research communications
Two polymorphs of 2-(prop-2-yn-1-yloxy)naphthalene-1,4-dione: solvent-dependent crystallization
aDepartamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil, and bDepartamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
*Correspondence e-mail: fmottoni@hotmail.com
The title compound, C13H8O3, crystallizes in two polymorphs, namely the monoclinic (space group P21/c) and triclinic (space group Pī) forms, obtained from N,N-dimethylformamide and isopropyl alcohol solutions, respectively. The molecular structures and conformations in the two forms are essentially the same as each other. The naphthoquinone ring systems are essentially planar with r.m.s. deviations of 0.015 and 0.029 Å for the monoclinic and triclinic forms, respectively. The O-propargyl groups are coplanar with the naphthoquinone units with r.m.s deviations ranging from 0.04 to 0.09 Å. In the monoclinic crystal, molecules are linked via pairs of C—H⋯O hydrogen bonds, forming a tape structure running along [120]. The tapes are further linked by a C—H⋯π interaction into a layer parallel to the ab plane. Adjacent layers are linked by another C—H⋯π interaction. In the triclinic crystal, molecules are linked via C—H⋯O and π–π interactions, forming a layer parallel to the ab plane. Adjacent layers are linked by a C—H⋯π interaction.
Keywords: crystal structure; naphthalene-1,4-dione; naphthoquinone; polymorphs.
1. Chemical context
Naphthoquinone derivatives have been studied intensively over the past few decades, mostly because of their numerous biological activities, mainly antimicrobial and antitumor (Fujii et al., 1992; Hussain et al., 2007; Epifano et al., 2014). The main mechanism of the activity is related to the formation of reactive oxygen species (ROS) through semiquinonic radicals, which cause damage to cell macromolecules and consequently cell death (Da Silva et al., 2003). Among the substances that comprise this class, some synthetic bioactive derivatives have been obtained from lawsone (2-hydroxynaphthalene-1,4-dione) (Jordão et al., 2015). In a basic medium, lawsone shows three sites able to be alkylated (Lamoureux et al., 2008), resulting in O-alkyl and C-alkyl derivatives difficult to purify in some cases in some cases (Kongkathip et al., 2003). The title compound was obtained in higher yields since oxygen better accommodates the negative charge generated in the enolate formation, using a weak base, propargyl bromide, aprotic solvent and heat. The product has an alkyne terminal chain and can be used as the starting material in the synthesis of triazole derivatives, which are widely exploited in medicinal chemistry (Haider et al., 2014). The present study shows that the title compound has two polymorphs, monoclinic (space group P21/c) and triclinic (space group Pī), crystallized from N,N-dimethylformamide (DMF) and isopropyl alcohol, respectively.
2. Structural commentary
The molecular structures in the two polymorphs are essentially the same (Fig. 1). The naphthoquinone ring systems in the monoclinic and triclinic forms are both planar, with r.m.s. deviations of 0.015 and 0.029 Å, respectively, for the non-H atoms. Each propargyl group is coplanar with the naphthoquinone ring system, with C1—C2—O3—C11 and C2—O3—C11—C12 torsion angles being −178.8 (1) and 175.9 (1)°, respectively, for the monoclinic form, and −177.1 (3) and −171.9 (3)°, respectively, for the triclinic form.
3. Supramolecular features
The molecular arrangements in both crystals are similar (Fig. 2) with nearly the same crystal densities (ρ = 1.383 and 1.392 Mg m−3 for the monoclinic and triclinic forms, respectively). In the monoclinic crystal, molecules are linked via pairs of C—H⋯O hydrogen bonds (C3—H3⋯O2i and C13—H13⋯O1ii; symmetry codes as in Table 1), forming a tape structure running along [120]. The tapes are further linked by a C—H⋯π interaction (C11—H11A⋯Cg2iii; Table 1) into a layer parallel to the ab plane; Cg2 is the centroid of the C12≡C13 triple bond [Fig. 3(a)]. In the layer, molecules are arranged parallel to each other and adjacent layers are linked by another C—H⋯π interaction (C7—H7⋯Cg2iv; Table 1), forming a three-dimensional network [Fig. 4(a)]. In the triclinic crystal, molecules are linked via C—H⋯O interactions (C3—H3⋯O2i, C11—H11B⋯O2 ii and C13—H13⋯O1iii; Table 1) and π–π interactions with centroid-centroid distances of 3.9906 (18) and 3.991 (2) Å, respectively, between C1–C4/C10/C9 rings and between C5–C10 rings, forming a layer parallel to the ab plane [Fig. 3(b)]. Adjacent layers are linked by a C—H⋯π interaction [Fig. 4(b); C7—H7⋯Cg2v; Table 1].
4. Database survey
A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for naphthalene-1,4-dione gave about 790 structures. Among them, 2-methoxynaphthalene-1,4-dione (Jin et al., 2011) and 2-{[1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione (Raja et al., 2015) are very similar to the title compound. These compounds exhibit additional functional groups linked at O3 and essentially planar naphthoquinone ring systems and C—H⋯O and π–π interactions are also observed in their crystal structures.
5. Synthesis and crystallization
The synthesis of the title compound was achieved in one step according to the literature method (Raja et al., 2015). To a solution of lawsone (0.20 g, 1.15 mmol) in DMF (10 ml) was added K2CO3 (0.16 g, 1.15 mmol) and propargyl bromide (0.48 g, 4.07 mmol). The mixture was stirred at 363 K for 24 h. Then hydrochloric acid (1.0 mol l−1, 0.34 ml) was added and the resulting solution was extracted with dichloromethane (3 × 25 ml). The organic layers were washed with water (60 ml), dried over anhydrous sodium sulfate and concentrated. The solid obtained was purified by using silica gel and hexane–ethyl acetate (9:1) and furnished the title compound in 70% yield. Yellow single crystals of the monoclinic and triclinic forms (m.p. 420.0–423.1 K) suitable for X-ray diffraction were obtained by slow evaporation of DMF and isopropyl alcohol solutions (about 0.5 mg ml-1), respectively, at room temperature.
Spectrometric data. IR νmax (cm−1): The spectrum show the characteristic absorption bands of the main functional groups for title compound at IR (ν max/cm−1): 3250 (C—H alkyne), 3053 (C—H aromatic), 2130 (C≡C) 1649, 1680 (C=O quinone), 1575–1604 (C—C aromatic), 1016, 1208 and 1245 (C—O).1H NMR (400 MHz, CDCl3): δH 8.12 (dd, 1H, J5,6 7.1 Hz, J8,7 1.9 Hz, H-5), 8,07 (dd, 1H, J8,7 7.0 Hz, J8,6 1.9 Hz, H-8), 7.74 (td, 1H, J6,5 7.5 Hz, J6,7 7.5 Hz, J6,8 1.7 Hz, H-6), 7.70 (td, 1H, J7,6 7.4 Hz, J7,8 7.4 Hz, J7,5 1.6 Hz, H-7), 6.33 (s, 1H, H-3), 4.78 (d, 2H, J11,13 2.4 Hz, H-11), 2.63 (t, 1H, J13,11 2.4 Hz, H-13). 13C NMR (100 MHz, CDCl3): δC 184.6 (C-4), 179.8 (C-1), 158.1 (C-2), 134.3 (C-6), 133.4 (C-7), 131.9 (C-10), 131.1 (C-9), 126.7 (C-5), 126.2 (C-8), 111.6 (C-3), 78.2 (C-13), 75.5 (C-12), 56.7 (C-11).
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were constrained to an ideal geometry with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq (C).
details are summarized in Table 2
|
Supporting information
https://doi.org/10.1107/S2056989018015438/is5501sup1.cif
contains datablocks Monoclinic, Triclinic, OPLAU. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989018015438/is5501Monoclinicsup2.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H8O3 | F(000) = 440 |
Mr = 212.19 | Dx = 1.392 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0911 (7) Å | Cell parameters from 1655 reflections |
b = 4.8021 (3) Å | θ = 3.9–30.6° |
c = 20.8939 (15) Å | µ = 0.10 mm−1 |
β = 91.174 (7)° | T = 293 K |
V = 1012.27 (12) Å3 | Rod, yellow |
Z = 4 | 0.35 × 0.2 × 0.1 mm |
Rigaku Xcalibur Atlas Gemini ultra diffractometer | 3452 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1765 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 10.4186 pixels mm-1 | θmax = 32.8°, θmin = 2.8° |
ω scans | h = −13→15 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −7→7 |
Tmin = 0.764, Tmax = 1.000 | l = −30→31 |
10652 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.0571P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
3452 reflections | Δρmax = 0.19 e Å−3 |
145 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.08336 (12) | 0.4803 (2) | 0.34723 (5) | 0.0512 (3) | |
O2 | 0.50658 (13) | 1.0905 (3) | 0.41264 (6) | 0.0646 (4) | |
O3 | 0.19024 (11) | 0.3978 (2) | 0.46005 (5) | 0.0493 (3) | |
C1 | 0.17768 (15) | 0.6268 (3) | 0.36127 (7) | 0.0381 (4) | |
C2 | 0.24795 (16) | 0.5949 (3) | 0.42459 (7) | 0.0390 (4) | |
C3 | 0.35379 (16) | 0.7492 (3) | 0.44063 (7) | 0.0434 (4) | |
H3 | 0.3937 | 0.7248 | 0.4807 | 0.052* | |
C4 | 0.40849 (16) | 0.9546 (3) | 0.39706 (8) | 0.0419 (4) | |
C5 | 0.38922 (16) | 1.1922 (3) | 0.29135 (8) | 0.0445 (4) | |
H5 | 0.4645 | 1.2953 | 0.3021 | 0.053* | |
C6 | 0.32525 (17) | 1.2340 (4) | 0.23311 (8) | 0.0495 (4) | |
H6 | 0.3576 | 1.3651 | 0.2046 | 0.059* | |
C7 | 0.21324 (18) | 1.0817 (4) | 0.21695 (8) | 0.0528 (5) | |
H7 | 0.1701 | 1.1116 | 0.1778 | 0.063* | |
C8 | 0.16518 (16) | 0.8854 (4) | 0.25877 (8) | 0.0460 (4) | |
H8 | 0.0899 | 0.7832 | 0.2477 | 0.055* | |
C9 | 0.22882 (15) | 0.8402 (3) | 0.31716 (7) | 0.0362 (3) | |
C10 | 0.34126 (15) | 0.9961 (3) | 0.33397 (7) | 0.0363 (4) | |
C11 | 0.24569 (19) | 0.3468 (3) | 0.52323 (7) | 0.0488 (4) | |
H11A | 0.2477 | 0.5175 | 0.5480 | 0.059* | |
H11B | 0.3354 | 0.2761 | 0.5204 | 0.059* | |
C12 | 0.16027 (19) | 0.1408 (4) | 0.55324 (8) | 0.0510 (5) | |
C13 | 0.0907 (2) | −0.0220 (4) | 0.57682 (9) | 0.0649 (6) | |
H13 | 0.0352 | −0.1518 | 0.5956 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0476 (7) | 0.0589 (7) | 0.0465 (7) | −0.0115 (6) | −0.0106 (5) | 0.0087 (5) |
O2 | 0.0593 (8) | 0.0758 (9) | 0.0578 (9) | −0.0230 (7) | −0.0195 (6) | 0.0080 (7) |
O3 | 0.0576 (8) | 0.0521 (7) | 0.0377 (6) | −0.0075 (6) | −0.0101 (5) | 0.0117 (5) |
C1 | 0.0386 (8) | 0.0394 (8) | 0.0362 (8) | 0.0037 (7) | −0.0047 (6) | −0.0009 (7) |
C2 | 0.0474 (9) | 0.0381 (8) | 0.0315 (8) | 0.0030 (7) | −0.0020 (7) | 0.0039 (6) |
C3 | 0.0494 (9) | 0.0474 (9) | 0.0330 (8) | 0.0008 (8) | −0.0112 (7) | 0.0019 (7) |
C4 | 0.0415 (9) | 0.0438 (9) | 0.0402 (9) | 0.0014 (7) | −0.0068 (7) | −0.0023 (7) |
C5 | 0.0397 (8) | 0.0453 (9) | 0.0485 (10) | −0.0006 (7) | 0.0016 (7) | 0.0030 (8) |
C6 | 0.0524 (10) | 0.0523 (10) | 0.0439 (10) | 0.0008 (8) | 0.0037 (8) | 0.0122 (8) |
C7 | 0.0571 (11) | 0.0630 (11) | 0.0380 (9) | 0.0015 (9) | −0.0095 (8) | 0.0115 (8) |
C8 | 0.0453 (9) | 0.0519 (10) | 0.0405 (9) | −0.0034 (8) | −0.0086 (7) | 0.0065 (7) |
C9 | 0.0367 (8) | 0.0374 (8) | 0.0343 (8) | 0.0040 (7) | −0.0028 (6) | 0.0017 (6) |
C10 | 0.0361 (8) | 0.0369 (8) | 0.0356 (8) | 0.0060 (6) | −0.0025 (6) | −0.0011 (6) |
C11 | 0.0655 (11) | 0.0482 (10) | 0.0323 (8) | −0.0007 (9) | −0.0078 (7) | 0.0043 (7) |
C12 | 0.0674 (12) | 0.0489 (10) | 0.0366 (9) | 0.0023 (9) | −0.0013 (8) | 0.0006 (8) |
C13 | 0.0780 (15) | 0.0633 (12) | 0.0536 (12) | −0.0049 (11) | 0.0071 (10) | 0.0095 (10) |
O1—C1 | 1.2145 (18) | C8—C7 | 1.380 (2) |
O2—C4 | 1.2241 (18) | C8—H8 | 0.9300 |
O3—C2 | 1.3423 (18) | C9—C10 | 1.398 (2) |
O3—C11 | 1.4442 (19) | C9—C1 | 1.478 (2) |
C1—C2 | 1.496 (2) | C9—C8 | 1.384 (2) |
C2—C3 | 1.337 (2) | C10—C4 | 1.483 (2) |
C3—H3 | 0.9300 | C10—C5 | 1.390 (2) |
C4—C3 | 1.458 (2) | C11—C12 | 1.462 (3) |
C5—C6 | 1.380 (2) | C11—H11A | 0.9700 |
C5—H5 | 0.9300 | C11—H11B | 0.9700 |
C6—C7 | 1.382 (2) | C12—C13 | 1.167 (2) |
C6—H6 | 0.9300 | C13—H13 | 0.9300 |
C7—H7 | 0.9300 | ||
O1—C1—C9 | 122.19 (14) | C6—C5—H5 | 120.0 |
O1—C1—C2 | 120.61 (14) | C6—C7—H7 | 119.9 |
O2—C4—C10 | 121.15 (15) | C7—C8—C9 | 120.16 (16) |
O2—C4—C3 | 120.59 (15) | C7—C6—H6 | 119.9 |
O3—C2—C1 | 110.92 (14) | C7—C8—H8 | 119.9 |
O3—C11—H11A | 110.4 | C8—C9—C10 | 119.80 (14) |
O3—C11—H11B | 110.4 | C8—C9—C1 | 119.77 (14) |
O3—C11—C12 | 106.62 (14) | C8—C7—C6 | 120.20 (16) |
C2—O3—C11 | 117.37 (13) | C8—C7—H7 | 119.9 |
C2—C3—C4 | 121.94 (14) | C9—C10—C4 | 120.35 (14) |
C2—C3—H3 | 119.0 | C9—C1—C2 | 117.20 (14) |
C3—C2—O3 | 127.29 (15) | C9—C8—H8 | 119.9 |
C3—C2—C1 | 121.78 (14) | C10—C9—C1 | 120.42 (14) |
C3—C4—C10 | 118.26 (14) | C10—C5—H5 | 120.0 |
C4—C3—H3 | 119.0 | H11A—C11—H11B | 108.6 |
C5—C6—H6 | 119.9 | C12—C11—H11A | 110.4 |
C5—C6—C7 | 120.24 (15) | C12—C11—H11B | 110.4 |
C5—C10—C9 | 119.55 (14) | C12—C13—H13 | 180.0 |
C5—C10—C4 | 120.10 (15) | C13—C12—C11 | 179.1 (2) |
C6—C5—C10 | 120.05 (16) | ||
O1—C1—C2—O3 | −1.5 (2) | C8—C9—C1—C2 | −177.9 (1) |
O1—C1—C2—C3 | 178.5 (1) | C9—C1—C2—O3 | 179.1 (1) |
O2—C4—C3—C2 | −179.0 (2) | C9—C10—C4—O2 | −179.6 (2) |
O3—C2—C3—C4 | 178.9 (1) | C9—C10—C5—C6 | 0.6 (2) |
C1—C9—C8—C7 | −179.2 (2) | C9—C8—C7—C6 | 0.1 (3) |
C1—C9—C10—C5 | 178.8 (1) | C9—C1—C2—C3 | −1.0 (2) |
C1—C9—C10—C4 | −1.7 (2) | C9—C10—C4—C3 | −0.3 (2) |
C1—C2—C3—C4 | −1.0 (2) | C10—C9—C1—O1 | −177.1 (1) |
C2—O3—C11—C12 | 175.9 (1) | C10—C5—C6—C7 | 0.1 (3) |
C5—C10—C4—O2 | −0.1 (2) | C10—C9—C8—C7 | 0.7 (2) |
C5—C6—C7—C8 | −0.5 (3) | C10—C9—C1—C2 | 2.3 (2) |
C8—C9—C1—O1 | 2.7 (2) | C10—C4—C3—C2 | 1.7 (2) |
C8—C9—C10—C5 | −1.0 (2) | C11—O3—C2—C3 | 1.2 (2) |
C8—C9—C10—C4 | 178.5 (1) | C11—O3—C2—C1 | −178.8 (1) |
C13H8O3 | Z = 2 |
Mr = 212.19 | F(000) = 220 |
Triclinic, P1 | Dx = 1.383 Mg m−3 |
a = 3.9906 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.6943 (16) Å | Cell parameters from 796 reflections |
c = 12.3413 (16) Å | θ = 3.2–22.3° |
α = 63.347 (14)° | µ = 0.10 mm−1 |
β = 83.343 (12)° | T = 293 K |
γ = 83.018 (12)° | Rod, yellow |
V = 509.69 (14) Å3 | 0.35 × 0.2 × 0.1 mm |
Rigaku Xcalibur Atlas Gemini ultra diffractometer | 2503 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 923 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.084 |
Detector resolution: 10.4186 pixels mm-1 | θmax = 29.5°, θmin = 3.2° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −14→15 |
Tmin = 0.773, Tmax = 1.000 | l = −16→16 |
7730 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.184 | w = 1/[σ2(Fo2) + (0.0469P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2503 reflections | Δρmax = 0.24 e Å−3 |
145 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1734 (6) | 0.9294 (2) | 0.1987 (2) | 0.0641 (7) | |
O2 | 0.9527 (6) | 0.4894 (2) | 0.3422 (2) | 0.0669 (8) | |
O3 | 0.3732 (5) | 0.82577 (18) | 0.41940 (19) | 0.0502 (6) | |
C1 | 0.3597 (7) | 0.8310 (3) | 0.2279 (3) | 0.0434 (8) | |
C2 | 0.4859 (7) | 0.7629 (3) | 0.3529 (3) | 0.0403 (8) | |
C3 | 0.6822 (7) | 0.6529 (3) | 0.3868 (3) | 0.0446 (8) | |
H3 | 0.7612 | 0.6142 | 0.4642 | 0.053* | |
C4 | 0.7756 (7) | 0.5920 (3) | 0.3068 (3) | 0.0469 (8) | |
C5 | 0.7466 (8) | 0.6005 (3) | 0.1040 (3) | 0.0623 (10) | |
H5 | 0.8690 | 0.5209 | 0.1307 | 0.075* | |
C6 | 0.6507 (9) | 0.6636 (4) | −0.0147 (4) | 0.0734 (12) | |
H6 | 0.7105 | 0.6264 | −0.0676 | 0.088* | |
C7 | 0.4685 (9) | 0.7804 (4) | −0.0543 (3) | 0.0693 (11) | |
H7 | 0.4083 | 0.8226 | −0.1343 | 0.083* | |
C8 | 0.3734 (8) | 0.8360 (3) | 0.0234 (3) | 0.0544 (9) | |
H8 | 0.2467 | 0.9147 | −0.0038 | 0.065* | |
C9 | 0.4678 (7) | 0.7737 (3) | 0.1427 (3) | 0.0428 (8) | |
C10 | 0.6598 (7) | 0.6563 (3) | 0.1823 (3) | 0.0447 (8) | |
C11 | 0.4891 (8) | 0.7741 (3) | 0.5405 (3) | 0.0532 (9) | |
H11A | 0.7294 | 0.7831 | 0.5362 | 0.064* | |
H11B | 0.4510 | 0.6837 | 0.5849 | 0.064* | |
C12 | 0.2992 (8) | 0.8455 (3) | 0.6013 (3) | 0.0518 (9) | |
C13 | 0.1377 (9) | 0.9034 (3) | 0.6476 (3) | 0.0692 (11) | |
H13 | 0.0087 | 0.9496 | 0.6846 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0807 (17) | 0.0553 (14) | 0.0518 (16) | 0.0214 (13) | −0.0130 (12) | −0.0243 (12) |
O2 | 0.0784 (17) | 0.0510 (14) | 0.0670 (17) | 0.0249 (13) | −0.0154 (13) | −0.0273 (12) |
O3 | 0.0621 (14) | 0.0495 (13) | 0.0460 (14) | 0.0123 (10) | −0.0128 (11) | −0.0294 (11) |
C1 | 0.0431 (18) | 0.0423 (18) | 0.044 (2) | 0.0002 (14) | 0.0003 (15) | −0.0204 (16) |
C2 | 0.0425 (18) | 0.0415 (18) | 0.040 (2) | 0.0020 (14) | −0.0068 (14) | −0.0206 (16) |
C3 | 0.0479 (19) | 0.0440 (18) | 0.0411 (19) | 0.0029 (15) | −0.0038 (14) | −0.0195 (15) |
C4 | 0.0456 (19) | 0.0450 (19) | 0.048 (2) | −0.0002 (15) | −0.0002 (15) | −0.0204 (16) |
C5 | 0.068 (2) | 0.068 (2) | 0.064 (3) | 0.0107 (19) | −0.0070 (19) | −0.044 (2) |
C6 | 0.077 (3) | 0.095 (3) | 0.069 (3) | 0.009 (2) | −0.008 (2) | −0.057 (3) |
C7 | 0.073 (3) | 0.089 (3) | 0.052 (2) | 0.003 (2) | −0.0072 (19) | −0.038 (2) |
C8 | 0.059 (2) | 0.055 (2) | 0.043 (2) | 0.0090 (17) | −0.0107 (17) | −0.0171 (18) |
C9 | 0.0392 (18) | 0.0492 (19) | 0.045 (2) | −0.0027 (14) | 0.0019 (15) | −0.0268 (16) |
C10 | 0.0482 (19) | 0.0462 (19) | 0.043 (2) | 0.0013 (15) | −0.0035 (15) | −0.0238 (16) |
C11 | 0.051 (2) | 0.066 (2) | 0.050 (2) | 0.0075 (17) | −0.0159 (17) | −0.0329 (19) |
C12 | 0.056 (2) | 0.058 (2) | 0.046 (2) | 0.0043 (17) | −0.0090 (17) | −0.0274 (18) |
C13 | 0.078 (3) | 0.079 (3) | 0.054 (2) | 0.018 (2) | −0.0136 (19) | −0.036 (2) |
O1—C1 | 1.220 (3) | C7—H7 | 0.9300 |
O2—C4 | 1.236 (3) | C8—C7 | 1.378 (4) |
O3—C2 | 1.339 (3) | C8—H8 | 0.9300 |
O3—C11 | 1.447 (3) | C9—C8 | 1.394 (4) |
C1—C2 | 1.499 (4) | C10—C9 | 1.393 (4) |
C1—C9 | 1.481 (4) | C10—C4 | 1.478 (4) |
C2—C3 | 1.339 (3) | C10—C5 | 1.382 (4) |
C3—H3 | 0.9300 | C11—H11A | 0.9700 |
C4—C3 | 1.449 (4) | C11—H11B | 0.9700 |
C5—H5 | 0.9300 | C12—C11 | 1.454 (4) |
C5—C6 | 1.389 (5) | C12—C13 | 1.164 (4) |
C6—H6 | 0.9300 | C13—H13 | 0.9300 |
C6—C7 | 1.369 (4) | ||
O1—C1—C2 | 120.7 (3) | C6—C5—H5 | 120.1 |
O1—C1—C9 | 121.8 (3) | C7—C8—C9 | 119.7 (3) |
O3—C2—C1 | 111.2 (2) | C7—C8—H8 | 120.1 |
O3—C11—C12 | 107.6 (2) | C7—C6—C5 | 120.2 (3) |
O3—C11—H11A | 110.2 | C7—C6—H6 | 119.9 |
O3—C11—H11B | 110.2 | C8—C7—H7 | 119.7 |
O2—C4—C10 | 121.0 (3) | C8—C9—C1 | 120.2 (3) |
O2—C4—C3 | 120.2 (3) | C9—C8—H8 | 120.1 |
C2—C3—C4 | 122.2 (3) | C9—C10—C4 | 120.3 (3) |
C2—O3—C11 | 117.2 (2) | C9—C1—C2 | 117.5 (3) |
C2—C3—H3 | 118.9 | C10—C9—C1 | 120.1 (3) |
C3—C2—O3 | 127.8 (3) | C10—C9—C8 | 119.7 (3) |
C3—C2—C1 | 121.0 (3) | C10—C5—H5 | 120.1 |
C3—C4—C10 | 118.7 (3) | C10—C5—C6 | 119.9 (3) |
C4—C3—H3 | 118.9 | H11A—C11—H11B | 108.5 |
C5—C10—C9 | 119.8 (3) | C12—C11—H11A | 110.2 |
C5—C10—C4 | 119.9 (3) | C12—C11—H11B | 110.2 |
C5—C6—H6 | 119.9 | C12—C13—H13 | 180.0 |
C6—C7—C8 | 120.6 (4) | C13—C12—C11 | 177.6 (3) |
C6—C7—H7 | 119.7 | ||
O1—C1—C2—O3 | −1.3 (4) | C5—C10—C9—C1 | 177.0 (3) |
O1—C1—C2—C3 | 178.0 (3) | C5—C10—C9—C8 | −2.0 (5) |
O1—C1—C9—C10 | −175.2 (3) | C5—C10—C4—O2 | 0.8 (5) |
O1—C1—C9—C8 | 3.8 (5) | C5—C10—C4—C3 | 179.7 (3) |
O2—C4—C3—C2 | −178.8 (3) | C5—C6—C7—C8 | −1.0 (6) |
O3—C2—C3—C4 | 177.5 (3) | C9—C1—C2—O3 | 179.1 (3) |
C1—C2—C3—C4 | −1.7 (5) | C9—C1—C2—C3 | −1.5 (5) |
C1—C9—C8—C7 | −178.5 (3) | C9—C10—C5—C6 | 1.9 (5) |
C2—O3—C11—C12 | −171.9 (3) | C9—C8—C7—C6 | 1.0 (6) |
C2—C1—C9—C10 | 4.4 (5) | C10—C9—C8—C7 | 0.5 (5) |
C2—C1—C9—C8 | −176.6 (3) | C10—C4—C3—C2 | 2.3 (5) |
C4—C10—C9—C1 | −3.9 (5) | C10—C5—C6—C7 | −0.5 (6) |
C4—C10—C9—C8 | 177.1 (3) | C11—O3—C2—C1 | −177.1 (3) |
C4—C10—C5—C6 | −177.1 (3) | C11—O3—C2—C3 | 3.7 (5) |
Cg2 is the midpoint of the C12≡C13 bond. |
D—H···A | D—H | H···A | D···A | D—H···A |
Monoclinic form | ||||
C3—H3···O2i | 0.93 | 2.58 | 3.436 (2) | 153 |
C13—H13···O1ii | 0.93 | 2.33 | 3.350 (2) | 173 |
C11—H11A···Cg2iii | 0.97 | 2.91 | 3.740 (4) | 145 |
C7—H7···Cg2iv | 0.93 | 2.87 | 3.703 (4) | 151 |
Triclinic form | ||||
C3—H3···O2i | 0.93 | 2.49 | 3.409 (4) | 173 |
C11—H11B···O2ii | 0.97 | 2.52 | 3.380 (4) | 149 |
C13—H13···O1iii | 0.93 | 2.44 | 3.340 (5) | 164 |
C7—H7···Cg2v | 0.93 | 2.93 | 3.829 (4) | 162 |
Symmetry codes: monoclinic: (i) -1 - x, 2 - y, 1 - z; (ii) -x, -y, 1-z; (iii) x, -1 + y, z; (iv) x, 3/2 - y, -1/2 + z. Triclinic: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, 2 - y, 1 - z; (iv) -x, 2 - y, -z; (v) x, y, -1 + z. |
Funding information
Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).
References
Da Silva, M. N., Da Souza, M. C. B. V., Ferreira, V. F., Pinto, A. V., Pinto, M. C. R. F., Solange, M. S. V. & Wardell, J. (2003). Arkivoc, 10, 156–168. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Epifano, F., Genovese, S., Fiorito, S., Mathieu, V. & Kiss, R. (2014). Phytochem. Rev. 13, 37–49. CrossRef Google Scholar
Fujii, N., Yamashita, Y., Arima, Y., Nagashima, M. & Nakano, H. (1992). Antimicrob. Agents Chemother. 36, 2589–2594. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haider, S., Alam, M. S. & Hamid, H. (2014). Inflammation Cell Signal, 1, 1–10. Google Scholar
Hussain, H., Krohn, K., Ahmad, V. U., Miana, G. A. & Green, I. R. (2007). Arkivoc, 2, 145–171. Google Scholar
Jin, B., Song, Z.-C., Jiang, F.-S., Liu, W.-H. & Ding, Z.-S. (2011). Acta Cryst. E67, o947. CrossRef IUCr Journals Google Scholar
Jordão, A. K., Vargas, M. D., Pinto, A. C., da Silva, F. C. & Ferreira, V. F. (2015). RSC Adv. 5, 67909–67943. Google Scholar
Kongkathip, N., Kongkathip, B., Siripong, P., Sangma, C., Luangkamin, S., Niyomdecha, M., Pattanapa, S., Piyaviriyagul, S. & Kongsaeree, P. (2003). Bioorg. Med. Chem. 11, 3179–3191. Web of Science CrossRef PubMed CAS Google Scholar
Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028. Web of Science CrossRef Google Scholar
Raja, R., Kandhasamy, S., Perumal, P. T. & SubbiahPandi, A. (2015). Acta Cryst. E71, o231–o232. CrossRef IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.