research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two hydrogen-bonded compounds of chloranilic acid–ethyl­eneurea (1/1) and chloranilic acid–hydantoin (1/2)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 29 October 2018; accepted 4 November 2018; online 9 November 2018)

The structures of the hydrogen-bonded 1:1 co-crystal of chloranilic acid (systematic name: 2,5-di­chloro-3,6-dihy­droxy-1,4-benzo­quinone) with ethyl­eneurea (systematic name: imidazolidin-2-one), C6H2Cl2O4·C3H6N2O, (I), and the 1:2 co-crystal of chloranilic acid with hydantoin (systematic name: imidazolidine-2,4-dione), C6H2Cl2O4·2C3H4N2O2, (II), have been determined at 180 K. In the crystals of both compounds, the base mol­ecules are in the lactam form and no acid–base inter­action involving H-atom transfer is observed. The asymmetric unit of (I) consists of two independent half-mol­ecules of chloranilic acid, with each of the acid mol­ecules lying about an inversion centre, and one ethyl­eneurea mol­ecule. The asymmetric unit of (II) consists of one half-mol­ecule of chloranilic acid, which lies about an inversion centre, and one hydantoin mol­ecule. In the crystal of (I), the acid and base mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming an undulating sheet structure parallel to the ab plane. In (II), the base mol­ecules form an inversion dimer via a pair of N—H⋯O hydrogen bonds, and the base dimers are further linked through another N—H⋯O hydrogen bond into a layer structure parallel to ([\overline{1}]01). The acid mol­ecule and the base mol­ecule are linked via an O—H⋯O hydrogen bond.

1. Chemical context

Chloranilic acid, a dibasic acid with hydrogen-bond donor as well as acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with various organic bases, and also as a model compound for investigating hydrogen-transfer motions in O—H⋯N and N—H⋯O hydrogen-bonded systems (Zaman et al., 2004[Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]; Seliger et al., 2009[Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281-2286.]; Asaji et al. 2010[Asaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531-536.]; Molčanov & Kojić-Prodić, 2010[Molčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925-939.]). In the present study, we have prepared two hydrogen-bonded compounds of chloranilic acid–ethyl­eneurea (1/1) and chloranilic acid–hydantoin (1/2) in order to extend our study on D—H⋯A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in chloranilic acid–organic base systems (Gotoh & Ishida, 2017a[Gotoh, K. & Ishida, H. (2017a). Acta Cryst. E73, 1546-1550.],b[Gotoh, K. & Ishida, H. (2017b). Acta Cryst. E73, 1840-1844.], and references therein).

[Scheme 1]

2. Structural commentary

In compound (I)[link], the base mol­ecule is in the lactam form and no acid–base inter­action involving H-atom transfer is observed (Fig. 1[link]). In the asymmetric unit, there is one ethyl­eneurea mol­ecule and two crystallographically independent half-mol­ecules of chloranilic acid, with each of the acid mol­ecules lying about an inversion centre. The O atom of ethyl­eneurea participates in two O—H⋯O hydrogen bonds as an acceptor for two O—H groups of chloranilic acid (O2—H2⋯O5 and O4—H4⋯O5; Table 1[link]). The base ring (C7/N1/C8/C9/N2) is essentially planar and makes dihedral angles of 88.75 (6) and 3.27 (6)°, respectively, with the acid C1–C3/C1iii–C3iii and C4–C6/C4ii–C6ii rings [symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.81 (2) 1.82 (2) 2.6090 (11) 164 (2)
O4—H4⋯O5 0.86 (2) 1.88 (2) 2.6635 (12) 151.0 (19)
N1—H1N⋯O1i 0.85 (2) 2.06 (2) 2.9003 (15) 168 (2)
N2—H2N⋯O3ii 0.85 (2) 2.06 (2) 2.8654 (15) 158.6 (17)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. O—H⋯O and N—H⋯O hydrogen bonds are shown by dashed lines. [Symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1.]

In compound (II)[link], the base mol­ecule is also in the lactam form and no acid–base inter­action involving H-atom transfer is observed (Fig. 2[link]). The chloranilic acid mol­ecule is located on an inversion centre and the asymmetric unit consists of one hydantoin mol­ecule and a half-mol­ecule of chloranilic acid. The acid and base mol­ecules are linked via an O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2[link]), forming a centrosymmetric 1:2 aggregate of the acid and the base. The 1:2 unit is approximately planar with a dihedral angle of 5.42 (5)° between the acid and base rings.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.86 (2) 1.97 (2) 2.7917 (15) 160 (2)
N1—H1N⋯O3i 0.91 (2) 2.00 (2) 2.8927 (13) 165 (2)
N2—H2N⋯O4ii 0.91 (2) 1.85 (2) 2.7560 (14) 176 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. O—H⋯O hydrogen bonds are shown by dashed lines. [Symmetry code: (iii) −x + [{1\over 2}], −y + [{5\over 2}], −z + 1.]

3. Supra­molecular features

In the crystal of compound (I)[link], the acid and base mol­ecules are alternately arranged through O—H⋯O and N—H⋯O hydrogen bonds (O4—H4⋯O5, N1—H1N⋯O1i, N2—H2H⋯O3ii; symmetry codes as in Table 1[link]), forming an undulating tape structure along [3[\overline{1}]0]. The tapes are stacked along the a axis via another O—H⋯O hydrogen bond (O2—H2—O5; Table 1[link]) into a sheet structure parallel to the ab plane (Fig. 3[link]).

[Figure 3]
Figure 3
A partial packing diagram of compound (I)[link], showing the undulating sheet structure formed by O—H⋯O and N—H⋯O hydrogen bonds (light-blue dotted lines). [Symmetry code: (ii) −x, −y + 1, −z + 1.]

In the crystal of (II)[link], two adjacent base mol­ecules, which are related by an inversion centre, form a dimer via a pair of N—H⋯O hydrogen bonds (N1—H1N⋯O3i; symmetry code as in Table 2[link]), and the base dimer and the acid mol­ecule are alternately linked through an O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2[link]), forming a flat tape structure along the a-axis direction (Fig. 4[link]). The base dimers are assembled via another N—H⋯O hydrogen bond (N2—H2N⋯O4ii; symmetry code as in Table 2[link]), forming a layer parallel to ([\overline{1}]01) as shown in Fig. 5[link]. The O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2[link]) formed between the acid and base mol­ecules links the layers.

[Figure 4]
Figure 4
A partial packing diagram of compound (II)[link] viewed approximately along the b axis, showing a hydrogen-bonded tape structure formed by acid mol­ecules and pairs of base mol­ecules. O—H⋯O and N—H⋯O hydrogen bonds are shown by light-blue dotted lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iii) −x + [{1\over 2}], −y + [{5\over 2}], −z + 1.]
[Figure 5]
Figure 5
A partial packing diagram of compound (II)[link], showing hydrogen-bonding scheme in the layer formed by base mol­ecules. N—H⋯O hydrogen bonds between the base mol­ecules are shown by light-blue dotted lines, while O—H⋯O hydrogen bonds between the base and acid mol­ecules are shown by red dotted lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iv) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}].]

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic crystals of chloranilic acid with lactam-form base mol­ecules gave ten hits. In the seven crystals of these compounds, O—H⋯O hydrogen bonds between the O—H group of chloranilic acid and the carbonyl group of base are observed [refcodes ACOJIO (Gotoh & Ishida, 2017a[Gotoh, K. & Ishida, H. (2017a). Acta Cryst. E73, 1546-1550.]), AJAGIB (Luo & Palmore, 2002[Luo, T. M. & Palmore, G. T. R. (2002). Cryst. Growth Des. 2, 337-350.]), HUFZUE (Jasinski et al., 2010[Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o163-o164.]), ODIHIU, SADTIC, SADTOI and SADTUO (Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500-o504.])]. In particular, the compounds of chloranilic acid with 2-pyridone (ACOJIO), gabapentin-lactum (HUFZUE), pyrrolidin-2-one (ODIHIU) and piperidin-2-one (SADTUO) show short O—H⋯O hydrogen bonds (O⋯O shorter than 2.5 Å). In the O—H⋯O hydrogen bond [O⋯O = 2.4484 (10) Å] of chloranilic acid–piperidin-2-one (1/2) (SADTUO), the H atom is disordered over two positions.

5. Synthesis and crystallization

Single crystals of compound (I)[link] were obtained by slow evaporation from an aceto­nitrile solution (150 ml) of chloranilic acid (330 mg) with ethyl­eneurea (140 mg) at room temperature. Crystals of compound (II)[link] were obtained by slow evaporation from an aceto­nitrile solution (250 ml) of chloranilic acid (350 mg) with hydantoin (340 mg) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms in compounds (I)[link] and (II)[link] were found in difference Fourier maps. The O- and N-bound H atoms were freely refined. C-bound H atoms were positioned geometrically (C—H = 0.99 Å) and were treated as riding with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C6H2Cl2O4·C3H6N2O C6H2Cl2O4·2C3H4N2O2
Mr 295.08 409.14
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 180 180
a, b, c (Å) 5.0180 (4), 14.6142 (10), 15.8882 (11) 19.5690 (8), 5.18661 (10), 16.6103 (3)
β (°) 105.563 (3) 117.965 (3)
V3) 1122.43 (15) 1489.03 (8)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.59 0.49
Crystal size (mm) 0.45 × 0.29 × 0.23 0.49 × 0.33 × 0.24
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.716, 0.873 0.808, 0.888
No. of measured, independent and observed [I > 2σ(I)] reflections 21546, 3266, 3040 14622, 2181, 2029
Rint 0.057 0.072
(sin θ/λ)max−1) 0.704 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.07 0.036, 0.100, 1.08
No. of reflections 3266 2181
No. of parameters 179 130
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.31 0.44, −0.40
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

For both structures, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006). Program(s) used to solve structure: SIR92 (Altomare et al., 1993) for (I); SHELXT2018 (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).

2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidin-2-one (1/1) (I) top
Crystal data top
C6H2Cl2O4·C3H6N2OF(000) = 600.00
Mr = 295.08Dx = 1.746 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 5.0180 (4) ÅCell parameters from 19204 reflections
b = 14.6142 (10) Åθ = 3.0–30.1°
c = 15.8882 (11) ŵ = 0.59 mm1
β = 105.563 (3)°T = 180 K
V = 1122.43 (15) Å3Block, brown
Z = 40.45 × 0.29 × 0.23 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3040 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.057
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 77
Tmin = 0.716, Tmax = 0.873k = 2019
21546 measured reflectionsl = 2122
3266 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2007P]
where P = (Fo2 + 2Fc2)/3
3266 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.31 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.06653 (5)0.00389 (2)0.64704 (2)0.02517 (9)
Cl20.28647 (6)0.43040 (2)0.69108 (2)0.03101 (9)
O10.64834 (18)0.14266 (6)0.60507 (6)0.03198 (19)
O20.83758 (17)0.15225 (5)0.51887 (5)0.02612 (17)
O30.17821 (19)0.55990 (6)0.63245 (6)0.03138 (19)
O40.43441 (18)0.37722 (6)0.52805 (6)0.03039 (19)
O50.70481 (17)0.29928 (5)0.42370 (5)0.02644 (17)
N10.8521 (2)0.24152 (9)0.30842 (7)0.0372 (3)
N20.4933 (2)0.33134 (8)0.27881 (7)0.0323 (2)
C10.5873 (2)0.07583 (7)0.55745 (7)0.02118 (19)
C20.7619 (2)0.00483 (7)0.56565 (7)0.02058 (19)
C30.6846 (2)0.07805 (7)0.51226 (6)0.02064 (19)
C40.0902 (2)0.53136 (7)0.57314 (7)0.0233 (2)
C50.1390 (2)0.46653 (7)0.58624 (7)0.0238 (2)
C60.2263 (2)0.43578 (7)0.51801 (7)0.0236 (2)
C70.6858 (2)0.29121 (7)0.34329 (7)0.0224 (2)
C80.7865 (2)0.24974 (8)0.21442 (8)0.0275 (2)
H8A0.7374650.1896430.1856830.033*
H8B0.9431690.2762220.1958030.033*
C90.5369 (3)0.31466 (9)0.19376 (8)0.0325 (2)
H9A0.5789320.3721860.1669860.039*
H9B0.3728980.2854930.1539380.039*
H1N0.989 (4)0.2121 (14)0.3405 (14)0.059 (6)*
H2N0.381 (4)0.3687 (13)0.2915 (12)0.041 (5)*
H20.766 (4)0.1933 (16)0.4861 (14)0.056 (6)*
H40.476 (4)0.3613 (13)0.4811 (13)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02251 (14)0.02897 (15)0.02081 (14)0.00049 (8)0.00027 (10)0.00183 (8)
Cl20.03685 (16)0.03457 (16)0.02165 (15)0.00812 (10)0.00789 (11)0.00275 (9)
O10.0284 (4)0.0277 (4)0.0345 (4)0.0009 (3)0.0007 (3)0.0114 (3)
O20.0273 (4)0.0226 (4)0.0252 (4)0.0031 (3)0.0014 (3)0.0039 (3)
O30.0355 (4)0.0356 (4)0.0262 (4)0.0082 (3)0.0138 (3)0.0009 (3)
O40.0333 (4)0.0350 (4)0.0243 (4)0.0124 (3)0.0100 (3)0.0016 (3)
O50.0319 (4)0.0244 (4)0.0230 (4)0.0017 (3)0.0071 (3)0.0006 (3)
N10.0378 (6)0.0468 (6)0.0272 (5)0.0224 (5)0.0093 (4)0.0057 (4)
N20.0336 (5)0.0411 (5)0.0240 (5)0.0163 (4)0.0106 (4)0.0045 (4)
C10.0207 (4)0.0220 (4)0.0204 (4)0.0018 (3)0.0047 (3)0.0012 (3)
C20.0192 (4)0.0236 (5)0.0178 (4)0.0012 (3)0.0029 (3)0.0002 (3)
C30.0215 (4)0.0221 (4)0.0181 (4)0.0003 (3)0.0049 (3)0.0006 (3)
C40.0253 (5)0.0233 (5)0.0225 (5)0.0001 (4)0.0083 (4)0.0004 (4)
C50.0260 (5)0.0245 (5)0.0213 (5)0.0019 (4)0.0070 (4)0.0010 (4)
C60.0244 (5)0.0231 (5)0.0240 (5)0.0016 (3)0.0077 (4)0.0002 (3)
C70.0239 (4)0.0191 (4)0.0246 (5)0.0005 (3)0.0070 (4)0.0021 (3)
C80.0254 (5)0.0315 (5)0.0275 (5)0.0034 (4)0.0100 (4)0.0007 (4)
C90.0346 (6)0.0416 (6)0.0240 (5)0.0125 (5)0.0127 (4)0.0075 (4)
Geometric parameters (Å, º) top
Cl1—C21.7169 (10)N2—C91.4464 (15)
Cl2—C51.7145 (11)N2—H2N0.849 (19)
O1—C11.2230 (13)C1—C21.4537 (14)
O2—C31.3165 (12)C1—C3i1.5092 (14)
O2—H20.81 (2)C2—C31.3560 (14)
O3—C41.2168 (13)C4—C51.4612 (14)
O4—C61.3264 (12)C4—C6ii1.5045 (15)
O4—H40.86 (2)C5—C61.3504 (15)
O5—C71.2609 (13)C8—C91.5348 (15)
N1—C71.3338 (14)C8—H8A0.9900
N1—C81.4455 (15)C8—H8B0.9900
N1—H1N0.85 (2)C9—H9A0.9900
N2—C71.3397 (14)C9—H9B0.9900
C3—O2—H2114.1 (14)C6—C5—Cl2121.94 (8)
C6—O4—H4115.8 (13)C4—C5—Cl2117.13 (8)
C7—N1—C8112.92 (10)O4—C6—C5122.18 (10)
C7—N1—H1N121.2 (15)O4—C6—C4ii117.46 (9)
C8—N1—H1N125.7 (15)C5—C6—C4ii120.35 (9)
C7—N2—C9112.46 (10)O5—C7—N1125.87 (10)
C7—N2—H2N119.3 (12)O5—C7—N2125.24 (10)
C9—N2—H2N127.5 (12)N1—C7—N2108.88 (10)
O1—C1—C2123.17 (9)N1—C8—C9102.65 (9)
O1—C1—C3i117.64 (9)N1—C8—H8A111.2
C2—C1—C3i119.19 (8)C9—C8—H8A111.2
C3—C2—C1121.28 (9)N1—C8—H8B111.2
C3—C2—Cl1121.68 (8)C9—C8—H8B111.2
C1—C2—Cl1117.03 (7)H8A—C8—H8B109.2
O2—C3—C2122.48 (9)N2—C9—C8102.92 (9)
O2—C3—C1i117.99 (9)N2—C9—H9A111.2
C2—C3—C1i119.53 (9)C8—C9—H9A111.2
O3—C4—C5123.19 (10)N2—C9—H9B111.2
O3—C4—C6ii118.08 (10)C8—C9—H9B111.2
C5—C4—C6ii118.73 (9)H9A—C9—H9B109.1
C6—C5—C4120.92 (9)
O1—C1—C2—C3179.04 (11)C4—C5—C6—O4179.73 (10)
C3i—C1—C2—C30.34 (16)Cl2—C5—C6—O41.31 (16)
O1—C1—C2—Cl10.19 (14)C4—C5—C6—C4ii0.61 (17)
C3i—C1—C2—Cl1179.19 (7)Cl2—C5—C6—C4ii179.57 (8)
C1—C2—C3—O2179.32 (9)C8—N1—C7—O5176.92 (10)
Cl1—C2—C3—O20.52 (15)C8—N1—C7—N23.23 (15)
C1—C2—C3—C1i0.34 (16)C9—N2—C7—O5175.71 (11)
Cl1—C2—C3—C1i179.14 (7)C9—N2—C7—N14.43 (15)
O3—C4—C5—C6178.94 (11)C7—N1—C8—C90.84 (14)
C6ii—C4—C5—C60.60 (17)C7—N2—C9—C83.73 (14)
O3—C4—C5—Cl20.07 (15)N1—C8—C9—N21.64 (13)
C6ii—C4—C5—Cl2179.61 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.81 (2)1.82 (2)2.6090 (11)164 (2)
O4—H4···O50.86 (2)1.88 (2)2.6635 (12)151.0 (19)
N1—H1N···O1iii0.85 (2)2.06 (2)2.9003 (15)168 (2)
N2—H2N···O3ii0.85 (2)2.06 (2)2.8654 (15)158.6 (17)
Symmetry codes: (ii) x, y+1, z+1; (iii) x+2, y, z+1.
2,5-Dichloro-3,6-dihydroxy-1,4-benzoquinone–imidazolidine-2,4-dione (1/2) (II) top
Crystal data top
C6H2Cl2O4·2C3H4N2O2F(000) = 832.00
Mr = 409.14Dx = 1.825 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 19.5690 (8) ÅCell parameters from 13670 reflections
b = 5.18661 (10) Åθ = 3.3–30.2°
c = 16.6103 (3) ŵ = 0.49 mm1
β = 117.965 (3)°T = 180 K
V = 1489.03 (8) Å3Block, brown
Z = 40.49 × 0.33 × 0.24 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2029 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.072
ω scansθmax = 30.0°, θmin = 4.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 2727
Tmin = 0.808, Tmax = 0.888k = 77
14622 measured reflectionsl = 2223
2181 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4572P]
where P = (Fo2 + 2Fc2)/3
2181 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.40 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09683 (2)1.02553 (6)0.33978 (2)0.02980 (12)
O10.11596 (5)1.47273 (17)0.45960 (6)0.0313 (2)
O20.25729 (5)0.82514 (16)0.40485 (6)0.02794 (19)
O30.39430 (5)0.57413 (17)0.43836 (6)0.02824 (19)
O40.31705 (4)0.10296 (18)0.23989 (6)0.0296 (2)
N10.46359 (5)0.26895 (19)0.40528 (6)0.0269 (2)
N20.33612 (5)0.25929 (18)0.32811 (6)0.02336 (19)
C10.17655 (6)1.3650 (2)0.47556 (7)0.0229 (2)
C20.18138 (6)1.1410 (2)0.42588 (7)0.0228 (2)
C30.25018 (6)1.0302 (2)0.44779 (7)0.0223 (2)
C40.39913 (6)0.3869 (2)0.39566 (7)0.0226 (2)
C50.35871 (6)0.0519 (2)0.29613 (7)0.0229 (2)
C60.44610 (6)0.0494 (2)0.34539 (8)0.0255 (2)
H6A0.4663070.1122370.3802660.031*
H6B0.4675880.0709640.3024200.031*
H1N0.5127 (12)0.308 (4)0.4484 (15)0.054 (5)*
H20.3043 (12)0.772 (4)0.4269 (14)0.049 (5)*
H2N0.2861 (11)0.313 (4)0.3055 (13)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02000 (16)0.03480 (18)0.02881 (17)0.00423 (8)0.00662 (12)0.00241 (9)
O10.0206 (4)0.0327 (4)0.0358 (4)0.0052 (3)0.0091 (3)0.0012 (3)
O20.0237 (4)0.0269 (4)0.0314 (4)0.0015 (3)0.0114 (3)0.0036 (3)
O30.0219 (4)0.0300 (4)0.0288 (4)0.0015 (3)0.0085 (3)0.0058 (3)
O40.0198 (4)0.0324 (4)0.0321 (4)0.0038 (3)0.0085 (3)0.0086 (3)
N10.0160 (4)0.0312 (5)0.0288 (4)0.0018 (3)0.0067 (3)0.0071 (4)
N20.0158 (4)0.0268 (4)0.0239 (4)0.0003 (3)0.0063 (3)0.0025 (3)
C10.0191 (4)0.0254 (5)0.0226 (4)0.0009 (3)0.0084 (4)0.0032 (4)
C20.0177 (4)0.0257 (5)0.0220 (4)0.0009 (3)0.0069 (3)0.0020 (4)
C30.0205 (4)0.0232 (5)0.0226 (4)0.0002 (3)0.0094 (4)0.0021 (3)
C40.0180 (4)0.0256 (5)0.0221 (4)0.0010 (3)0.0076 (3)0.0003 (4)
C50.0173 (4)0.0262 (5)0.0239 (5)0.0002 (3)0.0086 (4)0.0002 (4)
C60.0162 (4)0.0276 (5)0.0295 (5)0.0008 (3)0.0079 (4)0.0049 (4)
Geometric parameters (Å, º) top
Cl1—C21.7094 (10)N2—C51.3620 (14)
O1—C11.2222 (12)N2—C41.3857 (13)
O2—C31.3237 (13)N2—H2N0.912 (18)
O2—H20.86 (2)C1—C21.4536 (15)
O3—C41.2318 (14)C1—C3i1.5035 (14)
O4—C51.2117 (13)C2—C31.3475 (14)
N1—C41.3425 (13)C5—C61.5106 (14)
N1—C61.4436 (14)C6—H6A0.9900
N1—H1N0.91 (2)C6—H6B0.9900
C3—O2—H2112.8 (14)O2—C3—C1i116.58 (9)
C4—N1—C6111.82 (8)C2—C3—C1i120.65 (9)
C4—N1—H1N125.3 (13)O3—C4—N1127.75 (10)
C6—N1—H1N122.5 (13)O3—C4—N2124.29 (9)
C5—N2—C4111.40 (8)N1—C4—N2107.95 (9)
C5—N2—H2N124.3 (12)O4—C5—N2126.87 (10)
C4—N2—H2N124.2 (12)O4—C5—C6126.41 (10)
O1—C1—C2123.86 (10)N2—C5—C6106.71 (9)
O1—C1—C3i117.46 (10)N1—C6—C5102.06 (8)
C2—C1—C3i118.67 (8)N1—C6—H6A111.4
C3—C2—C1120.68 (9)C5—C6—H6A111.4
C3—C2—Cl1121.94 (8)N1—C6—H6B111.4
C1—C2—Cl1117.37 (7)C5—C6—H6B111.4
O2—C3—C2122.77 (10)H6A—C6—H6B109.2
O1—C1—C2—C3179.33 (10)C6—N1—C4—N21.64 (12)
C3i—C1—C2—C30.32 (16)C5—N2—C4—O3176.84 (11)
O1—C1—C2—Cl10.48 (15)C5—N2—C4—N12.61 (12)
C3i—C1—C2—Cl1179.49 (7)C4—N2—C5—O4176.75 (11)
C1—C2—C3—O2179.56 (9)C4—N2—C5—C62.45 (12)
Cl1—C2—C3—O20.24 (15)C4—N1—C6—C50.19 (12)
C1—C2—C3—C1i0.32 (16)O4—C5—C6—N1177.85 (11)
Cl1—C2—C3—C1i179.48 (7)N2—C5—C6—N11.35 (11)
C6—N1—C4—O3177.78 (11)
Symmetry code: (i) x+1/2, y+5/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.86 (2)1.97 (2)2.7917 (15)160 (2)
N1—H1N···O3ii0.91 (2)2.00 (2)2.8927 (13)165 (2)
N2—H2N···O4iii0.91 (2)1.85 (2)2.7560 (14)176 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531–536.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500–o504.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2017a). Acta Cryst. E73, 1546–1550.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2017b). Acta Cryst. E73, 1840–1844.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o163–o164.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLuo, T. M. & Palmore, G. T. R. (2002). Cryst. Growth Des. 2, 337–350.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMolčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925–939.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSeliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281–2286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds