research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two polymorphs of 2-(prop-2-yn-1-yl­­oxy)naphthalene-1,4-dione: solvent-dependent crystallization

CROSSMARK_Color_square_no_text.svg

aDepartamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil, and bDepartamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
*Correspondence e-mail: fmottoni@hotmail.com

Edited by H. Ishida, Okayama University, Japan (Received 7 September 2018; accepted 31 October 2018; online 9 November 2018)

The title compound, C13H8O3, crystallizes in two polymorphs, namely the monoclinic (space group P21/c) and triclinic (space group Pī) forms, obtained from N,N-di­methyl­formamide and isopropyl alcohol solutions, respectively. The mol­ecular structures and conformations in the two forms are essentially the same as each other. The naphtho­quinone ring systems are essentially planar with r.m.s. deviations of 0.015 and 0.029 Å for the monoclinic and triclinic forms, respectively. The O-propargyl groups are coplanar with the naphtho­quinone units with r.m.s deviations ranging from 0.04 to 0.09 Å. In the monoclinic crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming a tape structure running along [120]. The tapes are further linked by a C—H⋯π inter­action into a layer parallel to the ab plane. Adjacent layers are linked by another C—H⋯π inter­action. In the triclinic crystal, mol­ecules are linked via C—H⋯O and ππ inter­actions, forming a layer parallel to the ab plane. Adjacent layers are linked by a C—H⋯π inter­action.

1. Chemical context

Naphtho­quinone derivatives have been studied intensively over the past few decades, mostly because of their numerous biological activities, mainly anti­microbial and anti­tumor (Fujii et al., 1992[Fujii, N., Yamashita, Y., Arima, Y., Nagashima, M. & Nakano, H. (1992). Antimicrob. Agents Chemother. 36, 2589-2594.]; Hussain et al., 2007[Hussain, H., Krohn, K., Ahmad, V. U., Miana, G. A. & Green, I. R. (2007). Arkivoc, 2, 145-171.]; Epifano et al., 2014[Epifano, F., Genovese, S., Fiorito, S., Mathieu, V. & Kiss, R. (2014). Phytochem. Rev. 13, 37-49.]). The main mechanism of the activity is related to the formation of reactive oxygen species (ROS) through semiquinonic radicals, which cause damage to cell macromolecules and consequently cell death (Da Silva et al., 2003[Da Silva, M. N., Da Souza, M. C. B. V., Ferreira, V. F., Pinto, A. V., Pinto, M. C. R. F., Solange, M. S. V. & Wardell, J. (2003). Arkivoc, 10, 156-168.]). Among the substances that comprise this class, some synthetic bioactive derivatives have been obtained from lawsone (2-hy­droxy­naphthalene-1,4-dione) (Jordão et al., 2015[Jordão, A. K., Vargas, M. D., Pinto, A. C., da Silva, F. C. & Ferreira, V. F. (2015). RSC Adv. 5, 67909-67943.]). In a basic medium, lawsone shows three sites able to be alkyl­ated (Lamoureux et al., 2008[Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022-1028.]), resulting in O-alkyl and C-alkyl derivatives difficult to purify in some cases in some cases (Kongkathip et al., 2003[Kongkathip, N., Kongkathip, B., Siripong, P., Sangma, C., Luangkamin, S., Niyomdecha, M., Pattanapa, S., Piyaviriyagul, S. & Kongsaeree, P. (2003). Bioorg. Med. Chem. 11, 3179-3191.]). The title compound was obtained in higher yields since oxygen better accommodates the negative charge generated in the enolate formation, using a weak base, propargyl bromide, aprotic solvent and heat. The product has an alkyne terminal chain and can be used as the starting material in the synthesis of triazole derivatives, which are widely exploited in medicinal chemistry (Haider et al., 2014[Haider, S., Alam, M. S. & Hamid, H. (2014). Inflammation Cell Signal, 1, 1-10.]). The present study shows that the title compound has two polymorphs, monoclinic (space group P21/c) and triclinic (space group Pī), crystallized from N,N-di­methyl­formamide (DMF) and isopropyl alcohol, respectively.

[Scheme 1]

2. Structural commentary

The mol­ecular structures in the two polymorphs are essentially the same (Fig. 1[link]). The naphtho­quinone ring systems in the monoclinic and triclinic forms are both planar, with r.m.s. deviations of 0.015 and 0.029 Å, respectively, for the non-H atoms. Each propargyl group is coplanar with the naphtho­quinone ring system, with C1—C2—O3—C11 and C2—O3—C11—C12 torsion angles being −178.8 (1) and 175.9 (1)°, respectively, for the monoclinic form, and −177.1 (3) and −171.9 (3)°, respectively, for the triclinic form.

[Figure 1]
Figure 1
(a) The mol­ecular structure of the title compound (monoclinic form) with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. (b) A view of the overlay of the mol­ecular structures of the monoclinic and triclinic forms of the title compound.

3. Supra­molecular features

The mol­ecular arrangements in both crystals are similar (Fig. 2[link]) with nearly the same crystal densities (ρ = 1.383 and 1.392 Mg m−3 for the monoclinic and triclinic forms, respect­ively). In the monoclinic crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds (C3—H3⋯O2i and C13—H13⋯O1ii; symmetry codes as in Table 1[link]), forming a tape structure running along [120]. The tapes are further linked by a C—H⋯π inter­action (C11—H11ACg2iii; Table 1[link]) into a layer parallel to the ab plane; Cg2 is the centroid of the C12≡C13 triple bond [Fig. 3[link](a)]. In the layer, mol­ecules are arranged parallel to each other and adjacent layers are linked by another C—H⋯π inter­action (C7—H7⋯Cg2iv; Table 1[link]), forming a three-dimensional network [Fig. 4[link](a)]. In the tri­clinic crystal, mol­ecules are linked via C—H⋯O inter­actions (C3—H3⋯O2i, C11—H11B⋯O2 ii and C13—H13⋯O1iii; Table 1[link]) and ππ inter­actions with centroid-centroid distances of 3.9906 (18) and 3.991 (2) Å, respectively, between C1–C4/C10/C9 rings and between C5–C10 rings, forming a layer parallel to the ab plane [Fig. 3[link](b)]. Adjacent layers are linked by a C—H⋯π inter­action [Fig. 4([link]b); C7—H7⋯Cg2v; Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °).

Cg2 is the midpoint of the C12≡C13 bond.

D—H⋯A D—H H⋯A DA D—H⋯A
Monoclinic form        
C3—H3⋯O2i 0.93 2.58 3.436 (2) 153
C13—H13⋯O1ii 0.93 2.33 3.350 (2) 173
C11—H11ACg2iii 0.97 2.91 3.740 (4) 145
C7—H7⋯Cg2iv 0.93 2.87 3.703 (4) 151
         
Triclinic form        
C3—H3⋯O2i 0.93 2.49 3.409 (4) 173
C11—H11B⋯O2ii 0.97 2.52 3.380 (4) 149
C13—H13⋯O1iii 0.93 2.44 3.340 (5) 164
C7—H7⋯Cg2v 0.93 2.93 3.829 (4) 162
Symmetry codes: monoclinic: (i) −1 − x, 2 − y, 1 − z; (ii) −x, −y, 1 − z; (iii) x, −1 + y, z; (iv) x, [{3\over 2}] − y, −[{1\over 2}] + z. Triclinic: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) −x, 2 − y, 1 − z; (iv) −x, 2 − y, −z; (v) x, y, −1 + z.
[Figure 2]
Figure 2
Packing diagrams of the title compound, showing the stacked naphtho­quinone mol­ecules: (a) monoclinic form viewed along the b axis and (b) triclinic form viewed along the a axis.
[Figure 3]
Figure 3
Selected inter­molecular inter­actions in the crystals of (a) the monoclinic form and (b) the triclinic form. Purple dashed lines represent the C—H⋯O hydrogen bonds and green dashed lines the C—H⋯π and ππ inter­actions. Cg1 is the centroid of the C5–C10 ring, while Cg2 is the midpoint of the C12≡C13 bond.
[Figure 4]
Figure 4
Partial packing diagrams of (a) the monoclinic form and (b) the triclinic from. Purple dashed lines represent the C—H⋯O hydrogen bonds and green dashed lines the C—H⋯π and ππ inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for naphthalene-1,4-dione gave about 790 structures. Among them, 2-meth­oxy­naphthalene-1,4-dione (Jin et al., 2011[Jin, B., Song, Z.-C., Jiang, F.-S., Liu, W.-H. & Ding, Z.-S. (2011). Acta Cryst. E67, o947.]) and 2-{[1-(4-bromo­benz­yl)-1H-1,2,3-triazol-4-yl]meth­oxy}naphthalene-1,4-dione (Raja et al., 2015[Raja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o231-o232.]) are very similar to the title compound. These compounds exhibit additional functional groups linked at O3 and essentially planar naphtho­quinone ring systems and C—H⋯O and ππ inter­actions are also observed in their crystal structures.

5. Synthesis and crystallization

The synthesis of the title compound was achieved in one step according to the literature method (Raja et al., 2015[Raja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o231-o232.]). To a solution of lawsone (0.20 g, 1.15 mmol) in DMF (10 ml) was added K2CO3 (0.16 g, 1.15 mmol) and propargyl bromide (0.48 g, 4.07 mmol). The mixture was stirred at 363 K for 24 h. Then hydro­chloric acid (1.0 mol l−1, 0.34 ml) was added and the resulting solution was extracted with di­chloro­methane (3 × 25 ml). The organic layers were washed with water (60 ml), dried over anhydrous sodium sulfate and concentrated. The solid obtained was purified by column chromatography using silica gel and hexa­ne–ethyl acetate (9:1) and furnished the title compound in 70% yield. Yellow single crystals of the monoclinic and triclinic forms (m.p. 420.0–423.1 K) suitable for X-ray diffraction were obtained by slow evaporation of DMF and isopropyl alcohol solutions (about 0.5 mg ml-1), respectively, at room temperature.

Spectrometric data. IR νmax (cm−1): The spectrum show the characteristic absorption bands of the main functional groups for title compound at IR (ν max/cm−1): 3250 (C—H alkyne), 3053 (C—H aromatic), 2130 (C≡C) 1649, 1680 (C=O quinone), 1575–1604 (C—C aromatic), 1016, 1208 and 1245 (C—O).1H NMR (400 MHz, CDCl3): δH 8.12 (dd, 1H, J5,6 7.1 Hz, J8,7 1.9 Hz, H-5), 8,07 (dd, 1H, J8,7 7.0 Hz, J8,6 1.9 Hz, H-8), 7.74 (td, 1H, J6,5 7.5 Hz, J6,7 7.5 Hz, J6,8 1.7 Hz, H-6), 7.70 (td, 1H, J7,6 7.4 Hz, J7,8 7.4 Hz, J7,5 1.6 Hz, H-7), 6.33 (s, 1H, H-3), 4.78 (d, 2H, J11,13 2.4 Hz, H-11), 2.63 (t, 1H, J13,11 2.4 Hz, H-13). 13C NMR (100 MHz, CDCl3): δC 184.6 (C-4), 179.8 (C-1), 158.1 (C-2), 134.3 (C-6), 133.4 (C-7), 131.9 (C-10), 131.1 (C-9), 126.7 (C-5), 126.2 (C-8), 111.6 (C-3), 78.2 (C-13), 75.5 (C-12), 56.7 (C-11).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were constrained to an ideal geometry with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq (C).

Table 2
Experimental details

  Monoclinic Triclinic
Crystal data
Chemical formula C13H8O3 C13H8O3
Mr 212.19 212.19
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 10.0911 (7), 4.8021 (3), 20.8939 (15) 3.9906 (6), 11.6943 (16), 12.3413 (16)
α, β, γ (°) 90, 91.174 (7), 90 63.347 (14), 83.343 (12), 83.018 (12)
V3) 1012.27 (12) 509.69 (14)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.10
Crystal size (mm) 0.35 × 0.2 × 0.1 0.35 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku Xcalibur Atlas Gemini ultra Rigaku Xcalibur Atlas Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.764, 1.000 0.773, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10652, 3452, 1765 7730, 2503, 923
Rint 0.058 0.084
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.156, 1.01 0.064, 0.184, 1.00
No. of reflections 3452 2503
No. of parameters 145 145
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20 0.24, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Monoclinic) top
Crystal data top
C13H8O3F(000) = 440
Mr = 212.19Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0911 (7) ÅCell parameters from 1655 reflections
b = 4.8021 (3) Åθ = 3.9–30.6°
c = 20.8939 (15) ŵ = 0.10 mm1
β = 91.174 (7)°T = 293 K
V = 1012.27 (12) Å3Rod, yellow
Z = 40.35 × 0.2 × 0.1 mm
Data collection top
Rigaku Xcalibur Atlas Gemini ultra
diffractometer
3452 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 10.4186 pixels mm-1θmax = 32.8°, θmin = 2.8°
ω scansh = 1315
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 77
Tmin = 0.764, Tmax = 1.000l = 3031
10652 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3452 reflectionsΔρmax = 0.19 e Å3
145 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08336 (12)0.4803 (2)0.34723 (5)0.0512 (3)
O20.50658 (13)1.0905 (3)0.41264 (6)0.0646 (4)
O30.19024 (11)0.3978 (2)0.46005 (5)0.0493 (3)
C10.17768 (15)0.6268 (3)0.36127 (7)0.0381 (4)
C20.24795 (16)0.5949 (3)0.42459 (7)0.0390 (4)
C30.35379 (16)0.7492 (3)0.44063 (7)0.0434 (4)
H30.39370.72480.48070.052*
C40.40849 (16)0.9546 (3)0.39706 (8)0.0419 (4)
C50.38922 (16)1.1922 (3)0.29135 (8)0.0445 (4)
H50.46451.29530.30210.053*
C60.32525 (17)1.2340 (4)0.23311 (8)0.0495 (4)
H60.35761.36510.20460.059*
C70.21324 (18)1.0817 (4)0.21695 (8)0.0528 (5)
H70.17011.11160.17780.063*
C80.16518 (16)0.8854 (4)0.25877 (8)0.0460 (4)
H80.08990.78320.24770.055*
C90.22882 (15)0.8402 (3)0.31716 (7)0.0362 (3)
C100.34126 (15)0.9961 (3)0.33397 (7)0.0363 (4)
C110.24569 (19)0.3468 (3)0.52323 (7)0.0488 (4)
H11A0.24770.51750.54800.059*
H11B0.33540.27610.52040.059*
C120.16027 (19)0.1408 (4)0.55324 (8)0.0510 (5)
C130.0907 (2)0.0220 (4)0.57682 (9)0.0649 (6)
H130.03520.15180.59560.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0476 (7)0.0589 (7)0.0465 (7)0.0115 (6)0.0106 (5)0.0087 (5)
O20.0593 (8)0.0758 (9)0.0578 (9)0.0230 (7)0.0195 (6)0.0080 (7)
O30.0576 (8)0.0521 (7)0.0377 (6)0.0075 (6)0.0101 (5)0.0117 (5)
C10.0386 (8)0.0394 (8)0.0362 (8)0.0037 (7)0.0047 (6)0.0009 (7)
C20.0474 (9)0.0381 (8)0.0315 (8)0.0030 (7)0.0020 (7)0.0039 (6)
C30.0494 (9)0.0474 (9)0.0330 (8)0.0008 (8)0.0112 (7)0.0019 (7)
C40.0415 (9)0.0438 (9)0.0402 (9)0.0014 (7)0.0068 (7)0.0023 (7)
C50.0397 (8)0.0453 (9)0.0485 (10)0.0006 (7)0.0016 (7)0.0030 (8)
C60.0524 (10)0.0523 (10)0.0439 (10)0.0008 (8)0.0037 (8)0.0122 (8)
C70.0571 (11)0.0630 (11)0.0380 (9)0.0015 (9)0.0095 (8)0.0115 (8)
C80.0453 (9)0.0519 (10)0.0405 (9)0.0034 (8)0.0086 (7)0.0065 (7)
C90.0367 (8)0.0374 (8)0.0343 (8)0.0040 (7)0.0028 (6)0.0017 (6)
C100.0361 (8)0.0369 (8)0.0356 (8)0.0060 (6)0.0025 (6)0.0011 (6)
C110.0655 (11)0.0482 (10)0.0323 (8)0.0007 (9)0.0078 (7)0.0043 (7)
C120.0674 (12)0.0489 (10)0.0366 (9)0.0023 (9)0.0013 (8)0.0006 (8)
C130.0780 (15)0.0633 (12)0.0536 (12)0.0049 (11)0.0071 (10)0.0095 (10)
Geometric parameters (Å, º) top
O1—C11.2145 (18)C8—C71.380 (2)
O2—C41.2241 (18)C8—H80.9300
O3—C21.3423 (18)C9—C101.398 (2)
O3—C111.4442 (19)C9—C11.478 (2)
C1—C21.496 (2)C9—C81.384 (2)
C2—C31.337 (2)C10—C41.483 (2)
C3—H30.9300C10—C51.390 (2)
C4—C31.458 (2)C11—C121.462 (3)
C5—C61.380 (2)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C6—C71.382 (2)C12—C131.167 (2)
C6—H60.9300C13—H130.9300
C7—H70.9300
O1—C1—C9122.19 (14)C6—C5—H5120.0
O1—C1—C2120.61 (14)C6—C7—H7119.9
O2—C4—C10121.15 (15)C7—C8—C9120.16 (16)
O2—C4—C3120.59 (15)C7—C6—H6119.9
O3—C2—C1110.92 (14)C7—C8—H8119.9
O3—C11—H11A110.4C8—C9—C10119.80 (14)
O3—C11—H11B110.4C8—C9—C1119.77 (14)
O3—C11—C12106.62 (14)C8—C7—C6120.20 (16)
C2—O3—C11117.37 (13)C8—C7—H7119.9
C2—C3—C4121.94 (14)C9—C10—C4120.35 (14)
C2—C3—H3119.0C9—C1—C2117.20 (14)
C3—C2—O3127.29 (15)C9—C8—H8119.9
C3—C2—C1121.78 (14)C10—C9—C1120.42 (14)
C3—C4—C10118.26 (14)C10—C5—H5120.0
C4—C3—H3119.0H11A—C11—H11B108.6
C5—C6—H6119.9C12—C11—H11A110.4
C5—C6—C7120.24 (15)C12—C11—H11B110.4
C5—C10—C9119.55 (14)C12—C13—H13180.0
C5—C10—C4120.10 (15)C13—C12—C11179.1 (2)
C6—C5—C10120.05 (16)
O1—C1—C2—O31.5 (2)C8—C9—C1—C2177.9 (1)
O1—C1—C2—C3178.5 (1)C9—C1—C2—O3179.1 (1)
O2—C4—C3—C2179.0 (2)C9—C10—C4—O2179.6 (2)
O3—C2—C3—C4178.9 (1)C9—C10—C5—C60.6 (2)
C1—C9—C8—C7179.2 (2)C9—C8—C7—C60.1 (3)
C1—C9—C10—C5178.8 (1)C9—C1—C2—C31.0 (2)
C1—C9—C10—C41.7 (2)C9—C10—C4—C30.3 (2)
C1—C2—C3—C41.0 (2)C10—C9—C1—O1177.1 (1)
C2—O3—C11—C12175.9 (1)C10—C5—C6—C70.1 (3)
C5—C10—C4—O20.1 (2)C10—C9—C8—C70.7 (2)
C5—C6—C7—C80.5 (3)C10—C9—C1—C22.3 (2)
C8—C9—C1—O12.7 (2)C10—C4—C3—C21.7 (2)
C8—C9—C10—C51.0 (2)C11—O3—C2—C31.2 (2)
C8—C9—C10—C4178.5 (1)C11—O3—C2—C1178.8 (1)
2-(Prop-2-yn-1-yloxy)naphthalene-1,4-dione (Triclinic) top
Crystal data top
C13H8O3Z = 2
Mr = 212.19F(000) = 220
Triclinic, P1Dx = 1.383 Mg m3
a = 3.9906 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6943 (16) ÅCell parameters from 796 reflections
c = 12.3413 (16) Åθ = 3.2–22.3°
α = 63.347 (14)°µ = 0.10 mm1
β = 83.343 (12)°T = 293 K
γ = 83.018 (12)°Rod, yellow
V = 509.69 (14) Å30.35 × 0.2 × 0.1 mm
Data collection top
Rigaku Xcalibur Atlas Gemini ultra
diffractometer
2503 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 10.4186 pixels mm-1θmax = 29.5°, θmin = 3.2°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1415
Tmin = 0.773, Tmax = 1.000l = 1616
7730 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2503 reflectionsΔρmax = 0.24 e Å3
145 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1734 (6)0.9294 (2)0.1987 (2)0.0641 (7)
O20.9527 (6)0.4894 (2)0.3422 (2)0.0669 (8)
O30.3732 (5)0.82577 (18)0.41940 (19)0.0502 (6)
C10.3597 (7)0.8310 (3)0.2279 (3)0.0434 (8)
C20.4859 (7)0.7629 (3)0.3529 (3)0.0403 (8)
C30.6822 (7)0.6529 (3)0.3868 (3)0.0446 (8)
H30.76120.61420.46420.053*
C40.7756 (7)0.5920 (3)0.3068 (3)0.0469 (8)
C50.7466 (8)0.6005 (3)0.1040 (3)0.0623 (10)
H50.86900.52090.13070.075*
C60.6507 (9)0.6636 (4)0.0147 (4)0.0734 (12)
H60.71050.62640.06760.088*
C70.4685 (9)0.7804 (4)0.0543 (3)0.0693 (11)
H70.40830.82260.13430.083*
C80.3734 (8)0.8360 (3)0.0234 (3)0.0544 (9)
H80.24670.91470.00380.065*
C90.4678 (7)0.7737 (3)0.1427 (3)0.0428 (8)
C100.6598 (7)0.6563 (3)0.1823 (3)0.0447 (8)
C110.4891 (8)0.7741 (3)0.5405 (3)0.0532 (9)
H11A0.72940.78310.53620.064*
H11B0.45100.68370.58490.064*
C120.2992 (8)0.8455 (3)0.6013 (3)0.0518 (9)
C130.1377 (9)0.9034 (3)0.6476 (3)0.0692 (11)
H130.00870.94960.68460.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0807 (17)0.0553 (14)0.0518 (16)0.0214 (13)0.0130 (12)0.0243 (12)
O20.0784 (17)0.0510 (14)0.0670 (17)0.0249 (13)0.0154 (13)0.0273 (12)
O30.0621 (14)0.0495 (13)0.0460 (14)0.0123 (10)0.0128 (11)0.0294 (11)
C10.0431 (18)0.0423 (18)0.044 (2)0.0002 (14)0.0003 (15)0.0204 (16)
C20.0425 (18)0.0415 (18)0.040 (2)0.0020 (14)0.0068 (14)0.0206 (16)
C30.0479 (19)0.0440 (18)0.0411 (19)0.0029 (15)0.0038 (14)0.0195 (15)
C40.0456 (19)0.0450 (19)0.048 (2)0.0002 (15)0.0002 (15)0.0204 (16)
C50.068 (2)0.068 (2)0.064 (3)0.0107 (19)0.0070 (19)0.044 (2)
C60.077 (3)0.095 (3)0.069 (3)0.009 (2)0.008 (2)0.057 (3)
C70.073 (3)0.089 (3)0.052 (2)0.003 (2)0.0072 (19)0.038 (2)
C80.059 (2)0.055 (2)0.043 (2)0.0090 (17)0.0107 (17)0.0171 (18)
C90.0392 (18)0.0492 (19)0.045 (2)0.0027 (14)0.0019 (15)0.0268 (16)
C100.0482 (19)0.0462 (19)0.043 (2)0.0013 (15)0.0035 (15)0.0238 (16)
C110.051 (2)0.066 (2)0.050 (2)0.0075 (17)0.0159 (17)0.0329 (19)
C120.056 (2)0.058 (2)0.046 (2)0.0043 (17)0.0090 (17)0.0274 (18)
C130.078 (3)0.079 (3)0.054 (2)0.018 (2)0.0136 (19)0.036 (2)
Geometric parameters (Å, º) top
O1—C11.220 (3)C7—H70.9300
O2—C41.236 (3)C8—C71.378 (4)
O3—C21.339 (3)C8—H80.9300
O3—C111.447 (3)C9—C81.394 (4)
C1—C21.499 (4)C10—C91.393 (4)
C1—C91.481 (4)C10—C41.478 (4)
C2—C31.339 (3)C10—C51.382 (4)
C3—H30.9300C11—H11A0.9700
C4—C31.449 (4)C11—H11B0.9700
C5—H50.9300C12—C111.454 (4)
C5—C61.389 (5)C12—C131.164 (4)
C6—H60.9300C13—H130.9300
C6—C71.369 (4)
O1—C1—C2120.7 (3)C6—C5—H5120.1
O1—C1—C9121.8 (3)C7—C8—C9119.7 (3)
O3—C2—C1111.2 (2)C7—C8—H8120.1
O3—C11—C12107.6 (2)C7—C6—C5120.2 (3)
O3—C11—H11A110.2C7—C6—H6119.9
O3—C11—H11B110.2C8—C7—H7119.7
O2—C4—C10121.0 (3)C8—C9—C1120.2 (3)
O2—C4—C3120.2 (3)C9—C8—H8120.1
C2—C3—C4122.2 (3)C9—C10—C4120.3 (3)
C2—O3—C11117.2 (2)C9—C1—C2117.5 (3)
C2—C3—H3118.9C10—C9—C1120.1 (3)
C3—C2—O3127.8 (3)C10—C9—C8119.7 (3)
C3—C2—C1121.0 (3)C10—C5—H5120.1
C3—C4—C10118.7 (3)C10—C5—C6119.9 (3)
C4—C3—H3118.9H11A—C11—H11B108.5
C5—C10—C9119.8 (3)C12—C11—H11A110.2
C5—C10—C4119.9 (3)C12—C11—H11B110.2
C5—C6—H6119.9C12—C13—H13180.0
C6—C7—C8120.6 (4)C13—C12—C11177.6 (3)
C6—C7—H7119.7
O1—C1—C2—O31.3 (4)C5—C10—C9—C1177.0 (3)
O1—C1—C2—C3178.0 (3)C5—C10—C9—C82.0 (5)
O1—C1—C9—C10175.2 (3)C5—C10—C4—O20.8 (5)
O1—C1—C9—C83.8 (5)C5—C10—C4—C3179.7 (3)
O2—C4—C3—C2178.8 (3)C5—C6—C7—C81.0 (6)
O3—C2—C3—C4177.5 (3)C9—C1—C2—O3179.1 (3)
C1—C2—C3—C41.7 (5)C9—C1—C2—C31.5 (5)
C1—C9—C8—C7178.5 (3)C9—C10—C5—C61.9 (5)
C2—O3—C11—C12171.9 (3)C9—C8—C7—C61.0 (6)
C2—C1—C9—C104.4 (5)C10—C9—C8—C70.5 (5)
C2—C1—C9—C8176.6 (3)C10—C4—C3—C22.3 (5)
C4—C10—C9—C13.9 (5)C10—C5—C6—C70.5 (6)
C4—C10—C9—C8177.1 (3)C11—O3—C2—C1177.1 (3)
C4—C10—C5—C6177.1 (3)C11—O3—C2—C33.7 (5)
Hydrogen-bond geometry (Å, °). top
Cg2 is the midpoint of the C12C13 bond.
D—H···AD—HH···AD···AD—H···A
Monoclinic form
C3—H3···O2i0.932.583.436 (2)153
C13—H13···O1ii0.932.333.350 (2)173
C11—H11A···Cg2iii0.972.913.740 (4)145
C7—H7···Cg2iv0.932.873.703 (4)151
Triclinic form
C3—H3···O2i0.932.493.409 (4)173
C11—H11B···O2ii0.972.523.380 (4)149
C13—H13···O1iii0.932.443.340 (5)164
C7—H7···Cg2v0.932.933.829 (4)162
Symmetry codes: monoclinic: (i) -1 - x, 2 - y, 1 - z; (ii) -x, -y, 1-z; (iii) x, -1 + y, z; (iv) x, 3/2 - y, -1/2 + z. Triclinic: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, 2 - y, 1 - z; (iv) -x, 2 - y, -z; (v) x, y, -1 + z.
 

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

References

First citationDa Silva, M. N., Da Souza, M. C. B. V., Ferreira, V. F., Pinto, A. V., Pinto, M. C. R. F., Solange, M. S. V. & Wardell, J. (2003). Arkivoc, 10, 156–168.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEpifano, F., Genovese, S., Fiorito, S., Mathieu, V. & Kiss, R. (2014). Phytochem. Rev. 13, 37–49.  CrossRef Google Scholar
First citationFujii, N., Yamashita, Y., Arima, Y., Nagashima, M. & Nakano, H. (1992). Antimicrob. Agents Chemother. 36, 2589–2594.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaider, S., Alam, M. S. & Hamid, H. (2014). Inflammation Cell Signal, 1, 1–10.  Google Scholar
First citationHussain, H., Krohn, K., Ahmad, V. U., Miana, G. A. & Green, I. R. (2007). Arkivoc, 2, 145–171.  Google Scholar
First citationJin, B., Song, Z.-C., Jiang, F.-S., Liu, W.-H. & Ding, Z.-S. (2011). Acta Cryst. E67, o947.  CrossRef IUCr Journals Google Scholar
First citationJordão, A. K., Vargas, M. D., Pinto, A. C., da Silva, F. C. & Ferreira, V. F. (2015). RSC Adv. 5, 67909–67943.  Google Scholar
First citationKongkathip, N., Kongkathip, B., Siripong, P., Sangma, C., Luangkamin, S., Niyomdecha, M., Pattanapa, S., Piyaviriyagul, S. & Kongsaeree, P. (2003). Bioorg. Med. Chem. 11, 3179–3191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028.  Web of Science CrossRef Google Scholar
First citationRaja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o231–o232.  CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds