110.91074 (10)0.46495 (17)0.51089 (19)0.0402 (5)
H11A0.94780.41600.56960.060*
H11B0.93330.53550.51550.060*
H11C0.89160.43440.43200.060*
C120.75766 (9)0.54960 (16)0.32642 (15)0.0310 (4)
H12A0.71410.50330.30280.037*
H12B0.79050.51180.30490.037*
C130.73361 (9)0.65690 (16)0.26214 (15)0.0301 (4)
H13A0.77770.69920.27890.036*
H13B0.70460.64340.17620.036*
H1N0.4925 (9)0.7539 (12)0.1137 (17)0.036*
H2N0.5715 (5)0.7082 (16)0.1885 (15)0.036*
H5O0.7197 (10)0.7625 (14)0.3464 (15)0.045*
H3N0.8263 (9)0.6272 (11)0.4739 (16)0.036*
H4N0.7637 (8)0.5810 (16)0.4767 (16)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (6)0.0240 (7)0.0377 (7)0.0031 (5)0.0104 (6)0.0033 (5)
O20.0159 (6)0.0339 (7)0.0272 (6)0.0023 (5)0.0096 (5)0.0055 (5)
O30.0197 (6)0.0276 (7)0.0389 (7)0.0024 (5)0.0112 (5)0.0006 (6)
O40.0337 (7)0.0186 (7)0.0580 (9)0.0016 (6)0.0163 (7)0.0032 (6)
N10.0169 (7)0.0189 (8)0.0318 (8)0.0002 (6)0.0089 (6)0.0009 (6)
N20.0223 (7)0.0237 (8)0.0254 (7)0.0007 (6)0.0114 (6)0.0000 (6)
C10.0181 (8)0.0232 (9)0.0162 (7)0.0006 (7)0.0096 (6)0.0000 (6)
C20.0192 (8)0.0221 (9)0.0158 (7)0.0003 (7)0.0097 (6)0.0004 (6)
C30.0160 (7)0.0246 (9)0.0177 (7)0.0009 (6)0.0090 (6)0.0006 (6)
C40.0206 (8)0.0194 (9)0.0194 (7)0.0028 (7)0.0110 (6)0.0018 (6)
C50.0222 (8)0.0208 (9)0.0229 (8)0.0042 (7)0.0125 (7)0.0024 (7)
C60.0172 (7)0.0294 (10)0.0182 (7)0.0029 (7)0.0095 (6)0.0022 (7)
C70.0200 (8)0.0271 (10)0.0174 (7)0.0036 (7)0.0093 (6)0.0022 (7)
O50.0202 (6)0.0296 (8)0.0306 (7)0.0012 (5)0.0053 (5)0.0053 (5)
N30.0181 (7)0.0210 (8)0.0295 (7)0.0011 (6)0.0114 (6)0.0027 (6)
C80.0236 (8)0.0234 (10)0.0378 (10)0.0060 (7)0.0136 (8)0.0037 (8)
C90.0352 (10)0.0261 (11)0.0740 (15)0.0047 (9)0.0295 (11)0.0084 (10)
C100.0526 (12)0.0396 (12)0.0357 (11)0.0156 (10)0.0178 (10)0.0129 (9)
C110.0247 (9)0.0367 (12)0.0578 (13)0.0075 (8)0.0200 (9)0.0040 (10)
C120.0227 (8)0.0326 (11)0.0304 (9)0.0014 (7)0.0083 (7)0.0104 (8)
C130.0250 (9)0.0379 (11)0.0232 (8)0.0032 (8)0.0093 (7)0.0060 (8)
Geometric parameters (Å, º) top
O1—C71.259 (2)N3—C81.519 (2)
O2—C71.2678 (19)N3—H3N0.903 (9)
O3—N21.2292 (17)N3—H4N0.890 (9)
O4—N21.2262 (18)C8—C91.517 (3)
N1—C21.353 (2)C8—C111.523 (3)
N1—H1N0.872 (9)C8—C101.523 (3)
N1—H2N0.887 (9)C9—H9A0.9800
N2—C41.473 (2)C9—H9B0.9800
C1—C61.395 (2)C9—H9C0.9800
C1—C21.424 (2)C10—H10A0.9800
C1—C71.499 (2)C10—H10B0.9800
C2—C31.407 (2)C10—H10C0.9800
C3—C41.370 (2)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C51.391 (2)C11—H11C0.9800
C5—C61.378 (2)C12—C131.516 (3)
C5—H50.9500C12—H12A0.9900
C6—H60.9500C12—H12B0.9900
O5—C131.417 (2)C13—H13A0.9900
O5—H5O0.841 (10)C13—H13B0.9900
N3—C121.494 (2)
C2—N1—H1N117.1 (13)C9—C8—C11111.21 (16)
C2—N1—H2N119.3 (13)N3—C8—C11108.94 (15)
H1N—N1—H2N123.4 (19)C9—C8—C10111.00 (17)
O4—N2—O3123.05 (14)N3—C8—C10105.08 (14)
O4—N2—C4118.44 (13)C11—C8—C10110.70 (16)
O3—N2—C4118.50 (14)C8—C9—H9A109.5
C6—C1—C2119.11 (14)C8—C9—H9B109.5
C6—C1—C7118.37 (13)H9A—C9—H9B109.5
C2—C1—C7122.50 (14)C8—C9—H9C109.5
N1—C2—C3118.44 (13)H9A—C9—H9C109.5
N1—C2—C1124.09 (14)H9B—C9—H9C109.5
C3—C2—C1117.46 (14)C8—C10—H10A109.5
C4—C3—C2120.56 (14)C8—C10—H10B109.5
C4—C3—H3119.7H10A—C10—H10B109.5
C2—C3—H3119.7C8—C10—H10C109.5
C3—C4—C5123.22 (15)H10A—C10—H10C109.5
C3—C4—N2118.23 (13)H10B—C10—H10C109.5
C5—C4—N2118.54 (14)C8—C11—H11A109.5
C6—C5—C4116.24 (15)C8—C11—H11B109.5
C6—C5—H5121.9H11A—C11—H11B109.5
C4—C5—H5121.9C8—C11—H11C109.5
C5—C6—C1123.40 (14)H11A—C11—H11C109.5
C5—C6—H6118.3H11B—C11—H11C109.5
C1—C6—H6118.3N3—C12—C13109.85 (14)
O1—C7—O2124.24 (15)N3—C12—H12A109.7
O1—C7—C1117.45 (13)C13—C12—H12A109.7
O2—C7—C1118.31 (15)N3—C12—H12B109.7
C13—O5—H5O105.7 (15)C13—C12—H12B109.7
C12—N3—C8117.35 (14)H12A—C12—H12B108.2
C12—N3—H3N109.1 (12)O5—C13—C12112.15 (15)
C8—N3—H3N105.3 (12)O5—C13—H13A109.2
C12—N3—H4N107.8 (12)C12—C13—H13A109.2
C8—N3—H4N108.4 (13)O5—C13—H13B109.2
H3N—N3—H4N108.6 (18)C12—C13—H13B109.2
C9—C8—N3109.71 (14)H13A—C13—H13B107.9
C6—C1—C2—N1178.92 (14)N2—C4—C5—C6178.59 (13)
C7—C1—C2—N10.6 (2)C4—C5—C6—C10.7 (2)
C6—C1—C2—C30.6 (2)C2—C1—C6—C50.3 (2)
C7—C1—C2—C3178.87 (13)C7—C1—C6—C5178.09 (14)
N1—C2—C3—C4178.52 (14)C6—C1—C7—O1173.13 (14)
C1—C2—C3—C41.0 (2)C2—C1—C7—O15.2 (2)
C2—C3—C4—C50.6 (2)C6—C1—C7—O25.6 (2)
C2—C3—C4—N2179.45 (13)C2—C1—C7—O2176.12 (14)
O4—N2—C4—C3176.00 (14)C12—N3—C8—C958.0 (2)
O3—N2—C4—C33.2 (2)C12—N3—C8—C1163.99 (19)
O4—N2—C4—C52.9 (2)C12—N3—C8—C10177.36 (15)
O3—N2—C4—C5177.91 (14)C8—N3—C12—C13159.11 (14)
C3—C4—C5—C60.2 (2)N3—C12—C13—O555.18 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.87 (2)2.00 (2)2.665 (2)132 (2)
N1—H2N···O50.89 (2)2.17 (2)3.058 (2)176 (2)
N3—H3N···O1i0.90 (2)1.73 (2)2.637 (2)178 (2)
N3—H4N···O2ii0.89 (2)1.98 (2)2.849 (2)166 (2)
O5—H5O···O2i0.84 (2)1.92 (2)2.7546 (18)173 (2)
C11—H11A···O4iii0.982.493.450 (3)165
C12—H12A···O30.992.503.445 (2)159
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z1/2.
2-Amino-4-nitrobenzoate 1,3-dihydroxy-2-(hydroxymethyl)propan-2-aminium (III) top
Crystal data top
C4H12NO3+·C7H5N2O4F(000) = 640
Mr = 303.27Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.6269 (6) ÅCell parameters from 10585 reflections
b = 9.4976 (3) Åθ = 2.9–27.5°
c = 10.2042 (4) ŵ = 0.13 mm1
β = 90.355 (2)°T = 120 K
V = 1320.63 (9) Å3Slab, orange
Z = 40.38 × 0.22 × 0.09 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
3027 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
φ & ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1112
Tmin = 0.656, Tmax = 0.746l = 1113
16747 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.055P)2 + 0.4405P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3027 reflectionsΔρmax = 0.31 e Å3
214 parametersΔρmin = 0.26 e Å3
8 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23149 (10)1.04393 (14)0.76677 (13)0.0214 (3)
O20.14548 (9)0.92617 (13)0.61598 (12)0.0175 (3)
O30.65621 (10)0.73923 (15)0.52281 (13)0.0255 (3)
O40.56887 (10)0.60326 (14)0.39818 (13)0.0226 (3)
N10.42471 (12)1.07055 (17)0.72756 (15)0.0187 (4)
H1N0.3741 (11)1.100 (2)0.7735 (18)0.022*
H2N0.4832 (9)1.086 (2)0.7608 (19)0.022*
N20.57664 (12)0.69917 (16)0.47821 (14)0.0179 (4)
C10.31934 (13)0.89761 (19)0.61872 (16)0.0147 (4)
C20.41270 (14)0.95131 (18)0.65438 (16)0.0144 (4)
C30.49671 (14)0.88243 (19)0.60661 (16)0.0156 (4)
H30.56030.91500.63060.019*
C40.48646 (13)0.76770 (19)0.52504 (17)0.0155 (4)
C50.39602 (14)0.71363 (19)0.48678 (17)0.0167 (4)
H50.39100.63480.42980.020*
C60.31356 (14)0.78010 (19)0.53561 (17)0.0160 (4)
H60.25070.74480.51200.019*
C70.22586 (14)0.96075 (18)0.66953 (16)0.0151 (4)
O50.93618 (10)0.33420 (13)0.11526 (12)0.0172 (3)
H5O0.9100 (15)0.357 (2)0.0431 (13)0.026*
O60.91226 (10)0.77428 (13)0.16735 (13)0.0186 (3)
H6O0.8659 (12)0.820 (2)0.201 (2)0.028*
O70.85135 (10)0.48735 (14)0.47852 (12)0.0212 (3)
H7O0.8181 (15)0.511 (2)0.5444 (16)0.032*
N30.99779 (11)0.55298 (16)0.30064 (15)0.0137 (3)
H3N1.0132 (15)0.4938 (17)0.3649 (15)0.016*
H4N1.0077 (15)0.6377 (13)0.3343 (18)0.016*
H5N1.0380 (12)0.542 (2)0.2325 (14)0.016*
C80.89311 (13)0.53736 (18)0.25643 (16)0.0144 (4)
C90.87415 (14)0.38355 (18)0.21779 (17)0.0158 (4)
H9A0.88390.32320.29590.019*
H9B0.80490.37380.18940.019*
C100.87791 (14)0.63603 (18)0.13984 (17)0.0163 (4)
H10A0.91320.59820.06300.020*
H10B0.80720.63990.11740.020*
C110.82764 (14)0.5772 (2)0.37062 (17)0.0180 (4)
H11A0.83860.67690.39510.022*
H11B0.75780.56550.34570.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0188 (7)0.0239 (7)0.0215 (7)0.0012 (6)0.0027 (5)0.0081 (6)
O20.0149 (7)0.0211 (7)0.0165 (6)0.0007 (5)0.0004 (5)0.0007 (5)
O30.0150 (7)0.0364 (8)0.0250 (7)0.0032 (6)0.0015 (6)0.0061 (6)
O40.0234 (8)0.0204 (7)0.0241 (7)0.0033 (6)0.0029 (6)0.0061 (6)
N10.0156 (9)0.0203 (9)0.0202 (8)0.0006 (7)0.0004 (7)0.0060 (7)
N20.0178 (9)0.0195 (8)0.0165 (8)0.0016 (7)0.0014 (6)0.0008 (6)
C10.0164 (10)0.0151 (9)0.0125 (8)0.0018 (7)0.0014 (7)0.0027 (7)
C20.0161 (10)0.0145 (9)0.0126 (8)0.0001 (7)0.0004 (7)0.0017 (7)
C30.0138 (9)0.0193 (10)0.0137 (8)0.0002 (7)0.0009 (7)0.0011 (7)
C40.0142 (9)0.0172 (9)0.0150 (9)0.0036 (7)0.0018 (7)0.0033 (7)
C50.0200 (10)0.0136 (9)0.0167 (9)0.0010 (7)0.0007 (7)0.0008 (7)
C60.0149 (9)0.0162 (9)0.0170 (9)0.0016 (7)0.0005 (7)0.0005 (7)
C70.0197 (10)0.0121 (9)0.0136 (8)0.0008 (7)0.0017 (7)0.0031 (7)
O50.0225 (8)0.0160 (7)0.0132 (6)0.0040 (5)0.0004 (5)0.0014 (5)
O60.0208 (8)0.0108 (6)0.0242 (7)0.0015 (5)0.0000 (6)0.0002 (5)
O70.0264 (8)0.0231 (7)0.0143 (6)0.0016 (6)0.0053 (6)0.0010 (5)
N30.0149 (8)0.0133 (8)0.0129 (7)0.0010 (6)0.0009 (6)0.0006 (6)
C80.0143 (9)0.0134 (9)0.0156 (8)0.0009 (7)0.0007 (7)0.0005 (7)
C90.0186 (10)0.0131 (9)0.0157 (8)0.0004 (7)0.0015 (7)0.0000 (7)
C100.0193 (10)0.0129 (9)0.0167 (9)0.0004 (7)0.0020 (7)0.0006 (7)
C110.0162 (10)0.0197 (10)0.0181 (9)0.0005 (8)0.0027 (7)0.0016 (7)
Geometric parameters (Å, º) top
O1—C71.270 (2)O5—H5O0.844 (9)
O2—C71.264 (2)O6—C101.421 (2)
O3—N21.233 (2)O6—H6O0.841 (10)
O4—N21.228 (2)O7—C111.429 (2)
N1—C21.366 (2)O7—H7O0.844 (10)
N1—H1N0.882 (9)N3—C81.501 (2)
N1—H2N0.877 (10)N3—H3N0.888 (9)
N2—C41.473 (2)N3—H4N0.885 (9)
C1—C61.404 (3)N3—H5N0.894 (9)
C1—C21.416 (3)C8—C111.520 (2)
C1—C71.503 (3)C8—C101.528 (2)
C2—C31.408 (3)C8—C91.535 (2)
C3—C41.378 (3)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.389 (3)C10—H10A0.9900
C5—C61.384 (3)C10—H10B0.9900
C5—H50.9500C11—H11A0.9900
C6—H60.9500C11—H11B0.9900
O5—C91.428 (2)
C2—N1—H1N117.5 (14)C8—N3—H3N112.3 (13)
C2—N1—H2N117.1 (15)C8—N3—H4N110.4 (13)
H1N—N1—H2N117 (2)H3N—N3—H4N104.7 (18)
O4—N2—O3123.12 (16)C8—N3—H5N109.9 (13)
O4—N2—C4118.36 (15)H3N—N3—H5N111.1 (19)
O3—N2—C4118.51 (15)H4N—N3—H5N108.2 (19)
C6—C1—C2119.25 (17)N3—C8—C11107.84 (14)
C6—C1—C7118.76 (16)N3—C8—C10107.31 (14)
C2—C1—C7121.97 (16)C11—C8—C10111.52 (15)
N1—C2—C3118.65 (17)N3—C8—C9109.24 (14)
N1—C2—C1122.93 (17)C11—C8—C9109.60 (15)
C3—C2—C1118.34 (16)C10—C8—C9111.22 (14)
C4—C3—C2119.80 (17)O5—C9—C8113.65 (15)
C4—C3—H3120.1O5—C9—H9A108.8
C2—C3—H3120.1C8—C9—H9A108.8
C3—C4—C5123.28 (17)O5—C9—H9B108.8
C3—C4—N2117.63 (16)C8—C9—H9B108.8
C5—C4—N2119.09 (16)H9A—C9—H9B107.7
C6—C5—C4116.82 (17)O6—C10—C8111.71 (14)
C6—C5—H5121.6O6—C10—H10A109.3
C4—C5—H5121.6C8—C10—H10A109.3
C5—C6—C1122.50 (17)O6—C10—H10B109.3
C5—C6—H6118.7C8—C10—H10B109.3
C1—C6—H6118.7H10A—C10—H10B107.9
O2—C7—O1123.17 (17)O7—C11—C8108.12 (15)
O2—C7—C1118.74 (16)O7—C11—H11A110.1
O1—C7—C1118.06 (16)C8—C11—H11A110.1
C9—O5—H5O107.9 (15)O7—C11—H11B110.1
C10—O6—H6O108.1 (16)C8—C11—H11B110.1
C11—O7—H7O109.4 (16)H11A—C11—H11B108.4
C6—C1—C2—N1175.53 (16)C2—C1—C6—C50.1 (3)
C7—C1—C2—N15.8 (3)C7—C1—C6—C5178.55 (16)
C6—C1—C2—C31.2 (2)C6—C1—C7—O214.4 (2)
C7—C1—C2—C3177.46 (15)C2—C1—C7—O2166.90 (16)
N1—C2—C3—C4175.49 (16)C6—C1—C7—O1163.83 (16)
C1—C2—C3—C41.4 (3)C2—C1—C7—O114.8 (2)
C2—C3—C4—C50.5 (3)N3—C8—C9—O559.01 (18)
C2—C3—C4—N2179.78 (15)C11—C8—C9—O5176.96 (14)
O4—N2—C4—C3174.88 (15)C10—C8—C9—O559.3 (2)
O3—N2—C4—C36.3 (2)N3—C8—C10—O649.84 (19)
O4—N2—C4—C55.8 (2)C11—C8—C10—O668.0 (2)
O3—N2—C4—C5173.00 (16)C9—C8—C10—O6169.27 (15)
C3—C4—C5—C60.5 (3)N3—C8—C11—O758.12 (18)
N2—C4—C5—C6178.72 (15)C10—C8—C11—O7175.70 (14)
C4—C5—C6—C10.7 (3)C9—C8—C11—O760.70 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.88 (2)2.02 (2)2.678 (2)131 (2)
N1—H1N···O3i0.88 (2)2.50 (2)3.210 (2)138 (1)
N1—H2N···O4ii0.88 (1)2.56 (2)3.094 (2)120 (2)
N3—H3N···O6iii0.89 (2)2.34 (2)2.934 (2)124 (1)
N3—H3N···O7iv0.89 (2)2.44 (2)3.065 (2)128 (2)
N3—H4N···O5v0.89 (1)2.08 (1)2.945 (2)165 (2)
N3—H5N···O2vi0.89 (2)1.92 (2)2.773 (2)160 (2)
O5—H5O···O2vii0.85 (2)1.90 (2)2.7453 (18)175 (2)
O6—H6O···O1viii0.84 (2)1.88 (2)2.6993 (19)163 (2)
O7—H7O···O1ix0.84 (2)2.07 (2)2.8905 (18)164 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+2, y+1/2, z+1/2; (vi) x+1, y+1/2, z3/2; (vii) x+1, y1/2, z+1/2; (viii) x+1, y+2, z+1; (ix) x+1, y1/2, z+3/2.
Selected geometric data (Å, °) for (I)–(III) top
Parameter(I)(II)(III)
C7O11.270 (2)1.259 (2)1.270 (2)
C7O21.258 (2)1.2678 (19)1.264 (2)
CO2/C66.7 (3)6.21 (13)14.80 (17)
NO2/C66.6 (3)3.28 (13)6.58 (18)
CO2/NO211.5 (4)2.94 (17)9.7 (3)
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The authors thank the National Crystallographic Service, based at the University of Southampton, for collecting the data.

Funding information

JLW thanks CNPq, Brazil, for a grant. The authors are also grateful to Sunway University (INT-RRO-2017-096) for support of this research.

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2662–o2663.  CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2018). Z. Kristallogr. Cryst. Mat. doi: https://doi. org/10.1515/zkri-2018-2101.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. (2013). Acta Cryst. C69, 1472–1477.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2014a). Acta Cryst. E70, m192–m193.  CrossRef IUCr Journals Google Scholar
First citationSmith, G. (2014b). Private Communication (Refcode: DOBPIV). CCDC, Cambridge, England.  Google Scholar
First citationSmith, G. & Lynch, D. E. (2016). Acta Cryst. C72, 105–111.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047–m1048.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o684–o686.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Acta Cryst. E63, o7–o9.  CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2002). Acta Cryst. E58, o1088–o1090.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1618–1627.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 579–585.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418–1424.  Web of Science CrossRef CAS Google Scholar
First citationWardell, S. M. S. V. & Wardell, J. L. (2016). J. Chem. Crystallogr. 46, 34–43.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds