research communications
Crystal structures of two hydrogen-bonded compounds of chloranilic acid–ethyleneurea (1/1) and chloranilic acid–hydantoin (1/2)
aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
The structures of the hydrogen-bonded 1:1 6H2Cl2O4·C3H6N2O, (I), and the 1:2 of chloranilic acid with hydantoin (systematic name: imidazolidine-2,4-dione), C6H2Cl2O4·2C3H4N2O2, (II), have been determined at 180 K. In the crystals of both compounds, the base molecules are in the lactam form and no acid–base interaction involving H-atom transfer is observed. The of (I) consists of two independent half-molecules of chloranilic acid, with each of the acid molecules lying about an inversion centre, and one ethyleneurea molecule. The of (II) consists of one half-molecule of chloranilic acid, which lies about an inversion centre, and one hydantoin molecule. In the crystal of (I), the acid and base molecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming an undulating sheet structure parallel to the ab plane. In (II), the base molecules form an inversion dimer via a pair of N—H⋯O hydrogen bonds, and the base dimers are further linked through another N—H⋯O hydrogen bond into a layer structure parallel to (01). The acid molecule and the base molecule are linked via an O—H⋯O hydrogen bond.
of chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) with ethyleneurea (systematic name: imidazolidin-2-one), C1. Chemical context
Chloranilic acid, a dibasic acid with hydrogen-bond donor as well as acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with various organic bases, and also as a model compound for investigating hydrogen-transfer motions in O—H⋯N and N—H⋯O hydrogen-bonded systems (Zaman et al., 2004; Seliger et al., 2009; Asaji et al. 2010; Molčanov & Kojić-Prodić, 2010). In the present study, we have prepared two hydrogen-bonded compounds of chloranilic acid–ethyleneurea (1/1) and chloranilic acid–hydantoin (1/2) in order to extend our study on D—H⋯A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in chloranilic acid–organic base systems (Gotoh & Ishida, 2017a,b, and references therein).
2. Structural commentary
In compound (I), the base molecule is in the lactam form and no acid–base interaction involving H-atom transfer is observed (Fig. 1). In the there is one ethyleneurea molecule and two crystallographically independent half-molecules of chloranilic acid, with each of the acid molecules lying about an inversion centre. The O atom of ethyleneurea participates in two O—H⋯O hydrogen bonds as an acceptor for two O—H groups of chloranilic acid (O2—H2⋯O5 and O4—H4⋯O5; Table 1). The base ring (C7/N1/C8/C9/N2) is essentially planar and makes dihedral angles of 88.75 (6) and 3.27 (6)°, respectively, with the acid C1–C3/C1iii–C3iii and C4–C6/C4ii–C6ii rings [symmetry codes: (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1].
In compound (II), the base molecule is also in the lactam form and no acid–base interaction involving H-atom transfer is observed (Fig. 2). The chloranilic acid molecule is located on an inversion centre and the consists of one hydantoin molecule and a half-molecule of chloranilic acid. The acid and base molecules are linked via an O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2), forming a centrosymmetric 1:2 aggregate of the acid and the base. The 1:2 unit is approximately planar with a dihedral angle of 5.42 (5)° between the acid and base rings.
3. Supramolecular features
In the crystal of compound (I), the acid and base molecules are alternately arranged through O—H⋯O and N—H⋯O hydrogen bonds (O4—H4⋯O5, N1—H1N⋯O1i, N2—H2H⋯O3ii; symmetry codes as in Table 1), forming an undulating tape structure along [30]. The tapes are stacked along the a axis via another O—H⋯O hydrogen bond (O2—H2—O5; Table 1) into a sheet structure parallel to the ab plane (Fig. 3).
In the crystal of (II), two adjacent base molecules, which are related by an inversion centre, form a dimer via a pair of N—H⋯O hydrogen bonds (N1—H1N⋯O3i; symmetry code as in Table 2), and the base dimer and the acid molecule are alternately linked through an O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2), forming a flat tape structure along the a-axis direction (Fig. 4). The base dimers are assembled via another N—H⋯O hydrogen bond (N2—H2N⋯O4ii; symmetry code as in Table 2), forming a layer parallel to (01) as shown in Fig. 5. The O—H⋯O hydrogen bond (O2—H2⋯O3; Table 2) formed between the acid and base molecules links the layers.
4. Database survey
A search of the Cambridge Structural Database (Version 5.39, last update August 2018; Groom et al., 2016) for organic crystals of chloranilic acid with lactam-form base molecules gave ten hits. In the seven crystals of these compounds, O—H⋯O hydrogen bonds between the O—H group of chloranilic acid and the carbonyl group of base are observed [refcodes ACOJIO (Gotoh & Ishida, 2017a), AJAGIB (Luo & Palmore, 2002), HUFZUE (Jasinski et al., 2010), ODIHIU, SADTIC, SADTOI and SADTUO (Gotoh & Ishida, 2011)]. In particular, the compounds of chloranilic acid with 2-pyridone (ACOJIO), gabapentin-lactum (HUFZUE), pyrrolidin-2-one (ODIHIU) and piperidin-2-one (SADTUO) show short O—H⋯O hydrogen bonds (O⋯O shorter than 2.5 Å). In the O—H⋯O hydrogen bond [O⋯O = 2.4484 (10) Å] of chloranilic acid–piperidin-2-one (1/2) (SADTUO), the H atom is disordered over two positions.
5. Synthesis and crystallization
Single crystals of compound (I) were obtained by slow evaporation from an acetonitrile solution (150 ml) of chloranilic acid (330 mg) with ethyleneurea (140 mg) at room temperature. Crystals of compound (II) were obtained by slow evaporation from an acetonitrile solution (250 ml) of chloranilic acid (350 mg) with hydantoin (340 mg) at room temperature.
6. Refinement
Crystal data, data collection and structure . All H atoms in compounds (I) and (II) were found in difference Fourier maps. The O- and N-bound H atoms were freely refined. C-bound H atoms were positioned geometrically (C—H = 0.99 Å) and were treated as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S205698901801561X/lh5884sup1.cif
contains datablocks General, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901801561X/lh5884Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S205698901801561X/lh5884IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901801561X/lh5884Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S205698901801561X/lh5884IIsup5.cml
For both structures, data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006). Program(s) used to solve structure: SIR92 (Altomare et al., 1993) for (I); SHELXT2018 (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).C6H2Cl2O4·C3H6N2O | F(000) = 600.00 |
Mr = 295.08 | Dx = 1.746 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 5.0180 (4) Å | Cell parameters from 19204 reflections |
b = 14.6142 (10) Å | θ = 3.0–30.1° |
c = 15.8882 (11) Å | µ = 0.59 mm−1 |
β = 105.563 (3)° | T = 180 K |
V = 1122.43 (15) Å3 | Block, brown |
Z = 4 | 0.45 × 0.29 × 0.23 mm |
Rigaku R-AXIS RAPIDII diffractometer | 3040 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.057 |
ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −7→7 |
Tmin = 0.716, Tmax = 0.873 | k = −20→19 |
21546 measured reflections | l = −21→22 |
3266 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2007P] where P = (Fo2 + 2Fc2)/3 |
3266 reflections | (Δ/σ)max = 0.001 |
179 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.06653 (5) | 0.00389 (2) | 0.64704 (2) | 0.02517 (9) | |
Cl2 | 0.28647 (6) | 0.43040 (2) | 0.69108 (2) | 0.03101 (9) | |
O1 | 0.64834 (18) | −0.14266 (6) | 0.60507 (6) | 0.03198 (19) | |
O2 | 0.83758 (17) | 0.15225 (5) | 0.51887 (5) | 0.02612 (17) | |
O3 | −0.17821 (19) | 0.55990 (6) | 0.63245 (6) | 0.03138 (19) | |
O4 | 0.43441 (18) | 0.37722 (6) | 0.52805 (6) | 0.03039 (19) | |
O5 | 0.70481 (17) | 0.29928 (5) | 0.42370 (5) | 0.02644 (17) | |
N1 | 0.8521 (2) | 0.24152 (9) | 0.30842 (7) | 0.0372 (3) | |
N2 | 0.4933 (2) | 0.33134 (8) | 0.27881 (7) | 0.0323 (2) | |
C1 | 0.5873 (2) | −0.07583 (7) | 0.55745 (7) | 0.02118 (19) | |
C2 | 0.7619 (2) | 0.00483 (7) | 0.56565 (7) | 0.02058 (19) | |
C3 | 0.6846 (2) | 0.07805 (7) | 0.51226 (6) | 0.02064 (19) | |
C4 | −0.0902 (2) | 0.53136 (7) | 0.57314 (7) | 0.0233 (2) | |
C5 | 0.1390 (2) | 0.46653 (7) | 0.58624 (7) | 0.0238 (2) | |
C6 | 0.2263 (2) | 0.43578 (7) | 0.51801 (7) | 0.0236 (2) | |
C7 | 0.6858 (2) | 0.29121 (7) | 0.34329 (7) | 0.0224 (2) | |
C8 | 0.7865 (2) | 0.24974 (8) | 0.21442 (8) | 0.0275 (2) | |
H8A | 0.737465 | 0.189643 | 0.185683 | 0.033* | |
H8B | 0.943169 | 0.276222 | 0.195803 | 0.033* | |
C9 | 0.5369 (3) | 0.31466 (9) | 0.19376 (8) | 0.0325 (2) | |
H9A | 0.578932 | 0.372186 | 0.166986 | 0.039* | |
H9B | 0.372898 | 0.285493 | 0.153938 | 0.039* | |
H1N | 0.989 (4) | 0.2121 (14) | 0.3405 (14) | 0.059 (6)* | |
H2N | 0.381 (4) | 0.3687 (13) | 0.2915 (12) | 0.041 (5)* | |
H2 | 0.766 (4) | 0.1933 (16) | 0.4861 (14) | 0.056 (6)* | |
H4 | 0.476 (4) | 0.3613 (13) | 0.4811 (13) | 0.045 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02251 (14) | 0.02897 (15) | 0.02081 (14) | −0.00049 (8) | 0.00027 (10) | 0.00183 (8) |
Cl2 | 0.03685 (16) | 0.03457 (16) | 0.02165 (15) | 0.00812 (10) | 0.00789 (11) | 0.00275 (9) |
O1 | 0.0284 (4) | 0.0277 (4) | 0.0345 (4) | −0.0009 (3) | −0.0007 (3) | 0.0114 (3) |
O2 | 0.0273 (4) | 0.0226 (4) | 0.0252 (4) | −0.0031 (3) | 0.0014 (3) | 0.0039 (3) |
O3 | 0.0355 (4) | 0.0356 (4) | 0.0262 (4) | 0.0082 (3) | 0.0138 (3) | −0.0009 (3) |
O4 | 0.0333 (4) | 0.0350 (4) | 0.0243 (4) | 0.0124 (3) | 0.0100 (3) | 0.0016 (3) |
O5 | 0.0319 (4) | 0.0244 (4) | 0.0230 (4) | 0.0017 (3) | 0.0071 (3) | 0.0006 (3) |
N1 | 0.0378 (6) | 0.0468 (6) | 0.0272 (5) | 0.0224 (5) | 0.0093 (4) | 0.0057 (4) |
N2 | 0.0336 (5) | 0.0411 (5) | 0.0240 (5) | 0.0163 (4) | 0.0106 (4) | 0.0045 (4) |
C1 | 0.0207 (4) | 0.0220 (4) | 0.0204 (4) | 0.0018 (3) | 0.0047 (3) | 0.0012 (3) |
C2 | 0.0192 (4) | 0.0236 (5) | 0.0178 (4) | 0.0012 (3) | 0.0029 (3) | 0.0002 (3) |
C3 | 0.0215 (4) | 0.0221 (4) | 0.0181 (4) | 0.0003 (3) | 0.0049 (3) | −0.0006 (3) |
C4 | 0.0253 (5) | 0.0233 (5) | 0.0225 (5) | −0.0001 (4) | 0.0083 (4) | −0.0004 (4) |
C5 | 0.0260 (5) | 0.0245 (5) | 0.0213 (5) | 0.0019 (4) | 0.0070 (4) | 0.0010 (4) |
C6 | 0.0244 (5) | 0.0231 (5) | 0.0240 (5) | 0.0016 (3) | 0.0077 (4) | 0.0002 (3) |
C7 | 0.0239 (4) | 0.0191 (4) | 0.0246 (5) | −0.0005 (3) | 0.0070 (4) | 0.0021 (3) |
C8 | 0.0254 (5) | 0.0315 (5) | 0.0275 (5) | 0.0034 (4) | 0.0100 (4) | −0.0007 (4) |
C9 | 0.0346 (6) | 0.0416 (6) | 0.0240 (5) | 0.0125 (5) | 0.0127 (4) | 0.0075 (4) |
Cl1—C2 | 1.7169 (10) | N2—C9 | 1.4464 (15) |
Cl2—C5 | 1.7145 (11) | N2—H2N | 0.849 (19) |
O1—C1 | 1.2230 (13) | C1—C2 | 1.4537 (14) |
O2—C3 | 1.3165 (12) | C1—C3i | 1.5092 (14) |
O2—H2 | 0.81 (2) | C2—C3 | 1.3560 (14) |
O3—C4 | 1.2168 (13) | C4—C5 | 1.4612 (14) |
O4—C6 | 1.3264 (12) | C4—C6ii | 1.5045 (15) |
O4—H4 | 0.86 (2) | C5—C6 | 1.3504 (15) |
O5—C7 | 1.2609 (13) | C8—C9 | 1.5348 (15) |
N1—C7 | 1.3338 (14) | C8—H8A | 0.9900 |
N1—C8 | 1.4455 (15) | C8—H8B | 0.9900 |
N1—H1N | 0.85 (2) | C9—H9A | 0.9900 |
N2—C7 | 1.3397 (14) | C9—H9B | 0.9900 |
C3—O2—H2 | 114.1 (14) | C6—C5—Cl2 | 121.94 (8) |
C6—O4—H4 | 115.8 (13) | C4—C5—Cl2 | 117.13 (8) |
C7—N1—C8 | 112.92 (10) | O4—C6—C5 | 122.18 (10) |
C7—N1—H1N | 121.2 (15) | O4—C6—C4ii | 117.46 (9) |
C8—N1—H1N | 125.7 (15) | C5—C6—C4ii | 120.35 (9) |
C7—N2—C9 | 112.46 (10) | O5—C7—N1 | 125.87 (10) |
C7—N2—H2N | 119.3 (12) | O5—C7—N2 | 125.24 (10) |
C9—N2—H2N | 127.5 (12) | N1—C7—N2 | 108.88 (10) |
O1—C1—C2 | 123.17 (9) | N1—C8—C9 | 102.65 (9) |
O1—C1—C3i | 117.64 (9) | N1—C8—H8A | 111.2 |
C2—C1—C3i | 119.19 (8) | C9—C8—H8A | 111.2 |
C3—C2—C1 | 121.28 (9) | N1—C8—H8B | 111.2 |
C3—C2—Cl1 | 121.68 (8) | C9—C8—H8B | 111.2 |
C1—C2—Cl1 | 117.03 (7) | H8A—C8—H8B | 109.2 |
O2—C3—C2 | 122.48 (9) | N2—C9—C8 | 102.92 (9) |
O2—C3—C1i | 117.99 (9) | N2—C9—H9A | 111.2 |
C2—C3—C1i | 119.53 (9) | C8—C9—H9A | 111.2 |
O3—C4—C5 | 123.19 (10) | N2—C9—H9B | 111.2 |
O3—C4—C6ii | 118.08 (10) | C8—C9—H9B | 111.2 |
C5—C4—C6ii | 118.73 (9) | H9A—C9—H9B | 109.1 |
C6—C5—C4 | 120.92 (9) | ||
O1—C1—C2—C3 | −179.04 (11) | C4—C5—C6—O4 | 179.73 (10) |
C3i—C1—C2—C3 | 0.34 (16) | Cl2—C5—C6—O4 | −1.31 (16) |
O1—C1—C2—Cl1 | −0.19 (14) | C4—C5—C6—C4ii | 0.61 (17) |
C3i—C1—C2—Cl1 | 179.19 (7) | Cl2—C5—C6—C4ii | 179.57 (8) |
C1—C2—C3—O2 | 179.32 (9) | C8—N1—C7—O5 | −176.92 (10) |
Cl1—C2—C3—O2 | 0.52 (15) | C8—N1—C7—N2 | 3.23 (15) |
C1—C2—C3—C1i | −0.34 (16) | C9—N2—C7—O5 | 175.71 (11) |
Cl1—C2—C3—C1i | −179.14 (7) | C9—N2—C7—N1 | −4.43 (15) |
O3—C4—C5—C6 | 178.94 (11) | C7—N1—C8—C9 | −0.84 (14) |
C6ii—C4—C5—C6 | −0.60 (17) | C7—N2—C9—C8 | 3.73 (14) |
O3—C4—C5—Cl2 | −0.07 (15) | N1—C8—C9—N2 | −1.64 (13) |
C6ii—C4—C5—Cl2 | −179.61 (8) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O5 | 0.81 (2) | 1.82 (2) | 2.6090 (11) | 164 (2) |
O4—H4···O5 | 0.86 (2) | 1.88 (2) | 2.6635 (12) | 151.0 (19) |
N1—H1N···O1iii | 0.85 (2) | 2.06 (2) | 2.9003 (15) | 168 (2) |
N2—H2N···O3ii | 0.85 (2) | 2.06 (2) | 2.8654 (15) | 158.6 (17) |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+2, −y, −z+1. |
C6H2Cl2O4·2C3H4N2O2 | F(000) = 832.00 |
Mr = 409.14 | Dx = 1.825 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71075 Å |
a = 19.5690 (8) Å | Cell parameters from 13670 reflections |
b = 5.18661 (10) Å | θ = 3.3–30.2° |
c = 16.6103 (3) Å | µ = 0.49 mm−1 |
β = 117.965 (3)° | T = 180 K |
V = 1489.03 (8) Å3 | Block, brown |
Z = 4 | 0.49 × 0.33 × 0.24 mm |
Rigaku R-AXIS RAPIDII diffractometer | 2029 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.072 |
ω scans | θmax = 30.0°, θmin = 4.1° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −27→27 |
Tmin = 0.808, Tmax = 0.888 | k = −7→7 |
14622 measured reflections | l = −22→23 |
2181 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: mixed |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4572P] where P = (Fo2 + 2Fc2)/3 |
2181 reflections | (Δ/σ)max < 0.001 |
130 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.09683 (2) | 1.02553 (6) | 0.33978 (2) | 0.02980 (12) | |
O1 | 0.11596 (5) | 1.47273 (17) | 0.45960 (6) | 0.0313 (2) | |
O2 | 0.25729 (5) | 0.82514 (16) | 0.40485 (6) | 0.02794 (19) | |
O3 | 0.39430 (5) | 0.57413 (17) | 0.43836 (6) | 0.02824 (19) | |
O4 | 0.31705 (4) | −0.10296 (18) | 0.23989 (6) | 0.0296 (2) | |
N1 | 0.46359 (5) | 0.26895 (19) | 0.40528 (6) | 0.0269 (2) | |
N2 | 0.33612 (5) | 0.25929 (18) | 0.32811 (6) | 0.02336 (19) | |
C1 | 0.17655 (6) | 1.3650 (2) | 0.47556 (7) | 0.0229 (2) | |
C2 | 0.18138 (6) | 1.1410 (2) | 0.42588 (7) | 0.0228 (2) | |
C3 | 0.25018 (6) | 1.0302 (2) | 0.44779 (7) | 0.0223 (2) | |
C4 | 0.39913 (6) | 0.3869 (2) | 0.39566 (7) | 0.0226 (2) | |
C5 | 0.35871 (6) | 0.0519 (2) | 0.29613 (7) | 0.0229 (2) | |
C6 | 0.44610 (6) | 0.0494 (2) | 0.34539 (8) | 0.0255 (2) | |
H6A | 0.466307 | −0.112237 | 0.380266 | 0.031* | |
H6B | 0.467588 | 0.070964 | 0.302420 | 0.031* | |
H1N | 0.5127 (12) | 0.308 (4) | 0.4484 (15) | 0.054 (5)* | |
H2 | 0.3043 (12) | 0.772 (4) | 0.4269 (14) | 0.049 (5)* | |
H2N | 0.2861 (11) | 0.313 (4) | 0.3055 (13) | 0.045 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02000 (16) | 0.03480 (18) | 0.02881 (17) | −0.00423 (8) | 0.00662 (12) | −0.00241 (9) |
O1 | 0.0206 (4) | 0.0327 (4) | 0.0358 (4) | 0.0052 (3) | 0.0091 (3) | −0.0012 (3) |
O2 | 0.0237 (4) | 0.0269 (4) | 0.0314 (4) | 0.0015 (3) | 0.0114 (3) | −0.0036 (3) |
O3 | 0.0219 (4) | 0.0300 (4) | 0.0288 (4) | 0.0015 (3) | 0.0085 (3) | −0.0058 (3) |
O4 | 0.0198 (4) | 0.0324 (4) | 0.0321 (4) | −0.0038 (3) | 0.0085 (3) | −0.0086 (3) |
N1 | 0.0160 (4) | 0.0312 (5) | 0.0288 (4) | −0.0018 (3) | 0.0067 (3) | −0.0071 (4) |
N2 | 0.0158 (4) | 0.0268 (4) | 0.0239 (4) | 0.0003 (3) | 0.0063 (3) | −0.0025 (3) |
C1 | 0.0191 (4) | 0.0254 (5) | 0.0226 (4) | 0.0009 (3) | 0.0084 (4) | 0.0032 (4) |
C2 | 0.0177 (4) | 0.0257 (5) | 0.0220 (4) | −0.0009 (3) | 0.0069 (3) | 0.0020 (4) |
C3 | 0.0205 (4) | 0.0232 (5) | 0.0226 (4) | 0.0002 (3) | 0.0094 (4) | 0.0021 (3) |
C4 | 0.0180 (4) | 0.0256 (5) | 0.0221 (4) | −0.0010 (3) | 0.0076 (3) | 0.0003 (4) |
C5 | 0.0173 (4) | 0.0262 (5) | 0.0239 (5) | −0.0002 (3) | 0.0086 (4) | −0.0002 (4) |
C6 | 0.0162 (4) | 0.0276 (5) | 0.0295 (5) | −0.0008 (3) | 0.0079 (4) | −0.0049 (4) |
Cl1—C2 | 1.7094 (10) | N2—C5 | 1.3620 (14) |
O1—C1 | 1.2222 (12) | N2—C4 | 1.3857 (13) |
O2—C3 | 1.3237 (13) | N2—H2N | 0.912 (18) |
O2—H2 | 0.86 (2) | C1—C2 | 1.4536 (15) |
O3—C4 | 1.2318 (14) | C1—C3i | 1.5035 (14) |
O4—C5 | 1.2117 (13) | C2—C3 | 1.3475 (14) |
N1—C4 | 1.3425 (13) | C5—C6 | 1.5106 (14) |
N1—C6 | 1.4436 (14) | C6—H6A | 0.9900 |
N1—H1N | 0.91 (2) | C6—H6B | 0.9900 |
C3—O2—H2 | 112.8 (14) | O2—C3—C1i | 116.58 (9) |
C4—N1—C6 | 111.82 (8) | C2—C3—C1i | 120.65 (9) |
C4—N1—H1N | 125.3 (13) | O3—C4—N1 | 127.75 (10) |
C6—N1—H1N | 122.5 (13) | O3—C4—N2 | 124.29 (9) |
C5—N2—C4 | 111.40 (8) | N1—C4—N2 | 107.95 (9) |
C5—N2—H2N | 124.3 (12) | O4—C5—N2 | 126.87 (10) |
C4—N2—H2N | 124.2 (12) | O4—C5—C6 | 126.41 (10) |
O1—C1—C2 | 123.86 (10) | N2—C5—C6 | 106.71 (9) |
O1—C1—C3i | 117.46 (10) | N1—C6—C5 | 102.06 (8) |
C2—C1—C3i | 118.67 (8) | N1—C6—H6A | 111.4 |
C3—C2—C1 | 120.68 (9) | C5—C6—H6A | 111.4 |
C3—C2—Cl1 | 121.94 (8) | N1—C6—H6B | 111.4 |
C1—C2—Cl1 | 117.37 (7) | C5—C6—H6B | 111.4 |
O2—C3—C2 | 122.77 (10) | H6A—C6—H6B | 109.2 |
O1—C1—C2—C3 | −179.33 (10) | C6—N1—C4—N2 | −1.64 (12) |
C3i—C1—C2—C3 | −0.32 (16) | C5—N2—C4—O3 | −176.84 (11) |
O1—C1—C2—Cl1 | 0.48 (15) | C5—N2—C4—N1 | 2.61 (12) |
C3i—C1—C2—Cl1 | 179.49 (7) | C4—N2—C5—O4 | 176.75 (11) |
C1—C2—C3—O2 | 179.56 (9) | C4—N2—C5—C6 | −2.45 (12) |
Cl1—C2—C3—O2 | −0.24 (15) | C4—N1—C6—C5 | 0.19 (12) |
C1—C2—C3—C1i | 0.32 (16) | O4—C5—C6—N1 | −177.85 (11) |
Cl1—C2—C3—C1i | −179.48 (7) | N2—C5—C6—N1 | 1.35 (11) |
C6—N1—C4—O3 | 177.78 (11) |
Symmetry code: (i) −x+1/2, −y+5/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3 | 0.86 (2) | 1.97 (2) | 2.7917 (15) | 160 (2) |
N1—H1N···O3ii | 0.91 (2) | 2.00 (2) | 2.8927 (13) | 165 (2) |
N2—H2N···O4iii | 0.91 (2) | 1.85 (2) | 2.7560 (14) | 176 (2) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y+1/2, −z+1/2. |
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Asaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531–536. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500–o504. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2017a). Acta Cryst. E73, 1546–1550. CrossRef IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2017b). Acta Cryst. E73, 1840–1844. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o163–o164. Web of Science CrossRef IUCr Journals Google Scholar
Luo, T. M. & Palmore, G. T. R. (2002). Cryst. Growth Des. 2, 337–350. CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Molčanov, K. & Kojić-Prodić, B. (2010). CrystEngComm, 12, 925–939. Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281–2286. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.