research communications
Crystal structures of the 1:1 salts of 2-amino-4-nitrobenzoate with each of (2-hydroxyethyl)dimethylazanium, tert-butyl(2-hydroxyethyl)azanium and 1,3-dihydroxy-2-(hydroxymethyl)propan-2-aminium
aDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, and bResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The crystal and molecular structures of the title molecular salts, C4H12NO+·C7H5N2O4−, (I), C6H16NO+·C7H5N2O4−, (II), and C4H12NO3+·C7H5N2O4−, (III), are described. The common feature of these salts is the presence of the 2-amino-4-nitrobenzoate anion, which exhibit non-chemically significant variations in the conformational relationships between the carboxylate and nitro groups, and between these and the benzene rings they are connected to. The number of ammonium-N—H H atoms in the cations increases from one to three in (I) to (III), respectively, and this variation significantly influences the supramolecular aggregation patterns in the respective crystals. Thus, a linear supramolecular chain along [100] sustained by charge-assisted tertiary-ammonium-N—H⋯O(carboxylate), hydroxy-O—H⋯O(carboxylate) and amino-N—H⋯O(carboxylate) hydrogen-bonds is apparent in the crystal of (I). Chains are connected into a three-dimensional architecture by methyl-C—H⋯O(hydroxy) and π–π interactions, the latter between benzene rings [inter-centroid separation = 3.5796 (10) Å]. In the crystal of (II), a supramolecular tube propagating along [901] arises as a result of charge-assisted secondary-ammonium-N—H⋯O(carboxylate) and hydroxy-O—H⋯O(carboxylate) hydrogen-bonding. These are connected by methylene- and methyl-C—H⋯O(nitro) and π–π stacking between benzene rings [inter-centroid separation = 3.5226 (10) Å]. Finally, double-layers parallel to (100) sustained by charge-assisted ammonium-N—H⋯O(carboxylate), ammonium-N—H⋯O(hydroxy) and hydroxy-O—H⋯O(carboxylate) hydrogen-bonds are apparent in the crystal of (III). These are connected in a three-dimensional architecture by amine-N—H⋯O(nitro) hydrogen-bonds.
Keywords: crystal structure; carboxylate; molecular salt; hydrogen-bonding.
1. Chemical context
Despite being tetramorphic (Wardell & Tiekink, 2011; Wardell & Wardell, 2016), readily forming co-crystals (Wardell & Tiekink, 2011) and providing systematic series of crystals of alkali metal, e.g. Na+, K+ (Smith, 2013), Rb+ (Smith, 2014a) and Cs+ (Smith & Wermuth, 2011), and ammonium salts, see below, studies of the relatively small benzoic acid derivative, 2-amino-4-nitrobenzoic acid, are still comparatively limited. Most crystallographic investigations of the acid have focused upon an evaluation of the hydrogen-bonding propensities occurring in derived ammonium salts of the 2-amino-4-nitrobenzoate anion. Thus, studies have been described with a range of salts, starting with the simplest, i.e. N(+)H4 (Smith, 2014b), H2NN(+)H3 (Wardell et al., 2017) and (H2N)2C=N(+)H2 (Smith et al., 2007) to R2N(+)H2, i.e. R = Me, n-Bu (Wardell et al., 2016), cyclohexyl (Smith et al., 2004) and R2 = (CH2CH2)2O (Smith & Lynch, 2016), and more complicated ammonium cations such as 4-(4-acetylphenyl)piperazin-1-ium (Jotani et al., 2018) and the dication, H3N(+)CH2CH2N(+)H3 (Smith et al., 2002). As a continuation of on-going interest in this area, the results of co-crystallization experiments between 2-amino-4-nitrobenzoic acid (LH) and substituted with hydroxy groups, i.e. each of Me2N(CH2CH2OH), (t-Bu)N(H)CH2CH2OH and (HOCH2)3CNH2 are described whereupon the anhydrous 1:1 salts, i.e. [Me2N(+)H(CH2CH2OH)]L (I), [(t-Bu)N(+)H2(CH2CH2OH)]L (II) and [(HOCH2)3CN(+)H3]L (III), were isolated. Herein, a description of the crystal and molecular structures of (I)–(III) are presented.
2. Structural commentary
The molecular structures of the constituent ions in (I) are shown in Fig. 1 and selected geometric data for this and for (II) and (III), are collected in Table 1. That proton transfer occurred during co-crystallization is confirmed by the experimental equivalence of the C7 O1, O2 bond lengths of 1.270 (2) and 1.258 (2) Å, respectively, in the 2-amino-4-nitrobenzoate anion and in the pattern of hydrogen-bonding interactions, as described below in Supramolecular features. In the anion, the carboxylate group is tilted out of the plane of the benzene ring to which it is connected with the dihedral angle being 6.7 (3)°. Similarly, the nitro group lies out of the plane of the benzene ring, forming a dihedral angle of 6.6 (3)°. A dis-rotatory relationship between the carboxylate and nitro substituents is indicated by the dihedral angle between them of 11.5 (4)°. An intramolecular amine-N1—H⋯O1(carboxylate) hydrogen-bond is noted which closes an S(6) loop, Table 2. In the Me2N(+)(H)CH2CH2OH cation, the N3—C8—C9—O5 torsion angle of −71.15 (19)° is indicative of a −syn-clinal conformation.
|
The anion in (II), Fig. 2, presents essentially the same features as just described for (I), Tables 1 and 3, with the exception of the con-rotatory relationship between the carboxylate and nitro substituents. The (t-Bu)N(+)H2(CH2CH2OH) cation is relatively rare, being reported for the first time in its salt with sulfathiazolate only in 2012 (Arman et al., 2012). As for the cation in (I), the N3—C12—C13—O5 torsion angle for the cation in (II) of −55.18 (18)° is indicative of a −syn-clinal conformation.
|
The anion in (III), Fig. 3, exhibits the greatest twist between the carboxylate and benzene groups among the series but, a con-rotatory relationship between the carboxylate and nitro substituents means the dihedral angle between them is not as great as in the anion of (I), Tables 1 and 4. The (HOCH2)3CN(+)H3 cation exhibits N3—C8—C9—O5, N3—C8—C10—O6 and N3—C8—C11—O7 torsion angles of −59.01 (18), −49.84 (19) and −58.12 (18)°, respectively, indicating −syn-clinal relationships.
|
3. Supramolecular features
As expected from the chemical compositions of (I)–(III), significant charge-assisted hydrogen-bonding is apparent in their respective crystals. Geometric data characterizing these and other identified interactions are collated in Tables 2–4, respectively.
As indicated in Fig. 1, the anion and cation in (I) are linked via charge-assisted ammonium-N3—H⋯O(carboxylate) and hydroxy-O—H⋯O(carboxylate) hydrogen-bonds to form a nine-membered {⋯OCO⋯HNC2OH} heterosynthon. These are connected into a linear, supramolecular chain along the a-axis direction via amino-N—H⋯O(carboxylate) hydrogen-bonds, Fig. 4(a). The chains are linked along the b axis via π–π interactions between benzene rings [inter-centroid separation = 3.5796 (10) Å for −x, −y, 1 − z], and methyl-C—H⋯O(hydroxy) interactions link molecules along the c-axis to consolidate the three-dimensional packing, Fig. 4(b).
In the crystal of (II), the charge-assisted ammonium-N3—H⋯O(carboxylate) and hydroxy-O—H⋯O(carboxylate) hydrogen-bonds, that lead to the formation of a nine-membered {⋯OCO⋯HNC2OH} heterosynthon, observed in (I) persist, Fig. 5(a). However, in (II), through the agency of having two ammonium-N—H H atoms, the second H atom bridges a neighbouring carboxylate-O2 atom leading to the formation of a supramolecular tube, as highlighted in Fig. 5(b). As seen from Fig. 5(b), the benzene rings are aligned to be proximate and, indeed, they interact via π–π stacking with the inter-centroid separation being 3.4944 (9) Å (symmetry operation: 1 − x, y, − z). The carboxylate-O2 atom forms two hydrogen-bonds. The connections between the tubes are of the type methylene- and methyl-C—H⋯O(nitro), involving both nitro-O atoms, as well as π–π stacking between benzene rings [inter-centroid separation = 3.5226 (10) Å for 1 − x, 1 − y, −z]. A view of the unit-cell contents is shown in Fig. 5(c), highlighting the intra- and inter-tube π–π stacking along the c-axis direction.
In the crystal of (III), supramolecular double-layers in the bc-plane are formed as a result of charge-assisted ammonium-N3—H⋯O(carboxylate), ammonium-N3—H⋯O(hydroxy) and hydroxy-O—H⋯O(carboxylate) hydrogen-bonds. The ammonium-N3—H3N atom is bifurcated, forming two weak ammonium-N3—H⋯O(hydroxy) hydrogen-bonds. A view normal to the plane of the double-layer and a side-on view are shown in Fig. 6(a) and (b), respectively. From the latter, the intra-layer region comprises the ammonium groups, each of which forms four N—H⋯O hydrogen-bonds to carboxylate and hydroxy groups on either side. Each hydroxy group of the cation forms a hydroxy-O—H⋯O(carboxylate) hydrogen-bond with a carboxylate-O atom derived from a different anion, and each accepts an ammonium-N—H atom derived from a different cation. Each carboxylate-O atom forms two hydrogen-bonds, the O1 accepts hydrogen-bonds from different hydroxy groups, and the O2 atom accept hydrogen-bonds from hydroxy and ammonium groups. Projecting to either side of the double-layer are the nitrobenzene groups, Fig. 6(c) and (d). These provide the links to construct the three-dimensional architecture, i.e. via amine-N—H⋯O(nitro) interactions, involving both nitro-O atoms.
The obvious trend from the present study is the increase in dimensionality of the supramolecular aggregation pattern, i.e. chain in (I), tube in (II) and double-layer in (III), as the number of acidic ammonium-N—H atoms increases.
4. Database survey
As indicated in the Chemical context, a number of ammonium salts of the anion derived from 2-amino-4-nitrobenzoic acid have now been described. The key conformational indicators for the anion are the dihedral angles formed between CO2/C6/NO2. The smallest dihedral angles between the CO2/C6, C6/NO2 and CO2/NO2 pairs of least-squares planes of 3.44 (14), 0.69 (11) and 3.2 (2)° are found for the anion in the salt with H3N(+)CH2CH2N(+)H3 (Smith et al., 2002). Conversely, the greatest CO2/C6, C6/NO2 and CO2/NO2 dihedral angles of 26.4 (3), 12.6 (3) and 26.73 (14)°, respectively, are found in the N(+)H4 (Smith, 2014b), n-Bu2N(+)H2 (Wardell et al., 2016) and H2NN(+)H3 (Wardell et al., 2017) salts, respectively. The respective dihedral angles in (I)–(III), described herein, fall within these ranges.
5. Synthesis and crystallization
Preparation of dimethyl(2-hydroxyethyl)ammonium 2-amino-4-nitrobenzoate (I). To a solution of 2-amino-4-nitrobenzoic acid (1 mmol) in methanol (10 ml) was added a solution of dimethyl(2-hydroxyethyl)amine (1 mmol) in methanol (10 ml). The reaction mixture was refluxed for 15 mins, and then maintained at room temperature. Crystals of (I) were collected after three days. M.p. 444–447 K. Anal. calcd.: C, 48.89; H, 5.97, N, 15.54. Found: C, 48.81; H, 5.89; N, 14.68%. IR (KBr, cm−1): 3500–2700 (br, s; with maxima at 3439, 3324, 3219, 2978, 2826), 1632, 1537, 1433, 1381, 1346, 1329, 1279, 1263, 1209, 1140, 1099, 1072, 1022, 918, 858, 823, 785, 731, 692, 684, 577, 513, 486.
Preparation of tert-butyl(2-hydroxyethyl)ammonium 2-amino-4-nitrobenzoate (II). To a solution of 2-amino-4-nitrobenzoic acid (1 mmol) in methanol (10 ml) was added a solution of tert-butyl(2-hydroxyethyl)amine (1 mmol) in methanol (10 ml). The reaction mixture was refluxed for 15 mins, and then maintained at room temperature. Crystals of (II) were collected after 3 days. M.p. 429–431 K. Anal. calcd.: C, 52.34; H, 6.76, N, 14.09. Found: C, 52.27; H, 6.89; N, 13.99%. IR (KBr, cm−1): 3550–2700 (br, s, with maxima at 3430, 3327, 3224, 2968, 2810), 1640, 1446, 1370, 1351, 1329, 1269, 1221 1137, 1085, 1034, 858, 8245, 739, 687, 587.
Preparation of tris(hydroxymethyl)methylammonium 2-amino-4-nitrobenzoate (III): To a solution of 2-amino-4-nitrobenzoic acid (1 mmol) in ethanol (10 ml) was added a solution of tris(hydroxymethyl)methylamine (1 mmol) in ethanol (10 ml). The reaction mixture was refluxed for 10 mins, and then maintained at room temperature. Crystals of (III) were collected after two days. M.p. 460–463 K. Anal. calcd.: C, 51.06; H, 5.71, N, 14.89. Found: C, 50.94; H, 5.80; N, 14.79% IR (KBr, cm−1): 3700–2400 (br, s, with maxima at 3514, 3477, 3398, 3314, 3256, 3078, 2823 and 2538), 1647, 1431, 1350 1250, 1146, 1115, 1063, 1010, 872, 827, 736, 689, 596, 578 511, 484, 1549, 1356.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H atoms were located from difference maps, but refined with O—H = 0.84±0.01 Å and Uiso(H) = 1.5Ueq(O), and with N—H = 0.86–0.88±0.01 Å and Uiso(H) = 1.2Ueq(N), respectively. In the of (II), owing to poor agreement, a reflection, i.e. (0 2 0), was omitted from the final cycles of refinement.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989018015578/hb7785sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018015578/hb7785Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018015578/hb7785IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018015578/hb7785IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015578/hb7785Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015578/hb7785IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015578/hb7785IIIsup7.cml
For all structures, data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C4H12NO+·C7H5N2O4− | F(000) = 576 |
Mr = 271.27 | Dx = 1.410 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6816 (2) Å | Cell parameters from 8678 reflections |
b = 22.8286 (8) Å | θ = 2.9–27.5° |
c = 8.6570 (3) Å | µ = 0.11 mm−1 |
β = 104.551 (2)° | T = 120 K |
V = 1278.11 (7) Å3 | Blade, yellow |
Z = 4 | 0.22 × 0.10 × 0.06 mm |
Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer | 2911 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 2380 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
φ & ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −29→29 |
Tmin = 0.847, Tmax = 1.000 | l = −11→10 |
9689 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0305P)2 + 1.1579P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2911 reflections | Δρmax = 0.27 e Å−3 |
186 parameters | Δρmin = −0.31 e Å−3 |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.16272 (19) | 0.18360 (5) | 0.56894 (15) | 0.0234 (3) | |
O2 | 0.3854 (2) | 0.15398 (6) | 0.43175 (16) | 0.0276 (3) | |
O3 | −0.4660 (3) | −0.04973 (8) | 0.2249 (3) | 0.0617 (6) | |
O4 | −0.2616 (3) | −0.06559 (8) | 0.0708 (2) | 0.0553 (5) | |
N1 | −0.1707 (2) | 0.11839 (7) | 0.5634 (2) | 0.0270 (4) | |
H1N | −0.101 (3) | 0.1513 (6) | 0.593 (3) | 0.032* | |
H2N | −0.3042 (16) | 0.1187 (10) | 0.558 (3) | 0.032* | |
N2 | −0.3090 (3) | −0.03927 (8) | 0.1803 (2) | 0.0385 (4) | |
C1 | 0.0836 (3) | 0.09665 (7) | 0.4120 (2) | 0.0188 (3) | |
C2 | −0.1058 (3) | 0.08640 (7) | 0.4521 (2) | 0.0205 (4) | |
C3 | −0.2321 (3) | 0.04031 (8) | 0.3743 (2) | 0.0258 (4) | |
H3 | −0.3606 | 0.0324 | 0.3984 | 0.031* | |
C4 | −0.1684 (3) | 0.00696 (8) | 0.2634 (2) | 0.0275 (4) | |
C5 | 0.0187 (3) | 0.01502 (8) | 0.2244 (2) | 0.0283 (4) | |
H5 | 0.0602 | −0.0094 | 0.1491 | 0.034* | |
C6 | 0.1419 (3) | 0.06031 (8) | 0.3006 (2) | 0.0237 (4) | |
H6 | 0.2711 | 0.0670 | 0.2765 | 0.028* | |
C7 | 0.2213 (3) | 0.14808 (7) | 0.4763 (2) | 0.0190 (3) | |
O5 | 0.59794 (19) | 0.25309 (6) | 0.51573 (16) | 0.0249 (3) | |
H5O | 0.529 (3) | 0.2221 (7) | 0.489 (3) | 0.037* | |
N3 | 0.1711 (2) | 0.29912 (6) | 0.52114 (17) | 0.0189 (3) | |
H3N | 0.206 (3) | 0.2616 (5) | 0.548 (2) | 0.023* | |
C8 | 0.3578 (3) | 0.33333 (8) | 0.5092 (2) | 0.0250 (4) | |
H8A | 0.4401 | 0.3433 | 0.6180 | 0.030* | |
H8B | 0.3126 | 0.3705 | 0.4520 | 0.030* | |
C9 | 0.4932 (3) | 0.30024 (8) | 0.4229 (2) | 0.0256 (4) | |
H9A | 0.4067 | 0.2848 | 0.3209 | 0.031* | |
H9B | 0.5960 | 0.3274 | 0.3976 | 0.031* | |
C10 | 0.0140 (3) | 0.29638 (9) | 0.3653 (2) | 0.0252 (4) | |
H10A | −0.1042 | 0.2729 | 0.3768 | 0.038* | |
H10B | 0.0753 | 0.2783 | 0.2853 | 0.038* | |
H10C | −0.0327 | 0.3361 | 0.3311 | 0.038* | |
C11 | 0.0766 (3) | 0.32355 (8) | 0.6464 (2) | 0.0251 (4) | |
H11A | 0.0397 | 0.3647 | 0.6223 | 0.038* | |
H11B | 0.1760 | 0.3208 | 0.7508 | 0.038* | |
H11C | −0.0481 | 0.3012 | 0.6482 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0236 (6) | 0.0214 (6) | 0.0258 (7) | −0.0023 (5) | 0.0074 (5) | −0.0044 (5) |
O2 | 0.0251 (7) | 0.0280 (7) | 0.0326 (7) | −0.0051 (5) | 0.0126 (6) | −0.0029 (6) |
O3 | 0.0404 (10) | 0.0457 (10) | 0.0971 (16) | −0.0189 (8) | 0.0135 (10) | −0.0275 (10) |
O4 | 0.0809 (13) | 0.0412 (9) | 0.0422 (10) | −0.0246 (9) | 0.0125 (9) | −0.0190 (8) |
N1 | 0.0216 (8) | 0.0259 (8) | 0.0358 (9) | −0.0034 (6) | 0.0115 (7) | −0.0050 (7) |
N2 | 0.0422 (11) | 0.0233 (8) | 0.0432 (11) | −0.0063 (8) | −0.0018 (8) | −0.0034 (8) |
C1 | 0.0206 (8) | 0.0158 (8) | 0.0182 (8) | 0.0004 (6) | 0.0015 (6) | 0.0023 (6) |
C2 | 0.0206 (8) | 0.0171 (8) | 0.0214 (8) | 0.0016 (6) | 0.0009 (6) | 0.0034 (7) |
C3 | 0.0214 (9) | 0.0200 (8) | 0.0328 (10) | −0.0014 (7) | 0.0005 (7) | 0.0039 (8) |
C4 | 0.0332 (10) | 0.0169 (8) | 0.0266 (9) | −0.0031 (7) | −0.0028 (8) | −0.0002 (7) |
C5 | 0.0388 (11) | 0.0197 (9) | 0.0253 (9) | 0.0016 (8) | 0.0061 (8) | −0.0015 (7) |
C6 | 0.0269 (9) | 0.0219 (9) | 0.0217 (9) | 0.0030 (7) | 0.0052 (7) | 0.0019 (7) |
C7 | 0.0196 (8) | 0.0177 (8) | 0.0185 (8) | 0.0005 (6) | 0.0025 (6) | 0.0046 (6) |
O5 | 0.0202 (6) | 0.0237 (6) | 0.0296 (7) | −0.0017 (5) | 0.0041 (5) | 0.0036 (5) |
N3 | 0.0183 (7) | 0.0195 (7) | 0.0186 (7) | −0.0002 (6) | 0.0042 (5) | −0.0013 (6) |
C8 | 0.0218 (9) | 0.0229 (9) | 0.0304 (10) | −0.0054 (7) | 0.0067 (7) | −0.0026 (7) |
C9 | 0.0225 (9) | 0.0256 (9) | 0.0307 (10) | −0.0007 (7) | 0.0106 (7) | 0.0070 (8) |
C10 | 0.0208 (8) | 0.0318 (10) | 0.0209 (9) | −0.0013 (7) | 0.0014 (7) | −0.0028 (7) |
C11 | 0.0288 (9) | 0.0273 (9) | 0.0211 (9) | 0.0027 (8) | 0.0099 (7) | −0.0034 (7) |
O1—C7 | 1.270 (2) | O5—C9 | 1.418 (2) |
O2—C7 | 1.258 (2) | O5—H5O | 0.843 (10) |
O3—N2 | 1.229 (3) | N3—C10 | 1.488 (2) |
O4—N2 | 1.229 (3) | N3—C11 | 1.493 (2) |
N1—C2 | 1.363 (2) | N3—C8 | 1.498 (2) |
N1—H1N | 0.886 (10) | N3—H3N | 0.902 (9) |
N1—H2N | 0.881 (9) | C8—C9 | 1.512 (3) |
N2—C4 | 1.474 (2) | C8—H8A | 0.9900 |
C1—C6 | 1.399 (2) | C8—H8B | 0.9900 |
C1—C2 | 1.413 (2) | C9—H9A | 0.9900 |
C1—C7 | 1.509 (2) | C9—H9B | 0.9900 |
C2—C3 | 1.410 (2) | C10—H10A | 0.9800 |
C3—C4 | 1.374 (3) | C10—H10B | 0.9800 |
C3—H3 | 0.9500 | C10—H10C | 0.9800 |
C4—C5 | 1.387 (3) | C11—H11A | 0.9800 |
C5—C6 | 1.382 (3) | C11—H11B | 0.9800 |
C5—H5 | 0.9500 | C11—H11C | 0.9800 |
C6—H6 | 0.9500 | ||
C2—N1—H1N | 115.2 (14) | C10—N3—C8 | 111.68 (14) |
C2—N1—H2N | 117.5 (15) | C11—N3—C8 | 111.54 (14) |
H1N—N1—H2N | 117 (2) | C10—N3—H3N | 105.8 (13) |
O3—N2—O4 | 123.56 (18) | C11—N3—H3N | 107.4 (13) |
O3—N2—C4 | 118.39 (19) | C8—N3—H3N | 110.1 (13) |
O4—N2—C4 | 118.05 (19) | N3—C8—C9 | 112.70 (14) |
C6—C1—C2 | 119.52 (16) | N3—C8—H8A | 109.1 |
C6—C1—C7 | 117.77 (15) | C9—C8—H8A | 109.1 |
C2—C1—C7 | 122.59 (15) | N3—C8—H8B | 109.1 |
N1—C2—C3 | 118.61 (16) | C9—C8—H8B | 109.1 |
N1—C2—C1 | 123.25 (15) | H8A—C8—H8B | 107.8 |
C3—C2—C1 | 118.14 (16) | O5—C9—C8 | 111.72 (15) |
C4—C3—C2 | 119.58 (17) | O5—C9—H9A | 109.3 |
C4—C3—H3 | 120.2 | C8—C9—H9A | 109.3 |
C2—C3—H3 | 120.2 | O5—C9—H9B | 109.3 |
C3—C4—C5 | 123.60 (17) | C8—C9—H9B | 109.3 |
C3—C4—N2 | 117.77 (18) | H9A—C9—H9B | 107.9 |
C5—C4—N2 | 118.63 (18) | N3—C10—H10A | 109.5 |
C6—C5—C4 | 116.63 (18) | N3—C10—H10B | 109.5 |
C6—C5—H5 | 121.7 | H10A—C10—H10B | 109.5 |
C4—C5—H5 | 121.7 | N3—C10—H10C | 109.5 |
C5—C6—C1 | 122.49 (18) | H10A—C10—H10C | 109.5 |
C5—C6—H6 | 118.8 | H10B—C10—H10C | 109.5 |
C1—C6—H6 | 118.8 | N3—C11—H11A | 109.5 |
O2—C7—O1 | 123.80 (16) | N3—C11—H11B | 109.5 |
O2—C7—C1 | 117.90 (15) | H11A—C11—H11B | 109.5 |
O1—C7—C1 | 118.28 (15) | N3—C11—H11C | 109.5 |
C9—O5—H5O | 108.9 (16) | H11A—C11—H11C | 109.5 |
C10—N3—C11 | 110.07 (14) | H11B—C11—H11C | 109.5 |
C6—C1—C2—N1 | 177.60 (16) | C3—C4—C5—C6 | −1.6 (3) |
C7—C1—C2—N1 | −6.6 (3) | N2—C4—C5—C6 | 177.51 (17) |
C6—C1—C2—C3 | −1.6 (2) | C4—C5—C6—C1 | 0.1 (3) |
C7—C1—C2—C3 | 174.24 (15) | C2—C1—C6—C5 | 1.5 (3) |
N1—C2—C3—C4 | −179.05 (17) | C7—C1—C6—C5 | −174.52 (16) |
C1—C2—C3—C4 | 0.2 (2) | C6—C1—C7—O2 | −3.1 (2) |
C2—C3—C4—C5 | 1.5 (3) | C2—C1—C7—O2 | −178.95 (15) |
C2—C3—C4—N2 | −177.62 (16) | C6—C1—C7—O1 | 175.26 (15) |
O3—N2—C4—C3 | −7.2 (3) | C2—C1—C7—O1 | −0.6 (2) |
O4—N2—C4—C3 | 173.39 (19) | C10—N3—C8—C9 | −73.87 (19) |
O3—N2—C4—C5 | 173.7 (2) | C11—N3—C8—C9 | 162.49 (15) |
O4—N2—C4—C5 | −5.7 (3) | N3—C8—C9—O5 | −71.15 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.89 (2) | 1.97 (2) | 2.6698 (19) | 135 (2) |
N1—H2N···O2i | 0.88 (1) | 2.24 (2) | 3.010 (2) | 146 (2) |
N3—H3N···O1 | 0.90 (1) | 1.82 (1) | 2.6722 (18) | 156 (2) |
O5—H5O···O2 | 0.84 (2) | 1.83 (2) | 2.6731 (19) | 179 (3) |
C10—H10B···O5ii | 0.98 | 2.48 | 3.406 (2) | 157 |
Symmetry codes: (i) x−1, y, z; (ii) x−3/2, −y−1/2, z−3/2. |
C6H16NO+·C7H5N2O4− | F(000) = 1280 |
Mr = 299.33 | Dx = 1.342 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 21.1138 (5) Å | Cell parameters from 8229 reflections |
b = 12.3635 (5) Å | θ = 2.9–27.5° |
c = 13.1909 (4) Å | µ = 0.10 mm−1 |
β = 120.627 (2)° | T = 120 K |
V = 2963.02 (17) Å3 | Slab, orange |
Z = 8 | 0.62 × 0.26 × 0.10 mm |
Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer | 3406 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 2349 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.0° |
φ & ω scans | h = −27→27 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −16→15 |
Tmin = 0.652, Tmax = 0.746 | l = −17→17 |
18353 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0712P)2 + 0.7685P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3406 reflections | Δρmax = 0.24 e Å−3 |
208 parameters | Δρmin = −0.33 e Å−3 |
5 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.38287 (6) | 0.76025 (10) | 0.01169 (10) | 0.0301 (3) | |
O2 | 0.29310 (6) | 0.63783 (10) | −0.04670 (10) | 0.0263 (3) | |
O3 | 0.63480 (6) | 0.33794 (10) | 0.24135 (11) | 0.0305 (3) | |
O4 | 0.54488 (7) | 0.22405 (10) | 0.17418 (13) | 0.0400 (4) | |
N1 | 0.52324 (7) | 0.69991 (12) | 0.14202 (13) | 0.0241 (3) | |
N2 | 0.56872 (7) | 0.31665 (12) | 0.18823 (12) | 0.0241 (3) | |
C1 | 0.41726 (8) | 0.57689 (13) | 0.05554 (13) | 0.0188 (4) | |
C2 | 0.49416 (8) | 0.59915 (13) | 0.12014 (12) | 0.0187 (4) | |
C3 | 0.54245 (8) | 0.51022 (13) | 0.16275 (13) | 0.0192 (4) | |
H3 | 0.5941 | 0.5221 | 0.2073 | 0.023* | |
C4 | 0.51565 (8) | 0.40665 (13) | 0.14053 (13) | 0.0195 (4) | |
C5 | 0.44091 (8) | 0.38249 (14) | 0.07707 (13) | 0.0215 (4) | |
H5 | 0.4235 | 0.3101 | 0.0624 | 0.026* | |
C6 | 0.39357 (8) | 0.46956 (14) | 0.03667 (13) | 0.0214 (4) | |
H6 | 0.3421 | 0.4558 | −0.0063 | 0.026* | |
C7 | 0.36039 (8) | 0.66455 (14) | 0.00382 (13) | 0.0216 (4) | |
O5 | 0.69062 (6) | 0.71809 (10) | 0.29593 (11) | 0.0303 (3) | |
N3 | 0.79731 (7) | 0.56819 (12) | 0.45647 (12) | 0.0231 (3) | |
C8 | 0.84793 (9) | 0.47891 (15) | 0.53503 (16) | 0.0292 (4) | |
C9 | 0.80464 (11) | 0.37480 (16) | 0.5120 (2) | 0.0444 (5) | |
H9A | 0.7623 | 0.3876 | 0.5219 | 0.067* | |
H9B | 0.8363 | 0.3192 | 0.5678 | 0.067* | |
H9C | 0.7873 | 0.3503 | 0.4313 | 0.067* | |
C10 | 0.87684 (12) | 0.51860 (17) | 0.66040 (17) | 0.0448 (5) | |
H10A | 0.8355 | 0.5298 | 0.6732 | 0.067* | |
H10B | 0.9032 | 0.5870 | 0.6724 | 0.067* | |
H10C | 0.9104 | 0.4646 | 0.7163 | 0.067* | |
C11 | 0.91074 (10) | 0.46495 (17) | 0.51089 (19) | 0.0402 (5) | |
H11A | 0.9478 | 0.4160 | 0.5696 | 0.060* | |
H11B | 0.9333 | 0.5355 | 0.5155 | 0.060* | |
H11C | 0.8916 | 0.4344 | 0.4320 | 0.060* | |
C12 | 0.75766 (9) | 0.54960 (16) | 0.32642 (15) | 0.0310 (4) | |
H12A | 0.7141 | 0.5033 | 0.3028 | 0.037* | |
H12B | 0.7905 | 0.5118 | 0.3049 | 0.037* | |
C13 | 0.73361 (9) | 0.65690 (16) | 0.26214 (15) | 0.0301 (4) | |
H13A | 0.7777 | 0.6992 | 0.2789 | 0.036* | |
H13B | 0.7046 | 0.6434 | 0.1762 | 0.036* | |
H1N | 0.4925 (9) | 0.7539 (12) | 0.1137 (17) | 0.036* | |
H2N | 0.5715 (5) | 0.7082 (16) | 0.1885 (15) | 0.036* | |
H5O | 0.7197 (10) | 0.7625 (14) | 0.3464 (15) | 0.045* | |
H3N | 0.8263 (9) | 0.6272 (11) | 0.4739 (16) | 0.036* | |
H4N | 0.7637 (8) | 0.5810 (16) | 0.4767 (16) | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0220 (6) | 0.0240 (7) | 0.0377 (7) | 0.0031 (5) | 0.0104 (6) | 0.0033 (5) |
O2 | 0.0159 (6) | 0.0339 (7) | 0.0272 (6) | 0.0023 (5) | 0.0096 (5) | 0.0055 (5) |
O3 | 0.0197 (6) | 0.0276 (7) | 0.0389 (7) | 0.0024 (5) | 0.0112 (5) | −0.0006 (6) |
O4 | 0.0337 (7) | 0.0186 (7) | 0.0580 (9) | −0.0016 (6) | 0.0163 (7) | 0.0032 (6) |
N1 | 0.0169 (7) | 0.0189 (8) | 0.0318 (8) | −0.0002 (6) | 0.0089 (6) | −0.0009 (6) |
N2 | 0.0223 (7) | 0.0237 (8) | 0.0254 (7) | 0.0007 (6) | 0.0114 (6) | 0.0000 (6) |
C1 | 0.0181 (8) | 0.0232 (9) | 0.0162 (7) | 0.0006 (7) | 0.0096 (6) | 0.0000 (6) |
C2 | 0.0192 (8) | 0.0221 (9) | 0.0158 (7) | −0.0003 (7) | 0.0097 (6) | −0.0004 (6) |
C3 | 0.0160 (7) | 0.0246 (9) | 0.0177 (7) | −0.0009 (6) | 0.0090 (6) | −0.0006 (6) |
C4 | 0.0206 (8) | 0.0194 (9) | 0.0194 (7) | 0.0028 (7) | 0.0110 (6) | 0.0018 (6) |
C5 | 0.0222 (8) | 0.0208 (9) | 0.0229 (8) | −0.0042 (7) | 0.0125 (7) | −0.0024 (7) |
C6 | 0.0172 (7) | 0.0294 (10) | 0.0182 (7) | −0.0029 (7) | 0.0095 (6) | −0.0022 (7) |
C7 | 0.0200 (8) | 0.0271 (10) | 0.0174 (7) | 0.0036 (7) | 0.0093 (6) | 0.0022 (7) |
O5 | 0.0202 (6) | 0.0296 (8) | 0.0306 (7) | −0.0012 (5) | 0.0053 (5) | −0.0053 (5) |
N3 | 0.0181 (7) | 0.0210 (8) | 0.0295 (7) | −0.0011 (6) | 0.0114 (6) | −0.0027 (6) |
C8 | 0.0236 (8) | 0.0234 (10) | 0.0378 (10) | 0.0060 (7) | 0.0136 (8) | 0.0037 (8) |
C9 | 0.0352 (10) | 0.0261 (11) | 0.0740 (15) | 0.0047 (9) | 0.0295 (11) | 0.0084 (10) |
C10 | 0.0526 (12) | 0.0396 (12) | 0.0357 (11) | 0.0156 (10) | 0.0178 (10) | 0.0129 (9) |
C11 | 0.0247 (9) | 0.0367 (12) | 0.0578 (13) | 0.0075 (8) | 0.0200 (9) | 0.0040 (10) |
C12 | 0.0227 (8) | 0.0326 (11) | 0.0304 (9) | −0.0014 (7) | 0.0083 (7) | −0.0104 (8) |
C13 | 0.0250 (9) | 0.0379 (11) | 0.0232 (8) | −0.0032 (8) | 0.0093 (7) | −0.0060 (8) |
O1—C7 | 1.259 (2) | N3—C8 | 1.519 (2) |
O2—C7 | 1.2678 (19) | N3—H3N | 0.903 (9) |
O3—N2 | 1.2292 (17) | N3—H4N | 0.890 (9) |
O4—N2 | 1.2262 (18) | C8—C9 | 1.517 (3) |
N1—C2 | 1.353 (2) | C8—C11 | 1.523 (3) |
N1—H1N | 0.872 (9) | C8—C10 | 1.523 (3) |
N1—H2N | 0.887 (9) | C9—H9A | 0.9800 |
N2—C4 | 1.473 (2) | C9—H9B | 0.9800 |
C1—C6 | 1.395 (2) | C9—H9C | 0.9800 |
C1—C2 | 1.424 (2) | C10—H10A | 0.9800 |
C1—C7 | 1.499 (2) | C10—H10B | 0.9800 |
C2—C3 | 1.407 (2) | C10—H10C | 0.9800 |
C3—C4 | 1.370 (2) | C11—H11A | 0.9800 |
C3—H3 | 0.9500 | C11—H11B | 0.9800 |
C4—C5 | 1.391 (2) | C11—H11C | 0.9800 |
C5—C6 | 1.378 (2) | C12—C13 | 1.516 (3) |
C5—H5 | 0.9500 | C12—H12A | 0.9900 |
C6—H6 | 0.9500 | C12—H12B | 0.9900 |
O5—C13 | 1.417 (2) | C13—H13A | 0.9900 |
O5—H5O | 0.841 (10) | C13—H13B | 0.9900 |
N3—C12 | 1.494 (2) | ||
C2—N1—H1N | 117.1 (13) | C9—C8—C11 | 111.21 (16) |
C2—N1—H2N | 119.3 (13) | N3—C8—C11 | 108.94 (15) |
H1N—N1—H2N | 123.4 (19) | C9—C8—C10 | 111.00 (17) |
O4—N2—O3 | 123.05 (14) | N3—C8—C10 | 105.08 (14) |
O4—N2—C4 | 118.44 (13) | C11—C8—C10 | 110.70 (16) |
O3—N2—C4 | 118.50 (14) | C8—C9—H9A | 109.5 |
C6—C1—C2 | 119.11 (14) | C8—C9—H9B | 109.5 |
C6—C1—C7 | 118.37 (13) | H9A—C9—H9B | 109.5 |
C2—C1—C7 | 122.50 (14) | C8—C9—H9C | 109.5 |
N1—C2—C3 | 118.44 (13) | H9A—C9—H9C | 109.5 |
N1—C2—C1 | 124.09 (14) | H9B—C9—H9C | 109.5 |
C3—C2—C1 | 117.46 (14) | C8—C10—H10A | 109.5 |
C4—C3—C2 | 120.56 (14) | C8—C10—H10B | 109.5 |
C4—C3—H3 | 119.7 | H10A—C10—H10B | 109.5 |
C2—C3—H3 | 119.7 | C8—C10—H10C | 109.5 |
C3—C4—C5 | 123.22 (15) | H10A—C10—H10C | 109.5 |
C3—C4—N2 | 118.23 (13) | H10B—C10—H10C | 109.5 |
C5—C4—N2 | 118.54 (14) | C8—C11—H11A | 109.5 |
C6—C5—C4 | 116.24 (15) | C8—C11—H11B | 109.5 |
C6—C5—H5 | 121.9 | H11A—C11—H11B | 109.5 |
C4—C5—H5 | 121.9 | C8—C11—H11C | 109.5 |
C5—C6—C1 | 123.40 (14) | H11A—C11—H11C | 109.5 |
C5—C6—H6 | 118.3 | H11B—C11—H11C | 109.5 |
C1—C6—H6 | 118.3 | N3—C12—C13 | 109.85 (14) |
O1—C7—O2 | 124.24 (15) | N3—C12—H12A | 109.7 |
O1—C7—C1 | 117.45 (13) | C13—C12—H12A | 109.7 |
O2—C7—C1 | 118.31 (15) | N3—C12—H12B | 109.7 |
C13—O5—H5O | 105.7 (15) | C13—C12—H12B | 109.7 |
C12—N3—C8 | 117.35 (14) | H12A—C12—H12B | 108.2 |
C12—N3—H3N | 109.1 (12) | O5—C13—C12 | 112.15 (15) |
C8—N3—H3N | 105.3 (12) | O5—C13—H13A | 109.2 |
C12—N3—H4N | 107.8 (12) | C12—C13—H13A | 109.2 |
C8—N3—H4N | 108.4 (13) | O5—C13—H13B | 109.2 |
H3N—N3—H4N | 108.6 (18) | C12—C13—H13B | 109.2 |
C9—C8—N3 | 109.71 (14) | H13A—C13—H13B | 107.9 |
C6—C1—C2—N1 | 178.92 (14) | N2—C4—C5—C6 | 178.59 (13) |
C7—C1—C2—N1 | 0.6 (2) | C4—C5—C6—C1 | 0.7 (2) |
C6—C1—C2—C3 | −0.6 (2) | C2—C1—C6—C5 | −0.3 (2) |
C7—C1—C2—C3 | −178.87 (13) | C7—C1—C6—C5 | 178.09 (14) |
N1—C2—C3—C4 | −178.52 (14) | C6—C1—C7—O1 | −173.13 (14) |
C1—C2—C3—C4 | 1.0 (2) | C2—C1—C7—O1 | 5.2 (2) |
C2—C3—C4—C5 | −0.6 (2) | C6—C1—C7—O2 | 5.6 (2) |
C2—C3—C4—N2 | −179.45 (13) | C2—C1—C7—O2 | −176.12 (14) |
O4—N2—C4—C3 | 176.00 (14) | C12—N3—C8—C9 | −58.0 (2) |
O3—N2—C4—C3 | −3.2 (2) | C12—N3—C8—C11 | 63.99 (19) |
O4—N2—C4—C5 | −2.9 (2) | C12—N3—C8—C10 | −177.36 (15) |
O3—N2—C4—C5 | 177.91 (14) | C8—N3—C12—C13 | −159.11 (14) |
C3—C4—C5—C6 | −0.2 (2) | N3—C12—C13—O5 | −55.18 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.87 (2) | 2.00 (2) | 2.665 (2) | 132 (2) |
N1—H2N···O5 | 0.89 (2) | 2.17 (2) | 3.058 (2) | 176 (2) |
N3—H3N···O1i | 0.90 (2) | 1.73 (2) | 2.637 (2) | 178 (2) |
N3—H4N···O2ii | 0.89 (2) | 1.98 (2) | 2.849 (2) | 166 (2) |
O5—H5O···O2i | 0.84 (2) | 1.92 (2) | 2.7546 (18) | 173 (2) |
C11—H11A···O4iii | 0.98 | 2.49 | 3.450 (3) | 165 |
C12—H12A···O3 | 0.99 | 2.50 | 3.445 (2) | 159 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) −x+1, y, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2. |
C4H12NO3+·C7H5N2O4− | F(000) = 640 |
Mr = 303.27 | Dx = 1.525 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.6269 (6) Å | Cell parameters from 10585 reflections |
b = 9.4976 (3) Å | θ = 2.9–27.5° |
c = 10.2042 (4) Å | µ = 0.13 mm−1 |
β = 90.355 (2)° | T = 120 K |
V = 1320.63 (9) Å3 | Slab, orange |
Z = 4 | 0.38 × 0.22 × 0.09 mm |
Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer | 3027 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 2183 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
φ & ω scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −11→12 |
Tmin = 0.656, Tmax = 0.746 | l = −11→13 |
16747 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.4405P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3027 reflections | Δρmax = 0.31 e Å−3 |
214 parameters | Δρmin = −0.26 e Å−3 |
8 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.23149 (10) | 1.04393 (14) | 0.76677 (13) | 0.0214 (3) | |
O2 | 0.14548 (9) | 0.92617 (13) | 0.61598 (12) | 0.0175 (3) | |
O3 | 0.65621 (10) | 0.73923 (15) | 0.52281 (13) | 0.0255 (3) | |
O4 | 0.56887 (10) | 0.60326 (14) | 0.39818 (13) | 0.0226 (3) | |
N1 | 0.42471 (12) | 1.07055 (17) | 0.72756 (15) | 0.0187 (4) | |
H1N | 0.3741 (11) | 1.100 (2) | 0.7735 (18) | 0.022* | |
H2N | 0.4832 (9) | 1.086 (2) | 0.7608 (19) | 0.022* | |
N2 | 0.57664 (12) | 0.69917 (16) | 0.47821 (14) | 0.0179 (4) | |
C1 | 0.31934 (13) | 0.89761 (19) | 0.61872 (16) | 0.0147 (4) | |
C2 | 0.41270 (14) | 0.95131 (18) | 0.65438 (16) | 0.0144 (4) | |
C3 | 0.49671 (14) | 0.88243 (19) | 0.60661 (16) | 0.0156 (4) | |
H3 | 0.5603 | 0.9150 | 0.6306 | 0.019* | |
C4 | 0.48646 (13) | 0.76770 (19) | 0.52504 (17) | 0.0155 (4) | |
C5 | 0.39602 (14) | 0.71363 (19) | 0.48678 (17) | 0.0167 (4) | |
H5 | 0.3910 | 0.6348 | 0.4298 | 0.020* | |
C6 | 0.31356 (14) | 0.78010 (19) | 0.53561 (17) | 0.0160 (4) | |
H6 | 0.2507 | 0.7448 | 0.5120 | 0.019* | |
C7 | 0.22586 (14) | 0.96075 (18) | 0.66953 (16) | 0.0151 (4) | |
O5 | 0.93618 (10) | 0.33420 (13) | 0.11526 (12) | 0.0172 (3) | |
H5O | 0.9100 (15) | 0.357 (2) | 0.0431 (13) | 0.026* | |
O6 | 0.91226 (10) | 0.77428 (13) | 0.16735 (13) | 0.0186 (3) | |
H6O | 0.8659 (12) | 0.820 (2) | 0.201 (2) | 0.028* | |
O7 | 0.85135 (10) | 0.48735 (14) | 0.47852 (12) | 0.0212 (3) | |
H7O | 0.8181 (15) | 0.511 (2) | 0.5444 (16) | 0.032* | |
N3 | 0.99779 (11) | 0.55298 (16) | 0.30064 (15) | 0.0137 (3) | |
H3N | 1.0132 (15) | 0.4938 (17) | 0.3649 (15) | 0.016* | |
H4N | 1.0077 (15) | 0.6377 (13) | 0.3343 (18) | 0.016* | |
H5N | 1.0380 (12) | 0.542 (2) | 0.2325 (14) | 0.016* | |
C8 | 0.89311 (13) | 0.53736 (18) | 0.25643 (16) | 0.0144 (4) | |
C9 | 0.87415 (14) | 0.38355 (18) | 0.21779 (17) | 0.0158 (4) | |
H9A | 0.8839 | 0.3232 | 0.2959 | 0.019* | |
H9B | 0.8049 | 0.3738 | 0.1894 | 0.019* | |
C10 | 0.87791 (14) | 0.63603 (18) | 0.13984 (17) | 0.0163 (4) | |
H10A | 0.9132 | 0.5982 | 0.0630 | 0.020* | |
H10B | 0.8072 | 0.6399 | 0.1174 | 0.020* | |
C11 | 0.82764 (14) | 0.5772 (2) | 0.37062 (17) | 0.0180 (4) | |
H11A | 0.8386 | 0.6769 | 0.3951 | 0.022* | |
H11B | 0.7578 | 0.5655 | 0.3457 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0188 (7) | 0.0239 (7) | 0.0215 (7) | 0.0012 (6) | 0.0027 (5) | −0.0081 (6) |
O2 | 0.0149 (7) | 0.0211 (7) | 0.0165 (6) | 0.0007 (5) | 0.0004 (5) | −0.0007 (5) |
O3 | 0.0150 (7) | 0.0364 (8) | 0.0250 (7) | 0.0032 (6) | −0.0015 (6) | −0.0061 (6) |
O4 | 0.0234 (8) | 0.0204 (7) | 0.0241 (7) | 0.0033 (6) | 0.0029 (6) | −0.0061 (6) |
N1 | 0.0156 (9) | 0.0203 (9) | 0.0202 (8) | −0.0006 (7) | −0.0004 (7) | −0.0060 (7) |
N2 | 0.0178 (9) | 0.0195 (8) | 0.0165 (8) | 0.0016 (7) | 0.0014 (6) | 0.0008 (6) |
C1 | 0.0164 (10) | 0.0151 (9) | 0.0125 (8) | 0.0018 (7) | 0.0014 (7) | 0.0027 (7) |
C2 | 0.0161 (10) | 0.0145 (9) | 0.0126 (8) | −0.0001 (7) | 0.0004 (7) | 0.0017 (7) |
C3 | 0.0138 (9) | 0.0193 (10) | 0.0137 (8) | −0.0002 (7) | −0.0009 (7) | 0.0011 (7) |
C4 | 0.0142 (9) | 0.0172 (9) | 0.0150 (9) | 0.0036 (7) | 0.0018 (7) | 0.0033 (7) |
C5 | 0.0200 (10) | 0.0136 (9) | 0.0167 (9) | 0.0010 (7) | 0.0007 (7) | −0.0008 (7) |
C6 | 0.0149 (9) | 0.0162 (9) | 0.0170 (9) | −0.0016 (7) | −0.0005 (7) | −0.0005 (7) |
C7 | 0.0197 (10) | 0.0121 (9) | 0.0136 (8) | 0.0008 (7) | 0.0017 (7) | 0.0031 (7) |
O5 | 0.0225 (8) | 0.0160 (7) | 0.0132 (6) | 0.0040 (5) | −0.0004 (5) | −0.0014 (5) |
O6 | 0.0208 (8) | 0.0108 (6) | 0.0242 (7) | 0.0015 (5) | 0.0000 (6) | 0.0002 (5) |
O7 | 0.0264 (8) | 0.0231 (7) | 0.0143 (6) | −0.0016 (6) | 0.0053 (6) | −0.0010 (5) |
N3 | 0.0149 (8) | 0.0133 (8) | 0.0129 (7) | 0.0010 (6) | 0.0009 (6) | 0.0006 (6) |
C8 | 0.0143 (9) | 0.0134 (9) | 0.0156 (8) | 0.0009 (7) | −0.0007 (7) | −0.0005 (7) |
C9 | 0.0186 (10) | 0.0131 (9) | 0.0157 (8) | 0.0004 (7) | 0.0015 (7) | 0.0000 (7) |
C10 | 0.0193 (10) | 0.0129 (9) | 0.0167 (9) | 0.0004 (7) | −0.0020 (7) | −0.0006 (7) |
C11 | 0.0162 (10) | 0.0197 (10) | 0.0181 (9) | 0.0005 (8) | 0.0027 (7) | −0.0016 (7) |
O1—C7 | 1.270 (2) | O5—H5O | 0.844 (9) |
O2—C7 | 1.264 (2) | O6—C10 | 1.421 (2) |
O3—N2 | 1.233 (2) | O6—H6O | 0.841 (10) |
O4—N2 | 1.228 (2) | O7—C11 | 1.429 (2) |
N1—C2 | 1.366 (2) | O7—H7O | 0.844 (10) |
N1—H1N | 0.882 (9) | N3—C8 | 1.501 (2) |
N1—H2N | 0.877 (10) | N3—H3N | 0.888 (9) |
N2—C4 | 1.473 (2) | N3—H4N | 0.885 (9) |
C1—C6 | 1.404 (3) | N3—H5N | 0.894 (9) |
C1—C2 | 1.416 (3) | C8—C11 | 1.520 (2) |
C1—C7 | 1.503 (3) | C8—C10 | 1.528 (2) |
C2—C3 | 1.408 (3) | C8—C9 | 1.535 (2) |
C3—C4 | 1.378 (3) | C9—H9A | 0.9900 |
C3—H3 | 0.9500 | C9—H9B | 0.9900 |
C4—C5 | 1.389 (3) | C10—H10A | 0.9900 |
C5—C6 | 1.384 (3) | C10—H10B | 0.9900 |
C5—H5 | 0.9500 | C11—H11A | 0.9900 |
C6—H6 | 0.9500 | C11—H11B | 0.9900 |
O5—C9 | 1.428 (2) | ||
C2—N1—H1N | 117.5 (14) | C8—N3—H3N | 112.3 (13) |
C2—N1—H2N | 117.1 (15) | C8—N3—H4N | 110.4 (13) |
H1N—N1—H2N | 117 (2) | H3N—N3—H4N | 104.7 (18) |
O4—N2—O3 | 123.12 (16) | C8—N3—H5N | 109.9 (13) |
O4—N2—C4 | 118.36 (15) | H3N—N3—H5N | 111.1 (19) |
O3—N2—C4 | 118.51 (15) | H4N—N3—H5N | 108.2 (19) |
C6—C1—C2 | 119.25 (17) | N3—C8—C11 | 107.84 (14) |
C6—C1—C7 | 118.76 (16) | N3—C8—C10 | 107.31 (14) |
C2—C1—C7 | 121.97 (16) | C11—C8—C10 | 111.52 (15) |
N1—C2—C3 | 118.65 (17) | N3—C8—C9 | 109.24 (14) |
N1—C2—C1 | 122.93 (17) | C11—C8—C9 | 109.60 (15) |
C3—C2—C1 | 118.34 (16) | C10—C8—C9 | 111.22 (14) |
C4—C3—C2 | 119.80 (17) | O5—C9—C8 | 113.65 (15) |
C4—C3—H3 | 120.1 | O5—C9—H9A | 108.8 |
C2—C3—H3 | 120.1 | C8—C9—H9A | 108.8 |
C3—C4—C5 | 123.28 (17) | O5—C9—H9B | 108.8 |
C3—C4—N2 | 117.63 (16) | C8—C9—H9B | 108.8 |
C5—C4—N2 | 119.09 (16) | H9A—C9—H9B | 107.7 |
C6—C5—C4 | 116.82 (17) | O6—C10—C8 | 111.71 (14) |
C6—C5—H5 | 121.6 | O6—C10—H10A | 109.3 |
C4—C5—H5 | 121.6 | C8—C10—H10A | 109.3 |
C5—C6—C1 | 122.50 (17) | O6—C10—H10B | 109.3 |
C5—C6—H6 | 118.7 | C8—C10—H10B | 109.3 |
C1—C6—H6 | 118.7 | H10A—C10—H10B | 107.9 |
O2—C7—O1 | 123.17 (17) | O7—C11—C8 | 108.12 (15) |
O2—C7—C1 | 118.74 (16) | O7—C11—H11A | 110.1 |
O1—C7—C1 | 118.06 (16) | C8—C11—H11A | 110.1 |
C9—O5—H5O | 107.9 (15) | O7—C11—H11B | 110.1 |
C10—O6—H6O | 108.1 (16) | C8—C11—H11B | 110.1 |
C11—O7—H7O | 109.4 (16) | H11A—C11—H11B | 108.4 |
C6—C1—C2—N1 | 175.53 (16) | C2—C1—C6—C5 | 0.1 (3) |
C7—C1—C2—N1 | −5.8 (3) | C7—C1—C6—C5 | −178.55 (16) |
C6—C1—C2—C3 | −1.2 (2) | C6—C1—C7—O2 | −14.4 (2) |
C7—C1—C2—C3 | 177.46 (15) | C2—C1—C7—O2 | 166.90 (16) |
N1—C2—C3—C4 | −175.49 (16) | C6—C1—C7—O1 | 163.83 (16) |
C1—C2—C3—C4 | 1.4 (3) | C2—C1—C7—O1 | −14.8 (2) |
C2—C3—C4—C5 | −0.5 (3) | N3—C8—C9—O5 | −59.01 (18) |
C2—C3—C4—N2 | −179.78 (15) | C11—C8—C9—O5 | −176.96 (14) |
O4—N2—C4—C3 | −174.88 (15) | C10—C8—C9—O5 | 59.3 (2) |
O3—N2—C4—C3 | 6.3 (2) | N3—C8—C10—O6 | −49.84 (19) |
O4—N2—C4—C5 | 5.8 (2) | C11—C8—C10—O6 | 68.0 (2) |
O3—N2—C4—C5 | −173.00 (16) | C9—C8—C10—O6 | −169.27 (15) |
C3—C4—C5—C6 | −0.5 (3) | N3—C8—C11—O7 | −58.12 (18) |
N2—C4—C5—C6 | 178.72 (15) | C10—C8—C11—O7 | −175.70 (14) |
C4—C5—C6—C1 | 0.7 (3) | C9—C8—C11—O7 | 60.70 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.88 (2) | 2.02 (2) | 2.678 (2) | 131 (2) |
N1—H1N···O3i | 0.88 (2) | 2.50 (2) | 3.210 (2) | 138 (1) |
N1—H2N···O4ii | 0.88 (1) | 2.56 (2) | 3.094 (2) | 120 (2) |
N3—H3N···O6iii | 0.89 (2) | 2.34 (2) | 2.934 (2) | 124 (1) |
N3—H3N···O7iv | 0.89 (2) | 2.44 (2) | 3.065 (2) | 128 (2) |
N3—H4N···O5v | 0.89 (1) | 2.08 (1) | 2.945 (2) | 165 (2) |
N3—H5N···O2vi | 0.89 (2) | 1.92 (2) | 2.773 (2) | 160 (2) |
O5—H5O···O2vii | 0.85 (2) | 1.90 (2) | 2.7453 (18) | 175 (2) |
O6—H6O···O1viii | 0.84 (2) | 1.88 (2) | 2.6993 (19) | 163 (2) |
O7—H7O···O1ix | 0.84 (2) | 2.07 (2) | 2.8905 (18) | 164 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, −y+1, −z+1; (v) −x+2, y+1/2, −z+1/2; (vi) x+1, −y+1/2, z−3/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1, −y+2, −z+1; (ix) −x+1, y−1/2, −z+3/2. |
Parameter | (I) | (II) | (III) |
C7≐O1 | 1.270 (2) | 1.259 (2) | 1.270 (2) |
C7≐O2 | 1.258 (2) | 1.2678 (19) | 1.264 (2) |
CO2/C6 | 6.7 (3) | 6.21 (13) | 14.80 (17) |
NO2/C6 | 6.6 (3) | 3.28 (13) | 6.58 (18) |
CO2/NO2 | 11.5 (4) | 2.94 (17) | 9.7 (3) |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The authors thank the National Crystallographic Service, based at the University of Southampton, for collecting the data.
Funding information
JLW thanks CNPq, Brazil, for a grant. The authors are also grateful to Sunway University (INT-RRO-2017-096) for support of this research.
References
Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2662–o2663. CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2018). Z. Kristallogr. Cryst. Mat. doi: https://doi. org/10.1515/zkri-2018-2101. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G. (2013). Acta Cryst. C69, 1472–1477. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. (2014a). Acta Cryst. E70, m192–m193. CrossRef IUCr Journals Google Scholar
Smith, G. (2014b). Private Communication (Refcode: DOBPIV). CCDC, Cambridge, England. Google Scholar
Smith, G. & Lynch, D. E. (2016). Acta Cryst. C72, 105–111. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047–m1048. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o684–o686. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Acta Cryst. E63, o7–o9. CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2002). Acta Cryst. E58, o1088–o1090. Web of Science CrossRef IUCr Journals Google Scholar
Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1618–1627. Web of Science CrossRef IUCr Journals Google Scholar
Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 579–585. Web of Science CrossRef IUCr Journals Google Scholar
Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418–1424. Web of Science CrossRef CAS Google Scholar
Wardell, S. M. S. V. & Wardell, J. L. (2016). J. Chem. Crystallogr. 46, 34–43. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.