research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Investigation of nitro–nitrito photoisomerization: crystal structure of trans-chlorido­nitro­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)cobalt(III) chloride

CROSSMARK_Color_square_no_text.svg

aResearch and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan, bDepartment of Chemistry, Chiba Institute of Technology, Shibazono 2-1-1, Narashino, Chiba 275-0023, Japan, and cDepartment of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: ohba@a3.keio.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 November 2018; accepted 26 November 2018; online 30 November 2018)

The reaction cavity of the nitro group in the crystal of the title compound, [CoCl(NO2)(C10H24N4)]Cl, (I), was investigated to confirm that it offers sufficient free space for linkage isomerization to occur in accordance with the observed photochemical reactivity. The complex cation has crystallographic 2/m symmetry and the nitro and chloro ligands at the trans positions are statistically disordered. The complete cyclam ligand is generated by symmetry from a quarter of the mol­ecule. In the crystal of (I), the complex cations and Cl ions are linked into a three-dimensional network by N—H⋯Cl(counter-ion) hydrogen bonds.

1. Chemical context

The photochemical reactions of metal complexes in the solid state attract much attention from crystallographers and chemists (Coppens et al., 2002[Coppens, P., Novozhilova, I. & Kovalevsky, A. (2002). Chem. Rev. 102, 861-883.]; Vittal & Quah, 2017[Vittal, J. J. & Quah, H. S. (2017). Dalton Trans. 46, 7120-7140.]). The present authors have investigated photochemical linkage isomerization of a series of the nitro­cobalt(III) complexes, trans-[Co(en)2(NO2)(NCS)]Cl·H2O and other salts, (Ohba, Tsuchimoto & Kurachi, 2018[Ohba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526-1531.]), trans-[Co(acac)2(NO2)(pyridine derivative)] (Ohba, Tsuchimoto & Miyazaki, 2018[Ohba, S., Tsuchimoto, M. & Miyazaki, H. (2018). Acta Cryst. E74, 1637-1642.]), and trans-[Co(salen)(NO2)(pyridine derivative)] (Ohba, Tsuchimoto & Yamada, 2018[Ohba, S., Tsuchimoto, M. & Yamada, N. (2018). Acta Cryst. E74, 1759-1763.]). In the present study, we describe our investigations of another type of nitro­cobalt complex, trans-[Co(cyclam)(NO2)Cl]Cl, (I)[link], where cyclam stands for 1,4,8,11-tetra­aza­cyclo­tetra­decane. It is known that the stability of the nitrito–CoIII complexes greatly depends on the electronic effects of the co-existing ligands, and cyclam is expected to bring a small rate constant of the nitrito-to-nitro thermal reaction (Miyoshi et al., 1983[Miyoshi, K., Katoda, N. & Yoneda, H. (1983). Inorg. Chem. 22, 1839-1843.]). The crystal structure of trans-[Co(cyclam)(NO2)2]ClO4, (II), has already been reported by Ohba et al. (2001[Ohba, S., Yamada, N. & Eishima, M. (2001). Acta Cryst. E57, m12-m13.]). For (II) and the related PF6 salt, thermal conversion steps from the dinitrito to di­nitro form were investigated by differential scanning calorimetry and DFT calculations (Eslami et al., 2014[Eslami, A., Hasani, N. & Yeganegi, S. (2014). Eur. J. Inorg. Chem. pp. 4788-4802.]).

When a KBr disk of (I)[link] was irradiated for 30 min with a Xe lamp, the IR spectrum showed an apparent change involving an increase in intensity of the absorption peak of ca 1000 cm−1 (see the Figure in the supporting information), which corresponds to the symmetric N—O stretching mode of the nitrito form (Eslami et al., 2014[Eslami, A., Hasani, N. & Yeganegi, S. (2014). Eur. J. Inorg. Chem. pp. 4788-4802.]). The IR spectrum of the irradiated complex was almost unchanged on standing at room temperature for 2 h, indicating the long life-time of the nitrito form as in (II), and reverted to that before irradiation by heating at 55°C for 45 min. The crystal structure of (I)[link] was determined to establish the dimensions of the reaction cavity and steric circumstance of the nitro group, and to compare them with those in (II).

[Scheme 1]
[Scheme 2]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The coordination geometry around the Co atom is a distorted octa­hedron with the N5 (nitro) and Cl2 atoms at the trans positions. The macrocyclic ligand cyclam adopts the trans-III conformation of Tobe's classification (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1106-1109.]). The metal atom lies at site symmetry 2/m, and the atoms N5, Cl2 and C9 (the central C atom in the six-membered chelate ring) also lie on the mirror plane. There is a twofold axis running through the Co1 atom and midpoint of the C7—C7iii bond in the five-membered chelate ring of cyclam, indicating that the positions of the Cl2 and nitro N5 atoms are exchanged. Similar orientational disorder of the chlorido­nitro­cobalt complexes is observed for trans-[Co(en)2Cl(NO2)]ClO4 (Ohba & Eishima, 2000a[Ohba, S. & Eishima, M. (2000a). Acta Cryst. C56, e557-e558.]) and the NO3 salt (Ohba & Eishima, 2000b[Ohba, S. & Eishima, M. (2000b). Acta Cryst. C56, e559-e560.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 30% probability level. A crystallographic twofold axis runs through atom Co1 and the midpoint of the C7—C7iii bond. Only one of two possible orientations of the nitro and chloride ions is shown for clarity. Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) x, y, −z + 1; (iii) −x + 1, −y, z.

The Co—N(nitro) bond length is 1.9601 (10) Å, which is the result of restraint in the refinement of disorder, the length being similar to those in (II), 1.962 (5) and 1.968 (5) Å (Ohba, et al., 2001[Ohba, S., Yamada, N. & Eishima, M. (2001). Acta Cryst. E57, m12-m13.]). On the other hand, the Co—Cl bond distance is 2.2513 (12) Å, which is similar to that observed in trans-[Co(cyclam)Cl2]Cl, 2.2533 (4) Å (Ivaniková et al., 2006[Ivaniková, R., Svoboda, I., Fuess, H. & Mašlejová, A. (2006). Acta Cryst. E62, m1553-m1554.]). There are intra­molecular C—H⋯O/Cl hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯Cl3 0.98 2.64 3.3671 (16) 131
C7—H7A⋯O4 0.97 2.28 2.929 (5) 124
C8—H8B⋯Cl2i 0.97 2.80 3.302 (4) 113
Symmetry code: (i) -x+1, -y, -z+1.

3. Supra­molecular features

The crystal structure of (I)[link] is shown in Fig. 2[link]. The complex cations and chloride ions are connected by N—H⋯Cl(counter-ion) hydrogen bonds, forming a three-dimensional network. In (II), there are two independent nitro ligands at the trans positions, and the O atoms of each nitro group show two possible positions (occupation factors 65 and 35%; Ohba, et al., 2001[Ohba, S., Yamada, N. & Eishima, M. (2001). Acta Cryst. E57, m12-m13.]). In the following discussion, the minor O(nitro) atoms will be neglected in (II). Slices of the reaction cavities around the NO2 group near its plane in (I)[link] and (II) are compared in Fig. 3[link], where the radii of neighboring atoms are assumed to be 1.0 Å greater than the corresponding van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]), except for Co, its radius being set to 1.90 Å. The shape of the cavity in the nitro plane is mainly defined by the N/C—H⋯O(nitro) contacts which are shown in Figs. 4[link] and 5[link]. Since the radius of the neighboring H atoms is assumed to be 2.20 Å, the cavity around the nitro O atoms is narrow in the intra- and inter­molecular hydrogen-bond directions. In (I)[link], the cavity has sufficient free space to both side of the nitro O atoms for rotation to become the nitrito form, as suggested by the observed photoreactivity. In (II), the cavities of the nitro groups have space at one of the O atoms for conversion to the mono- and di-nitrito forms. The bifurcated N—H⋯O,O hydrogen bonds form an R22(4) ring (Fig. 5[link]), which is also observed in the salts of trans-[Co(en)2(NO2)(NCS)]+ complexes (Ohba, Tsuchimoto & Kurachi, 2018[Ohba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526-1531.])

[Figure 2]
Figure 2
The crystal structure of (I)[link], projected along b. The N—H⋯Cl hydrogen bonds are shown as red dashed lines. Only one of two possible orientations of the complex cation is shown for clarity.
[Figure 3]
Figure 3
Comparison of the slices of the cavity around the nitro group within 0.1 Å from the plane in (I)[link] and (II), where the minor O atoms (occupancy 35%) of each nitro ligand are omitted for clarity in (II). Symmetry codes for (I)[link]: (i) −x + 1, −y, −z + 1; (ii) x, y, −z + 1; (iii) −x + 1, −y, z.
[Figure 4]
Figure 4
The steric circumstances of the nitro group in (I)[link]. Only parts of the complex are shown for clarity. The nitro group may be replaced with the Cl ligand due to the orientational disorder. There is a crystallographic twofold axis running vertical through the Co1xii and Co1xv atoms, another C8/C9 equivalent moiety which lies below the planes of the nitro groups being omitted for clarity. The N/C—H⋯O hydrogen bonds are shown as blue dashed lines. The other O⋯H contacts shorter than 2.9 Å (O4⋯H7Bx = 2.78 Å and O4⋯H8Biv = 2.85 Å) are indicated as green dashed lines, and those of rather long distances (O4⋯H9Biv = 3.11 Å and O4vi⋯H9Aiv = 3.09 Å) are indicated as orange dashed lines. Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) x, y, −z + 1; (iii) −x + 1, −y, z; (iv) −x, −y, z; (v) −x, −y, −z + 1; (vi) −x, −y − 1, z; (vii) −x, −y − 1, −z + 1; (viii) x − 1, y − 1, z; (ix) x − 1, y − 1, −z + 1; (x) y, −x, −z + [{3\over 2}]; (xi) −y, x − 1, −z + [{3\over 2}]; (xii) −y, x − 1, z + [{1\over 2}]; (xiii) y, −x, z − [{1\over 2}]; (xiv) −y, x − 1, z − [{1\over 2}].
[Figure 5]
Figure 5
The steric circumstance of the nitro groups in (II). The minor O atoms (occupancy 35%) of each nitro ligand are omitted, and only parts of the complex are shown for clarity. The N/C—H⋯O hydrogen bonds are shown as blue dashed lines (H⋯O distances 2.13–2.29 Å). A green dashed line indicates the O8i⋯H22B contact of 2.63 Å. Other O⋯H contacts of rather long distances (3.03–3.09 Å) are indicated as orange dashed lines. Symmetry code: (i) x, y, z + 1.

4. Database survey

There is no entry for a (cyclam)nitro­cobalt(III) complex in the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), except for trans-[Co(cyclam)(NO2)2]ClO4 (Ohba et al., 2001[Ohba, S., Yamada, N. & Eishima, M. (2001). Acta Cryst. E57, m12-m13.]). The nitrito coordination was reported for certain CoIII complexes with cyclam derivatives, for example trans-[Co(Me8[14]ane)(ONO)2]ClO4 (Horn et al., 2001[Horn, E., Roy, T. G., Hazari, S. K. S., Dey, B. K., Dey, L. & Tiekink, E. R. T. (2001). Z. Kristallogr. New. Cryst. Struct. 216, 71-72.]), where Me8[14]ane stands for 3,10-C-meso-3,5,7,7,10,12,14,14-octa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane, and trans-[Co(L)(NO2)(ONO)]ClO4 and cis-[Co(L)(NO2)(ONO)]ClO4 (Boyd et al., 2007[Boyd, S., McFadyen, W. D., Abrahams, B. F., Grannas, M. J. & Ghiggino, K. P. (2007). Polyhedron, 26, 1669-1676.]), where L stands for 1-(anthracen-9-ylmeth­yl)-1,4,8,11-tetra­aza­cyclo­tetra­decane.

The structures of trans-di­chloro complexes have been published for several salts, i.e. trans-[Co(cyclam)Cl2](Cl)1.47(H3O+)0.47(H2O)3.53 (Sosa-Torres et al., 1997[Sosa-Torres, M. E. & Toscano, R. A. (1997). Acta Cryst. C53, 1585-1588.]), trans-[Co(cyclam)Cl2]Cl (Ivaniková et al., 2006[Ivaniková, R., Svoboda, I., Fuess, H. & Mašlejová, A. (2006). Acta Cryst. E62, m1553-m1554.]), trans-[Co(cyclam)Cl2]PF6 and trans-[Co(cyclam)Cl2]Tf2N, where Tf2N is bis­(tri­fluoro­methane­sulfon­yl)amide anion (Oba & Mochida, 2015[Oba, Y. & Mochida, T. (2015). Polyhedron, 99, 275-279.]), the conformation of cyclam in these crystals being trans-III according to Tobe's classification (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1106-1109.]). The (cyclam)chloro­cobalt(III) alkynyl complexes such as trans-[Co(cyclam)Cl(1-ethynyl­naphthalene)]CF3SO3·OEt2 (Judkins et al., 2018[Judkins, E. C., Zeller, M. & Ren, T. (2018). Inorg. Chem. 57, 2249-2259.]) have been studied for their structural and spectroscopic properties.

5. Synthesis and crystallization

trans-[Co(cyclam)Cl2]Cl was prepared by a literature method (Nakahara & Shibata, 1977[Nakahara, K. & Shibata, M. (1977). Editors. Sin-Jikken-Kagaku-Kouza [New Experimental Chemistry Course] 8, Syntheses of Inorganic Compounds III, pp. 1458-1459. The Chemical Society of Japan, Tokyo: Maruzen.]) from cobalt(II) chloride hexa­hydrate and cyclam, and converted to trans-[Co(cyclam)Cl(NH3)]Cl2·H2O according to the method of Lee & Poon (1973[Lee, W. K. & Poon, C. K. (1973). Inorg. Chem. 12, 2016-2019.]). Then, trans-[Co(cyclam)Cl(NH3)]Cl2·H2O (1.0 mmol) was dissolved in 11 ml of 1% NH3 aqueous solution and neutralized with diluted HCl. To the solution sodium nitrite (8.0 mmol) and 1 ml of 1 M HCl were added, and the reaction mixture was stirred for 3 h at room temperature, and concentrated to precipitate the title compound, (I)[link]. Orange-red plate-like crystals of (I)[link] were grown from a dimethyl sulfoxide solution by diffusion of diethyl ether vapour.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The electron densities of the nitro N5 and Cl2 atoms overlap with each other because of the orientational disorder of the complex cation. An EADP command was used for atoms N5 and Cl2, and the Co1—N5 bond distance was restrained to be 1.960 Å (s.u. = 0.001 Å) to obtain a reasonable geometry for the nitro group. The H atoms bound to C and N were positioned geometrically. They were refined as riding, with C—H/N—H = 0.97–0.98 Å, and Uiso(H) = 1.2Ueq(C/N). One reflection showing poor agreement was omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula [CoCl(NO2)(C10H24N4)]Cl
Mr 376.17
Crystal system, space group Tetragonal, P42/m
Temperature (K) 301
a, c (Å) 7.6052 (3), 13.3873 (7)
V3) 774.31 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.46
Crystal size (mm) 0.25 × 0.25 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Integration (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.704, 0.876
No. of measured, independent and observed [I > 2σ(I)] reflections 7967, 953, 922
Rint 0.028
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.19
No. of reflections 953
No. of parameters 58
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CAVITY (Ohashi et al., 1981[Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805-5812.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and CAVITY (Ohashi et al., 1981); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

trans-Chloridonitro(1,4,8,11-tetraazacyclotetradecane-\ κ4N,N ',N '',N ''')cobalt(III) chloride top
Crystal data top
[CoCl(NO2)(C10H24N4)]ClDx = 1.613 Mg m3
Mr = 376.17Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/mCell parameters from 6699 reflections
a = 7.6052 (3) Åθ = 2.7–27.9°
c = 13.3873 (7) ŵ = 1.46 mm1
V = 774.31 (7) Å3T = 301 K
Z = 2Plate, orange
F(000) = 3920.25 × 0.25 × 0.10 mm
Data collection top
Bruker D8 VENTURE
diffractometer
922 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: integration
(SADABS; Bruker, 2016)
θmax = 27.9°, θmin = 2.7°
Tmin = 0.704, Tmax = 0.876h = 910
7967 measured reflectionsk = 109
953 independent reflectionsl = 1517
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.627P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.44 e Å3
953 reflectionsΔρmin = 0.26 e Å3
58 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.056 (7)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.00000.50000.02498 (19)
Cl20.7410 (3)0.1720 (4)0.50000.0336 (3)0.5
Cl30.50000.50000.75000.0529 (3)
O40.2278 (5)0.2075 (6)0.5775 (3)0.0664 (11)0.5
N50.2929 (11)0.1534 (15)0.50000.0336 (3)0.5
N60.4033 (2)0.1478 (2)0.60785 (13)0.0352 (4)
H60.48530.24640.61510.042*
C70.4146 (4)0.0476 (3)0.70245 (16)0.0519 (6)
H7A0.31800.03530.70710.062*
H7B0.40850.12690.75910.062*
C80.2278 (3)0.2279 (3)0.5944 (2)0.0535 (6)
H8A0.20230.30340.65100.064*
H8B0.13960.13580.59270.064*
C90.2167 (5)0.3338 (5)0.50000.0618 (11)
H9A0.31130.41940.50000.074*
H9B0.10660.39810.50000.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0221 (3)0.0253 (3)0.0275 (3)0.00039 (16)0.0000.000
Cl20.0237 (10)0.0297 (8)0.0476 (6)0.0111 (5)0.0000.000
Cl30.0454 (4)0.0454 (4)0.0678 (8)0.0000.0000.000
O40.054 (2)0.075 (3)0.071 (2)0.0275 (19)0.0046 (19)0.004 (2)
N50.0237 (10)0.0297 (8)0.0476 (6)0.0111 (5)0.0000.000
N60.0349 (8)0.0325 (8)0.0383 (9)0.0020 (6)0.0069 (7)0.0065 (7)
C70.0729 (17)0.0515 (14)0.0313 (10)0.0072 (11)0.0128 (10)0.0039 (9)
C80.0368 (11)0.0490 (13)0.0746 (17)0.0073 (9)0.0170 (11)0.0152 (12)
C90.0433 (19)0.0421 (18)0.100 (3)0.0182 (15)0.0000.000
Geometric parameters (Å, º) top
Co1—N5i1.9601 (10)N6—C71.481 (3)
Co1—N51.9601 (10)N6—H60.9800
Co1—N61.9720 (16)C7—C7iii1.486 (6)
Co1—N6i1.9720 (16)C7—H7A0.9700
Co1—N6ii1.9720 (16)C7—H7B0.9700
Co1—N6iii1.9720 (16)C8—C91.501 (4)
Co1—Cl22.2513 (12)C8—H8A0.9700
Co1—Cl2i2.2513 (12)C8—H8B0.9700
O4—N51.221 (4)C9—C8ii1.501 (4)
N5—O4ii1.221 (4)C9—H9A0.9700
N6—C81.478 (3)C9—H9B0.9700
N5i—Co1—N5180.0O4ii—N5—Co1121.76 (19)
N5i—Co1—N687.7 (3)O4—N5—Co1121.76 (19)
N5—Co1—N692.3 (3)C8—N6—C7111.64 (19)
N5i—Co1—N6i92.3 (3)C8—N6—Co1118.86 (15)
N5—Co1—N6i87.7 (3)C7—N6—Co1108.13 (13)
N6—Co1—N6i180.0C8—N6—H6105.8
N5i—Co1—N6ii87.7 (3)C7—N6—H6105.8
N5—Co1—N6ii92.3 (3)Co1—N6—H6105.8
N6—Co1—N6ii94.14 (10)N6—C7—C7iii107.55 (16)
N6i—Co1—N6ii85.86 (10)N6—C7—H7A110.2
N5i—Co1—N6iii92.3 (3)C7iii—C7—H7A110.2
N5—Co1—N6iii87.7 (3)N6—C7—H7B110.2
N6—Co1—N6iii85.86 (10)C7iii—C7—H7B110.2
N6i—Co1—N6iii94.14 (10)H7A—C7—H7B108.5
N6ii—Co1—N6iii180.0N6—C8—C9112.0 (2)
N5—Co1—Cl2179.0 (5)N6—C8—H8A109.2
N6—Co1—Cl288.42 (7)C9—C8—H8A109.2
N6i—Co1—Cl291.58 (7)N6—C8—H8B109.2
N6ii—Co1—Cl288.42 (7)C9—C8—H8B109.2
N6iii—Co1—Cl291.58 (7)H8A—C8—H8B107.9
N5i—Co1—Cl2i179.0 (5)C8—C9—C8ii114.7 (3)
N6—Co1—Cl2i91.58 (7)C8—C9—H9A108.6
N6i—Co1—Cl2i88.42 (7)C8ii—C9—H9A108.6
N6ii—Co1—Cl2i91.58 (7)C8—C9—H9B108.6
N6iii—Co1—Cl2i88.42 (7)C8ii—C9—H9B108.6
O4ii—N5—O4116.4 (4)H9A—C9—H9B107.6
C8—N6—C7—C7iii172.3 (2)Co1—N6—C8—C954.6 (3)
Co1—N6—C7—C7iii39.7 (3)N6—C8—C9—C8ii67.3 (4)
C7—N6—C8—C9178.5 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···Cl30.982.643.3671 (16)131
C7—H7A···O40.972.282.929 (5)124
C8—H8B···Cl2i0.972.803.302 (4)113
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank Dr Takashi Nemoto, Kyoto University, for making the program CAVITY available to the public.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1106–1109.  Google Scholar
First citationBoyd, S., McFadyen, W. D., Abrahams, B. F., Grannas, M. J. & Ghiggino, K. P. (2007). Polyhedron, 26, 1669–1676.  CrossRef Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoppens, P., Novozhilova, I. & Kovalevsky, A. (2002). Chem. Rev. 102, 861–883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEslami, A., Hasani, N. & Yeganegi, S. (2014). Eur. J. Inorg. Chem. pp. 4788–4802.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorn, E., Roy, T. G., Hazari, S. K. S., Dey, B. K., Dey, L. & Tiekink, E. R. T. (2001). Z. Kristallogr. New. Cryst. Struct. 216, 71–72.  Google Scholar
First citationIvaniková, R., Svoboda, I., Fuess, H. & Mašlejová, A. (2006). Acta Cryst. E62, m1553–m1554.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJudkins, E. C., Zeller, M. & Ren, T. (2018). Inorg. Chem. 57, 2249–2259.  CrossRef Google Scholar
First citationLee, W. K. & Poon, C. K. (1973). Inorg. Chem. 12, 2016–2019.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyoshi, K., Katoda, N. & Yoneda, H. (1983). Inorg. Chem. 22, 1839–1843.  CrossRef CAS Web of Science Google Scholar
First citationNakahara, K. & Shibata, M. (1977). Editors. Sin-Jikken-Kagaku-Kouza [New Experimental Chemistry Course] 8, Syntheses of Inorganic Compounds III, pp. 1458–1459. The Chemical Society of Japan, Tokyo: Maruzen.  Google Scholar
First citationOba, Y. & Mochida, T. (2015). Polyhedron, 99, 275–279.  CrossRef Google Scholar
First citationOhashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805–5812.  CrossRef CAS Web of Science Google Scholar
First citationOhba, S. & Eishima, M. (2000a). Acta Cryst. C56, e557–e558.  CrossRef IUCr Journals Google Scholar
First citationOhba, S. & Eishima, M. (2000b). Acta Cryst. C56, e559–e560.  CrossRef IUCr Journals Google Scholar
First citationOhba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526–1531.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOhba, S., Tsuchimoto, M. & Miyazaki, H. (2018). Acta Cryst. E74, 1637–1642.  CrossRef IUCr Journals Google Scholar
First citationOhba, S., Tsuchimoto, M. & Yamada, N. (2018). Acta Cryst. E74, 1759–1763.  CrossRef IUCr Journals Google Scholar
First citationOhba, S., Yamada, N. & Eishima, M. (2001). Acta Cryst. E57, m12–m13.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSosa-Torres, M. E. & Toscano, R. A. (1997). Acta Cryst. C53, 1585–1588.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVittal, J. J. & Quah, H. S. (2017). Dalton Trans. 46, 7120–7140.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds